×

Fault detection, isolation and reconfiguration systems and methods for controlling electrohydraulic systems used in construction equipment

  • US 9,222,242 B2
  • Filed: 01/08/2015
  • Issued: 12/29/2015
  • Est. Priority Date: 03/03/2011
  • Status: Active Grant
First Claim
Patent Images

1. A hydraulic actuator control system for a piece of construction equipment including a boom and a bucket pivotally connected to the boom, the piece of construction equipment including a lift cylinder for raising and lowering the boom and a tilt cylinder for pivoting the bucket relative to the boom, the actuator control system comprising:

  • a tilt cylinder control node including a head side tilt valve adapted to be in fluid communication with a head side of the tilt cylinder and a rod side tilt valve adapted to be in fluid communication with a rods side of the tilt cylinder, the tilt cylinder control node further including a first head side spool position sensor corresponding to the head side tilt valve, a first rod side spool position sensor corresponding to the rod side tilt valve, a first head side pressure sensor for sensing a pressure of the head side of the tilt cylinder, and a first rod side pressure sensor for sensing a pressure of the rod side of the tilt cylinder;

    a lift cylinder control node including a head side lift valve adapted to be in fluid communication with a head side of the lift cylinder and a rod side lift valve adapted to be in fluid communication with a rods side of the lift cylinder, the lift cylinder control node further including a second head side spool position sensor corresponding to the head side lift valve, a second rod side spool position sensor corresponding to the rod side lift valve, a second head side pressure sensor for sensing a pressure of the head side of the lift cylinder, and a second rod side pressure sensor for sensing a pressure of the rod side of the lift cylinder;

    a control system that uses a first fault detection algorithm for detecting a fault in the tilt cylinder control node, the first fault detection algorithm including a first flow value corresponding to flow through the head side tilt valve and a second flow value corresponding to flow through the rod side tilt valve; and

    the control system also using a second fault detection algorithm for detecting a fault in the lift cylinder control node, the second fault detection algorithm including a third flow value corresponding to flow through the head side lift valve and a fourth flow value corresponding to flow through the rod side tilt valve.

View all claims
  • 3 Assignments
Timeline View
Assignment View
    ×
    ×