×

Detection circuit and method for starting charging

  • US 9,859,726 B2
  • Filed: 05/08/2014
  • Issued: 01/02/2018
  • Est. Priority Date: 01/28/2014
  • Status: Active Grant
First Claim
Patent Images

1. A detection circuit for starting charging, having a cell anode terminal, a high-level charging input terminal and a low-level charging input terminal, and comprising:

  • a cell connector, wherein a first anode contact feedback terminal, a second anode contact feedback terminal, an electric-quantity feedback data terminal, an electric-quantity feedback clock terminal and a cathode contact feedback terminal of the cell connector are coupled to a first anode contact receiving terminal, a second anode contact receiving terminal, an electric-quantity receiving terminal, a clock terminal, and a cathode contact receiving terminal of a first controller respectively, the first anode contact feedback terminal is coupled to the cell anode terminal, and the cell connector is configured to generate an anode contact signal when it is detected whether an anode of the cell is contacted, to generate a cathode contact signal when it is detected whether a cathode of the cell is contacted, to generate an electric quantity signal when an electric quantity of the cell is detected, and to send the anode contact signal, the cathode contact signal and the electric quantity signal to the first controller;

    the first controller, wherein a first enable terminal and a first data terminal of the first controller are coupled to a second enable terminal and a second data terminal of a second controller respectively, a first control terminal of the first controller is coupled to a first controlled terminal of a switch circuit, the first controller has a third data terminal and a fourth data terminal, and is configured to send the anode contact signal, the cathode contact signal and the electric quantity signal received to the second controller, to send a charging request signal to the second controller if the charging request signal sent by a charging adapter is received, to receive a start instruction sent by the second controller, and to send a connection instruction to the switch circuit if the start instruction is received;

    the second controller, configured to receive the charging request signal sent by the first controller, to receive the anode contact signal, the cathode contact signal and the electric quantity signal sent by the first controller, and to send the start instruction to the first controller if the charging request signal is received, it is determined that the anode of the cell is well contacted according to the anode contact signal, it is determined that the cathode of the cell is well contacted according to the cathode contact signal, and it is determined that a voltage of the cell does not exceed a voltage threshold according to the electric quantity signal;

    the switch circuit, wherein a cell terminal and a charging terminal of the switch circuit are coupled to the cell anode terminal and the high-level charging input terminal respectively, a second controlled terminal of the switch circuit is coupled to a second control terminal of the first controller, and the switch circuit is configured to connect the charging terminal with the cell terminal if the connection instruction sent by the first controller is received, such that the charging adapter charges the cell.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×