×

Heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)

  • US 9,076,593 B2
  • Filed: 12/29/2011
  • Issued: 07/07/2015
  • Est. Priority Date: 12/29/2011
  • Status: Active Grant
First Claim
Patent Images

1. A heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV), the inverter including a direct current (DC) link capacitor comprising a plurality of film capacitors configured in a stack to form a substantially polygonal prism, wherein each film capacitor has orthotropic characteristics such that a thermal conductivity across a thickness of each film capacitor differs from a thermal conductivity across another dimension of the film capacitor, and such that a stiffness across the thickness of each film capacitor is less than a stiffness across another dimension of the film capacitor, the heat conductor comprising:

  • a first substantially planar member configured to contact a first side of the polygonal prism formed by a single one of the film capacitors, the first substantially planar member comprising a thermally conductive material for dissipating heat generated by the plurality of film capacitors;

    a second substantially planar member configured to contact a second side of the polygonal prism opposite the first side of the polygonal prism, the second side of the polygonal prism formed by another single one of the film capacitors, the second substantially planar member comprising a thermally conductive material for dissipating heat generated by the plurality of film capacitors; and

    an interconnect for fixedly attaching the first and second substantially planar members, wherein the interconnect comprises a third substantially planar member comprising a thermally conductive material, the third planar member substantially coextensive with a third side of the substantially polygonal prism oriented between the first and second sides of the prism, wherein the third substantially planar member comprises a first piece extending from the first substantially planar member and a second piece extending from the second substantially planar member, the first and second pieces each having an attachment feature, the attachment features of the first and second pieces configured to cooperate for attachment of the first and second pieces, and wherein the attachment features of the first and second pieces are further configured to operate as heat dissipating features by increasing a surface area of the third substantially planar member;

    wherein the first and second substantially planar members have sufficient rigidity to confine expansion of the plurality of film capacitors across the thicknesses thereof.

View all claims
  • 3 Assignments
Timeline View
Assignment View
    ×
    ×