×

Coordinate measuring device with a six degree-of-freedom handheld probe and integrated camera for augmented reality

  • US 9,402,070 B2
  • Filed: 06/08/2015
  • Issued: 07/26/2016
  • Est. Priority Date: 06/12/2014
  • Status: Active Grant
First Claim
Patent Images

1. A method of combining a plurality of two-dimensional (2D) images into a three-dimensional (3D) image, the method comprising steps of:

  • providing a six-degree of freedom (six-DOF) probe assembly, the six-DOF probe assembly including a probe stylus and a probe head, the probe stylus including a probe tip, the probe tip having a spherical shape over a portion of its surface, the spherical shape having a probe center, the probe head including a retroreflector and an integral camera;

    providing a coordinate measurement device having a device frame of reference, the device being separate from the six-DOF probe assembly, the coordinate measurement device including an orientation sensor, a first motor, a second motor, a first angle measuring device, a second angle measuring device, a distance meter, a position detector, a control system, and a processor, the orientation sensor configured to measure three orientational degrees of freedom of the six-DOF probe assembly, the first motor and the second motor configured together to direct a first beam of light to a first direction, the first direction determined by a first angle of rotation about a first axis and a second angle of rotation about a second axis, the first angle of rotation produced by the first motor and the second angle of rotation produced by the second motor, the first angle measuring device configured to measure the first angle of rotation and the second angle measuring device configured to measure the second angle of rotation, the distance meter configured to measure a distance from the coordinate measurement device to the retroreflector based at least in part on a first part of the first beam of light reflected by the retroreflector and received by a first optical detector and on a speed of light in air, the position detector configured to receive a second part of the first beam of light reflected by the retroreflector and to produce a first signal in response, the control system configured to send a second signal to the first motor and a third signal to the second motor, the second signal and the third signal based at least in part on the first signal, the control system configured to adjust the first direction of the first beam of light to a position in space of the retroreflector, the processor configured to determine, in the device frame of reference, 3D coordinates of the probe center, 3D coordinates of the camera, and the three orientational degrees of freedom of the six-DOF probe assembly;

    in a first instance;

    with the device, measuring a third angle with the first angle measuring device, measuring a fourth angle with the second angle measuring device, measuring with the distance meter a first distance, and measuring the three orientational degrees of freedom to obtain a first set of three orientational degrees of freedom;

    forming a first 2D image with the camera;

    in a second instance;

    moving the six-DOF probe assembly;

    with the device, measuring a fifth angle with the first angle measuring device, measuring a sixth angle with the second angle measuring device, measuring with the distance meter a second distance, and measuring the three orientational degrees of freedom to obtain a second set of three orientational degrees of freedom;

    forming a second 2D image with the camera;

    determining a first cardinal point in common between the first and second 2D images, the first cardinal point having a first location on the first 2D image and a second location on the second 2D image;

    determining 3D coordinates of the first cardinal point in a first frame of reference based at least in part on the first angle, the second angle, the third angle, the fourth angle, the first distance, the second distance, the first set of three orientational degrees of freedom, the second set of three orientational degrees of freedom, the first location, and the second location;

    creating the 3D image as a first composite 3D image from the first 2D image and the second 2D image based at least in part on the first 2D image, the second 2D image, and the 3D coordinates of the first cardinal point in the first frame of reference; and

    storing the first composite 3D image.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×