×

Simplified spring load mechanism for delivering shaft force of a surgical instrument

  • US 9,668,807 B2
  • Filed: 09/25/2013
  • Issued: 06/06/2017
  • Est. Priority Date: 05/01/2012
  • Status: Active Grant
First Claim
Patent Images

1. A connection mechanism for a surgical instrument comprising:

  • an inner shaft member configured to extend at least partially through an elongated shaft member of a surgical instrument and defining proximal and distal ends, the inner shaft member selectively movable in a longitudinal direction with respect to the elongated shaft member;

    the inner shaft member defining a first cross-sectional area and including a pair of opposing slots defined through the inner shaft member, the pair of opposing slots extending partially along the longitudinal direction of the inner shaft member and disposed distally from the proximal end;

    a drive collar member configured to slide on the inner shaft member and move along the longitudinal direction of the inner shaft member; and

    a drive collar stop member slidably disposed on the inner shaft member and configured to move along the longitudinal direction of the inner shaft member, wherein the drive collar stop member moves in a direction relative to the longitudinal axis defined by the inner shaft member to engage the pair of opposing slots and limit further longitudinal motion of the drive collar member, and the drive collar member is configured such that further longitudinal motion of the drive collar member is limited upon engagement of the drive collar stop member with the pair of opposing slots, the drive collar stop member defining;

    a central aperture having a second cross-sectional area exceeding the first cross-sectional area, the second cross-sectional area defining an upper portion of the second cross-sectional area and a lower portion of the second cross-sectional area; and

    a pair of opposing protections projecting inwardly within the upper portion of the second cross-sectional area to reduce the upper portion of the second cross-sectional area as compared to the lower portion of the second cross-sectional area such that the drive collar stop member retains the inner shaft member in the lower portion of the second cross-sectional area as the drive collar stop member moves distally along the longitudinal direction of the inner shaft member;

    wherein when the drive collar stop member moves distally along the longitudinal direction to the pair of opposing slots defined through the inner shaft member, the drive collar stop member shifts relative to the longitudinal axis to a position wherein the pair of opposing projections engages with the pair of opposing slots and moves to a position within the pair of opposing slots to limit further longitudinal motion of the drive collar member in the direction of the distal end of the inner shaft member.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×