
United States Patent

US007853699B2

(12) (10) Patent N0.: US 7,853,699 B2
Wu et a]. (45) Date of Patent: Dec. 14, 2010

(54) RULES-BASED TRANSACTION FOREIGN PATENT DOCUMENTS
PREFETCHING USING CONNECTION *
END_POINT PROXIES W0 WO 2004043045 A2 5/2004

(75) Inventors: David Tze-Si Wu,- Fremont, CA (US); OTHER PUBLICATIONS
Vlvasvat Keswanl, Fremont, CA (US);
Case Larsen, Union City, CA (US) Amer, Ahmed et 211., “File Access Prediction with Adjustable Accu

racy,” 2002, Proceedings of the Performance, Computing, and Com
(73) Assjgnee; Riverbed Technology, Inc” San munications Conference 2002, on 21st IEEE International, pp. 131

Francisco, CA (US) 140'

(*) Notice: Subject to any disclaimer, the term of this (Commued)
patent is extended or adjusted under 35 Primary ExamineriYasin Barqadle
U.S.C. 154(b) by 776 days. (74) Attorney, Agent, or FirmiTownsend and Townsend and

Crew LLP
(21) Appl. No.: 11/273,861

(57) ABSTRACT
(22) Filed: Nov. 14, 2005

_ _ _ Network proxies reduce server latency in response to series of
(65) Pnor Pubhcatlon Data requests from client applications. Network proxies intercept

US 2006/0212524 A1 Sep. 21, 2006 messages clients and a server. Intercepted client requests are
compared with rules. When client requests match a rule,

Related US. Application Data additional request messages are forwarded to the server on

(60) Provisional application NO‘ 60 /6 62’ 4 52’ ?led on Mar‘ behalf of a cllent appl1cat1on. In response to the addltional
15 2005 request messages, the server provldes correspondmg

’ ' response messages. A network proxy intercepts and caches

(51) Int CL the response messages. Subsequent client requests are inter
G06 F 15/16 (200601) cepted by the network application proxy and compared with

(52) U 5 Cl 709/227 709/217 the cached messages. If a cached response message corre
(58) Fi'el'd 0 709/’201i206 sponds with a client request message, the response message is

"""" " 709/217 229’ returned to the client application immediately instead of re
S 1. t. ?l f 1 t h h. t T requesting the same information from the server. A server
ee app lea Ion e or Comp 6 e Seam 15 my’ side network proxy can compare client requests with the rules

(56) References Cited and send additional request messages. The corresponding

U.S. PATENT DOCUMENTS

5,754,774 A 5/1998 Bittinger et al.

response messages can be forwarded to a client-side network
proxy for caching.

(Continued) 12 Claims, 11 Drawing Sheets

Compare message with
Receive message from 4 rules store and execute

client-side proxy matching rules
305 335

M

V

ls message
300 OK to Send Ye5—> Send message to server

to server‘? 315
310

M
No

Is message
OK to send
to sewer Yes-b lnvalidate client cache

after 325
invalidation?

320

No

i
Fatal error, tenninate

330

US 7,853,699 B2
Page 2

US. PATENT DOCUMENTS

5,926,834 A * 7/1999 Carlson et al. 711/152

6,085,193 A * 7/2000 Malkin et al.
6,173,318 B1* 1/2001 Jackson et al. 709/219

6,178,461 B1 1/2001 Chan et al.
6,330,561 B1* 12/2001 Cohen et a1. 1/1

6,415,329 B1 7/2002 Gelman et al.
6,742,043 B1 * 5/2004 Moussa et al. 709/232

6,751,608 B1* 6/2004 Cohen et a1. 6,874,017 B1 3/2005 Inoue et al.

6,959,318 B1* 10/2005 Tso 709/203

...... .. 1/1

7,092,370 B2* 8/2006 Jiang et al. .. 370/329
7,120,666 B2 10/2006 McCanne et al.
7,318,100 B2 1/2008 Demmer et al.
7,650,416 B2 1/2010 Wu et al.

2002/0092026 A1* 7/2002 Janniello et al. 725/86

2002/0103778 A1* 8/2002 Saxena 707/1

2003/0212739 A1* 11/2003 Boucher et al. 709/203
2004/0215717 A1* 10/2004 Seifert et al. 709/203

2004/0215746 A1 10/2004 McCanne et al.
2005/0044242 A1 * 2/2005 Stevens et al. 709/228

2005/0234643 A1* 10/2005 Abraham et a1. .. 701/213
2006/0010442 A1* 1/2006 Desai et al. 718/100

OTHER PUBLICATIONS

Caceres, Ramon et al., “Web Proxy Caching: The Devil is in the
Details,” Jun. 1998, Proceedings of the Workshop on Internet Server
Performance, Madison, Wisconsin, pp. 111-118.
Deshpande, Mukund et al., “Selective Markov Models for Predicting
Web-Page Accesses,” 2004, ACM Transactions on Internet Technol
ogy, vol. 4, Issue 2, pp. 163-184.
Fan, Li et al., “Summary Cache: A Scalable Wide-Area Web Cache
Sharing Protocol,” Jun. 2000, Proceedings of the IEEE/ACM Trans
actions on Networking, vol. 8, No. 3, pp. 281-293.

Feldmeier, D.C. et al., “Protocol Boosters,” Apr. 1998, IEEE JSAC,
vol. 16, Issue No. 3, pp. 437-444.
Grif?oen, James et al., “Automatic Prefetching in aWAN,” Oct. 1993,
Proceedings of the IEEE Workshop on Advances in Parallel and
Distributed Systems, Technical Report # CS243 -93, pp. 8-12.
Grif?oen, James et al., “Reducing File System Latency Using a
Predictive Approach,” Jun. 1994, Proceedings of the USENIXSum
mer 1994 Technical Conference on USENIX, Technical Conference,
vol. 1.
Lei, Hui et al., “An Analytical Approach to File Prefetching,” Jan.
1997, Proceedings of the Annual Conference on USENIX Annual
Technical Conference, Anaheim, California, pp. 1-12.
Oly, James et al., “Markov Model Prediction of I/O Requests for
Scienti?c Applications,” Jun. 2002, Proceedings of the 16th Interna
tional Conference on Supercomputing, pp. 147-155.
Rhea, Sean C. et al., “Value-Based Web Caching,” May 2003, Pro
ceedings of the 12th International Conference on World Wide Web,
Budapest, Hungary, pp. 619-628.
Tolia, Niraj, et al., “An Architecture for Internet Data Transfer”, May
2006, Third Symposium on Networked Systems Design and
Implementation(NSDI’06), San Jose, California.
Yang, Qiang et al., “Mining Web Logs for Prediction Models in
WWW Caching and Prefetching,” Aug. 2001, Proceedings of the
Seventh ACM SI GKDD International Conference on Knowledge Dis
covery and Data Mining KDD '01, San Francisco, California, pp.
473-478.

Padmanabhan, Venkata N., et al., “Using Predictive Prefetching to
Improve World Wide Web Latency,” ACM SIGCOMM, Computer
Communication Review, pp: 22-36, (Jul. 1996).
International Search Report of May 21, 2008 for PCT application No.
PCT/US06/09544.
Written Opinion of May 21, 2008 for PCT application No. PCT/
US06/09544.

* cited by examiner

US. Patent Dec. 14, 2010 Sheet 1 0f 11 US 7,853,699 B2

cow

F .GE
03

@ Q

02

ow?

E26

US. Patent Dec. 14, 2010 Sheet 7 0f 11 US 7,853,699 B2

62mm

mom

>55 {035: mEwéQG

ovm

Pom

0mm

E26
own

US. Patent Dec. 14, 2010 Sheet 8 0f 11 US 7,853,699 B2

62%
ovm

565
0mm

565

lwom Iv Tmomll
0mm

E26
05

US. Patent Dec. 14, 2010 Sheet 9 0f 11 US 7,853,699 B2

ovm 63mm

|nwom|v lmwomlv ‘anmoml ‘lmmoml
0mm 56E {oEwc ogfwiww

nKQmII+
0% 188+

mnom|v 566 £956: mgmégo
1 mom

ovm E20

US. Patent Dec. 14, 2010 Sheet 10 0f 11 US 7,853,699 B2

wEmclhona mums; muomwonmlmma

__ 55 958E ‘8% pow/3E

0mm 05

US 7,853,699 B2
1

RULES-BASED TRANSACTION
PREFETCHING USING CONNECTION

END-POINT PROXIES

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application claims priority to US. Provisional Patent
Application No. 60/662,452, ?led 15 Mar. 2005, entitled
“Rules-Based Transaction Prefetching Using Connection
End-Point Proxies,” the disclosure of Which is incorporated
by reference herein for all purposes. This application is
related to and incorporates by reference for all purposes US.
patent application Ser. No. 10/285,315, Filed 30 Oct. 2002,
entitled “Transaction Accelerator for Client-Server Commu
nication Systems,” (Hereafter “McCanne I”), US. patent
application Ser. No. 10/640,405. Filed 12 Aug. 2003, entitled
“Transparent Client-Server Transaction Accelerator,” (Here
after “McCanne III”), US. patent application Ser. No.
10/ 640,562, Filed 12Aug. 2003, entitled “Cooperative Proxy
Auto-Discovery and Connection Interception,” (Hereafter
“McCanne IV”), and US. patent application Ser. No. 10/ 640,
459, Filed 12 Aug. 2003, entitled “Content Delivery for Cli
ent-Server Protocols With User Af?nities using Connection
End-Point Proxies,” (Hereafter “McCanne V”).

BACKGROUND OF THE INVENTION

The present invention relates generally to accelerating cli
ent-server transactions across a netWork. Many typical com
puter applications use the request-response based messaging
scheme for client-server interaction. In this scheme, the client
issues a request and then Waits for a response from the server
before issuing the next request. In certain cases, the server
may initiate a request or ‘callback’ message to the client.

A transaction initiated by the client consists of one or more
request-response message pairs. When the client and server
end-points are separate entities communicating over a net
Work channel, the latency characteristics of the netWork chan
nel play an important role in the overall transaction time.
Typically, Wide Area Networks (WANs) have a larger round
trip-time (RTT) compared to Local Area Networks (LANs).
Consequently, it takes a longer time from When a client issues
a request to When it receives a response from the server.
Furthermore, for transactions including multiple request-re
sponse message pairs, because the client issues the next
request only after receiving a response to the prior one, the
overall transaction time increases due to a larger round-trip
time.

In the case of high latency WANs, overall transaction time
can be reduced by modifying the manner in Which the trans
actions are executed by the client. If tWo requests are inde
pendent of each other, the client does not need to Wait for the
receipt of a response to a ?rst outstanding request before
issuing the next request. Generally, there are at least tWo
forms of independence: data independence and timing inde
pendence. A pair of requests are data-independent if the con
tents of the second request are the same regardless of the
response message received from the ?rst request. A pair of
requests are timing-independent of each other if the second
request can be issued Without positive acknoWledgement of
the ?rst request by the server (usually conveyed by the
response message). All timing-independent requests are also
data-independent, but not vice-versa. TWo or more indepen
dent request messages may be issued simultaneously or in
quick succession by a client, reducing overall time taken to

20

25

30

35

40

45

50

55

60

65

2
reduce the transaction. HoWever this method is not feasible in
all cases as requests are often inter-dependent.
Even in cases Where such improvements are possible and

independent transactions can be identi?ed, client applications
often cannot be easily modi?ed. The source code may be
unavailable for legal or commercial reasons; changes to the
source code may not be alloWed for supportability reasons; or
people With the skills needed to change the client application
may not be available.

It is therefore desirable for a system and method to
decrease the time of client-server transactions Without the
need to modify applications.

BRIEF SUMMARY OF THE INVENTION

In an embodiment of the invention, netWork application
proxies may be used to improve the speed of client-server
transactions Without modifying client applications. In par
ticular, the netWork application proxies can be used to reduce
server latency in response to series of requests from client
applications.A netWork application proxy is used at either the
client- and/or server-end to intercept the netWork connection
made betWeen a client and a server. Client requests inter
cepted by a netWork application proxy are compared With a
set of rules. When client requests match one or more rules,
additional messages, referred to a prefetch requests, are for
Warded to the server on behalf of a client application. In an
embodiment, the rules are de?ned according to the speci?c
applications on the system.

In response to one or more prefetch messages sent to the
server, the server can provide corresponding response mes
sages. The netWork application proxy intercepts the response
messages and caches responses corresponding to prefetch
messages. As subsequent client requests are intercepted by
the netWork application proxy, they are compared With the
cached prefetch messages. If a client request matches a
cached prefetch message, the associated result messages is
returned to the client application immediately instead of re
requesting the same information from the server.

In a further embodiment, this functionality is implemented
With both client-side and server-side netWork proxies. A
server-side netWork proxy can compare client requests With
the set of rules, create prefetch messages, and receive
response messages to prefetch messages. The server-side net
Work proxy can then forWard data including the response
messages to a client side netWork proxy for caching. The
client-side netWork proxy intercepts further client requests
and compares them With the locally-cached prefetch mes
sages. If the client request matches a cached prefetch mes
sage, the client-side proxy can return the associated result
messages to the client application immediately. Conversely, if
the client request does not match a cached prefetch message,
the client-side proxy can forWard the client request to the
server-side proxy for comparison With the set of rules and
eventual processing by the server.

In yet a further embodiment, if the client issues a request
message other than the ones pre-issued and cached, the client
proxy forWards the out-of-order request message to the
server-side proxy. On receipt of this message, an embodiment
of the server-side proxy determines Whether the message
invalidates all the previously fetched responses, does not
affect them at all, or results in an unrecoverable transaction
failure. If all previously-fetched messages need to be invali
dated, the server-side proxy relays that decision to the client
side proxy, Which purges all or part of its cache. If the out
of-order message results in an unrecoverable transaction
failure, the server-side proxy closes its connection to the

US 7,853,699 B2
3

server as Well as to its peer client-side proxy, and the client
side proxy is forced to return an error to the client node.
Some server applications support asynchronous client

noti?cations Wherein a message is sent by the server to client
When a certain condition arises. The noti?cations may serve
as callbacks to the client to ensure consistency of state infor
mation shared by one or more client nodes and/or server
nodes. For example, if the server functions as a database
server and numerous clients access a database, a client may be
interested in receiving a noti?cation When another client
modi?es a certain database entry it has recorded from a pre
vious read transaction With the server. To ensure consistency,
an embodiment of the client updates or erases the database
entry previously recorded. In order to maintain this consis
tency When network level application proxies are used, the
proxies shouldknoW When to invalidate or update pre-fetched
responses When such callbacks occur. Rules determine the
action Which is taken When a server originating callback
message matches a speci?ed regular expression. Typically,
the action is to purge pre-fetched responses at the client-side
proxy.

In an embodiment, user-speci?ed rules accurately specify
the criteria used for deciding Which client- or server-gener
ated request is a match. In addition, the rule speci?es the
appropriate action that should be taken When a match occurs.
The criteria used for determining matches depend on the
structure of the request/response messages. For illustration
purposes, consider a database application server being
accessed by a client using clear text queries and/or remote
procedure calls (RPCs), such as those encoded in the Tabular
Data Stream (TDS) protocol implemented by Sybase,
Micro soft, and programs available at WWW.freetds .org. In this
example, a user speci?es regular expressions for an exact or
partial text match in the case of clear text queries. For RPC
messages, simple text based regular expression matching
does not suf?ce as the request message may consist of non
text based encodings (e.g. binary encoding) for the RPC
name, identi?er, arguments, parameters, etc. Therefore, the
application proxies must decode the encoded RPC message
components and present it to the user in clear text (or charac
ter format) so that the matching is done as per a combination
of one or more of the folloWing: RPC name, RPC identi?er,
number of RPC parameters, parameter name(s), parameter
type(s), parameter type(s) or argument value(s).

In an embodiment, user-speci?ed actions determine hoW
many pre-fetched requests are generated When a query or
RPC message matches a user-speci?ed rule. The ?rst pre
fetched request is obtained by cloning the original rule-trig
gering message and then modifying it. For plain text based
query messages, the modi?cation could be a regular expres
sion substitution operation. For RPC based messages, the
user action speci?es RPC name or identi?er changes via
regular expression substitutions. For RPC arguments, the user
action speci?es the argument using its offset in the list and
speci?es a modi?cation using a regular expression. Subse
quent pre-fetched request messages are either cloned off the
rule-triggering message or the previous pre-fetched message.

It is possible that the user-speci?ed rules generate a large
number of pre-fetched requests at the server-side proxy. Such
a situation may result in taxing the server node’s resources, or
excessive delays When the client node issues a request mes
sage that is not already cached by the proxies. In an embodi
ment, tWo schemes can be used to avoid this problem: a) A
user-speci?ed limit controls the number of outstanding pre
fetched requests issued by the server end proxy to the server
b) a feedback mechanism betWeen the proxies determines
When pre-fetching is resumed. The feedback mechanism

20

25

30

35

40

45

50

55

65

4
entails having the client-side proxy send a positive acknoWl
edgement back to the server-side When the client node
requests a request message Whose response has already been
pre-fetched and stored at the client. If the client requests
messages other than those that have been already been
fetched, the feedback mechanism prevents the server-side
proxy from issuing neW requests. On the other hand, if the
pre-fetched responses are sent to the client, the positive feed
back results in the server-side proxy pre-fetching more
responses from the server.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention Will be described With reference to the draW
ings, in Which:

FIG. 1 shoWs an example arrangement of client, server,
proxies, and interconnecting netWorks suitable for use With
embodiment of the invention;

FIG. 2 shoWs the internal organiZation of the client-side
proxy and server-side proxy according to an embodiment of
the invention;

FIG. 3 shoWs a method of processing messages received
from the client-side proxy according to an embodiment of the
invention;

FIG. 4 shoWs a method of processing messages received
from the server- side proxy according to an embodiment of the

invention;
FIG. 5 shoWs ?oWs of messages betWeen client-side proxy

and server-side proxy according to an embodiment of the
invention;

FIG. 6 shoWs examples of rules in the rule store of the
server-side proxy suitable for use With an embodiment of the
invention; and

FIG. 7 shoWs a method of processing messages received
from the server- side proxy according to an embodiment of the
invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 shoWs a system 100 for accelerated transactions
betWeen client 110 and server 170 according to an embodi
ment of the invention. In the ?gure, client 110 and client-side
netWork proxy 130 are both attached to a client-side netWork
120, typically a local-area netWork or LAN. LikeWise, server
170 and server-side netWork proxy 150 are both attached to a
server-side netWork 160. Client-side netWork 120 and server
side netWork 160 are both connected via WAN 140, possibly
via additional routing, sWitching, or bridging devices and
links not shoWn in FIG. 1. WAN 140 may consist of a variety
of netWorks or intemets capable of carrying data messages,
including virtual private netWorking protocols.

Request 115 from client 110 is sent via client-side netWork
proxy 130, Which may ansWer it With matching cached pre
fetched response 136. If client-side netWork proxy 130 has no
matching cached pre-fetched response, client-side netWork
proxy 110 optimiZes or transforms request 115 and sends it as
optimiZed request 135 to server-side netWork proxy 150 on
the other side of Wide-area netWork WAN 140. Server-side
netWork proxy 150 is the counterpart to client-side netWork
proxy 130 and applies reverse optimization or transformation
to received optimiZed request 135, producing original request
116. Server-side netWork proxy 150 checks for rules match
ing original request 116; if one or more rules ?re and prefetch
ing has not been throttled, the ?red rules transform or replace
original request 116 into neW requests 155, 156. If no rules
?re or prefetching has been throttled, original request 116 is
forWarded to server 170.

US 7,853,699 B2
5

Response 175 from server 170 to client 110 travels the
reverse path. It is sent via server-side proxy 150, Which deter
mines Whether additional actions must be taken such as
updating or invalidating cached information at client-side
netWork proxy 130, thereby potentially extending or replac
ing response 175 With response 157. Server-side netWork
proxy 170 optimizes or transforms modi?ed response 157
and sends it as optimized response 158 across WAN 140 to
client-side netWork proxy 130. Client-side netWork proxy
130 is the counterpart to server-side netWork proxy 170 and
applies reverse optimization or transformation to received
optimized request 158, producing original modi?ed response
157. Client-side netWork proxy processes modi?ed response
157 by updating or invalidating its local caches as necessary.
If modi?ed response 157 included a direct (non-prefetched)
response, that direct response 136 is sent to client 110.

FIG. 2 shoWs the internal elements of client-side netWork
proxy 130 and server-side netWork proxy 150 according to an
embodiment of the invention. Client-side netWork proxy 130
includes result cache 210, optimization codec 215, and
prefetch throttle control 220. Server-side netWork proxy 150
includes optimization codec 216, invalidation checker 230,
match engine 240, noti?cation receiver 250, rule store 260,
and prefetch throttle 270.
When a request message 115 is received from client 110 by

client-side netWork proxy 130, the request message 115 is
compared to the contents of the result cache 210. In an
embodiment, the result cache 210 is a table or other data
structure including prefetched client requests and corre
sponding responses from the server 170. If the result cache
210 contains a result that matches request 115, that matching
result is returned to client 110 and request 115 is not sent on
to the server-side proxy 150.

As discussed in detail beloW, an embodiment of client-side
proxy 130 can include a prefetch throttle control 220 to pre
vent data from prefetched requests from overWhelming the
WAN connection 218 to the client 110, thereby blocking or
delaying data explicitly requested by the client 110 from the
server 170. In these embodiments, if the prefetch throttle
control 220 indicates that prefetching has been throttled at the
server-side proxy 150, the use of a result from result cache
210 causes the client-side netWork proxy 130 to send an
“unthrottle” message to prefetch throttle 270 at server-side
netWork proxy 150. Upon receiving an “unthrottle” message,
the prefetch throttle 270 Will alloW the server-side netWork
proxy 150 to resume prefetching data for the client 110.

If there is no matching result in result cache 210, the
request message 115 is passed to the optimization codec 215,
Which applies optimizations and transformations such as
those described in patent applications McCanne I, McCanne
III, McCanne IV, and McCanne V. Optimized messages 218
How from the client-side optimization codec 215 to the
server-side optimization codec 216, and such optimized mes
sages 218 need not correspond exactly to the original request
messages 115, in number or in size.

At server-side netWork proxy 150, the server-side optimi
zation codec 216 undoes the optimizations and transforma
tions applied by the client-side optimization codec 215,
recovering original request message 115. Invalidation
checker 230 examines request message 115 to determine
Whether request 115 invalidates prefetched and cached infor
mation in the result cache 210. If so, the invalidation checker
230 sends an invalidation message to the client-side netWork
proxy 130. If the invalidation checker 230 determines that
request 115 cannot be executed, the invalidation checker 230
sends a fatal error message to client-side netWork proxy 130.

5

10

20

25

30

35

40

45

50

55

65

6
If the invalidation checker 230 detects no fatal error, the

message 115 is passed to match engine 240. Match engine
240 compares message 115 to the contents of rule store 260
and determines Which rules “?re” or are activated from the
rules in rule store 260. When a rule ?res, its de?ned effects
take place, potentially producing a neW message 280 to be
sent to server 170. Rules can be stateless or stateful.
Match engine 240 and rule store 260 determine Whether

any rules ?re, Whether multiple rules can ?re, and in What
order rules ?re. Rules may alloW other rules to be enabled or
disabled. In an embodiment, a convergence property or time
limit property is enforced by match engine 240 and rule store
260 to ensure that there are no endless cycles of rule ?rings.
One such arrangement is to disable each rule after it ?res and
not alloW it to be re-enabled until a neW message is received.
This arrangement ensures that there is a monotonically
decreasing set of applicable rules. Another such arrangement
is to have a limit counter for rules that is decremented after
each ?ring. Another such arrangement is to have a real-time
counter that decrements With the passage of time.
As discussed in detail beloW, an embodiment of the rule

store 260 speci?es each rule using at least a rule element and
an action element. A rule element speci?es criteria for match
ing With client requests. In an embodiment, the rule element
can include Wildcard characters, Which can substitute for
another character or characters in a client request. In further
embodiments, rule elements can include regular expressions,
Which in conjunction With corresponding syntax rules, enable
a rule element to specify more complicated sets of matching
client requests Without actually listing every possible element
of the set.

In a further embodiment, match engine 240 and rule store
260 can be con?gured to utilize context sensitive grammars to
activate rules. In this embodiment, the match engine 240 uses
an analysis of the contents of tWo or more messages to deter
mine Whether to activate a rule. For example, a context sen
sitive grammar might not activate a rule in response to a ?rst
message until one or more additional messages satisfying
criteria are received. In another example, a rule activation in
response to a message might be supressed based on the con
tents of one or more previous messages.
An action element describes an action to be taken for a

received message that matches the corresponding rule ele
ment. In an embodiment, an action element can specify the
format of one or more additional messages to be sent to the
server 170 on behalf of the client associated With the match
ing client request. Action elements can specify an exact
prefetch message and/ or a template for a prefetch message. In
the latter case, the template can be completed using attributes
of the client request or other system attributes to form a
complete prefetch message.

Additional embodiments of the invention can include a
throttling system to prevent data from prefetched requests
from overWhelming the WAN connection 218 to the client
1 10, thereby blocking or delaying data explicitly requested by
the client 110 from the server 170. In these embodiments, the
operation of match engine 240 and rule store 260 may also be
inhibited by prefetch throttle 270. Any neW message 280 that
is not identical to the received request 115 is considered a
prefetch request and the generation of these messages may be
limited by the prefetch throttle 270. The prefetch throttle 270
tracks the generation of prefetch messages 280 and inhibits
the generation of such messages by rule ?rings (throttles the
prefetching) When the number of generated mes sages reaches
a con?gurable limit. In additional embodiments, the prefetch
throttle 270 can limit the number of generated messages
according to the total size of the data returned by one or more

US 7,853,699 B2
7

prefetch messages 280, the total number of network packets
used for prefetch messages and their responses, the amount of
time spent on prefetch messages and their responses, or any
other individual or aggregate attributes of one or more
prefetch messages and their responses. In a further embodi
ment, at the point Where this throttling occurs, a message is
also sent to the prefetch throttle control 220 at client-side
proxy 130, indicating that prefetching has been throttled.
After throttling is in place, prefetching Will not resume until
either a result is used from the result cache 210 at client-side
proxy 130 (as described earlier) or the result cache 210 is
invalidated by the decision of the invalidation checker 230.
A result that corresponds to a received request 115 is sent

back through the paired optimiZation codecs 216, 215 to the
client-side proxy 130, Which in an embodiment forWards the
unchanged result to client 110. A result that corresponds to a
prefetch message 280 is marked accordingly and sent through
the paired optimiZation codecs 216, 215 to the client-side
proxy 130, Which adds the result to the result cache 210 and
sends nothing to the client 110.

In a further embodiment, tWo or more prefetch messages
and their corresponding response messages that are associ
ated With a client request are bundled or packaged together
before being forwarded back to the client-side proxy. For
example, the server-side proxy can attempt to bundle as many
prefetch messages and corresponding response messages as
possible into a single netWork packet. Once the data siZe limit
of a packet has been reached for a bundle of messages or a
time limit expires, the server-side proxy forWards the packet
potentially containing multiple messages to the client-side
proxy. The server-side proxy Will repeat this bundling for any
remaining messages. This has the effect of minimizing the
number of netWork packets required to communicate prefetch
messages and their corresponding responses With the client
side proxy, thereby improving netWork performance.

In some circumstances, a “result” message Will come from
the server as a noti?cation, ie without any corresponding
request initiating it. Among other uses, such noti?cations are
often used to indicate changed circumstances of particular
shared data items to clients that are likely to have an interest
in those items. Such noti?cations are received at server-side
proxy 150 by the noti?cation receiver 250. Much like the
invalidation checker 230, the noti?cation receiver 250 ana
lyZes the received noti?cation to determine Whether the
received noti?cation invalidates prefetched and cached infor
mation in the result cache 210. If so, the noti?cation receiver
250 sends an invalidation message to the client-side netWork
proxy 130. The noti?cation receiver 250 may also determine
that the noti?cation indicates that an un?xable problem has
occurred, and send a fatal error message to client-side net
Work proxy 130.

FIGS. 3A and 3B illustrate methods of processing data at a
server- side netWork proxy according to an embodiment of the
invention. FIG. 3A illustrates method 300 for processing
messages received from the client via a client-side proxy
according to an embodiment of the invention. At step 305, the
server-side proxy receives a client request message intended
for a server from a client application. In an embodiment, the
client request message pass through a client-side proxy,
Which determines Whether the client request message can be
satis?ed using data in the results cache. If not, the client-side
proxy forWards the client request message to the server-side
proxy.

Step 310 determines if the client request message can be
forWarded to the server Without introducing errors. In an
embodiment, a client request message cannot be sent to the
server if the client request is inconsistent With a prefetched

20

25

30

35

40

45

50

55

60

65

8
message already issued by the server-side proxy. This can
occur if the rule set used by the server-side proxy has failed to
correctly predict one or more related client request messages
in a series. Another reason a client request message may not
be sent to the server is if the client request message Would
create an unrecoverable transaction error, for example due to
an out-of-order client message request or an unexpected cli
ent message request.

If the client request mes sage can be safely sent to the server,
method 300 proceeds to step 315. Conversely, if the client
request message cannot be safely sent to the server, method
300 proceeds to step 320. Step 320 determines if invalidating
the results cache or a portion thereof, such as the portion of the
cache storing the prefetch messages expected by the system
instead of the client request message received in step 305,
Would make it safe to send the client request message to the
server. If so, method 300 proceeds to step 325 to invalidate all
or a portion of the results cache of the client-side proxy. In an
embodiment, step 325 sends a message to the appropriate
client-side proxy specifying that all or a portion of the results
cache should be invalidated and the associated data discarded.
Method 300 then proceeds from step 325 to step 315.

In an embodiment, the server-side proxy issues a cache
invalidation policy, such as total or rule-based partial, to the
client-side proxy When a client request message matches a
rule at the server-side proxy. As discussed beloW, the client
side proxy uses this cache invalidation policy When a cache
miss occurs to determine Whether all or a portion of the
client-side proxy’s cache should be invalidated.

If step 320 determines that the client request message can
not be sent to the server safely even if the client-side proxy
results cache is invalidated, then step 330 terminates the client
request message. This can occur for example if an out-of
order client request message results in an unrecoverable
transaction failure. In an embodiment of step 330, the server
side proxy closes its connection to the server as Well as to its
peer client-side proxy, and the client-side proxy is forced to
return an error to the client application.

FolloWing either step 310 or step 325, step 315 forWards
the client request message to the intended server for process
ing. In an embodiment, the server-side proxy maintains a
record of the client request message so as to match it With any
result messages returned by the server.

FolloWing step 315, step 335 compares the client request
message With the set of rules maintained by the server-side
proxy. In an embodiment, step 335 issues one or more
prefetch messages to the server on behalf of the client appli
cation in response to the client request message matching one
or more of the rules. Prefetch messages can be issued simul
taneously or sequentially. In an embodiment, the server-side
proxy maintains a record of the prefetch messages sent to the
server in conjunction With a client request message. In a
further embodiment, step 335 may be disabled using the
traf?c throttling system discussed above. FolloWing step 335,
method 300 returns to step 305 to aWait further messages
from the client-side proxy.

FIG. 3B illustrates method 350 for processing messages
received from the server. In alternate embodiments, these
steps may be executed in a different order, as there is no
necessary synchronization or sequencing except Where
explicitly indicated. Step 355 receives a message from the
server. Step 360 determines if the message received is server
response to a client request message previously received by
the server-side proxy. If so, method 350 proceeds to step 365.
In an embodiment, this comparison can be facilitated by a
record of client request messages maintained by the server
side proxy.

US 7,853,699 B2

Conversely, if step 360 determines that the message
received is not server response to a client request message
previously received by the server-side proxy, step 370 deter
mines if the message received is a server response to a
prefetch message sent by the server-side proxy on behalf of a
client application in response to a client request message
matching one or more rules. If so, method 350 proceeds to
step 375. In an embodiment, this comparison can be facili
tated by a record of prefetch messages maintained by the
server- side proxy.

Step 375 marks and Wraps the message. In an embodiment,
the message is Wrapped With additional data to facilitate
caching by the client-side proxy. In an embodiment, this
additional data can include a copy of the corresponding
prefetch request or an identi?er derived therefrom. This
enables the client-side proxy to match future client requests
With data stored in the results cache. FolloWing step 375,
method 350 proceeds to step 365.

Following step 375 or step 360, step 365 sends the message
or, as discussed beloW and elseWhere, a bundle of messages to
the client-side proxy.

In a further embodiment, step 375 can bundle multiple
messages together in a netWork packet to improve netWork
performance. In this embodiment, folloWing step 375, step
365 may be bypassed if the packet is not full. In this case,
method 350 then proceeds directly to step 355 to aWait the
next message from the server. In a further embodiment, if
another message from the server and associated With a par
tially ?lled packet has not be received Within a time period,
method 350 Will return to step 365 to send any partially ?lled
packets to the appropriate client-side proxies.

Returning to step 370, if the message received is not a
server response to a prefetch message, method 350 proceeds
to step 380. Step 380 determines if the received message
invalidates the data in the results cache of the client-side
proxy. If so, then method 350 proceeds to step 385 to invali
date the results cache of a client-side proxy. In an embodi
ment, step 385 sends a message to the client-side proxy pro
viding a cache invalidation policy. In response to a cache
miss, Which occurs When a client request does not match any
data in the cache, the client-side proxy discards all or a portion
of its results cache according to the cache invalidation policy.
The cache invalidation policy may specify that the all the data
in the results cache is to be discarded or that only data match
ing a rule is to be discarded.

In an embodiment, the server-side proxy directly invali
dates all or a portion of the results cache of a client-side proxy.
For example, this canbe done using a pair of proxy rules: Rule
A and Rule B. Rule A consists of query matching criteria,
prefetch directives and a cache miss policy of “forWard
misses Without cache ?ush to the server”. Rule B consists of
matching criteria and an active cache ?ush (partial or total)
directive. The active cache ?ush message is sent to the client
side proxy, causing the client side proxy to ?ush the cache.

This pair of rules can be used for the case Where the server
side proxy prefetches a large list of queries and sends them
over to the client side proxy using RuleA. The client requests
only a subset of these prefetched queries interspersed With
client request messages that are cache misses at the client side
proxy. At some point, the client may issue a speci?c client
request message that results in a cache miss at the client. Like
other client request messages that cause a cache miss, this
speci?c client request message is forWarded to the server-side
proxy to be ful?lled. At the server-side proxy, this client
request message matches rule B. The criteria of rule B is
speci?ed such that it matches client request messages that
indicate that the client Will not be requesting any more of the

20

25

30

35

40

45

50

55

60

65

10
remaining prefetched requests stored in the results cache of
the client-side proxy. As a result of the client request message
matching rule B, the server-side proxy sends a message to the
client-side proxy that purges part or Whole of the results cache
of the client side proxy.

Conversely, if the message received does not require the
results cache to be invalidated, method 350 proceeds to step
390. Step 390 determines if the message indicates a fatal
error. If so, method 350 proceeds to step 395, Which termi
nates the method. Otherwise, method 350 proceeds from step
390 back to step 355 to aWait further messages.

FIG. 4 illustrate methods of processing data at the client
side netWork proxy according to an embodiment of the inven
tion. FIG. 4A illustrates method 400 for processing messages
received from a client. Step 405 receives a client request
message from a client application. Step 410 determines if the
client request message matches data stored in the results
cache of the client-side netWork proxy. In an embodiment, the
results cache stores prefetch messages and their correspond
ing result messages. In this embodiment, step 410 searches
the results cache for a prefetch message matching the
received client request message. In further embodiments,
techniques such as hash tables can be used to facilitate search
ing the results cache for results messages matching the
received client request message.

If step 410 determines that the results cache does not
include any data corresponding With the received client
request message, step 415 forWards the received client
request message to the server for processing. In an embodi
ment, step 415 forWards the received client request message
to a server-side proxy to be processed as described above.
Method 400 then returns to step 405 to aWait further client
request messages.

Conversely, if step 410 determines that the results cache
does include one or more result messages corresponding With
the received client request message, then step 420 removes
the corresponding result messages from the results cache.
Step 425 forWards the result messages to the client applica
tion, thereby satisfying the client request message Without the
need to initiate further communications With the server.

In an embodiment, the client-side netWork proxy can
include a prefetch throttle control. In this embodiment, step
430 determines if netWork tra?ic including data associated
With additional prefetch messages and corresponding result
messages is throttled, or suspended, from the server-side net
Work proxy. If so, then step 435 sends an “unthrottle” com
munication to the server-side netWork proxy to indicate that
the server-side netWork proxy can resume sending data asso
ciated With any additional prefetch messages and correspond
ing result messages to the client-side proxy. If not, then
method 400 returns to step 405 to Wait for additional client
request messages from the client application. Similarly, fol
loWing step 440, method 400 returns to step 405.

FIG. 4B illustrates method 450 for processing messages
received from a server-side proxy according to an embodi
ment of the invention. In alternate embodiments, these steps
may be executed in a different order, as there is no necessary
synchronization or sequencing except Where explicitly indi
cated.

Step 455 receives messages from the server-side proxy.
Messages can be directed to the client-side proxy speci?cally
or to the client application. In the latter case, the client-side
proxy intercepts messages directed to the client application
by the server or server-side proxy. Step 460 determines if the
received message requests the invalidation of all or a portion
of the results cache of the client-side proxy. If so, then in step
465, the client-side proxy discards or otherWise invalidates

US 7,853,699 B2
11

the data in the appropriate portion of its results cache. Fol
lowing step 465, method 450 returns to step 455 to Wait for
additional messages from the server-side proxy.

Conversely, if step 460 determines that the message does
not request the invalidation of any portion of the results cache,
then step 470 determines if the message includes data to be
cached. In an embodiment, messages including data to be
cached can include one or more results messages correspond
ing With one or more prefetch messages issued by a server
side proxy on behalf of the client application. In a further
embodiment, messages including data to be cached can
include copies of prefetch messages or an identi?er derived
therefrom to facilitate matching received client request mes
sages With corresponding result messages stored in the results
cache.

If step 470 determines that the received message from the
server-side netWork proxy includes data to be cached, step
475 adds the data from the messages to the results cache of the
client-side netWork proxy. Conversely, if step 470 determines
that the received message does not include data to be cached,
then step 480 forWards to received message to its intended
destination, such as the client application. FolloWing step 480
or 475, method 450 returns to step 455 to Wait for any addi
tional messages.

FIGS. 5A-5C shoW example message ?oWs among ele
ments of the system according to embodiments of the inven
tion. FIG. 5A shoWs a simple How of a client request message
501 from client application 510 through client-side netWork
proxy 520 and server-side netWork proxy 530 to server appli
cation 540. The corresponding response message 502 passes
from server application 540 through server-side netWork
proxy 530 and client-side network proxy 520 to client appli
cation 510. In FIG. 5A, client-side netWork proxy 520 and
server-side netWork proxy 530 are able to examine the client
request message 501 and response message 502 but do not
affect communication betWeen client 510 and server 540.

FIG. 5B shoWs a How of a client request message 503 from
client application 510 to client-side netWork proxy 520. In
this example, the client request message 503 corresponds
With a cached response message in the results cache of the
client-side proxy. Thus, client-side proxy 520 retrieves the
response message 504 from its results cache and returns it to
the client application 510. In this example, there is no need for
any additional communications With other elements of the
system.

FIG. 5C shoWs hoW prefetching takes place and thus hoW
the client-side netWork proxy 520 Would be able to deliver
cached results as previously shoWn in FIG. 5B. Client request
message 505 from client application 510 may be examined at
client-side proxy 520 but in this example does not match any
cached results. So client request message 505 is forWarded on
to server-side proxy 530, Where it is examined again. In this
example, the client request message matches one or more
rules, Which trigger the server-side proxy 530 to produce
messages 505a and 50519. In some embodiments, message
50511 may be identical to request 505. In some embodiments,
there may be more or feWer messages generated by server
side proxy 530; there is no signi?cance to using tWo for this
example. Messages 505a and 50519 are sent to server 540,
Which produces corresponding result messages 506a and
50619. In one arrangement, 50511 is the unmodi?ed direct
request 505 and so the corresponding result 50611 is passed on
as 50711 to the client-side netWork proxy 520, then as 50811 to
the client 510. HoWever, 50519 is a prefetch message and so the
corresponding result message 50619 is marked as data to be
cached and Wrapped in message 50719. When result message
50719 is sent to client-side netWork proxy 520, the content of

20

25

30

35

40

45

50

55

60

65

12
50719 is placed in the result cache of client-side netWork proxy
520 and no corresponding message is sent to client 510.

FIG. 6 shoWs the elements of an example rule, such as
might be used to set up rules in the rule store 260 described in
FIG. 2. The example coded there captures the folloWing case:
When the server-side proxy receives a message from a

client that is the Microsoft Project product encoded in the
TDS format, Where the message is of type 3, has RPC ID 5,
With 7 arguments, and the query portion of that message
matches the regular expression beloW; then perform the fol
loWing action:

Send a prefetch TDS message of type 3, rpc id 5, With the
query string “select proj_read_count , proj_locked, pro
j_read_Write, proj_read only, proj_id, proj_machine_id,
proj_data_source from msp_projects Where
proj_name:<the_matched_sub_expression>”

Rule element 610 describes the matching part of the rule.
Action element 620 describes the Whole-message replace
ment action to be taken for a received message that matches
the corresponding rule element 610. A rule element 610 can
have multiple associated action elements 620, With each
action element 620 producing a distinct Whole-message
replacement. Argument action element 630 describes an
argument-level replacement Whereas action element 620
describes a Whole-message-level replacement. An action ele
ment 620 can have multiple associated argument action ele
ments 630, With each argument action element 630 producing
a distinct argument replacement.
The example rule of FIG. 6 is discussed for the purposes of

illustration. Any number of rules With different types of rule
and action elements can be employed by embodiments of the
invention. Additionally, rules can be speci?ed for different
types and categories of client applications, different server
applications, and different message formats and protocols. In
general, embodiments of the invention are applicable to sys
tems in Which clients communicate With server applications
using any type of request/reply protocol. For example,
embodiments of the invention can be used in conjunction With
any type of database server, Java RMI, and CORBA.

In a further embodiment, the systems and techniques for
prefetching and caching as described above can be extended
to preacknoWledge client request messages. PreacknoWledg
ment is the creation of synthetic responses to client request
messages by a client-side or server-side netWork proxy or
transaction accelerator to replace acknowledgement mes
sages normally sent by servers to clients in response to client
request messages. The use of preacknoWledgment decreases
the delay clients experience betWeen sending a client request
message and receiving an acknowledgment mes sage from the
server.

In some applications, preacknoWledgment may not be safe
from a data consistency perspective. Thus, in an embodiment,
preacknoWledgment is turned off in default con?gurations of
netWork proxies and transactions accelerators. PreacknoWl
edgment can then be selectively enabled only for speci?c
types of transactions. In a further embodiment, the insertion
of transaction boundaries around client request messages
ensures data consistency safety.

In an embodiment, rules are used at the client side and/or
server side proxy to determine if a request can be preacknoWl
edged. In a ?rst embodiment, a server side rule engine exam
ines incoming client request messages to determine Whether
it is safe to respond With a preacknoWledge message. In the
case of a match betWeen one or more server-side rules and a

client request message, the server-side proxy sends an iden
ti?er, such as a statement id, handle, or other transaction
identifying information, to the client-side proxy. This identi

US 7,853,699 B2
13

?er is used to identify subsequent client request messages in
the same or related transaction that can be preacknowledged
by the client-side proxy or transaction accelerator.

In an embodiment, the client-side proxy or transaction
accelerator uses the identi?er alone or in conjunction with
additional client-side rules to identify subsequent client
request messages that can be safely preacknowledged. In
response to identifying subsequent client request messages
matching the identi?er, the client-side proxy or transaction
accelerator returns preacknowledgment messages to the cli
ent immediately.

In an example, preacknowledgment messages can be used
when a client does not care about the results of a series of
client request messages, such as a client uploading and
repeatedly invoking an SQL procedure with different argu
ments, provided that the client request messages are received
and processed by the server.

In another embodiment, client-side rules in a client-side
proxy or transaction accelerator are used for requests that
occur frequently in a transaction, but not consecutively. In an
embodiment, the client-side proxy includes the capability to
generate an identi?er from incoming client request messages.
In a further embodiment, the client-side proxy generates and
stores identi?ers for all incoming client request messages,
including those that do not match a client-side rule and are not
preacknowledged. This prevents client request messages that
cannot be preacknowledged from being misidenti?ed due to
identi?er collisions.

In a further embodiment, the client-side network proxy
further ensures data consistency safety by inserting a trans
action start point request before the ?rst client request mes
sage that is being preacknowledged. The client-side proxy
discards the server response to this transaction start-point
request.

In yet a further embodiment, the server responses, includ
ing acknowledgement messages sent in response to client
request messages are received by the client-side proxy. The
client-side proxy examines the acknowledgment messages
for success or failure codes. In the case of a success code for
a client request message that has already been preacknowl
edged by the client-side proxy, the client-side proxy discards
the response message as redundant. In the case of a failure
code for a client request message that has already been preac
knowledged by the client-side proxy, the next client request
message in the same transaction that is received from the
client receives an error response. Alternatively, the client-side
proxy can tear down the connection in response to a failure
code.

If all responses to client request messages indicate success
and a non-preacknowledgable client request message is
received, a transaction end point request is sent to the server
side. On receipt of a successful response, the pending non
preacknowledgable request is proxied to the server side. An
unsuccessful response results in a non-acknowledgment
response being sent to the client or alternatively the client
side proxy tears down the connection.

In a further embodiment, a throttling mechanism can be
used based on responses coming back to the client side proxy.
The client side proxy would suspend the generation of preac
knowledgment requests when the number of outstanding
responses for preacknowledged requests exceeds a con?g
urable threshold. This prevents a client from ?ooding the
server due to the decreased delay between client request
messages and preacknowledgment responses.

In an embodiment, to implement preacknowledgment, the
client-side network proxy in FIG. 2 is augmented with
optional match engine 240a and rule store 260a. Optional

20

25

30

35

40

45

50

55

60

65

14
match engine 240a and rule store 26011 are similar to the
match engine 240 and rule store 260 discussed above, with the
additional functionality as described with reference to preac
knowledgment messages.

FIG. 7 illustrates a method 700 of processing messages
received from the server-side proxy according to an embodi
ment of the invention. Method 700 is substantially similar to
method 400 of FIG. 4A, with steps 405, 410, 415, 420, 425,
430, and 435 of method 700 behaving similarly to their like
numbered counterparts of method 400. However, following
step 405, step 705 determines in a client request message
matches a preacknowledgment rule. If not, then method 700
proceeds to step 410 and subsequent steps, as described
above. If step 705 determines that the message does match a
preacknowledgment rule, then step 710 generates and sends a
preacknowledgment message back to the client. Following
step 710, method 700 returns to step 405.
Although the invention has been discussed with respect to

speci?c embodiments thereof, these embodiments are merely
illustrative, and not restrictive, of the invention. Furthermore,
the system architecture discussed above is for the purposes of
illustration. The invention can be implemented in numerous
different forms including as a stand-alone application or as a
module integrated with other applications. Thus, the scope of
the invention is to be determined solely by the claims.

What is claimed is:
1 . A method for accelerating a client- server transaction, the

method comprising:
(a) receiving, at a proxy, a ?rst message from a client

application, wherein the proxy is distinct from a client
executing the client application;

(b) comparing, at the proxy, the ?rst message with a set of
rules, and determining whether the ?rst mes sage invali
dates previously fetched responses;

(c) forwarding the ?rst message from the proxy to a server
application executed by a server and forwarding at least
one additional message from the proxy to the server
application on the server in response to the ?rst message
matching at least one of the set of rules, wherein the at
least one additional message is determined at the proxy
based on content of the ?rst message and the set of rules
applied to the content of the ?rst message and wherein
the at least one additional message is creatable in
advance of receipt of a response to the ?rst message;

(d) receiving, at the proxy, from the server application at
least one response mes sage corresponding with the addi
tional message;

(e) storing in a message cache the response message cor
responding with the additional message such that the
cached response message remains associated with the
additional message;

(f) receiving a second message from the client application;
(g) determining if the second message is similar to the

additional message; and
(h) forwarding the response message stored in the message

cache to the client application as a response to the second
message in response to the second message being simi
lar to the additional message.

2. The method of claim 1, wherein the proxy is a server- side
network proxy and (e), (f), (g), and (h) are performed by a
client-side network proxy.

3. The method of claim 2, wherein (e) further comprises:
sending the at least one response message from the server

side network proxy to the client-side network proxy.
4. The method of claim 3, wherein sending the response

message further comprises wrapping the response message

