Methods and systems for graphical image authentication
-
0Associated
Cases -
0Associated
Defendants -
0Accused
Products -
6Forward
Citations -
0
Petitions -
1
Assignment
First Claim
1. A computerized system comprising:
- a graphical output device;
a user input device capable of generating alphanumeric characters; and
a processor adapted to generate a grid of randomly selected images for display on the graphical output device and to assign a different randomly selected unique image identifier to each of the randomly selected images for display with the image on the graphical output device,wherein the images are selected from a plurality of authenticating image categories, wherein the authenticating image categories are based on a common attribute, feature, theme, or characteristic of an object;
wherein at least one of the images further comprise a reference to a product or service sponsored by an advertiser,wherein the processor is further adapted to receive a username and a password in conjunction with the images selected from the plurality of authenticating image categories,wherein the grid of randomly selected images comprise at least one image from a pre-selected authenticating image category, wherein the pre-selected authenticating image category is initially pre-selected by the user, wherein the pre-selection occurs during enrollment, wherein the pre-selection allows the user to memorize the pre-selected authenticating image category;
wherein the authenticating image categories comprise a plurality of unique images; and
wherein the processor is adapted to receive at least one user input from the user input device corresponding to the unique image identifier to authenticate a user of the computerized system.
1 Assignment
0 Petitions

Accused Products

Abstract
Systems and methods for providing authentication using an arrangement of dynamic graphical images. The graphical images can be arranged as a grid or matrix for presentation on a device display for authentication of a user. The kinds of graphical images can be derived from a designated authentication category and non-authenticating categories. A series of password elements corresponding to the graphical images can be displayed with the graphical images. The user may enter the series of one or more password elements corresponding to graphical images from the authentication category which combine to form a password entry. An authentication server can compare the password entry to an authentication password corresponding to the particular arrangement of dynamic graphical images. The selection of graphical images, their arrangement and their corresponding password elements, may dynamically change in between authentication processes.
108 Citations
Hardening Security Images | ||
Patent #
US 20130251212A1
Filed 03/23/2012
|
Current Assignee
PayPal Inc.
|
Sponsoring Entity
PayPal Inc.
|
AUTHENTICATION METHOD AND WIRELESS CONNECTION DEVICE | ||
Patent #
US 20130318587A1
Filed 05/21/2013
|
Current Assignee
Buffalo Incorporated
|
Sponsoring Entity
Buffalo Incorporated
|
INPUT VALIDATION, USER AND DATA AUTHENTICATION ON POTENTIALLY COMPROMISED MOBILE DEVICES | ||
Patent #
US 20140359730A1
Filed 05/29/2013
|
Current Assignee
SAP SE
|
Sponsoring Entity
SAP SE
|
Input validation, user and data authentication on potentially compromised mobile devices | ||
Patent #
US 9,025,834 B2
Filed 05/29/2013
|
Current Assignee
SAP SE
|
Sponsoring Entity
SAP SE
|
Hardening security images | ||
Patent #
US 9,129,102 B2
Filed 03/23/2012
|
Current Assignee
PayPal Inc.
|
Sponsoring Entity
PayPal Inc.
|
Hardening security images | ||
Patent #
US 9,792,423 B2
Filed 08/13/2015
|
Current Assignee
PayPal Inc.
|
Sponsoring Entity
PayPal Inc.
|
Drawing method, image generating device, and electronic information apparatus | ||
Patent #
US 7,884,825 B2
Filed 10/21/2005
|
Current Assignee
Dropbox Inc.
|
Sponsoring Entity
Sony Computer Entertainment Incorporated
|
Image array authentication system | ||
Patent #
US 7,680,815 B2
Filed 09/26/2006
|
Current Assignee
NEC Nexsolutions Limited
|
Sponsoring Entity
NEC Nexsolutions Limited
|
User authentication with image password | ||
Patent #
US 20090038006A1
Filed 08/02/2007
|
Current Assignee
Caterpillar Incorporated
|
Sponsoring Entity
-
|
Methods of authenticating a bank customer desiring to conduct an electronic check deposit transaction | ||
Patent #
US 20090037339A1
Filed 08/02/2007
|
Current Assignee
NCR Corporation
|
Sponsoring Entity
NCR Corporation
|
Method and device for entering a computer database password | ||
Patent #
US 7,536,556 B2
Filed 07/27/2001
|
Current Assignee
Martyn Sergeevich Nunuparov, Thomas Robert Ruddy, Yulia Vladimirovna Fedorova
|
Sponsoring Entity
Martyn Sergeevich Nunuparov, Thomas Robert Ruddy, Yulia Vladimirovna Fedorova
|
Mutual authentication system between user and system | ||
Patent #
US 7,552,330 B2
Filed 08/23/2004
|
Current Assignee
MNEMONIC SECURITY LIMITED
|
Sponsoring Entity
MNEMONIC SECURITY LIMITED
|
Detecting local graphic password deciphering attacks | ||
Patent #
US 7,577,994 B1
Filed 08/25/2005
|
Current Assignee
Symantec Corporation
|
Sponsoring Entity
Symantec Corporation
|
Password authenticating apparatus, method, and program | ||
Patent #
US 7,574,739 B2
Filed 09/28/2004
|
Current Assignee
NEC Corporation
|
Sponsoring Entity
NEC Corporation
|
ADVANCED MULTI-FACTOR AUTHENTICATION METHODS | ||
Patent #
US 20080052245A1
Filed 08/21/2007
|
Current Assignee
ACUPRINT INC.
|
Sponsoring Entity
ACUPRINT INC.
|
LOGIN PROCEDURE USING IMAGE CODE | ||
Patent #
US 20080141351A1
Filed 11/26/2007
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
SIMPLIFIED ELECTRONIC MESSAGING SYSTEM | ||
Patent #
US 20080222710A1
Filed 03/30/2007
|
Current Assignee
Zhigu Holdings Limited
|
Sponsoring Entity
Zhigu Holdings Limited
|
HAPTIC-BASED GRAPHICAL PASSWORD | ||
Patent #
US 20080235788A1
Filed 03/23/2007
|
Current Assignee
University of Ottawa
|
Sponsoring Entity
University of Ottawa
|
Password inputting apparatus, method of inputting password, and computer product | ||
Patent #
US 7,451,323 B2
Filed 07/29/2004
|
Current Assignee
Fujitsu Limited
|
Sponsoring Entity
Fujitsu Limited
|
IMAGE BASED SHARED SECRET PROXY FOR SECURE PASSWORD ENTRY | ||
Patent #
US 20080320310A1
Filed 06/21/2007
|
Current Assignee
Microsoft Technology Licensing LLC
|
Sponsoring Entity
Microsoft Technology Licensing LLC
|
WEBSITE APPLICATION SYSTEM FOR ONLINE VIDEO PRODUCERS AND ADVERTISERS | ||
Patent #
US 20080307310A1
Filed 05/28/2008
|
Current Assignee
ADITALL LLC
|
Sponsoring Entity
ADITALL LLC
|
Image password lock system by tracing position information of the organism or article feature | ||
Patent #
US 20070041621A1
Filed 08/17/2005
|
Current Assignee
National Chung-Shan Institute of Science and Technology
|
Sponsoring Entity
National Chung-Shan Institute of Science and Technology
|
Securely providing advertising subsidized computer usage | ||
Patent #
US 20070033102A1
Filed 12/29/2005
|
Current Assignee
Microsoft Technology Licensing LLC
|
Sponsoring Entity
Microsoft Technology Licensing LLC
|
Authorization verification method and devices suited therefor | ||
Patent #
US 20070023506A1
Filed 10/15/2004
|
Current Assignee
Swisscom AG
|
Sponsoring Entity
Swisscom AG
|
Image array authentication system | ||
Patent #
US 20070074119A1
Filed 09/26/2006
|
Current Assignee
NEC Nexsolutions Limited
|
Sponsoring Entity
NEC Nexsolutions Limited
|
Robust visual passwords | ||
Patent #
US 7,219,368 B2
Filed 03/23/2001
|
Current Assignee
Emc IP Holding Company LLC
|
Sponsoring Entity
RSA Security LLC
|
Limited-use browser and security system | ||
Patent #
US 7,225,157 B2
Filed 12/21/2000
|
Current Assignee
Intellectual Ventures Assets 144 LLC
|
Sponsoring Entity
Copyright Clearance Center Inc.
|
Human-factors authentication | ||
Patent #
US 20070130618A1
Filed 09/27/2006
|
Current Assignee
Chuan Chen
|
Sponsoring Entity
Chuan Chen
|
User interface and method for inputting password and password system using the same | ||
Patent #
US 7,240,367 B2
Filed 03/18/2003
|
Current Assignee
CRYPTZONE LTD. A CORPORATION ORGANIZED UNDER THE LAWS OF THE REPUBLIC OF KOREA
|
Sponsoring Entity
CRYPTZONE LTD. A CORPORATION ORGANIZED UNDER THE LAWS OF THE REPUBLIC OF KOREA
|
METHODS AND SYSTEMS FOR ASSIGNING ACCESS CONTROL LEVELS IN PROVIDING ACCESS TO RESOURCES VIA VIRTUAL MACHINES | ||
Patent #
US 20070180493A1
Filed 01/18/2007
|
Current Assignee
Citrix Systems Inc.
|
Sponsoring Entity
Citrix Systems Inc.
|
PASSWORD INPUT DEVICE, PASSWORD INPUT METHOD, RECORDING MEDIUM, AND ELECTRONIC APPARATUS | ||
Patent #
US 20070198846A1
Filed 05/23/2006
|
Current Assignee
Fujitsu Limited
|
Sponsoring Entity
Fujitsu Limited
|
Security Systems for Protecting an Asset | ||
Patent #
US 20070250920A1
Filed 04/23/2007
|
Current Assignee
Jeffrey Dean Lindsay
|
Sponsoring Entity
Jeffrey Dean Lindsay
|
Methods and Systems for Graphical Image Authentication | ||
Patent #
US 20070277224A1
Filed 02/21/2007
|
Current Assignee
Vidoop LLC
|
Sponsoring Entity
Vidoop LLC
|
Graphical password | ||
Patent #
US 5,559,961 A
Filed 08/30/1995
|
Current Assignee
Lucent Technologies Inc.
|
Sponsoring Entity
Lucent Technologies Inc.
|
ELECTRONIC INFORMATION MANAGEMENT SYSTEM, IC CARD, TERMINAL APPARATUS AND ELECTRONIC INFORMATION MANAGEMENT METHOD, AND RECORDING MEDIUM ON WHICH IS RECORDED AN ELECTRONIC INFORMATION MANAGEMENT PROGRAM | ||
Patent #
US 6,718,471 B1
Filed 03/18/1999
|
Current Assignee
Fujitsu Limited
|
Sponsoring Entity
Fujitsu Limited
|
Method and apparatus to discover services using flexible search criteria | ||
Patent #
US 6,862,594 B1
Filed 08/31/2000
|
Current Assignee
Oracle America Inc.
|
Sponsoring Entity
Sun Microsystems Incorporated
|
Authentication watermarks for printed objects and related applications | ||
Patent #
US 6,823,075 B2
Filed 02/02/2001
|
Current Assignee
Digimarc Corporation
|
Sponsoring Entity
Digimarc Corporation
|
Graphical password methodology for a microprocessor device accepting non-alphanumeric user input | ||
Patent #
US 6,686,931 B1
Filed 08/20/2001
|
Current Assignee
Google Technology Holdings LLC
|
Sponsoring Entity
Motorola Inc.
|
Secure data entry and visual authentication system and method | ||
Patent #
US 6,209,104 B1
Filed 12/01/1997
|
Current Assignee
ACCULLINK INC
|
Sponsoring Entity
Reza Jalili
|
Dynamic marketing based on client computer configurations | ||
Patent #
US 6,895,387 B1
Filed 06/19/2000
|
Current Assignee
McAfee Inc.
|
Sponsoring Entity
McAfee Inc.
|
Online data encryption and decryption | ||
Patent #
US 20060020815A1
Filed 06/29/2005
|
Current Assignee
Oracle International Corporation
|
Sponsoring Entity
Oracle International Corporation
|
System and method of using human friendly representations of mathematical function results and transaction analysis to prevent fraud | ||
Patent #
US 20060020812A1
Filed 04/26/2005
|
Current Assignee
Joseph Steinberg, Shira Steinberg
|
Sponsoring Entity
Joseph Steinberg, Shira Steinberg
|
User interface and anti-phishing functions for an anti-spam micropayments system | ||
Patent #
US 20060053293A1
Filed 09/07/2004
|
Current Assignee
Iconix Incorporated
|
Sponsoring Entity
Iconix Incorporated
|
System and method for providing a secure intellectual property marketplace | ||
Patent #
US 20060085360A1
Filed 10/14/2004
|
Current Assignee
Google LLC
|
Sponsoring Entity
Google LLC
|
Method and apparatus for providing secure document distribution | ||
Patent #
US 7,021,534 B1
Filed 03/18/2005
|
Current Assignee
Overtouch Remote LLC
|
Sponsoring Entity
Han Kiliccote
|
User interface and anti-phishing functions for an anti-spam micropayments system | ||
Patent #
US 20060075028A1
Filed 09/07/2004
|
Current Assignee
Iconix Incorporated
|
Sponsoring Entity
Iconix Incorporated
|
User interface and anti-phishing functions for an anti-spam micropayments system | ||
Patent #
US 20060075027A1
Filed 09/07/2004
|
Current Assignee
Iconix Incorporated
|
Sponsoring Entity
Iconix Incorporated
|
Method and apparatus that enable a computer user to verify whether they have correctly input their password into a computer | ||
Patent #
US 7,028,192 B2
Filed 11/06/2003
|
Current Assignee
Hewlett-Packard Development Company L.P.
|
Sponsoring Entity
Hewlett-Packard Development Company L.P.
|
Delicate metering of computer usage | ||
Patent #
US 20060105739A1
Filed 03/08/2005
|
Current Assignee
Microsoft Technology Licensing LLC
|
Sponsoring Entity
Microsoft Technology Licensing LLC
|
Method for online advertising and gamming | ||
Patent #
US 20060183551A1
Filed 02/13/2006
|
Current Assignee
Shroeder Prudent
|
Sponsoring Entity
Shroeder Prudent
|
Method for supporting dynamic password | ||
Patent #
US 7,093,282 B2
Filed 08/09/2001
|
Current Assignee
Activcard Ireland Limited
|
Sponsoring Entity
Activcard Ireland Limited
|
AN ARRANGEMENT AND METHOD OF GRAPHICAL PASSWORD AUTHENTICATION | ||
Patent #
US 20060174339A1
Filed 10/05/2005
|
Current Assignee
Hai Tao
|
Sponsoring Entity
Hai Tao
|
Image or pictographic based computer login systems and methods | ||
Patent #
US 20060206717A1
Filed 03/08/2005
|
Current Assignee
Microsoft Technology Licensing LLC
|
Sponsoring Entity
Microsoft Technology Licensing LLC
|
System and method of secure login on insecure systems | ||
Patent #
US 20060206919A1
Filed 03/10/2005
|
Current Assignee
Axalto S A
|
Sponsoring Entity
Axalto S A
|
System and method for using a visual password scheme | ||
Patent #
US 20060206918A1
Filed 03/01/2005
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Limited-use browser and security system | ||
Patent #
US 7,130,831 B2
Filed 09/10/1999
|
Current Assignee
Intellectual Ventures Assets 144 LLC
|
Sponsoring Entity
Copyright Clearance Center Inc.
|
Mutual authentication system between user and system | ||
Patent #
US 20060230435A1
Filed 08/23/2004
|
Current Assignee
MNEMONIC SECURITY LIMITED
|
Sponsoring Entity
MNEMONIC SECURITY LIMITED
|
Method for verifying authorized access | ||
Patent #
US 20060248344A1
Filed 05/02/2005
|
Current Assignee
Vince Yang
|
Sponsoring Entity
Vince Yang
|
Data certification method and apparatus | ||
Patent #
US 20050010758A1
Filed 08/12/2002
|
Current Assignee
CRYPTOMATHIC AS
|
Sponsoring Entity
CRYPTOMATHIC AS
|
Information hiding through time synchronization | ||
Patent #
US 20050010768A1
Filed 07/08/2003
|
Current Assignee
Intel Corporation
|
Sponsoring Entity
Intel Corporation
|
Method and apparatus for generating and reinforcing user passwords | ||
Patent #
US 20050071686A1
Filed 09/29/2003
|
Current Assignee
Avaya Incorporated
|
Sponsoring Entity
Avaya Incorporated
|
Password authenticating apparatus, method, and program | ||
Patent #
US 20050071637A1
Filed 09/28/2004
|
Current Assignee
NEC Corporation
|
Sponsoring Entity
NEC Corporation
|
Dynamic insertion of targeted sponsored video messages into Internet multimedia broadcasts | ||
Patent #
US 20050076357A1
Filed 06/24/2004
|
Current Assignee
Adam Michael Fenne
|
Sponsoring Entity
Adam Michael Fenne
|
Steganographic data embedding in objects for authenticating and associating value with the objects | ||
Patent #
US 20050169496A1
Filed 11/23/2004
|
Current Assignee
Digimarc Corporation
|
Sponsoring Entity
Digimarc Corporation
|
Method and apparatus for password entry using dynamic interface legitimacy information | ||
Patent #
US 6,950,949 B1
Filed 10/08/1999
|
Current Assignee
Entrust Technologies Limited
|
Sponsoring Entity
Entrust Technologies Limited
|
System and method for network-based object authentication | ||
Patent #
US 20050276442A1
Filed 08/19/2005
|
Current Assignee
Graphic Security Systems Corporation
|
Sponsoring Entity
Graphic Security Systems Corporation
|
System and method for authenticating users using two or more factors | ||
Patent #
US 20050268107A1
Filed 04/22/2005
|
Current Assignee
Emc IP Holding Company LLC
|
Sponsoring Entity
Emc IP Holding Company LLC
|
Distributed client/server computer network | ||
Patent #
US 6,981,016 B1
Filed 06/11/1999
|
Current Assignee
VISAGE DEVELOPMENT LIMITED
|
Sponsoring Entity
VISAGE DEVELOPMENT LIMITED
|
Auditable privacy policies in a distributed hierarchical identity management system | ||
Patent #
US 20050283443A1
Filed 06/16/2004
|
Current Assignee
Callahan Cellular LLC
|
Sponsoring Entity
Callahan Cellular LLC
|
Distributed hierarchical identity management system authentication mechanisms | ||
Patent #
US 20050283614A1
Filed 06/16/2004
|
Current Assignee
Callahan Cellular LLC
|
Sponsoring Entity
Callahan Cellular LLC
|
System and method for user authentication | ||
Patent #
US 6,980,081 B2
Filed 05/10/2002
|
Current Assignee
Hewlett-Packard Development Company L.P.
|
Sponsoring Entity
Hewlett-Packard Development Company L.P.
|
System and method for authenticating at least a portion of an e-mail message | ||
Patent #
US 20050268101A1
Filed 04/22/2005
|
Current Assignee
Emc IP Holding Company LLC
|
Sponsoring Entity
Emc IP Holding Company LLC
|
System and method for authenticating entities to users | ||
Patent #
US 20050268100A1
Filed 03/23/2005
|
Current Assignee
Emc IP Holding Company LLC
|
Sponsoring Entity
Emc IP Holding Company LLC
|
Click Passwords | ||
Patent #
US 20040010721A1
Filed 06/28/2002
|
Current Assignee
Microsoft Technology Licensing LLC
|
Sponsoring Entity
Microsoft Technology Licensing LLC
|
User selectable authentication interface and universal password oracle | ||
Patent #
US 20040030934A1
Filed 04/10/2003
|
Current Assignee
Fumio Mizoguchi, Wen Wu
|
Sponsoring Entity
Fumio Mizoguchi, Wen Wu
|
Password protection using spatial and temporal variation in a high-resolution touch sensitive display | ||
Patent #
US 6,720,860 B1
Filed 06/30/2000
|
Current Assignee
Snap Inc.
|
Sponsoring Entity
International Business Machines Corporation
|
System, apparatus, terminal, method, and computer program for managing information | ||
Patent #
US 20040111648A1
Filed 09/26/2003
|
Current Assignee
Sony Corporation
|
Sponsoring Entity
Sony Corporation
|
Method and device for entering a computer database password | ||
Patent #
US 20040172564A1
Filed 01/26/2004
|
Current Assignee
Yulia Vladimirovna Federova, Martyn Sergeevich Nunuparov, Thomas Robert Ruddy
|
Sponsoring Entity
Yulia Vladimirovna Federova, Martyn Sergeevich Nunuparov
|
Trusted construction of message endpoints in a distributed computing environment | ||
Patent #
US 6,792,466 B1
Filed 09/12/2000
|
Current Assignee
Oracle America Inc.
|
Sponsoring Entity
Sun Microsystems Incorporated
|
System and method for authenticating users using image selection | ||
Patent #
US 20040230843A1
Filed 07/08/2004
|
Current Assignee
Wayne Jansen
|
Sponsoring Entity
-
|
Graphical event-based password system | ||
Patent #
US 20040250138A1
Filed 04/18/2003
|
Current Assignee
Jonathan Schneider
|
Sponsoring Entity
-
|
Method and system for producing a graphical password, and a terminal device | ||
Patent #
US 20040260955A1
Filed 06/18/2004
|
Current Assignee
Conversant Wireless Licensing S..r.l. fka Core Wireless Licensing S.a.r.l.
|
Sponsoring Entity
Conversant Wireless Licensing S..r.l. fka Core Wireless Licensing S.a.r.l.
|
System and method for accomplishing two-factor user authentication using the internet | ||
Patent #
US 20030046551A1
Filed 01/16/2002
|
Current Assignee
McAfee LLC
|
Sponsoring Entity
McAfee LLC
|
Authentications integrated into a boot code image | ||
Patent #
US 20030084275A1
Filed 10/31/2001
|
Current Assignee
Toshiba Global Commerce Solutions Holdings Corporation
|
Sponsoring Entity
Toshiba Global Commerce Solutions Holdings Corporation
|
Graphical passwords for use in a data processing network | ||
Patent #
US 20030093699A1
Filed 11/15/2001
|
Current Assignee
International Business Machines Corporation
|
Sponsoring Entity
International Business Machines Corporation
|
Method and apparatus for dynamic personal identification number management | ||
Patent #
US 20030177366A1
Filed 03/18/2002
|
Current Assignee
Sun Microsystems Incorporated
|
Sponsoring Entity
-
|
Apparatus and method for providing access rights information on computer accessible content | ||
Patent #
US 20030177248A1
Filed 09/05/2001
|
Current Assignee
International Business Machines Corporation
|
Sponsoring Entity
International Business Machines Corporation
|
System and method of inkblot authentication | ||
Patent #
US 20030191947A1
Filed 04/30/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Sponsoring Entity
-
|
Embedding location data in video | ||
Patent #
US 20030215110A1
Filed 02/20/2003
|
Current Assignee
Digimarc Corporation
|
Sponsoring Entity
Digimarc Corporation
|
System and method for user authentication | ||
Patent #
US 20030210127A1
Filed 05/10/2002
|
Current Assignee
Hewlett-Packard Development Company L.P.
|
Sponsoring Entity
-
|
Mobile telephone and method for registering and using special symbols as a password in same | ||
Patent #
US 6,351,634 B1
Filed 06/01/1999
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Sponsoring Entity
Samsung Electronics Co. Ltd.
|
Method and system for managing advertisements | ||
Patent #
US 20020019768A1
Filed 01/02/2001
|
Current Assignee
INTERACTIVE INFORMATION SERVICE INC
|
Sponsoring Entity
INTERACTIVE INFORMATION SERVICE INC
|
Password generation and verification system and method therefor | ||
Patent #
US 20020083347A1
Filed 07/19/2001
|
Current Assignee
Akira Taguchi
|
Sponsoring Entity
Akira Taguchi
|
Methods for interactive internet advertising, apparatuses and systems including same | ||
Patent #
US 20020094868A1
Filed 01/16/2001
|
Current Assignee
CAPTUREQUEST INC.
|
Sponsoring Entity
CAPTUREQUEST INC.
|
Secure key entry using a graphical user inerface | ||
Patent #
US 20020188872A1
Filed 06/06/2001
|
Current Assignee
ACCULLINK LLC
|
Sponsoring Entity
ACCULLINK LLC
|
System and method for recording internet advertisement access history | ||
Patent #
US 20010007097A1
Filed 12/27/2000
|
Current Assignee
NUNNHB SYSTEM CO. LTD.
|
Sponsoring Entity
NUNNHB SYSTEM CO. LTD.
|
File structure for preventing edition and deletion in internet, a variety of computers and computer application media, advertising method using the file structure and system used for the method | ||
Patent #
US 20010013039A1
Filed 02/06/2001
|
Current Assignee
Choo Hwan Choi
|
Sponsoring Entity
Choo Hwan Choi
|
Method and apparatus for creating unique image passwords | ||
Patent #
US 20010037468A1
Filed 04/10/2001
|
Current Assignee
Gaddis M. Norton
|
Sponsoring Entity
Gaddis M. Norton
|
System, method and apparatus for authenticating the distribution of data | ||
Patent #
US 20010037314A1
Filed 03/29/2001
|
Current Assignee
Mark M. Ishikawa
|
Sponsoring Entity
Mark M. Ishikawa
|
Internet-based advertising scheme employing scavenger hunt metaphor | ||
Patent #
US 6,102,406 A
Filed 06/07/1999
|
Current Assignee
Steven A. Miles
|
Sponsoring Entity
Steven A. Miles
|
Secret data storage device, secret data reading method, and control program storing medium | ||
Patent #
US 5,928,364 A
Filed 07/14/1997
|
Current Assignee
Casio Computer Company
|
Sponsoring Entity
-
|
Method of delivery, targeting, and measuring advertising over networks | ||
Patent #
US 5,948,061 A
Filed 10/29/1996
|
Current Assignee
Google LLC
|
Sponsoring Entity
Doubleclick Incorporated
|
Visual access to restricted functions represented on a graphical user interface | ||
Patent #
US 5,821,933 A
Filed 09/14/1995
|
Current Assignee
International Business Machines Corporation
|
Sponsoring Entity
International Business Machines Corporation
|
Personal identification devices and access control systems | ||
Patent #
US 5,608,387 A
Filed 05/26/1994
|
Current Assignee
VISAGE DEVELOPMENTS LIMITED
|
Sponsoring Entity
Davies John H. E.
|
Method and apparatus for establishing a protected channel between a user and a computer system | ||
Patent #
US 5,664,099 A
Filed 12/28/1995
|
Current Assignee
International Business Machines Corporation
|
Sponsoring Entity
Lotus Development Corporation
|
Nondisclosing password entry system | ||
Patent #
US 5,428,349 A
Filed 10/01/1992
|
Current Assignee
NEXT ACCESS TECHNOLOGIES LLC
|
Sponsoring Entity
Daniel G. Baker
|
Method to provide security for a computer and a device therefor | ||
Patent #
US 5,465,084 A
Filed 09/22/1994
|
Current Assignee
Stephen R. Cottrell
|
Sponsoring Entity
Stephen R. Cottrell
|
Identity verification system resistant to compromise by observation of its use | ||
Patent #
US 5,276,314 A
Filed 04/03/1992
|
Current Assignee
International Business Machines Corporation
|
Sponsoring Entity
International Business Machines Corporation
|
17 Claims
- 1. A computerized system comprising:
a graphical output device; a user input device capable of generating alphanumeric characters; and a processor adapted to generate a grid of randomly selected images for display on the graphical output device and to assign a different randomly selected unique image identifier to each of the randomly selected images for display with the image on the graphical output device, wherein the images are selected from a plurality of authenticating image categories, wherein the authenticating image categories are based on a common attribute, feature, theme, or characteristic of an object; wherein at least one of the images further comprise a reference to a product or service sponsored by an advertiser, wherein the processor is further adapted to receive a username and a password in conjunction with the images selected from the plurality of authenticating image categories, wherein the grid of randomly selected images comprise at least one image from a pre-selected authenticating image category, wherein the pre-selected authenticating image category is initially pre-selected by the user, wherein the pre-selection occurs during enrollment, wherein the pre-selection allows the user to memorize the pre-selected authenticating image category; wherein the authenticating image categories comprise a plurality of unique images; and wherein the processor is adapted to receive at least one user input from the user input device corresponding to the unique image identifier to authenticate a user of the computerized system. - View Dependent Claims (2, 3)
- 4. A method for authenticating identity to a computer system, the method comprising:
receiving an account identifier; displaying a randomly generated grid of randomly selected images, each image having at least one randomly generated unique image identifier associated therewith;
wherein at least one of the images is from a pre-selected authenticating image category corresponding to the account identifier, wherein the authenticating image category comprises a plurality of unique images, wherein the authenticating image category is based on a common attribute, feature, theme, or characteristic of an object, wherein at least one of the images further comprise a reference to a product or service sponsored by an advertiser;wherein the authenticating image category is initially pre-selected by the user, wherein the pre-selection occurs during enrollment, wherein the pre-selection allows the user to memorize the authenticating image category; receiving at least one randomly generated unique image identifier associated with the image from the pre-selected authenticating image category; and authenticating identity based upon the received unique image identifier associated with the randomly selected image from the pre-selected authenticating image category. - View Dependent Claims (5, 6, 7, 8, 9, 10)
- 11. A method for verifying identity of a plurality of users of a computer system, the method comprising:
each user pre-selecting an account identifier and at least one authenticating image category wherein the authenticating image category comprises a plurality of unique images; wherein the authenticating image category is pre-selected by the user, wherein the pre-selection occurs during enrollment, wherein the pre-selection allows the user to memorize the authenticating image category, wherein the authenticating image category is based on a common attribute, feature, theme, or characteristic of an object, wherein at least one of the images further comprise a reference to a product or service sponsored by an advertiser; generating a grid of randomly selected images when a user attempts to access the computer system, wherein at least one of the randomly selected images is from the at least one pre-selected authenticating image category and wherein each image corresponds to a unique randomly assigned image identifier; receiving an input comprising at least one of the unique image identifiers; comparing the at least one image category associated with the received at least one unique image identifier with the at least one authenticating image category initially pre-selected by the user; and permitting the user to access the computer system when there is a match between the at least one image category associated with the at least one received unique image identifier and the at least one authenticating image category pre-selected by the user. - View Dependent Claims (12, 13, 14, 15, 16, 17)
1 Specification
This application is a continuation of U.S. Ser. No. 11/677,562 filed Feb. 21, 2007, which is a continuation-in part of U.S. Ser. No. 11/420,061 filed May 24, 2006, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention is directed to a method and system of authenticating identity to a computer system. In particular, the present invention is directed to a graphical image identity authentication system.
2. Background
Computer networks, particularly those with global reach such as the Internet, have greatly influenced the way that individuals, companies and institutions conduct transactions, and store and retrieve documents, images, music, and video. Convenience, ease of use, speed, and low overhead costs are contributing factors to the widespread use of the Internet for purchasing goods as well as conducting confidential transactions. Entire industries have emerged as a result of the evolution of the Internet.
Secure access to computer systems and computer networks has been traditionally guarded with a username and password pair. This requires the user to protect the username and password from unauthorized use if the username and password are not protected, accounts and files can be compromised. Unfortunately, a number of rogue individuals and organizations have emerged that are dedicated to fraudulently obtaining confidential information for unauthorized or criminal activities.
A pervasive tool used in obtaining confidential information is keystroke-logging software, which constitutes a program that monitors and records what users type on their computers. Such software often comprises the payload of viruses, worms, Trojan horses, and other forms of malware. Keystroke-logging software can reveal what a user is typing on a computer without the user'"'"'s knowledge of this event occurring.
Companies and institutions routinely use keystroke-logging software to monitor employee activity. Also, families may use these types of programs to monitor children'"'"'s online activities. The widespread availability of this type of software, however, has led to unauthorized or criminal use, resulting in the alarming rate of identity theft seen throughout the world.
Prime targets for these attacks are financial institutions, as more and more consumers and businesses use electronic methods for purchasing and making payments. According to the American Banker'"'"'s Association, cash and checks now account for only 45 percent of consumer'"'"'s monthly payments, down from 57 percent in 2001, and 49 percent in 2003. The trend is clearly in favor of electronic transactions, providing a wider field for identity theft.
Login information may also be “heard” by sophisticated analysis of the distinct sounds made by different keys. An inexpensive microphone near a keyboard can reveal most of what is being typed with a surprising degree of accuracy (http://www.schneier.com/blog/archives/2005/09/snooping_on_tex.html). The present invention thwarts attempts to record the successful completion to the login process, as the keystrokes typed cannot be linked to the user'"'"'s true authentication parameters.
Login information is also vulnerable to simple spying or “shoulder-surfing,” as a person with malicious intent watches an unsuspecting user sign into his or her account. The present invention employs a method that significantly reduces the likelihood of a successful shoulder-surfing style of attack.
Additional security mechanisms are necessary in addition to the username/password paradigm to provide stronger identity authentication. There have been various other attempts to do so.
Enterprises and institutions are using costly physical devices to identify legitimate customers and users. The existing devices generate a unique pass code for each user every 30 to 60 seconds. If an attacker manages to intercept a user ID and password, the information cannot be used to access the site without an additional authentication identifier displayed by the device. The devices significantly reduce instances of identity or information theft, but present challenges for both the institutions and individual users.
The enterprise may meet with consumer resistance in implementing use of the physical device. If the user does not have the device, he or she cannot gain access to the site. Besides the tremendous initial cost of purchasing the physical devices and implementing the new system, if the device is lost, stolen, or damaged, the enterprise will incur even more significant costs. In the context of business use of the device, the company incurs the cost of lost productivity from a worker who cannot access company information, as well as the cost of replacing the actual device. In the context of consumer use, if the consumer cannot access his or her accounts because of a lost device, the direct costs, and more significantly the indirect costs incurred by the enterprise to assist the consumer in gaining access far outweighs the advantages of using the device system.
In U.S. Pat. No. 5,559,961, Blonder provides a solution for utilizing graphical passwords. The framework described displays a static image in which the user touches predetermined areas of the screen, called “tap regions,” in a particular sequence. As the user taps various areas on the display, the regions tapped are successively removed from the screen. These regions of the screen, and the order of the sequence they are tapped, are chosen by the user during an initial enrollment phase. The sequence and regions of taps is stored in the system as the user'"'"'s password. One shortcoming of this solution is the likelihood of a shoulder-surfing attack: once an attacker views a user entering the sequence by touching areas of the screen, he or she is then easily able to replicate the sequence to successfully gain access to the user'"'"'s account.
U.S. Patent Application Publication No. 2003/0191947 to Stubblefield uses inkblots as images for authentication of a user'"'"'s identity when logging into computer systems. The authentication method described in this patent provides for a display of a random sequence of inkblots that the user has identified when he or she enrolled his or her login information. One drawback to this process stems from the identification of the inkblot. Although the user is required to identify and verify the alphanumeric text associated with the inkblots in the enrollment process, the ineffable nature of inkblots will cause consumers problems in remembering the code for their inkblot selections. A frustrated user will simply save their password information on their computer, write the information down, or enter incorrect password information, which defeats the security offered by this system. Also, this process is very intimidating for users, especially those who are neophyte users, because the inkblot is easily misconstrued as a myriad of different objects. The inkblot is just that: a blot on a screen the user will associate with a real world object. If that user misinterprets or forgets the association they have made with the inkblot they are denied access to their system. More importantly, the sequence process significantly increases login time for users. Currently, users are demanding more secure login techniques, but they desire to maintain the same level of convenience that they currently enjoy with the username/password login process. This authentication technique does not provide the ease of use that consumers desire.
U.S. Patent Application Publication No. 2004/0230843 to Jansen, which is a login authentication process using a sequence of images selected by the user, illustrates the potential of image-based authentication in protecting users from identity theft. The authentication method described in this patent application begins with the user selecting an image theme, such as animals, and then selecting a sequence of images within the image theme that becomes the password (e.g. if the category chosen is animals, one possible sequence is horse, cat, dog, cat, cat, horse). The success of the login process is predicated on the user'"'"'s ability to replicate the sequence of images he or she has chosen within the image theme. In other words, the user must memorize the proper sequence. One drawback appears to be the complex nature of the sequence process. As defined in the patent application, if a user feels that he or she will be unable to remember the password, the user will simply write down the password so that recall becomes unnecessary. Also, because the images are typically static (the user can elect to “shuffle” images between login attempts, but most will likely stay with the simple default configuration), software can be created to automate the process. In this scenario the authentication requires no human interaction to complete the login, which tremendously decreases the level of security provided. Although the positions of the images can be shuffled within the grid, the fact that they are static means that shuffling only prevents attackers from guessing the likely placement of the sequence, not the images themselves. Moreover, the traditional text password is completely removed from the login process, meaning that the security offered in this solution is only single layer, whereas authentication processes that complement the existing login process provide multiple levels of security.
U.S. Patent Application Publication No. 2005/0268100 and Publication No. 2005/0268101 to Gasparini et al. discloses two way authentication including images which serve as customization information so that an entity can authenticate itself to a user, but is otherwise dissimilar.
Because of these noted shortcomings, an improved system and method is needed to create password values that are both exceedingly difficult for an intruder to compromise, while simultaneously easy for a user to apply and maintain.
The present invention provides a system and method for the secure identity authentication to a computer system. It is a further object and purpose of the present invention to provide an authentication and security system, which requires graphical discernment of one or more image categories from a grid of distinct visual images. Various aspects of the invention described herein may be applied to any of the particular applications set forth below. The invention may be applied as a standalone authentication system or also as a revenue generating advertising component to an integrated authentication solution. The invention can be optionally integrated into existing business and authentication processes seamlessly. It shall be understood that different aspects of the invention can be appreciated individually, collectively or in combination with each other.
An aspect of the present invention provides an enrollment mechanism and process for new or first-time users. During an enrollment stage, a user will be required to select a series of one or more image categories, which will serve as the user'"'"'s authentication sequence.
Another aspect of the invention provides systems and methods for providing graphical image authentication of a user. An embodiment provided in accordance with this aspect of the present invention requires the user to input a username at the point of user login. After validating the username, a grid of images corresponding to the pre-defined categories will be displayed. One image from each category will appear at a random location within the grid. If the number of available categories exceeds the number of image positions in the grid, the displayed categories may be selected from the pool of available categories.
A preferable embodiment of the present invention overlays each image with a randomly generated sequence of one or more characters. This sequence is known as an “image key” or “image identifier.” Within the image grid, the user will identify the images corresponding to the pre-selected authentication sequence, and input each associated image identifier in the provided input field. In accordance with these and other embodiments of the present invention described elsewhere herein, the identity of a user can be authenticated by matching the image identifier(s) input by the user with the correct image identifiers(s) derived from the pre-chosen authentication sequence.
Another aspect of the present invention provides authentication systems that are essentially immune from attacks using keystroke loggers. Preferable embodiments of the invention include a corresponding image identifier for each image that is a randomly generated sequence of one or more characters. There may be a predetermined mapping between the image identifier and the image category established by the authentication mechanism ahead of time. Meanwhile, during an authentication process, a user may ascertain that mapping by graphical discernment of the images. The authentication sequence can be input by the user using or entering the series of one or more randomly generated image identifiers. Without the images displayed, the text entered by the user will be effectively random characters and will not provide clues to the authentication sequence of the user. Attackers will not be able to ascertain the image category authentication sequence of a user by capturing keystrokes. Preferable embodiments of the invention display different images with different randomly generated image identifiers during a subsequent authentication process such that a previously observed set of keystrokes or password will not be accepted. It shall be understood that as with other embodiments of the invention herein, the combination of one or more image identifiers derived from a given set of displayed images may preferably give rise to a new password at each login or step in a process calling for authentication.
With respect to yet another aspect of the invention that provides methods and systems for authentication, the risk of attacks involving shoulder surfing is also mitigated. For example, traditional username/password authentication systems could be compromised if attackers visually discern the keystrokes entered by the user during the login process. The present invention requires the attacker to visually discern both the keystroke entered by the user in the form of image identifier as well as the graphical discernment of the images for the mapping between image identifier and the image category. The authentication sequence of the user is compromised only if both forms of information are captured. Accordingly, this aspect of the invention increases the difficulty in successfully executing such kinds of attacks committed while users are entering password information.
In terms of brute force attacks, the search space for a preferable embodiment of the present invention that renders a grid of generated images during an authentication process is equal to:
(g)^n
where g is the number of elements in the image grid and n is the length of the authentication sequence to be entered by a user. For example, a reasonable implementation of the invention may call for a grid size of 16, and an authentication sequence length of 3. This would result in a brute force search space of:
16^3=4096
On average, the brute force attack would succeed after 2048 tries. While this seems like a low number in the context of security algorithms, risk is mitigated by the nature of the algorithm as well as by additional safeguards. The mapping between the image identifier and the image category in preferable embodiments of the invention requires graphical discernment of images. Image identifiers could be obfuscated on the image using captcha techniques, making them discernable only by humans. This means the brute force attack must be perpetrated by a human and cannot be automated. An automated agent could only randomly guess the image identifier. Accordingly, the search space for the instance of this brute force attack is:
(r^l)^n
where l is the length of the image identifier, r is the range of the image identifier (26 if it is case insensitive alphabetical, 96 if it is displayable characters), and n is the length of the authentication sequence. A reasonable policy could call for an alphabetical image identifier of length 2. In this case, the brute force search space is:
(26^2)^3=308,915,776
If the captcha obfuscation could be defeated, it is still effectively impossible with the current state of the art for automated processes to recognize the image category from a random image (i.e. recognize a random image of a Ford Mustang® as an automobile). Therefore, automated agents would not be able to perform a systematic brute force attack. They would have to enter random image identifier at each try. This attack would succeed on average after 4096 tries.
In accordance with another embodiment of the invention, the threat from brute force attacks could be further mitigated by implementing a timed lockout policy after unsuccessful logins. A reasonable policy would be to temporarily disable the account for 10 minutes after three unsuccessful logins in a row. On average, the time it would take to succeed with a brute force attack would be:
(10 minutes)*(4096−3)=40930 minutes=28 days
Furthermore, the size of the image grid, the length of the authentication sequence, and the lock out time could be increased to exponentially increase the brute force search time.
More preferable embodiments of the present invention can be implemented in conjunction with a traditional identity authentication paradigm such as username/password as an extra layer of security, thereby increasing the security provided by the overall system.
Another aspect of the invention provides systems and methods for sponsored authentication. In addition to providing authentication solutions to guard against fraud and other types of illegal activity, the invention may also facilitate advertisement campaigns by displaying images, descriptions, and/or references supplied by or chosen by advertisers. Preferable embodiments of the invention provide a series of one or more graphical images displayed in a predetermined grid or other arrangement for viewing by the user. Because the user is conducting an authentication process, it is highly likely that the user is giving his/her full or undivided attention to the graphical image and its corresponding image identifier. This level of attention and ability to target advertising based on a preselected category of images by a user creates a powerful marketing and advertisement opportunity. Preferable embodiments of the invention may be extended by replacing or augmenting the images in the image grid with audio, video, or other forms of media or multimedia. This aspect of the present invention provides a number of other preferable embodiments or models as set forth in further detail herein.
Other embodiments of the invention provide systems and methods that allow secured data and/or password entry to computer-based systems, such as for example, networked computer systems, automated teller machines (“ATMs”), mobile telephones and devices, personal digital assistants (PDAs including Blackberry or similar devices with e-mail and Internet access capabilities), and online retail web sites and banking services. Many of the computer-based systems used today which rely on single factor authentication such as entering a password or access code which can be modified in accordance with the invention in order to provide stronger authentication before allowing access to secured information and resources. For example, in an office computer environment with access to a computer network such as a wide area network (“WAN”) or a local area network (“LAN”), access by individual users to the computer network can be controlled by dynamic graphical password systems provided herein. Access can be provided at a local node or other such client computer within the network such as user personal computers (“PCs”). Such systems with display capabilities may identify the user to the network by accepting a user name or initials (which may be referred to as the “User ID”), and then authenticate the user upon entry of one or more appropriate password elements derived from an dynamic arrangement of graphical images such as a visual grid.
For online applications, a user may seek to obtain access to a secure networked resource, such as a World Wide Web (“Web”) site on the Internet or other online service. This may include access to online banking services or other information subject to restricted access. Furthermore, the user may want to shop for and purchase a product or service available via a retail Web site. The user may be authenticated in accordance with the concepts of the dynamic graphical image arrangements described elsewhere herein before gaining access to a secured resource or conducting an online purchase requiring entry of credit card number or similar information to make a transaction.
In an ATM system, a user typically will be provided with a card having a readable magnetic strip which identifies the user to the ATM network. Instead or relying upon a conventional static personal identification number, or PIN, which must be entered by the user, an arrangement or grid of dynamic graphical icons can be presented such that corresponding password elements corresponding to icons falling within an authenticating category can be entered by the user. As described in the various authentication methods and systems provided herein, the password element(s) can be different between logons or transactions. The password element(s) may be entered through an alphanumeric keypad ordinarily used for PIN entries. After the one or more password elements are verified, the user can then be granted access to bank accounts in order to conduct transactions such as withdrawal of cash and a wide range of other banking activity, including online banking transactions. For example, digital representations or images of financial documents or instruments such as checks can be displayed to a user following authentication. A cashed check can be displayed to the user after processing by known check imaging systems (e.g., Merchant Capture) that may transform paper checks into images. Additionally, other forms of electronic or Automated Clearing House (ACH) payments can be authorized by the user following authentication. It shall be understood that financial transactions and other forms of secured network activity including e-commerce applications can be made more secure in accordance with the invention.
Secured systems such as the ones described above and others can be guarded against fraud and theft by implementing dynamic graphical password systems provided herein. Because password elements within a graphical image arrangement preferably change in between sessions or transactions, there is no imminent breach of or loss of security even if a perpetrator observes entry of the actual password sequence. Someone observing entry of the password elements by the user cannot readily determine the relevant authenticating category or logic behind the password based on observation of the key entries alone since the locations and selection of the graphical images or icons are preferably randomized. Moreover, the selection of displayed graphical images, their positioning within an arrangement or grid, and their corresponding password elements, are preferably varied between authentication processes. The user does not have to memorize exact password characters but can rather look for graphical images falling within a selected authenticating category and enter in corresponding password elements as to those images only. Accordingly, various types of the over-the-shoulder attacks can be defended against by applying these and other concepts of the invention.
Other goals and advantages of the invention will be further appreciated and understood when considered in conjunction with the following description and accompanying drawings. While the following description may contain specific details describing particular embodiments of the invention, this should not be construed as limitations to the scope of the invention but rather as an exemplification of preferable embodiments. For each aspect of the invention, many variations are possible as suggested herein that are known to those of ordinary skill in the art. A variety of changes and modifications can be made within the scope of the invention without departing from the spirit thereof.
All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The embodiments discussed herein are merely illustrative of specific manners in which to make and use the invention and are not to be interpreted as limiting the scope of the instant invention.
While the invention has been described with a certain degree of particularity, it is to be noted that many modifications may be made in the details of the invention'"'"'s construction and the arrangement of its components without departing from the spirit and scope of this disclosure. It is understood that the invention is not limited to the embodiments set forth herein for purposes of exemplification.
The present invention provides a method and system for user identity authentication to a computer system which requires users to select an authentication sequence based on categories during enrollment and recreating the authentication sequence during login by graphically discerning images belonging to the previously selected categories.
Referring to the drawings in detail,
Referring to the drawings in detail,
The user 12 will enter a first login account identifier, such as his or her username, and a traditional password, represented by diamond 14 in an input device such as a keyboard. By way of example, the username may be a series of alphanumeric characters, as is well known. By way of example, the password may be a series of alphanumeric and special characters, as is well known. (
The username/password is validated in box 16. If the authentication fails because of the username/password entered, a fake grid of images that appears normal is displayed as shown at box 20, the user will be able to enter an image identifier normally at diamond 22 however any authentication attempt fails as shown at reference numeral 26. If the username/password pair is authenticated, an image grid will be generated and displayed at box 34. The cells of the grid will display images from different categories (such as those in
The user will select the image on the grid according to the categories in their authentication sequence by entering the image key overlaid on the images, box 36. The sequence of image keys is sent to the authentication server for validation, box 38. If the image keys are validated, the authentication concludes successfully, box 40. If the image keys are not validated, authentication fails and the login process must be reinitiated. A timed lockout of 10 minutes as shown by 18 is applied after three unsuccessful logins to mediate the threat from brute force attacks that attempt to guess an authentication sequence.
As shown on
An ancillary benefit of the present invention stems from the requirement of the user to view each of the visual images to determine which image is in the user'"'"'s category. Advertising opportunities are presented for advertisers to display products in an array of images. The user cannot ignore the advertising, since the user must view and discern each of the images presented during authentication in order to choose the appropriate user selected image category.
The images in the database for this embodiment will contain advertisement images provided by advertisers. The image selected to be displayed on the grid will be based on the websites, the advertisement campaigns, and other parameters. The image grid displayed in box 48 and 50 will behave identically. The diamond in 54 is abbreviated and embodies 52, 60, and 56. When the user places the cursor over the image as in 52, additional information and links about the advertisement will be provided (which could otherwise be displayed automatically without cursor movement by the user). If the user chooses to follow an advertisement link, the destination of the link will open in a new window as shown in 60. When the user finishes browsing the advertisement website, the user will return to the log in screen through diamond 58. The user would not need to reenter the username and password after viewing an advertisement link, or in an alternative embodiment, the user would have to reenter authentication information after viewing an advertisement link, preferably when a predetermined amount of time has passed for security purposes. When the user finishes viewing the advertisement link, the image grid is refreshed and displayed again in 48 and 50 respectively.
In the case where the username/password is validated at 50, the user will select the image on the grid according to the categories in their authentication sequence by entering the image key overlaid on the images, box 64. The sequence of image keys is sent to the authentication server for validation, box 66. If the image keys are validated, the authentication concludes successfully, box 70. If the image keys are not validated, authentication fails at 68 and the login process is reinitiated. A timed lockout of 10 minutes is applied after three unsuccessful logins to mediate the threat from brute force guessing of the authentication sequence, box 72.
As shown in
For example, in a preferable embodiment of the invention, the categories of images displayed within a dynamic image arrangement may include the following: horses, flowers, mountains, money, objects in space, boats, airplanes, golf and cars. The image of an object falling within each of these categories can be shown in a predetermined arrangement such as a 3×3 grid or a tic-tac-toe grid for preferable embodiments of the invention. When the user registered his username during enrollment, a category was chosen or designated by the entity requesting authentication such as a financial institution.
The basis for a user selection could be some thing(s) that could be easily remembered by that person or something of interest such as cars, for example. During a login process, the user can look for and find any image(s) displayed within the arrangement falling within the selected category of cars. In spotting an appropriate image within this, the user is able to view an access code corresponding to the image representing the category. That access code becomes the password or portion of a password to the user for logging onto the system or during that particular authentication process. Meanwhile, during a subsequent process or next login, a variety of images falling within the selected category and non-selected categories will be arranged, preferably in a random manner. The images representing these categories can be randomly chosen among dozens, hundreds or more images in each category. Because the images appear and move randomly throughout the dynamic image arrangement between logins or between authentication processes, and because the images representing any category can be different each time, human-level cognition is needed to enter a series of one or more access codes through the authentication system. Since the access codes corresponding to the images are preferably different with each login or authentication process, even if the user is being keystroke logged, the keystrokes observed are useless on future login or authentication attempts. Moreover, the basis for selection by the user of the access codes and corresponding images is relatively difficult to identify. It may not be readily apparent to an ordinary observer (or fraudster) as to what is the reference point to the user or why a user selects certain images over others. Without explicitly revealing the authenticating category (shared secret), the user is therefore able to complete an authentication process with added security.
Other embodiments of the invention provide dynamic graphical password authentication solutions which include some of the features described in the aforementioned processes and systems. These authentication systems and methods can provide stronger user authentication to reduce the risk of unauthorized access to or use with online accounts, Web sites or resources available on the Internet or enterprise network systems. The graphical passwords provided in accordance with this aspect of the invention include images or icons corresponding to one of any number of selected categories which forms the basis of authentication.
As shown in
The series of one or more graphical images and corresponding password elements that make-up dynamic passwords are preferably changed between each authentication processes. But the authenticating category of images remains the same or unchanged for the user until an authorized change is made. The authenticating and non-authenticating categories of graphical images are not limited to particular objects only but can include any variety of themes or topics. This allows a wide variety of easy-to-remember categories which avoids requiring a user to memorize conventional character-based character strings or having to enter characters generated periodically by separate hard tokens (e.g., RSA SecureID tokens) since the password elements are displayed concurrently with intuitive corresponding graphical images. The graphical images or icons with respect to
For example, the display device illustrated in
Another embodiment of the invention may capitalize on the focus and attention of users during an authentication process for advertising and marketing purposes. For example, as shown in
A dynamic image grid as shown in
Furthermore, ads may cross numerous markets such as consumer products when a user selects a theme such as “red” or “things that are red.” For example, the authentication password would be the combination of PE1+PE2+PE3 when AD1 is a red Mustang, AD2 is a bottle of cabernet sauvignon, AD3 is a tube of lipstick. In addition to ads, this aspect of the invention can be applied to other embodiments of the invention described herein which provide arrangements of dynamic graphical images or icons. Rather than categorizing an object to be displayed based on what it is—the thing itself—alternative embodiments of the invention may include categories of graphical or visual images, icons or ads that are based on some common attribute, feature, theme or characteristic of the displayed object—something about the thing. For example, a user may select an authenticating category based on a certain “attribute” about the (displayed images) such as “things featuring water” (a beach, a pool, rain, bottled water), “things that are round” (a golf ball, a hot air balloon, a tire), “things that are blue” (a clear sky, a blue tropical fish, a blue shirt, a recycling bin for glass/plastic), and “things made of wood” (a baseball bat, a log cabin, a tree, a forest). Accordingly, advertisers may be provided the opportunity to present a diverse range of product ads that can be grouped into one or more selected categories according to some commonality that also serves as a shared secret between a user and a third party for purposes of authentication.
It shall be understood that ads or graphical images herein may fall within one or more categories available as a way to authenticate a person. Ads or graphical images can be also displayed more often within regularly scheduled display cycles even if they are within non-authenticating categories. The ads or graphical images that are selected for display within an arrangement or grid may nevertheless capture the attention of users even if they do not necessarily fall within an authenticating category since graphical images or ads for non-authenticating categories are also displayed.
As with other embodiments of the invention, the sequence in which the password elements (image identifiers) are entered may be of consequence or not depending upon the desired level of authentication. When their order or sequence matters (e.g., PE1+PE9), then typically stronger authentication is offered when compared to authentication where order does not matter and can be completed with any sequence of one or more password elements (e.g., PE1+PE9 or PE9+PE1). In preferable embodiments of the invention where specific sequences of entering the passwords are required, then either an intuitive or explicit order of entry can be provided to the user. For example, when presented by a 3×3 grid such instruction may not be required as the user may be reminded of a telephonic keypad with consecutive numbers 1-9. The order of entry may be therefore entering characters within password elements from top to bottom of the display, and from left to right.
During an authentication process, the arrangement of dynamic graphical images can be delivered and presented to a user on a display device or display within the client system. The user may input the one or more image identifiers (e.g., 4-8-4-7) corresponding to the graphical images falling within the designated authenticating category. The client system receives the input from the user, and transmits it to the server system, which compares the image identifier information to the stored reference password (e.g., 4847). When the user input matches the reference password stored in the server system, authentication can be completed and access granted to the requested resource, online account or any other secured information. When image identifier information or a password does not match the references password, then access is denied. As with other embodiments of the invention, a user may be also permitted a predetermined number of attempts before account lock-out or any other administrative action is instituted such as the implementation of network security measures indicating the possibility of hacking or attacks.
As with some of the other embodiments of the invention herein, the term “password” can be described as a form of secret authentication data that is used to control access to a resource. It need not be an actual word and can be a series of one or more alphanumeric characters or symbols, for example. In controlling access to resources, there are often trade-offs between security and convenience. The accessibility of password-protected systems can depend on a variety of parameters taking into consideration the level of security desired. While earlier forms of passwords may have been limited in the possible number of characters or numbers (e.g., max, four or five numbers only), there are very few limitations to available passwords today which could also be incorporated into the methods and systems provided herein (e.g., combination of numbers and upper/lower case letters with character lengths of 6, 7, 8, 9 or more, symbols, punctuation, and device inputs). Moreover, selected password strengths may be chosen for different applications in accordance with the invention. For applications that may not require stronger security, a relatively weak password can be adopted for the sake of convenience that prompts users for entry of only a few characters or password elements. For applications that may require stronger security, a relatively strong password can be adopted that includes a longer string and/or combination of characters to better withstand a brute force attack based on subsets of words from a dictionary or similar source. Furthermore, a pseudo-random or random password generator may be incorporated with the invention that can be provided as a software program and/or hardware device. In some instances, an input is received from a random or pseudo-random number generator which in turn creates a password. A variety of known random password generators may be selected for the authentication systems and methods herein that can generate a string of characters etc. of any desired length. It shall be understood that selected passwords and password generation programs can be customized or modified to comply with established or desired password policies setting forth the kinds of password elements that can be used or combinations thereof to produce a mix of letters, numbers, symbols, characters etc.
The authentication systems provided herein may include a client system with which a user interacts, and a server system to which the user wants to gain access.
The server (system) may control access to a resource, a database or file system, or a private communication channel. The server may also include a computer readable memory, a comparator and a communications interface such as a modem or network adapter with appropriate software drivers that support communication with the client system over a communications system. The server system may further include a secured network, file systems or resources and information stored in databases as described elsewhere herein. The databases may contain one or more libraries of graphical images or icons that can be displayed for authentication and other purposes (e.g., advertising). The server system may also include numerous devices such as file servers (Web site servers), authentication servers, password databases, repositories or databases of graphical images or icons that may be identified as part of authenticating and non-authenticating categories.
A memory device in the server system may store information regarding the relationship between the graphical images and image identifiers displayed to a user during authentication. A memory look-up table can be used to store this information for mapping this information. The memory may be implemented using random access memory (“RAM”), flash memory, disk drives or any other rewritable memory technology. In some applications, the memory may also be implemented using non-rewritable memory such as read only memory (“ROM”) chips.
The client system may include various devices such as a desktop or laptop computer, a PDA, an ATM, or any device capable of displaying graphical images having a key entry pad or keyboard for entering data. A client system device preferably includes an input device, a display device and an appropriate communications interface which allows data from the input device to be transmitted to the server system. The communications interface might include a modem, network adapter, radio transmitter/receiver, or other such communications devices, along with appropriate software. The display device may be any type of display capable of displaying various graphical images or icons, such as computer monitors and flat panel displays. The input device may a computer keyboard or a keypad, or other such entry system that allows image identifiers or password elements to be entered.
Furthermore, the client and server systems can communicate over a variety of telecommunication systems including wireless networks. The telecommunications system may also include a variety of data communications systems generally known in the art such as a LAN, a WAN, a wireless system such as cellular, satellite and personal communications services (“PCS”) systems, or a dedicated line or connection. In this regard, it is noted that the references to server side and client side herein do not require a direct communication therebetween and intermediate computers may be present. Moreover, a computer acting as a server could transmit information to an intermediate computer which could then transmit the information to another computer where the user enters data. The terms “client” and “server” as used herein are general and are not limited to so-called “client/server” systems. It shall be further understood that references to a server and a client also may apply to a peer-to-peer system or architecture with any two communicating computers, where at least one such computer controls or possesses a resource, and another computer is used to access the resource.
As shown in
As with other embodiments of the invention, the server may generate the display image by selecting, pseudo-randomly in a preferable embodiment, graphical images based on prior user selection or otherwise of an authenticating category. Alternatively, display image may be pre-generated or displayed according to a pre-established routine or computer program, and stored in a database system. The display image and graphical display images or icons may be implemented as a bit mapped image, a raster image or in any other suitable image file format.
The display image may also include image identifiers corresponding to each of the graphical images or icons displayed. The user may input an image identifier sequence corresponding to graphical images within an authenticating category. In a preferable embodiment of the invention, the arrangement of the images is pseudo-randomly varied with each server access request. In addition, the particular images/scheme and image identifiers presented in the display image may be varied with each authentication process.
In order to enter user password information or other authentication data in accordance with this embodiment of the invention, the appropriate image identifiers for authenticating images within the display image are identified by the user. The user enters on the input device the image identifiers by the user and communicated to the server system. For some preferable embodiments of the invention, the sequence in which the password information is entered is important in which case the user understands or is advised of the order of entry (left to right, right to left, top to bottom, bottom to top). The server system utilizes a comparator to compare the selected image identifiers with reference password information as described elsewhere herein. The comparator in the server system can compare the one or more image identifiers entered by the user to reference password information to determine whether they correspond to each other and match. If so, the user will be allowed appropriate access to the server system. It shall be understood that the comparator, and other components to the aforementioned client/server systems implemented in any of the authentication systems and methods herein, may incorporate software using techniques known in the prior art.
Many embodiments of the invention can provide dynamic image authentication arrangements that can be incorporated into existing authentication systems for preventing unauthorized access. Because cyber crimes often begin with unauthorized users gaining access to accounts to online accounts and applications, concepts of the invention herein can be implemented to create a first line of defense that provides stronger user authentication. Various embodiments of the invention provide secure login routines for user authentication that are effective against many prevalent forms of hacking, including historic threats like phishing, as well as new and growing threats like brute-force attacks, keystroke logging, and man-in-the-middle (MITM) spying. Additional embodiments of the invention can be modified for a variety of applications including network login, virtual private network (VPN) access, and web-based applications and websites.
It should be understood from the foregoing that, while particular implementations have been illustrated and described, various modifications can be made thereto and are contemplated herein. It is also not intended that the invention be limited by the specific examples provided within the specification. While the invention has been described with reference to the aforementioned specification, the descriptions and illustrations of the preferable embodiments herein are not meant to be construed in a limiting sense. These are described as examples in relation to the drawings attached hereto and further modifications, apart from those shown or suggested herein, may be made within the spirit and scope of the invention. Furthermore, it shall be understood that all aspects of the invention are not limited to the specific configurations set forth herein which depend upon a variety of conditions and variables. Various modifications in form and detail of the embodiments of the invention will be apparent to a person skilled in the art. It is therefore contemplated that the invention shall also cover any such modifications, variations and equivalents.