
(19)

US 20100293335A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0293335 A1
United States

Muthiah et al. (43) Pub. Date: NOV. 18, 2010

(54)

(75)

(73)

(21)

(22)

CACHE MANAGEMENT

Inventors: Muthu Annamalai Muthiah,
Bangalore (IN); J ayesh V. Rane,
Pune (IN); Sanket S. Sangwikar,
Kalyan (IN)

Correspondence Address:
IBM CORPORATION
INTELLECTUAL PROPERTY LAW
11501 BURNET ROAD
AUSTIN, TX 78758 (US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
ARMONK, NY (US)

Assignee:

Publication Classi?cation

(51) Int. Cl.
G06F 12/08 (2006.01)
G06F 12/00 (2006.01)

(52) US. Cl. 711/133; 711/125; 711/E12.001;
711/E12.022

(57) ABSTRACT

A method for cache management in an environment based on
Common Information Model is described. Cache elements in
the cache are associated With a time attribute and historical
data. Cache elements having a time attribute lying in a certain
range are polled for from the server and updated at predeter
mined time points. A neW time attribute is calculated for each
cache element based on its historical data and this neW time
attribute assists in adapting the polling frequency for the
cache element to its importance and change characteristics.
Asynchronous noti?cations from the server preempt the poll
ing based on the time attribute for a cache element and
instead, polling for the cache element is based on the asyn

App1_ NO; 12/464951 chronous noti?cation. A system ‘for cache management
Includes a chent and a server, the chent having a cache that Is
managed based on each cache element’s importance and

Filed: May 13, 2009 change characteristics.

100 A /- 102

108 _\ SERVER

CIM OBJECT LOGGING 110
MANAGER SERVICE

1 ' 112

L—> LOG STORAGE /—
114

~ REPOSITORY /_ '

V
116

OPERATING SYSTEM /—

104

NETWORK

106
I’ /

118 CLIENT
_\ 120
MEMORY '

= > PROCESSOR

126 '\ CLIENT 122
APPLICATION I I

_ : I/O DEVICES

124
128 O CACHE

NETWORK
INTERFACE

Patent Application Publication Nov. 18, 2010 Sheet 1 0f 6 US 2010/0293335 A1

100 A 102

‘08 "\ SERVER

CIM OBJECT LOGGING r“ 110
MANAGER SERVICE _

l

' L—> LOG STORAGE

114
REPOSITORY - /_ '

‘I16

OPERATING SYSTEM /—

/_ 106
118 I CLIENT

_\ A 120
MEMORY

‘ <—~> PROCESSOR

126 ~\ CLIENT w 122
APPLICATION I I

-<—> l/O DEVICES

124
128 ‘O CACHE

NETWORK
INTERFACE

FIG. 1

Patent Application Publication

200 —/\

CACHE ELEMENTS MAINTAIN

Nov. 18, 2010 Sheet 2 0f 6

f 202

US 2010/0293335 A1

DATA VALUE, TIME ATTRIBUTE

V

TRACK HISTORICAL DATA

POLL BASED ON TIME
ATTRIBUTE

UPDATE EACH POLLED
ELEMENT

CALCULATE NEW TIME
ATTRIBUTE VALUES

212

204

.206

208

210

/—214
ASYNCHRONOUS
NOTIFICATION
RECEIVED?

PREEMPT POLLING
STEP

NO

FIG. 2

Patent Application Publication Nov. 18, 2010 Sheet 3 0f 6

300 —/\

US 2010/0293335 A1

302

ASSIGN BASE TTL

304

nchange : O 8
naccess : O I

306
CACHE ELEMENT
ACCESSED?

/__ 308
INCREASE r1rimcess BY 1

i
HAS CACHE

ELEMENT CHANGED?

YES

' r312
INCREASE nchange BY 1

F16. 3A

Patent Application Publication Nov. 18, 2010 Sheet 4 0f 6 US 2010/0293335 A1

‘ SYNCHRONOU

NOTIFICATION
RECEIVED?

YES

NO'
- 316

r CACHE ELEMENT YES
MARKED INVALID

318

AGE = TTL VALUE?

No

322 4 /' 324
POLLING CACHE

- INTERVAL ELEMENT _ FEEEIJSROMY
OVER? INVALID? YES

EFININ
INTERVAL

I'YES
v f 328

CALCULATE NEW
TTL

@
FIG. 3B

Patent Application Publication Nov. 18, 2010 Sheet 5 0f 6 US 2010/0293335 A1

TTL VALUES FOR CACHE ELEMENTS

REFINING INTERVALS

FIG. 4

Patent Application Publication Nov. 18, 2010 Sheet 6 0f 6 US 2010/0293335 A1

500A

/_ 502
SERVER

506

/-5o4
. CLIENT

50s
MEMORY /_

/-510 512
\ <——>PROCESSOR
CACHE

FIG. 5

US 2010/0293335 A1

CACHE MANAGEMENT

TRADEMARKS

[0001] IBM® is a registered trademark of International
Business Machines Corporation, Armonk, N.Y., USA.
Other names used herein may be registered trademarks, trade
marks or product names of International Business Machines
Corporation or other companies. Microsoft® and Windows@
is a registered trademark of Microsoft Corporation

TECHNICAL FIELD

[0002] Embodiments of the invention relates to managing a
cache in a client server environment, and more speci?cally, to
the management of a client cache in a system employing the
Common Information Model (CIM).

BACKGROUND

[0003] As netWorks groW larger With an ever-expanding
cluster of peripherals, associated softWare, and netWork con
nections, they must all be managed e?iciently in order to
ensure a Well-organized system. Because the role of a system
administrator has become increasingly complex, the industry
has responded With Web Based Enterprises Management
(WBEM), a solution including standards for management
applications, Which alloW exchange of management data irre
spective of the underlying protocol, operating system, man
agement standard, or associated vendor. A prevalent standard
of implementation of WBEM is the Common Information
Model (CIM), used for systems management in a client server
environment.
[0004] CIM is a distributed, hierarchical, object-oriented
system management model representing different aspects of a
managed entity in separate but related objects. Because this is
a distributed object-oriented model, in order to represent a
single entity in a server or storage, the client needs to retrieve
and assemble all the required data. The client makes numer
ous requests to the server, and due to the much dispersed
nature of the object model, the result is a performance penalty
that affects the response time of the management applica
tions. One Way to alleviate the performance degradation of
management client responses is to implement caching at the
CIM client layer.
[0005] As With any cache, the CIM client cache needs to be
kept consistent With the server state. TWo general approaches
have been proposed to accomplish that resultia continuous
polling mechanism to synchroniZe the client and server state,
or receiving asynchronous noti?cations that can be employed
to update the client state. Both methods, hoWever, have inher
ent disadvantages. On one hand, a dispersed object model
requires frequent polling, Which can lead to increased
expense as Well as overutiliZation of system and netWork
resources. On the other hand, asynchronous noti?cations are
an unreliable tool to maintain cache coherency because they
offer no guarantee of delivery, or correct order of delivery.
Those issues create potential risks, as the loss of critical
asynchronous noti?cations or their out-of-order delivery
Would lead to an invalid cache.

[0006] Currently knoWn solutions poll periodically for all
data stored in the cache in order to keep any client side cache
consistent. As a result, an excessive number of periodic
requests are made to the server because of the much distrib
uted nature of the object data. These attempted solutions

Nov. 18, 2010

place excessive demands on netWork bandWidth, computa
tional poWer, memory, and latency.

SUMMARY

[0007] According to one embodiment of the present inven
tion, a method for managing a cache in a system based on the
Common Information Model is described. A client cache
contains cache elements, each of Which maintains a data
value and a time attribute. The method involves tracking
historical data relating to each cache element. A server is
polled at predetermined time points to obtain neW data values
for cache elements having a time attribute value that lies in a
selected value range. The cache elements that are polled for
are updated With neW data values from the server. The time
attribute carried by each cache element is recalculated based
on the historical data and the time attribute of the cache
element. Besides polling, a cache element may be updated on
receiving an asynchronous noti?cation. The asynchronous
noti?cation preempts the polling for the cache element based
on its time attribute value, and instead polls for the cache
element based on the asynchronous noti?cation.
[0008] Another embodiment of the present invention is a
system for cache management based on the Common Infor
mation Model. The system is based in a client server environ
ment, the server having a memory that includes data ele
ments. The client has a cache Which fetches data elements
from the server as and When needed. The cache stores mul
tiple cache elements, each of Which maintains a data element
and a time attribute. A processor tracks historical data relating
to each cache element and also sets up a polling thread at
predetermined time points to obtain neW values of data ele
ments from the server. Polling is performed for cache ele
ments having a time attribute value that lies in a selected
range. The cache elements that are polled for are updated. The
processor also recalculates the time attribute for each cache
element based on its historical data and time attribute.
Besides polling, a cache element may be updated on receiving
an asynchronous noti?cation by the processor. The asynchro
nous noti?cation preempts the polling for the cache element
based on its time attribute value and insteadpolls for the cache
element based on the asynchronous noti?cation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 illustrates an exemplary system environment
for the claimed invention.
[0010] FIG. 2 illustrates a ?owchart of an embodiment of a
method for management of a cache.
[0011] FIGS. 3A and 3B illustrate a ?owchart of an exem
plary embodiment of a method for cache management in a
client server environment.

[0012] FIG. 4 charts the change in TTL values at different
re?ning intervals.
[0013] FIG. 5 shoWs a system for cache management based
on the CIM, embodying the claimed invention.

DETAILED DESCRIPTION

[0014] The folloWing detailed description is made With ref
erence to the ?gures. Preferred embodiments are described to
illustrate the present invention, not to limit its scope, Which is
de?ned by the claims. Those of ordinary skill in the art Will
recogniZe a variety of equivalent variations on the description
that folloWs.

US 2010/0293335 A1

[0015] FIG. 1 illustrates an exemplary system environment
100 for the claimed invention. FIG. 1 shows a server 102, a
netWork 104 and a client 106. The server 102 may be a
desktop computer, a Workstation, or a similar server side
system knoWn to those skilled in the art as having resources
that need to be managed, such as disk space, applications, and
CPU processing load. The server 102 may further include a
memory and a processing unit, both of Which are Well-knoWn
in the art and are thus omitted for purposes of clarity. The
system environment 100 is based on the Common Informa
tion Model (CIM), de?ned and published by the Distributed
Management Task Force (DMTF; Web page located at http://
WWW.dmtf.org). The CIM alloWs different parties in a net
Work to exchange management information about managed
entities, and also provides means to actively control and man
age these entities. A related standard, Web-Based Enterprise
Management (WBEM, also de?ned by DMTF), de?nes a
particular implementation of CIM, including protocols for
discovering and accessing such CIM implementations.
[0016] The server 102 further includes a CIM object man
ager 108, a logging service 110, a log storage 112, a reposi
tory 114, and an operating system 116. In the present embodi
ment, the CIM object manager 108 may be a WBEM
compliant manager that manages CIM objects. As used here,
an object is a computer representation or model of a managed
resource of the server 102, such as a printer, processor, or disk
drive. Server resources are represented as obj ect-oriented
classes Written in an object-oriented programming language,
such as C++ or Java. The client 106 requests information
about a server resource from the CIM object manager 108,
Which in turn obtains the information from the repository 1 14,
a central storage for CIM classes and instance de?nitions. The
repository 114 can be present either on the server 102 or in a
remote location. Other components in the server 102 are the
operating system 116, Which may be any operating system
providing computing or data processing capabilities, and the
logging service 110, a process for performing logging opera
tions such as storing data related to transactions, operations,
and events that occur during the runtime of the server 102 and
its components, such as the CIM object manager 108. A
device or a set of devices, collectively called the log storage
112, stores data collected during logging operations per
formed by the logging service 110, and may be any storage
device, such as a magnetic disk, magnetic tape drive, optical
disk drive, or semiconductor memory (e.g., RAM, ROM,
EPROM, SRAM, DRAM, etc.).
[0017] The server 102 is connected to the client 106 via the
netWork 104, Which may include one or more netWorks such
as a local area netWork (LAN), a Wide area netWork (WAN),
and the intemet.

[0018] The client 106 is a client-side computing device,
Which could be a desktop computer, a laptop, a Workstation, a
personal digital assistant or the like. In the typical operating
environment of FIG. 1, the client 106 includes a memory 118,
a processor 120, I/ O devices 122, and a netWork interface 124.
The I/O devices 122 could include a keyboard, mouse, dis
play monitor, printer, or other such devices knoWn in the art,
and the netWork interface 124 connects the client 106 With the
netWork 104. In one aspect of the invention, the client 106
may be a CIM con?gured client that implements standards
and techniques to manage resources located at a resource
provider, such as a server.

[0019] In addition to data, a client application 126 is stored
in the memory 118, the client application 126 being a soft

Nov. 18, 2010

Ware application con?gured to analyZe and manage resources
in the server 102 in the typical operating environment of FIG.
1. The client application 126 manages various aspects of the
client device, such as softWare applications, disk space (in
cluding space availability and partitions), processor load,
event processing, date, time, and ports, and may further man
age devices associated With the server 102 such as disks,
modems, remote I/ O, tape drives, and netWork interfaces.
[0020] A part ofthe memory 118 forms a cache 128. When
data is required by the client 106, the client 106 ?rst checks
the cache 128, and if the data is present in the cache 128, a
cache hit occurs. Alternatively, failure to ?nd the data in the
cache 128 is referred to as a cache miss, Which causes the
cache 128 to query the required data from the server 102, and
to store that data in the cache 128. The cache 128 maintains
data based on Well-knoWn cache operations principles of
spatial locality and temporal locality. When the cache 128 is
full, requiring the input of neW data, some old data may be
purged based on a replacement policy, such as Least Recently
Used (LRU) method, Which purges the least recently used
data. A number of other such policies are knoWn in the art,
such as ?rst-in-?rst-out and random replacement policies.
[0021] It should be understood from the outset that the
folloWing material presumes that the cache systems under
discussion all conform to the folloWing “standard” character
istics. First, a cache consists of different data sets, each of
Which canbe queried separately and uniquely from the server.
Second, each data set is referred to as a cache element, pos
sessing associated metadata including a time attribute and
historical data. An alternate memory location, such as a main
memory of the client, can be employed to store the historical
data.
[0022] Generally, When a cache miss occurs for an object,
the client polls the server for the object and adds the object to
the cache. Once a cache is full, objects perceived to be rarely
accessed are purged from the cache and are replaced With neW
objects that are required and fetched from the server. Those of
skill in the art Will be able to modify the disclosures as
required to adapt the same to cache structures operating dif
ferently from the regime set out above.
[0023] FIG. 2 charts a method 200 for managing a cache.
There, at step 202, the cache elements maintain a fetched
object and its associated metadata. The method 200 tracks
historical data for each cache element, including a frequency
of access and a frequency of change, as shoWn at step 204.
The time attribute maintained by a cache element indicates
the time at Which the object in the cache element becomes
stale and should be refreshed. The server is polled during a
polling thread in order to refresh stale objects in the cache
elements. At step 206, the client polls for all the stale cache
elements, Which are identi?ed by using the time attributes
associated With the cache elements. Each of the stale cache
elements is updated from the server at step 208.

[0024] The historical data is used to change the time
attribute value. Generally, the polling frequency for a given
element should depend on the frequency of change and the
frequency of access of the element. For example, a cache
element that rarely changes should not be polled as frequently
as one Which changes often. Unnecessary polling requires
overhead, Wasting netWork bandWidth and increasing com
putational effort. Because a cache element’s time attribute
indicates the time at Which the cache element becomes stale,
that time attribute should be altered to re?ect the historical
behavior of the cache element. For example, the time attribute

US 2010/0293335 A1

value can be a time interval that conveys the amount of time
a cache element can remain in the cache Without being
refreshed, and at the end of this time interval, the cache
element is fetched from the server. Further, if the cache ele
ment is perceived as frequently changing, the associated time
attribute should be reduced, resulting in a higher refresh fre
quency for the cache element. At step 210, neW time attribute
values are calculated for all the cache elements in the cache,
taking into account the historical data and the present time
attribute value.
[0025] Method 200 employs asynchronous noti?cations to
keep the cache in the client coherent With the server. At any
point, if an asynchronous noti?cation is received, as shoWn at
step 212, the cache element(s) affected by the asynchronous
noti?cation are marked as stale and refreshed at the next
polling thread, irrespective of the time attribute associated
With the cache element. At step 214, the polling step based on
the time attribute of a cache element is preempted for the
affected cache elements, and their historical data is also
changed accordingly. As long as no asynchronous noti?ca
tion is received, the method 200 proceeds as usual.
[0026] Referring noW to FIGS. 3A and 3B, a ?owchart
illustrates an examplary embodiment of a method 300 for
cache management in a client server environment. This
embodiment presumes that each cache element possesses
associated metadata including a Time To Live (TTL), Which
determines a polling frequency for that cache element. The
folloWing terms are used throughout this document and are
de?ned here for clarity and convenience.
[0027] TTL (Time To Live): The time interval for Which the
cache element is active in the cache. At the end of this time
interval, the cache element is invalidated and must be fetched
again by polling the server. The TTL value of each cache
element is continuously re?ned by an algorithm using the
cache element’s historical data and the present TTL value.
[0028] Polling interval: The time betWeen successive poll
ing cycles. After each polling interval, a polling thread is
activated; the polling thread fetches only invalidated cache
elements, thus reducing the number of polling requests made
to the server.

[0029] Re?ning interval: Time betWeen successive itera
tions of a re?ning algorithm, Which re?nes TTL values for
each cache element. Typically, the re?ning interval is greater
than the polling interval.
[0030] Base TTL value: The initial TTL value assigned to a
cache element. The base TTL values may be assigned from a
con?gurable properties ?le, Where a client application can
specify its oWn initial base TTL value for each cache element
depending on the perception and expectation of the behavior,
as Well as the expected usage of the cache element.
[0031] Maximum tolerance value: The maximum upper
bound for the TTL. This value speci?es the longest time that
a cache element can remain in the cache Without being
refreshed. In one embodiment, the maximum tolerance value
is speci?ed by a consumer. The consumer is a CIM client
application Which queries data from the server.
[0032] The polling interval, the re?ning interval, the base
TTL values, and the maximum tolerance values are con?g
urable, and canbe de?ned by the designer of the system based
on knoWledge of the system characteristics and behavior.
[0033] In addition to maintaining the TTL for each cache
element, each cache element also maintains historical data
about a frequency of change and a frequency of access of the
cache elements. The historical data may be present in an

Nov. 18, 2010

alternate memory location, such as a main memory of the
client. These statistics are used to re?ne the TTL and include
the folloWing exemplary categories:
[0034] Frequency of change: Objects that change more
often than others need to be fetched from the server more
frequently. As a result, the TTL of frequently changing
objects in the cache should decrease. Here, the count of the
number of times a cache element changes is given by the
variable nchange.
[0035] Importance of an object: Objects queried frequently
by an application are deemed important objects. The TTL for
such objects Will be smaller, resulting in more fetches from
the server for these objects. The variable naccm represents the
number of queries submitted for an object during a re?ning
interval and is referred to as the frequency of access.

[0036] Consider an example of a storage management solu
tion managing a disk drive. The status of the disk drive may be
‘normal’ at ?rst. If the disk is pulled out of service, the status
becomes ‘o?iine’. Once the disk is put back in service, the
status may become ‘Warning’ or ‘error’. As can be seen from
this example, the status of a disk drive is an object that
changes frequently, While other properties like serial number
or total capacity of the disk do not change as much. Such
objects can be differentiated using the parameters n and
114100955‘
[0037] Returning to the How of the method 300, a base TTL
value is assigned to a cache element When it is ?rst fetched
from the server, as shoWn at step 302. For a cache element
fetched for the ?rst time, nchange and name“ are 0, as shoWn at
step 304. Steps 306 and 308 shoW that name“ increases by one
each time the cache element is accessed, and alternatively, if
the cache element is not accessed, step 308 is skipped and the
method 300 continues. Similarly, steps 310 and 312 shoW that
each time the cache element changes, nchange also increases.
Whenever an object is fetched from the server, that object is
compared With the corresponding cache element, and if the
object has changed, nchange for the corresponding cache ele
ment increases by one. Again, step 312 is skipped in case the
cache element does not change and the method 300 continues
as shoWn in the FIG. 3A.

[0038] At any point, if an asynchronous noti?cation is
received that affects the cache element at step 314, the cache
element is likeWise marked invalid, regardless of its TTL, as
shoWn at step 316; otherWise the method 300 continues to
step 318. Age of a cache element indicates the amount of time
the cache element has spent in the cache Without being
refreshed from the server. Step 318 shoWs that if the age of a
cache element becomes equal to the TTL (i.e., the TTL time
period expires), the cache element is marked invalid, as
shoWn at steps 316. If at step 318, the cache element’s age
does not equal the TTL of the cache element, the cache
element is not marked invalid and the method 3 00 proceeds to
step 320. Once the polling interval is complete (step 320), the
invalid cache elements (decided at step 322) are fetched from
the server at step 324, and updated in the cache. At step 326,
after the re?ning interval is over, a neW TTL is calculated for
each cache element (step 328), and the nchange and naccm
values are reset to 0.

[0039] Further, at step 320 if the polling interval is not over,
and additionally, the re?ning interval is not over, the method
300 loops back to step 306, continuing to track the historical
data. Steps 322, 324, and 326 also shoW that once the re?ning
interval is reached, neW TTL values are calculated for all
cache elements in the cache.

ch an ge

US 2010/0293335 A1

[0040] It can be observed that if a cache element is not
invalid, that cache element is not fetched from the server. As
a result, the cache elements polled for during a polling thread
are limited to invalid cache elements. In other Words, only
those cache elements that are perceived as requiring an update
are fetched from the server. This limitation considerably
reduces tra?ic betWeen the server and the client.
[0041] Calculating a neW TTL for each element at the end
of the re?ning interval prevents unnecessary fetches from the
server for cache elements that are not frequently accessed or
changing. A further aim of an adaptive TTL is to ensure that
important or frequently changing cache elements are updated
regularly, to avoid stale object data in the cache. The neW TTL
should re?ect the change and access characteristics of the
cache elements, resulting in a shorter TTL if the cache ele
ment is frequently changing or accessed, and conversely,
resulting in a longer TTL if the cache element is rarely
changed or accessed.
[0042] In the present embodiment, the neW TTL is calcu
lated using the folloWing formula:

TTLMW: TTL current_ (constchange* (nchange_NchangeMax/
2))—(COHStmeSS*(namSS—NmeSSMa>/2)) (1)

Where TTLm,W is the neW TTL, the TTLCZWem is the current
TTL before it is changed, constchange and constaccm are con
stants, NchangeMax is the maximum alloWable value of n
and NMCQSSMG,C is the maximum alloWable value of naccm.
[0043] The constants are predetermined. They may, hoW
ever, vary according to the nature of the object. In a further
embodiment, the constants can be adaptive, depending on the
importance or change characteristics of the object. CIM is an
obj ect-oriented model that includes implicitly related objects.
For example, a disk drive has various facets represented by
classes, the facets being physical elements, logical elements,
operational status, and so on. Different objects representing
these facets are inherently related and share change charac
teristics. For a particular disk, physical entities like the disk
serial number do not change, and so the base TTL value and
the constants for such a cache element can be assigned
accordingly. Similarly, implicit relationships betWeen differ
ent objects extend to access characteristics as Well. If a cache
miss occurs for an object at the client end, related objects can
also be fetched from the server in addition to the object and
assigned similar base TTL values, constants, and so on.
[0044] Those skilled in the art, hoWever, Will recogniZe and
appreciate that the speci?cs of this example embodiment are
merely illustrative and that the teachings set forth herein are
applicable in a variety of alternative settings. For example,
formula (1) can be replaced by another formula or algorithm
to serve the same purpose of making the polling process
adaptive. The embodiments of the cache management
method and system are not limited to the CIM environment.
Other alternative implementations incorporating the use of
different types of systems and devices are contemplated and
lie Within the scope of the various teachings described, espe
cially Where the folloWing three criteria are observed: (a) in
order to satisfy one request, the client needs to access the
server multiple times resulting in a large amount of tra?ic
betWeen client and server; (b) asynchronous noti?cations are
present in the system; and (c) the cache has multiple consum
ers that require different attributes of the same data and some
attributes get used more often than others.

ch an ge

Example 1
[0045] Consider an example Where base TTLISO and
nChMgfO (the cache element has never changed during the

Nov. 18, 2010

re?ning interval). These values indicate that the cache ele
ment is stable and can remain in the cache for a longer period
Without being updated. As a result, the TTL should increase.
Assume that const :0.1, the loWer bound of nchange is 0
and NchangeMax is 100. Applying only the ?rst portion (i.e., the
change portion) of formula (1), While leaving off the access
portion for ease in explanation, the neW TTL value is calcu
lated as folloWs:

ch an ge

With constchange value as 0.1, if there is no change in the cache
element for 10 re?ning intervals, the TTL reaches 100 and
Will only be fetched again after the maximum tolerance value
has been reached. Alternatively, if the constchange value is 1,
the TTL increases by 50 in the above example and reaches
maximum tolerance value in a single re?ning interval. The
values of the constant can vary betWeen 0 and 1 in the above
example, because for value 0 there is no change in TTL, and
for value 1, the TTL reaches the maximum tolerance value
from base TTL. Table 1 illustrates the variation in TTL in
response to various values of const changeZ

TABLE 1

Number ofre?ning
Base New intervals in Which
TTL NchangeMax nchange constthange TTL TTL Will reach 100

50 100 0 0.01 50.5 100
50 100 0 0.1 55 10
50 100 0 0.5 75 2
50 100 0 0.9 95 1.111111111
50 100 0 1 100 1

When using the entire formula (1), the loWer bound for nchange
and naccm is 0, and NchangeMax and N are 100. If
during the re?ning interval there are more than 100 queries
for a cache element, then also names: value for the cache
element is set to 100.

accessMax

Example 2

[0046] In this example, three cache elements are analyZed
to assess hoW the above referenced formula (1) operates on
cache elements With different change and access characteris
tics. FIG. 4 charts the change in TTL values of the cache
elements A, B, and C analyZed in Example 2 at different
re?ning intervals. Table 2 details the speci?c values shoWn in
FIG. 4, Where constchange and constaccm are both 0.02 in this
example.
[0047] Cache element A is comparatively non-changing
and is not accessed often by the client. As a result, the TTL of
A increases so that it does not have to be fetched as often.

[0048] Cache element B is also relatively non-changing,
but it is accessed frequently by the client. This fact makes it an
important element, and thus the TTL of element B is shorter
than that of element A.

[0049] Cache element C is observed as changing frequently
and is also accessed often by the client. Consequently, the
TTL of C is short and the cache element C is fetched often
from the server.

US 2010/0293335 A1

TABLE 2

Re?ning Interval

1 2 3 4

Cache element A name” 5 4 8

11...... 0 5 4
TTL 50 51.9 53.72 55.48

Cache element B name” 60 53 51
nchange 1 1 1 5
TTL 50 50.58 51.5 52.38

Cache element C name” 70 76 81
nchange 5 8 5 5 61
TTL 50 49.44 48.82 47.98

[0050] If the TTL for a cache element reaches the maxi
mum tolerance value or remains at the maximum value for a
predetermined number of re?ning intervals, the cache ele
ment is removed from the cache.
[0051] FIG. 5 shows a system 500 for cache management
based on the CIM, embodying the claimed invention. This
embodiment exists in a client-server environment, a server
502 being connected to a client 504 via a network 506. The
client 504 maintains a memory 508 having objects and classes
associated with the hardware and software applications, and a
processor 510, among other elements and functionalities
(omitted for purposes of clarity). The client 504, having a
cache 512 containing several cache elements, fetches
required data from the server 502, and stores it in the cache
512 as cache elements. Each cache element also maintains a
time attribute and historical data associated with the cache
element. The historical data may be present in an alternate
memory location, such as main memory of the client 504.
[0052] Besides polling the server 502 at predetermined
time intervals for cache elements having a time attribute value
that lies in a selected range, the processor 510 also tracks the
historical data of each cache element. The polled cache ele
ments are updated with the new data values fetched from the
server 502. Additionally, the processor 510 performs calcu
lation of new values of the time attribute for each cache
element using the corresponding historical data and the
present time attribute value associated.
[0053] In a further embodiment, the processor 510 calcu
lates the new values of the time attribute at the end of a
re?ning interval, which can be prede?ned. The resultant new
values of the time attribute allow the polling frequency for
each cache element to vary according to the nature of corre
sponding cache element. The processor 510 may store the
new values of the time attribute in the corresponding cache
elements. Besides polling, a cache element may be updated
on receiving an asynchronous noti?cation by the processor
10. The asynchronous noti?cation preempts the polling for
the cache element based on its time attribute value and instead
polls for the cache element based on the asynchronous noti
?cation. The preemption may involve marking the cache ele
ment as being stale so that the cache element is refreshed the
next time the server is polled, irrespective of the time attribute
associated with the cache element.
[0054] The terminology used herein describes particular
embodiments only and is not intended to limit the invention.
As used herein, the singular forms “a”, “an” and “the” are
intended to include the plural forms as well, unless the con
text clearly indicates otherwise. It will be further understood
that the terms “comprises” and/ or “comprising,” when used in
this speci?cation, specify the presence of stated features,

Nov. 18, 2010

integers, steps, operations, elements, and/or components, but
do not preclude the presence or addition of one or more other

features, integers, steps, operations, elements, components,
and/or groups thereof.
[0055] The description of the present invention has been
presented for purposes of illustration and description, but is
not intended to be exhaustive or limited to the invention in the
form disclosed. Many modi?cations and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the invention. The embodiment
was chosen and described in order to best explain the prin
ciples of the invention and the practical application, and to
enable others of ordinary skill in the art to understand the
invention for various embodiments with various modi?ca
tions as are suited to the particular use contemplated.

What is claimed is:
1. A method for managing cache elements in a data pro

cessing system having at least one processor and at least one
cache, each cache element having associated therewith data,
Time to Live (TTL), frequency of change (nchange), and fre
quency of access (naccm), the method comprising:

setting a polling interval and a re?ning interval;
storing each cache element in the cache and assigning a

base value to the TTL for each cache element fetched for
a ?rst time;

managing each cache element according to the following
steps:

(a) setting nchange to Zero for the cache element;
(b) tracking historical data, comprising nchange and names,

for the cache element by incrementing nchange each time
the cache element is changed and incrementing constac.
cess each time the cache element is accessed;

(c) in response to expiration of the TTL for the cache
element, marking the cache element invalid;

(d) in response to expiration of the polling interval and to
the cache element being marked invalid, polling for the
cache element to obtain new data for the cache element
and updating the cache element with the new data;

(e) in response to expiration of the re?ning interval, com
puting a new TTL for the cache element based on the
historical data and current TTL for the cache element
and returning to step a; and

(f) returning to step b.
2. The method of claim 1, wherein the cache elements have

further associated therewith a maximum tolerance value,
maximum allowable accesses (N accessMax), maximum allow
able changes (NchangeMax), and ?rst and second constants
(constchange and constaccm, respectively) having values
selectable between a predetermined range, wherein the new
TTL (TTLMW) in step e is computed according to the follow
ing formula:

and n
a ccess

TTLMW: TTLcurrent_ (constchange* (nchange_NchangeMax/
2))—(col1stmm*("mm- mama/2

3. The method of claim 2, wherein the predetermined range
is between 0 and 1.

4. The method of claim 1, further comprising
immediately after step b and before step c, in response to

receiving an asynchronous noti?cation for the cache
element, marking the cache element invalid and jumping
to step d.

5. The method of claim 1, wherein step d further comprises:
polling for the cache element in a server to obtain the new

data for the cache element from the server.

US 2010/0293335 A1

6. The method of claim 1, wherein the setting step and steps
a through f are performed by the processor.

7. The method of claim 1, Wherein the historical data relat
ing to the cache element is stored in the cache element.

8. The method of claim 2, further comprising:
in step c, marking the cache element invalid if the TTL

equals or is greater than the maximum tolerance value
for the cache element.

9. The method of claim 1, Wherein in step b, nchange and
naccm are incremented by one each time the cache element is
changed or accessed, respectively.

10. The method of claim 1, Wherein the re?ning interval is
greater than the polling interval.

11. A system for managing cache elements, having asso
ciated With each cache element data, Time to Live (TTL),
frequency of change (nchange), and frequency of access (nac’
cess), the system comprising:

a server having data elements stored in a memory;

a client;
a cache in the client con?gured to store at least one cache

element; and
a processor in the client con?gured to perform the folloW

ing steps for managing each cache element:
(a) setting a polling interval and a re?ning interval;
(b) assigning a base value to the TTL for the cache

element fetched for a ?rst time;
(c) setting nchange and name“ to Zero for the cache ele

ment;
(d) tracking historical data, comprising nchange and nag’

cess, relating to the cache element by incrementing
nchange by one each time the cache element is changed
and incrementing constaccm by one each time the
cache element is accessed;

(e) in response to expiration of the TTL for the cache
element, marking the cache element invalid;

Nov. 18, 2010

(f) in response to expiration of the polling interval and to
the cache element being marked invalid, polling the
memory in the server to obtain neW data for the cache
element and updating the cache element With the neW
data;

(g) in response to expiration of the re?ning interval,
computing a neW TTL for the cache element based on
the historical data and a current TTL for the cache
element and returning to step c; and

(h) returning to step d.
12. The system of claim 11, Wherein the cache elements

have further associated thereWith a maximum tolerance
value, maximum alloWable accesses (NacceSSMax), maximum
alloWable changes (NchangeMax), and ?rst and second con
stants (constchange and const respectively) having val
ues selectable betWeen a predetermined range, Wherein the
neW TTL (TTL) in step g is computed according to the new

folloWing formula:

access 3

TTLMWITTLCWWIF (constchange*(nchange_NchangeMa>/
2))—(col1stmm*(namSS—NmeSSMw/2))

13. The system of claim 12, Wherein the predetermined
range is betWeen 0 and l.

14. The system of claim 11, Wherein the historical data
relating to the cache element is stored in the cache element.

15. The system of claim 12, further comprising:
in step e, marking the cache element invalid if the TTL

equals or is greater than the maximum tolerance value
for the cache element, thereby indicating that the TTL
has expired.

16. The system of claim 11, Wherein the re?ning interval is
greater than the polling interval.

* * * * *

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Description
	Page 9 - Description
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description/Claims
	Page 13 - Claims

