×

Method of reducing hot electron injection type of read disturb in memory

  • US 9,361,993 B1
  • Filed: 01/21/2015
  • Issued: 06/07/2016
  • Est. Priority Date: 01/21/2015
  • Status: Active Grant
First Claim
Patent Images

1. A method for performing a sensing operation in a non-volatile memory device, the method comprising:

  • performing a boosting phase of the sensing operation, the boosting phase sets a boosting voltage of a channel of an unselected NAND string in the memory device, the unselected NAND string comprising a drain-end select gate at a drain-end of the unselected NAND string and a source-end select gate at a source-end of the unselected NAND string;

    after the boosting voltage is set, performing a sensing phase of the sensing operation, the sensing phase senses a current in a selected NAND string of the memory device, the selected NAND string comprising a drain-end select gate at a drain-end of the selected NAND string and a source-end select gate at a source-end of the selected NAND string;

    wherein;

    the memory device comprises multiple word lines of memory cells including a selected word line and unselected word lines;

    the selected NAND string and the unselected NAND strings each comprise a charge-trapping layer and a polysilicon channel layer which extend vertically in a three-dimensional stacked memory structure; and

    during the sensing phase, the current is sensed via a bit line which is connected to the drain-end of the selected NAND string and the drain-end of the unselected NAND string while one or more read voltages are applied to the selected word line;

    wherein the performing the boosting phase comprises;

    applying an increasing voltage to the unselected word lines;

    if the selected word line is at a source-side of the unselected NAND string, controlling the drain-end select gate of the unselected NAND string to, at different times during the applying of the increasing voltage, allow a driven voltage on the bit line to reach the channel of the unselected NAND string by providing the drain-end select gate of the unselected NAND string in a conductive state and prevent the driven voltage on the bit line from reaching the channel of the unselected NAND string by providing the drain-end select gate of the unselected NAND string in a non-conductive state;

    if the selected word line is at a drain-side of the unselected NAND string, controlling the source-end select gate of the unselected NAND string to, at different times during the applying of the increasing voltage, allow a driven voltage on a source line to reach the channel of the unselected NAND string by providing the source-end select gate of the unselected NAND string in a conductive state and prevent the driven voltage on the source line from reaching the channel of the unselected NAND string by providing the source-end select gate of the unselected NAND string in a non-conductive state; and

    if the selected word line is midrange between the drain-end of the unselected NAND string and the source-end of the unselected NAND string, preventing the driven voltage on the bit line from reaching the channel of the unselected NAND string throughout the applying of the increasing voltage by providing the drain-end select gate of the unselected NAND string in a non-conductive state, and preventing the driven voltage on the source line from reaching the channel of the unselected NAND string throughout the applying of the increasing voltage by providing the source-end select gate of the unselected NAND string in a non-conductive state.

View all claims
  • 2 Assignments
Timeline View
Assignment View
    ×
    ×