×

Atmospheric measurement system

  • US 8,797,550 B2
  • Filed: 10/19/2011
  • Issued: 08/05/2014
  • Est. Priority Date: 04/21/2009
  • Status: Active Grant
First Claim
Patent Images

1. A method of processing a fringe pattern from a Fabry-Perot interferometer, comprising:

  • a. generating at least one portion of a circular fringe pattern with a Fabry-Perot interferometer responsive to at least one light signal incident thereupon, wherein said at least one portion of said circular fringe pattern is formed of light from said at least one light signal;

    b. imaging said at least one portion of said circular fringe pattern from said Fabry-Perot interferometer onto a digital micromirror device (DMD), wherein said digital micromirror device (DMD) comprises a plurality of micromirrors arranged in an array, wherein each micromirror of said plurality of micromirrors constitutes a pixel that can be rotationally positioned to a plurality of different pixel-mirror rotational states, and each pixel-mirror rotational state of said plurality of different pixel-mirror rotational states corresponds to a particular associated rotational position of said micromirror;

    c. processing said at least one portion of said circular fringe pattern, comprising;

    i. setting said pixel-mirror rotational state of each of said plurality of micromirrors of said array so as to form at least one pattern of associated pixel-mirror rotational states at a corresponding at least one point in time, wherein each said at least one pattern of associated pixel-mirror rotational states comprises a plurality of subsets of said plurality of micromirrors, wherein for each subset of said plurality of subsets, each said micromirror of said subset is set to a common said pixel-mirror rotational state, and said micromirrors of different said subsets are set to different said pixel-mirror rotational states;

    ii. for each said subset of said plurality of micromirrors, reflecting from said plurality of micromirrors of said subset of said plurality of micromirrors a corresponding portion of said light of said at least one portion of said circular fringe pattern, wherein different corresponding portions of said light corresponding to different said subsets of said plurality of micromirrors are reflected in different directions in accordance with said pixel-mirror rotational state associated with said subset of said plurality of micromirrors;

    iii. for each of a plurality of said subsets of said plurality of micromirrors, detecting said corresponding portion of said light reflected from each said subset of said plurality of micromirrors at said at least one point in time, wherein the operation of detecting said corresponding portion of said light comprises eithera) separately detecting different said corresponding portions of said light for a common said pattern of associated pixel-mirror rotational states, wherein said different said corresponding portions of said light are relatively disjoint with respect to one another and collectively constitute a set of disjoint portions of said light, and the operation of separately detecting said different said corresponding portions of said light provides for generating a corresponding set of complementary detected signals;

    ORb) sequentially detecting different said corresponding portions of said light for different said patterns of associated pixel-mirror rotational states at different points in time, wherein said different said corresponding portions of said light are relatively disjoint with respect to one another and collectively constitute a set of disjoint portions of said light, and the operation of detecting different said corresponding portions of said light provides for generating a corresponding set of complementary detected signals;

    iv. processing said corresponding set of complementary detected signals so as to provide for characterizing said at least one light signal incident upon said Fabry-Perot interferometer.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×