
US007657844B2

(12) United States Patent (10) Patent No.: US 7,657,844 B2
Gibson et a]. (45) Date of Patent: Feb. 2, 2010

(54) PROVIDING ACCESSIBILITY COMPLIANCE 2002/0152255 A1 * 10/2002 Smith et al. 709/102

WITHIN ADVANCED COMPONENTRY 2003/0058286 A1* 3/2003 Dando 345/853

2003/0156130 A1* 8/2003 James et al. 345/728

(75) Inventors: Becky J. Gibson, Westford, MA (US); 2003/0172353 A1 * 9/2003 Cragun 715/517
Michael C.Wanderski, Durham, NC 2003/0234822 A1 * 12/2003 Spisak 345/827

(US); Zhiling J. Zheng, Durham, NC 2004/0145607 A1 * 7/2004 Alderson 345/746
(US) 2004/0164991 A1* 8/2004 Rose 345/589

2005/0039191 A1* 2/2005 HeWson et al. 719/317

(73) Assigneei International Business Machines 2005/0120308 A1 * 6/2005 Gibson et a1. 715/779

Corporation, Armonk, NY (US) 2005/0144573 A1 * 6/2005 Moody et a1. 715/825
2005/0160065 A1 * 7/2005 Seeman 707/1

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

(21) Appl. No.: 10/836,883 Ellen Francik, Computer-& screen -based interfaces: Universal
design ?lter, Human Factors Engineering, Paci?c BellVersion 2, Jun.

(22) Filed: Apr. 30, 2004 6, 1996.*
Art Griesser, “A generic editor Full text,” pp. 50-55, 1997 ACM Press

(65) Prior Publication Data NeWYork, NY, USA.*
Bohman, Paul, “Introduction to Web Accessibili ”, Oct. 2003,

Us Zoos/0246653 A1 NOV‘ 3’ 2005 WebAIM, printed Apr. 17, 2004, <httpZ//WWW.Welt)>;11IIl.Org/1I1UO/?
templatetype:3> (p. 1-6).

(51) Int‘ Cl‘ Caldwell, Ben, et al., “Web Content Accessibility Guidelines 2.0,
G06F 3/ 00 (200601) W3C Working Draft Mar. 11, 2004”, World Wide Web Consortium
G06F 3/02 (2006.01) (p, 1.56),
G06F 9/44 (2006.01) _

(52) U.S. Cl. 715/827; 715/829; 715/831; (Commued)

715/773; 345/168; 345/172; 717/110; 717/111; Primary ExamineriTad?es? Ha?u
717/124 (74) Attorney, Agent, or FirmiMarcia L. Doubet

(58) Field of Classi?cation Search 7l5/825i829,

715/831, 771*773; 345/168, 172; 717/110, (57) ABSTRACT
717/1 1 1, 124

See application ?le for complete search history.
Accessibility compliance is provided Within advanced com

(56) References Cited ponentry, such as a broWser in Which an on-demand editor can

Us PATENT DOCUMENTS be launched. A toolkit of functionality that is executable on a
server is preferably provided, from Which selections can be

5,600,778 A * 2/1997 Swanson et a1~ ~~~~~~~~~~ -- 715/762 made to con?gure an instance of a client editor or similar

5,883,626 A * 3/1999 Glaser et a1~ - - - - - - - - - - ~~ 715/788 client-side vieWer. Techniques are disclosed that enable ?ex

6’654’038 Bl : 11/2003 Galewska et a1‘ 715/802 ible speci?cation of the controls to be added to the vieWer
* instance, as Well as speci?cation ofdetails for con?guring the

2002/0070977 A1 * 6/2002 Morcos et al. 345/810 Controls

2002/0103914 A1* 8/2002 Dutta et a1. 709/229

2002/0129100 A1 * 9/2002 Dutta et al. 709/203 23 Claims, 6 Drawing Sheets

400 \
[E

El [I] 41°
420

V

This document was created using 0W keyboard accessibility features. I

422 423 424

US 7,657,844 B2
Page 2

OTHER PUBLICATIONS

Jacobs, Ian, et al., “User Agent Accessibility Guidelines 1.0, W3C
Recommendation Dec. 17, 2002”, World Wide Web Consortium (p.
1-4).
Jacobs, Ian, et al., “User Agent Accessibility Guidelines 1/0, W3C
Recommendation Dec. 17, 2002, 1. Introduction”, World Wide Web
Consortium (p. 1-10).
Jacobs, Ian, et al., “User Agent Accessibility Guidelines 1.0, W3C
Recommendation Dec. 17, 2002, 2. The user agent accessibility
guidelines”, World Wide Web Consortium (p. 1-53).
Jacobs, Ian, et al., “User Agent Accessibility Guidelines 1.0, W3C
Recommendation Dec. 17, 2002, 3. Conformance”, World Wide Web
Consortium (p. 1-19).

Jacobs, Ian, et al., “User Agent Accessibility Guidelines 1.0, W3C
Recommendation Dec. 17, 2002, 4. Glossary”, World Wide Web
Consortium (p. 1-23).
Jacobs, Ian, et al., “User Agent Accessibility Guidelines 1.0, W3C
Recommendation Dec. 17, 2002, 5. References”, World Wide Web
Consortium (p. 1-6).
Treviranus, Jutta, et al., “Authoring Tool Accessibility Guidelines
1.0, W3C Recommendation Feb. 3, 2000”, World Wide Web Consor
tium (p. 1-22).

* cited by examiner

US. Patent Feb. 2, 2010 Sheet 1 of6 US 7,657,844 B2

FIG. 1

100
lnteg ration Toolkit /

110
Programmatic API /

120
Editor Engine /

US. Patent Feb. 2, 2010 Sheet 2 of6 US 7,657,844 B2

@ FIG. 2
Initialize 200
Editor

Instance

Locate 205
Properties /

File

Apply 210
Keyboard /
Sequences

Trap 215
~ Keyboard

Input

/225 I230 /235
Launch Trap A I
Detached Keyboard pp)’

Functlon Toolbar input

/245 [250 /255
Launch Load Apply
Detached From * Access

Control Repository Coercion

[265
Close Toolbar’s
Pop-up Window

Process 270
as in /
PA

US. Patent Feb. 2, 2010 Sheet 3 of6 US 7,657,844 B2

FIG. 3

300 /311
<editor:createEditor name="MyEditor" KeyMap="keys.properties">

310/ <editor:addToolbar name="MyToolbar" de?nition="toolbar.jsp“>
32o editor:addControl visible="true" name="BoldButton"

330 de?nition="button.jsp" text="Bold" image="bold.gif"/>
editonaddControl visible="true" name="ltalicButton"

340 de?nition="button.jsp" text="ltalic" image="itaiic.gif"/>
<leditorzaddToo|bar>

/<editor:addControl visible="false" name="ColorPicker"
35o de?nition="id:colorpicker"/>
<leditor:createEditor>

US. Patent Feb. 2, 2010 Sheet 4 of6 US 7,657,844 B2

FIG. 4
400 \

8

El El 4"’
420

{his document was created using onlJy keyboard accessibility features. I
V LV__/\—v_/
421 422 423 424

FIG. 5
500

510——MyToolbar.[lE5.5].keyCode = 17:13
520—MyToolbar.BoldButton.[lE55].keyCode = 17:14
530—MyToolbar.ltalicButton.[lE5.5].keyCode = 17:15
540—-ColorPicker.[lE5.5].keyCode = 17:16

US. Patent Feb. 2, 2010 Sheet 5 of6 US 7,657,844 B2

600

Select a color EIIEIIZ

Selected Color Value: f610
620

Cancel

US. Patent Feb. 2, 2010 Sheet 6 of6 US 7,657,844 B2

FIG. 6B
600

Select a color Elli!

Selected Color Value: {610
Poppy red - #FF0041

630

Cancel

US 7,657,844 B2
1

PROVIDING ACCESSIBILITY COMPLIANCE
WITHIN ADVANCED COMPONENTRY

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to computer programming,

and deals more particularly With providing improved acces
sibility for users interacting With computer-rendered infor
mation (such as a Web page rendered in a browser).

2. Description of the Related Art
Over the past feW years, the pendulum of technology used

to build Web sites and Web applications has sWung from
relatively simple, such as Web pages With primarily static
content, to rich, dynamic, and interactive content interfaces.
Advanced client-side technology supporting today’s rich
content includes broWser plug-ins, JavaTM applets, and vec
tor-graphics animation programs. Although these rich client
side controls offer advantages in functionality, they also suf
fer from drawbacks. Examples include requiring a large
doWnload footprint on the client and a lack of portability
across operating systems and/ or broWsers. (“Java” is a trade
mark of Sun Microsystems, Inc. in the United States, other
countries, or both.)

Recently, hoWever, big strides have been made in advanced
scripting-based technology (such as JavaScriptTM or Visual
Basic scripting code), and this approach has been adopted by
most commonly-used broWsers as a means of manipulating
page content after it has been loaded into the broWser. For
example, the Hypertext Markup Language (“HTML”) syntax
for a Web page may include JavaScript code that, When
executed, changes an already-rendered Web page. As one
example, a rendered image can be removed from a page by
executing JavaScript code that programmatically removes the
image node from the Document Object Model (“DOM”) tree
corresponding to the rendered page. As another example,
JavaScript code might execute to alter the visual appearance
of rendered text. It should be noted that While JavaScript code
enables use of relatively advanced client-side capabilities,
support for processing the scripts is typically built into broWs
ers. JavaScript support is therefore considered as having a
Zero footprint, and does not share that particular draWback of
other rich client-side technologies. (“JavaScript” is a trade
mark of Sun Microsystems, Inc. in the United States, other
countries, or both.)

The ubiquity and functionality of the rich client-side tech
nologies alloWs Web page application designers to create
complex and highly interactive page content. Platform devel
opers have moved to supporting these client-side technolo
gies in combination With server-side componentry such as
portals/portlets, servlets, and JavaServer PagesTM (“JSP”T1“)
technology, thereby providing platforms that support
advanced Web application development and delivery along
With centraliZed (i.e., server-side) management of the appli
cations. (“JavaServer Pages” and “JSP” are trademarks of
Sun Microsystems, Inc. in the United States, other countries,
or both.)

Unfortunately, unlike simple Web-based content,
advanced scripting-based technology lacks resources and
standardized support for key features such as accessibility.
“Accessibility”, as that term is used herein, refers to the
ability of all users to access Web-based content, Without
regard to a user’s impairments or disabilities. Providing
accessible content and applications is extremely important.
Standardization bodies such as the World Wide Web Consor
tium, or “W3C”, have developed accessibility guidelines that
include “Web Content Accessibility Guidelines 2.0” (a W3C

20

25

30

35

40

45

50

55

60

65

2
Working Draft dated 11 Mar. 2004), “User Agent Accessibil
ity Guidelines 1.0” (a W3C Recommendation dated 17 Dec.
2002), and “Authoring Tool Accessibility Guidelines 1.0” (a
W3C Recommendation dated 3 Feb. 2000). HoWever, no
existing guidelines are knoWn to the present inventors that
fully address the particular needs of the class of complex Web
applications that are built to leverage advanced client-side
technologies.

Accordingly, What is needed are techniques for providing
accessibility compliance Within advanced scripting-based
componentry.

SUMMARY OF THE INVENTION

An object of the present invention is to provide accessibil
ity compliance Within advanced scripting-based componen
try.

Still another object of the present invention is to provide
improved accessibility for users of screen readers and/or talk
ing broWsers.

Another object of the present invention is to provide tech
niques to enable color settings in certain rendered content to
be preserved even though a contrast mode of the client device
may be changed.
A further object of the present invention is to enable users

to more easily interact With rendered content.

Yet another object of the present invention is to provide
improved document editing capabilities for users.

Other objects and advantages of the present invention Will
be set forth in part in the description and in the draWings
Which folloW and, in part, Will be obvious from the descrip
tion or may be learned by practice of the invention.

To achieve the foregoing objects, and in accordance With
the purpose of the invention as broadly described herein, the
present invention may be provided as methods, systems, com
puter program products, and/or services. In a ?rst aspect, a
dynamically-con?gured, accessible editor is provided. This
aspect preferably further comprises: providing a plurality of
selectable editing functions; specifying, for a particular
instance of the accessible editor, selected ones of the provided
editing functions that are to be available; and upon activating
the editor instance, making the speci?ed selected ones avail
able.

Preferably, the available selected ones are available, to a
user of the editor instance, using only keyboard input. Each of
the available selected ones is preferably selectable from the
editor instance using a predetermined sequence of one or
more keys. The predetermined key sequence for each of the
available selected ones is preferably speci?ed in a mapping
betWeen the speci?ed selected ones and the predetermined
key sequences.

The predetermined key sequence for each of the available
selected ones may be dependent upon a locale in Which the
editor instance is activated, and/or upon a user agent from
Which the editor instance is activated.

Preferably, one or more of the selected ones operates to
enable activating a detached toolbar. In this case, the selected
ones may also include at least one editing function that
applies to a document portion selected in the editor instance.
The detached toolbar may be automatically launched, respon
sive to detecting a predetermined key sequence that is de?ned
as causing the automatic launch. In this case, focus for user
input preferably sWitches to the detached toolbar When the
toolbar is launched, Without altering a current selection status
of content rendered in the editor instance.

US 7,657,844 B2
3

In addition or instead, at least one of the selected ones
preferably operates to enable applying an action to a docu
ment portion selected in the editor instance.
One or more of the selected ones may operate to enable

activating a detached color-selection mechanism in Which a
selection can be made from among a plurality of colors, such
that the plurality of colors is unaffected by color contrast
changes made to a device on Which the editor instance is
activated. The plurality of colors is preferably provided as a
single image, and the selection is preferably facilitated by
providing mapping regions, each of Which has a boundary
that generally corresponds to a boundary of a different one of
the colors. The regions are preferably invisible.

Optionally, a document rendered in the editor instance may
be programmatically modi?ed to enforce predetermined
accessibility issues. The programmatic modi?cations may
include programmatically altering image references in the
document to include a textual description of a source of the
referenced image and/or programmatically changing input
areas of forms in the document to textual labels that include,
as values, text from the input areas. Preferably, the program
matic modi?cations are carried out by applying a style sheet
that speci?es the programmatic modi?cations.
By Way of example, this aspect may be provided as a

service Wherein one or more of the providing, specifying, and
making steps are carried out by a third party or for compen
sation in some form.

In another aspect, a dynamically-con?gured, accessible
content vieWer is provided. This aspect preferably further
comprises: providing a plurality of selectable functions;
specifying, for a particular instance of the accessible content
vieWer, selected ones of the provided functions that are to be
available; and upon activating the content vieWer instance,
making the speci?ed selected ones available such that each of
the available selected ones is selectable from the content
vieWer instance using a predetermined sequence of one or
more keys. This aspect may further comprise determining,
When user input is received, Which of the available selected
ones should be activated by consulting a mapping that asso
ciates each of the speci?ed selected ones With a predeter
mined sequence of one or more keys usable for providing user
input.

In still another aspect, color-sensitive information is pro
vided on a display by rendering a color-selection image com
prising a plurality of colors, Wherein a plurality of mapping
regions is associated With the image, each of the mapping
regions having a boundary that generally corresponds to a
boundary of a different one of the colors. A selection Within
the boundary of a particular one of the mapping regions is
then interpreted as a selection of the color to Which to bound
ary of the particular one generally corresponds. The regions
may be invisible, and the selection Within the boundary may
be made (for example) using keyboard input or using input
from a pointing device such as a mouse.

The present invention Will noW be describedWith reference
to the folloWing draWings, in Which like reference numbers
denote the same element throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an abstract model of an on-demand editor
in Which preferred embodiments may be used;

FIG. 2 provides a ?owchart illustrating a logic ?oW that
may be used to provide accessibility compliance Within
advanced componentry, according to preferred embodiments
of the present invention;

20

25

45

50

55

60

65

4
FIG. 3 provides a sample de?nition ?le of the type that may

be used to con?gure editors and toolbars, according to pre
ferred embodiments;

FIG. 4 shoWs a sample editor WindoW containing a
detached toolbar created according to the sample de?nition
?le provided in FIG. 3;

FIG. 5 depicts a sample properties ?le that corresponds to
the sample toolbar de?ned in FIG. 3; and

FIG. 6 (comprising FIGS. 6A and 6B) provides an illustra
tion of a pop-up color-picker WindoW, according to preferred
embodiments.

DESCRIPTION OF PREFERRED
EMBODIMENTS

The present invention provides accessibility compliance
Within advanced componentry, and in particular, Within
advanced scripting-based broWser componentry. Using tech
niques disclosed herein, users With various impairments or
disabilities Will bene?t from improved content interactions.
Several representative accessibility problems solved by
embodiments of the present invention Will noW be described.
It should be noted that techniques disclosed herein may also
be advantageous for users Who are not impaired, and thus
references herein to addressing accessibility problems are by
Way of illustration but not of limitation.

Blind and loW-vision users typically rely on screen readers
or talking broWsers to interact With Web applications. Typi
cally, talking broWsers do not offer the same level of sophis
tication as screen readers, Which are designed to Work With
the operating system and all applications running under it.
Subsequent discussions are in the terms of screen readers, by
Way of illustration (and references to “broWsers” hereinafter
are intended to refer to broWsers in general, rather than talking
broWsers, unless the text or context of the reference indicates

otherwise).
A number of screen readers are commercially available.

Often, vendors make modi?cations to a particular screen
reader, using its application programming interface or “API”,
to Work With the vendor’s softWare product. As a result, the
softWare product is not portable for use With other screen
readers. Similarly, if a softWare product exploits screen reader
capabilities that depend upon features of a particular operat
ing system, the softWare product is not generally portable
across operating systems.

Talking broWsers and screen readers have several draW
backs that make creating a system that supports a dynamic,
rich, interactive content interfaceiWhile at the same time
complying With accessibility requirementsia dif?cult
undertaking.
When used With content rendered in a broWser, mo st screen

readers evaluate the DOM tree nodes for a page that has been
loaded, and read the entire page to the user by an in-order
traversal of these DOM tree nodes.
Many existing broWsers have technology that enables

updating the DOM tree for only the changed parts of an
already-loaded page, rather than requiring the entire page to
be reloaded. This can provide a signi?cant performance
improvement for large or complicated Web pages. HoWever,
this “partial reload” technology Will not Work With current
screen readers. Therefore, Web page developers must be care
ful When using sophisticated JavaScript routines that change
the contents of the rendered output on the ?y (e.g., by per
forming calls to the document.Write() method).

In order to use a screen reader, an application should be
fully keyboard-accessible. That is, all functions and actions
that can be performed on rendered content should be available

US 7,657,844 B2
5

to the user Without requiring use of a mouse. Screen reader
support is tied very closely to keyboard accessibility. That is,
someone using a screen reader is not using a mouse, but rather
is using only the keyboard for navigation. Typically, screen
readers can only read text (and, as stated above, read the text
in order of the DOM tree traversal). Some screen readers are
adapted for reading selected standard HTML ?elds and ele
ments, such as speaking the content of <input>, <select>, and
<a> (i.e., anchor) tags as Well as contents of table cells.
HoWever, it can be quite di?icult to provide full keyboard
support in Web pages that use complicated styles (such as
different font siZes, colors, or typefaces).

Another major problem in providing accessibility pertains
to focus. Suppose the user is vieWing content in a broWser, and
then invokes an on-demand editor to perform some type of
editing upon that content. (The term “on-demand editor”, as
used herein, refers to an editor that does not need to be
installed or loaded on the user’s computing device. Rather,
the editing functions are made available by interacting With
server-side code that provides the implementation of these
editing functions.) Typically, editing a document With this
type of interface requires ?rst selecting some portion of the
rendered document, and then selecting an action to be applied
to that selected document portion, such as applying some
formatting. The user might Wish to change a Word or phrase to
bold or italics, or to change the Word or phrase so that it is
underlined or uses a “strike-through” appearance, for
example.
When using a mouse, an editing operation of this type is

relatively simple. The user selects the Word or phrase, typi
cally by double-clicking the left mouse button to select a Word
over Which the mouse cursor is positioned or by depressing
the left mouse button When the mouse cursor points to the
beginning of the Word or phrase and keeping the left mouse
button depressed While moving the mouse cursor to the end of
the Word or phrase. The selection is typically indicated for a
sighted user through visual highlighting of the Word or
phrase. Then, While the Word or phrase remains highlighted,
the user moves the mouse cursor over (for example) a “Bold”
or “B” icon on a toolbar and clicks the left mouse button.
Responsive to clicking that icon, the highlighted Word or
phrase is changed to bold.

For the user Who is interacting With an editor only via the
keyboard, hoWever, this editing operation is much different.
The user can select a Word or phrase using the keyboard,
typically by using a keyboard “shortcut”ithat is, a pre
de?ned sequence of one or more keys (referred to hereinafter
as a “key sequence”), Where this sequence is correlated to an
action such as “select”. To select the Bold icon from the
toolbar might require using another keyboard sequence to set
focus to the toolbar and yet another sequence to position the
keyboard cursor to the correct icon on the toolbar. For
example, a combination of the control (“Ctrl”) key and the
letter “T” might be required for moving focus to the toolbar,
and the tab key might be adapted for moving betWeen icons on
the toolbar. HoWever, once the user presses the tab key, the
user’s selection of the document portion is immediately lost.
Preferred embodiments of the present invention therefore
provide a “?oating toolbar”, also referred to herein as a
“detached toolbar”, to solve this problem.

Another approach for addressing the focus issue Would be
to provide a prede?ned key sequence, such as Ctrl+B, for
setting an already-selected document portion to bold. Simi
larly, other key sequences could be provided for other editing
functions, such as Ctrl+l for setting an already-selected docu
ment portion to italic. Many existing editors provide a number
of key sequences of this type. HoWever, When the number of

20

25

30

35

40

45

50

55

60

65

6
different functions to be supported groWs beyond a relatively
small number, it becomes increasingly dif?cult for users to
remember the key sequences. And, When an on-demand edi
tor is accessed from Within a broWser, it may be dif?cult to
de?ne key sequences such that a proper determination can be
made as to Whether the sequence Was intended for the broWser
or for the editor. In addition, combinations of perhaps three or
more simultaneous key presses may be required for support
ing a rich set of editing features. Users With impairments may
?nd it dif?cult or impossible to perform these key presses.
Thus, a prior art key sequence approach is not deemed su?i
cient for addressing accessibility.

According to preferred embodiments, the focus problem is
addressed using a detached toolbar, as stated above. That is, a
toolbar is preferably used for grouping controls that can be
applied to a selected document portion, such as changing font
siZes, colors, and other attributes. (A “control” to be provided
in this manner may also be thought of as a command.) When
a toolbar is needed for accessing controls, the user enters a
key sequence that launches the toolbar, and (in preferred
embodiments) the toolbar is rendered in a pop-up WindoW.
This approach enables maintaining focus in the original
frame or WindoW Where the user is editing a document, but
also alloWs the keyboard to be used to navigate the controls
provided on this detached toolbar. This is a key advantage of
preferred embodiments in maintaining a U1 that is accessible.
The manner in Which a detached toolbar can be de?ned and
launched is described in more detail beloW. (See the descrip
tions of FIGS. 2-5.) Using a detached toolbar rendered in a
pop -up WindoW, a visually-impaired user can highlight text or
objects in the document, then iteratively apply functions (e. g.,
bold, underlining, etc.) until ?nished.

Another accessibility issue is high-contrast mode. For
some users, it is dif?cult to distinguish colors on a display
device. Some operating systems therefore provide a “high
contrast” mode, Which can be selected to automatically
enforce a high contrast difference betWeen foreground and
background colors on the display device. Typically, selection
of this high-contrast causes any background colors de?ned in
the HTML syntax for a Web page to be overridden by the
system’s high-contrast color (Which may be selected by the
user from predetermined choices). Changing colors of a Web
page in this manner causes problems for any HTML elements
of the page that have been Written to depend on a particular
background color attribute or style. For example, a particular
Web page might specify that gray is to be used as a back
ground color and White is to be used for the text to be rendered
on that background. If the user selects a high-contrast mode
Where White color is used for the background, the operating
system Will programmatically replace the gray background
With a White background, making the text completely indis
tinguishable from the background. Even if the Web page
speci?es a background color that differs from the system
supplied high-contrast background color, the speci?ed color
may be dif?cult to perceive on the neW background. (Note
that in some cases, the choices offered for high contrast mode
change the background color as Well as the color of text to be
rendered on that background.)

Because of the potentially undesirable effect of high-con
trast mode, Web page designers are encouraged not to rely on
the use of color to distinguish items on a page. HoWever, there
are certain elements Where maintaining the exact color of an
item is important. One example is a color-selection dialog
commonly provided by text editors. Using this type of dialog,
the user can choose various colors for the text of a document
being edited, for example. A color selection dialog or “color
picker” is provided for this purpose, and is typically imple

US 7,657,844 B2
7

mented as a table Where each cell has a different background
color. The intent is for the user to click on the desired color
cell to set a particular text color. This implementation Will not
Work at all When high-contrast mode is enabled, hoWever,
because the background color of all cells in the table is over
ridden by the operating system to use the high-contrast color.

To provide an accessible color-picker, the color sWatches
must be usable in high-contrast mode and must be selectable
With keystrokes. Preferred embodiments of the present inven
tion provide a solution to this color-picker problem by using
an image map. According to preferred embodiments, a single
image is rendered for the color-picker, Where this image is
comprised of a number of different color sWatches that appear
to be independent from one another but are actually an insepa
rable part of the overall image. An invisible overlay for the
image is provided, using image map facilities Whereby
regions (such as square or rectangular areas) are speci?ed that
correspond to the visual boundaries of the different sWatches.
Because the color-picker is no longer comprised of individual
cells, changing the background color With the high-contrast
mode has no effect on the colors in the image displayed to the
user. The user’s selection, after positioning the cursor over
some color sWatch, is conveyed according to Which mapped
region corresponds to that position.

It should be noted that While this image-mapping aspect of
preferred embodiments is described herein With reference to
a color-picker, this aspect can be generaliZed to any scenario
Where the color value of an item is important and needs to be
retained even if the background color is changed by selecting
high-contrast mode. Furthermore, this image-mapping aspect
is not limited to keyboard navigation environments, and may
be used advantageously by users Who interact With content
using a mouse or other pointing device (for example, by
clicking the left mouse button When the mouse cursor is
positioned inside one of the mapping regions to indicate
selection of the color corresponding to that mapping region).

Reference Was made earlier to using an on-demand editor.
FIG. 1 illustrates, at an abstract level, hoW an on-demand
editor might be modeled. As shoWn therein, components
comprising the editor may include an integration toolkit 100,
a programmatic API 110, and an editor engine 120. Each of
these components Will noW be described.

An integration toolkit 100 of preferred embodiments pro
vides code elements for controls (e.g., buttons, drop-doWn
lists, etc.) that can be selected When designing a user inter
face, Where these controls enable invocation of particular
functionality. The speci?c controls provided by a particular
implementation of the toolkit 100 may vary, and controls may
be contributed to the toolkit from different sources. The inte
gration toolkit also enables creating unique mappings
betWeen key sequences and accessibility controls (as Will be
described in more detail With reference to FIG. 5).

The programmatic API 110, according to preferred
embodiments, is a collection of JavaScript functions that can
be used to programmatically interact With, or modify, the
document currently loaded into the editor engine. The con
trols Which are selected from toolkit 100 preferably call this
API.

The editor engine 120 provides a vieW of the currently
loaded document. According to preferred embodiments, this
editor engine may be invoked While vieWing a Web page or
document in a broWser, and provides the user With access to a
number of advanced controls from the toolkit, such as con
trols for text manipulation, dragging and dropping objects,
and resiZing images. When a control is invoked at run-time, a

20

25

30

35

40

45

50

55

60

65

8
call is made to the API 110, and that call typically executes to
cause editor engine 120 to change the rendered content in
some Way.

FIG. 2 provides a ?owchart illustrating a logic ?oW that
may be used to provide accessibility compliance Within
advanced componentry, according to preferred embodiments
of the present invention. As shoWn therein, an editor instance
is initialiZed and its toolbar(s) is/are populated (Block 200).
Preferably, this comprises locating and processing a de?ni
tion ?le that has been previously created to reference one or
more selected controls from the integration toolkit. A sample
de?nition ?le 300 is shoWn in FIG. 3, and is discussed beloW.
A default version of the de?nition ?le may be created, and
user-speci?c customizations may optionally be applied to
that default ?le. The user-speci?c customizations may be
performed by the users or by anotherperson such as a systems
administrator. Or, each user may create his or her oWn de?
nition ?le. (The de?nition ?les may be created in various
Ways Without deviating from the scope of the present inven
tion.)
As noted earlier, according to preferred embodiments, the

integration toolkit provides various user interface (“UI”) con
trols that can be selected Within the de?nition ?le, and this
de?nition ?le speci?es Which controls should be con?gured
for the present instance of the on-demand editor. Preferably, a
combination of JSP fragments is provided in the toolkit to
serve as the UI de?nitions for particular controls, along With
a ?exible custom tag library that enables referencing the
controls and attributes thereof. These application fragments
can then be dynamically assembled, thereby enabling the UI
to be constructed dynamically according to the needs of the
embedding application (and any user-speci?c customiza
tions). In preferred embodiments that use an on-demand edi
tor, the UI is built on the server and returned to the client for
rendering. This alloWs a highly ?exible platform for adapting
the editor UI.
The sample de?nition ?le 300 in FIG. 3 Will noW be

described. In this example, an “editor” namespace has been
used to pre?x the tag names. In this sample syntax, a <cre
ateEditor> tag 310 signals that this is the start of con?guration
information for the editor instance, and the <addToolbar> tag
320 de?nes a toolbar instance to be inserted into that editor
instance. Another control is de?ned for use With this editor
instance by <addControl> tag 350. A “name” attribute is
preferably provided on the <createEditor> tag 310,
<addToolbar> tag 320, and <addControl> tag 350 to enable
uniquely identifying the editor de?nition, the toolbar de?ni
tion, and the control, respectively. The <createeditor> tag 310
preferably also includes a “KeyMap” attribute Whereby a
particular prede?ned ?le can be referenced that speci?es
mappings betWeen controls and key sequences. (A sample
mapping is provided in FIG. 5, and is discussed beloW.)
Preferably, the <addToolbar> tag 320 includes a “de?nition”
attribute Whereby code for a particular prede?ned toolbar can
be referenced (and in this case, the reference is to a J SP named
“toolbar.j sp”), and the <addControl> tag 350 includes a “de?
nition” attribute Whereby code for this control can be refer
enced (as discussed in more detail beloW).
When speci?ed as a child element of an <addToolbar> tag,

the <addControl> tag, examples of Which are shoWn at 330,
340, is used to specify hoW its associated toolbar should be
populated. In this sample syntax, a “visible” attribute of each
<addControl> tag speci?es, for this control, Whether a repre
sentation of the control Will be rendered on the toolbar. When
the “visible” attribute is set to “true”, a corresponding
“image” attribute is used to identify the image to be rendered
on the toolbar. Thus, for the controls named “BoldButton”

US 7,657,844 B2

and “ItalicButton”, the ?les “bold.gif’ and “italic.gif’ iden
tify images (such as a bold letter “B” and an italicized letter
“I”) to be rendered on the toolbar, respectively. See reference
numbers 330 and 340. Visible controls may be rendered as
buttons, icons, lists, and so forth. Preferably, textual repre
sentations of these visible controls are also speci?ed, as
shoWn by the “text” attribute. This attribute’s value should be
set to a descriptive Word or phrase, and a screen reader may
use this value When guiding a user through the selections
available on the toolbar. A “de?nition” attribute on the <add
Control> tag speci?es Where the corresponding control func
tionality is de?ned, as noted earlier. When the user selects the
visible representation of the control While editing a docu
ment, the code at this location is invoked. Thus, if the user
selects the toolbar representation of the bold control de?ned
at 330 or the italics control de?ned at 340, the code in the ?le
named “buttonj sp” or “italicjsp” Will be applied to the cur
rently-selected document portioniand in this example, Will
presumably change the selected document portion to bold or
italiciZed font, respectively.

Controls that are not part of a toolbar may also be de?ned
for an editor instance. When the “visible” attribute is set to
“false”, as in <addControl> tag 350, the control is not ren
dered as part of the toolbar. Instead, the user interacts With this
control through a separate pop-up WindoW, in preferred
embodiments, that contains another panel Where more input
can be provided to apply a function to the document. As
shoWn in the example at 350, a color-picker is one example of
the type of non-visible control that may be added to an editor
instance in this manner. The “name” and “de?nition”
attributes for a non-visible control are preferably analogous to
that of the visible controls. In this example, the “de?nition”
attribute of tag 350 begins With “id:” to signify, according to
preferred embodiments, that the identi?er of a repository
stored control is being referenced. Refer to FIG. 6, beloW,
Where the color-picker is described in more detail. (This “idz”
notation might also be used in visible controls, although this
has not been illustrated in the example.)

FIG. 4 shoWs a sample editor WindoW 400 containing a
detached toolbar 410 Which has been populated according to
the sample de?nition ?le 300 of FIG. 3 to include a button for
selecting bold or italiciZed font. By Way of illustration but not
of limitation, in this example, the pop-up WindoW in Which
toolbar 410 is rendered appears above the text 420 of the
document being edited. Note that the user has used key
sequences, according to the present invention, to interact With
toolbar 410, thereby settings portions 421, 424 of the text to
italics and portion 423 to bold, While leaving portion 422 in a
normal font. (The manner in Which the user indicates Which
document portion should be selected Within the editor Win
doW does not form part of the present invention.)

Although a very simple de?nition ?le 300 is illustrated in
FIG. 3, the syntax used for preferred embodiments is exten
sible and a de?nition ?le may therefore contain more than one
toolbar de?nition and may specify varying numbers of con
trols for each such toolbar and/or more than one non-visible
control. Thus, an editor instance can be adapted in a very
?exible manner to the needs of a particular implementation.

After the editor instance is initialiZed and the toolbar(s)
is/are populated at Block 200 of FIG. 2, Block 205 locates the
properties ?le (i.e., the ?le containing the mappings betWeen
controls and key sequences) that is to be used With that editor
instance. According to preferred embodiments, this com
prises parsing the “KeyMap” attribute from each <createedi
tor> tag (see reference number 311 in FIG. 3) and, in an
optional aspect, also determining the locale under Which the
editor instance Will run (for example, by inspecting the stan

20

25

30

35

40

45

50

55

60

65

10
dard properties ?le mechanism of the Java Developer’ s Kit, or
“.lDK”). The locale value may be used to identify a location
speci?c version of the properties ?le speci?ed on the <cre
ateeditor> tag. So, for instance, the tag at 311 of FIG. 3
identi?es a ?le named “keys.proper‘ties” as specifying the
control-to-key sequence mappings for the editor instance
named “MyEditor”. If the locale value is “de”, indicating that
the locale of the user is likely to be Germany, then this
optional aspect preferably concatenates the locale value to the
?le name (for example, as “keys_de.properties”).
When determining the particular key sequences to be

applied to each editor instance, preferred embodiments also
consider Which broWser the editor instance Will be used With
and then select key sequences based on that broWser. Prefer
ably, the broWser is determined by inspecting the value of the
User-Agent ?eld (Where this ?eld value is typically stored in
con?guration information of the broWser), using techniques
Which are knoWn in the art. (Embodiments of the present
invention may be used With user agents other than broWsers,
and thus references herein to broWsers are by Way of illustra
tion but not of limitation.)

In this manner, different key sequences for a particular
control can be dynamically selected and loaded at run-time,
based on user and/or broWser preferences. This approach is
especially valuable in providing keyboard accessibility, as
each broWser typically has a different set of reserved key
sequences (and the key sequences in the properties ?le used
by the present invention can therefore be tailored to avoid
those broWser-speci?c reserved key sequences) and each
locale can use a different key sequence convention for com

mon functions, if desired.

Once the properties ?le has been located at Block 205,
Block 210 parses that ?le to locate the key sequences to use
With the current editor instance being processed and then
applies the located key sequences. A sample properties ?le
500 is depicted in FIG. 5 that corresponds to the editor
instance 300, as speci?ed at reference number 311 in FIG. 3.
That is, properties ?le 500 is identi?ed using the
‘KeyMap:“keys.properties’ ” name/value pair that appears in
the tag at 311. (Note that each de?nition in sample ?le 500
that pertains to the toolbar also includes the toolbar name
“MyToolbar”, Which appears on the “name” attribute of
<addToolbar> tag 320, or, for non-toolbar entries, the value of
the “name” attribute of another control such as the “Color
Picker” value of <addControl> tag 350, as discussed in more
detail beloW.)

In preferred embodiments, a key sequence is de?ned in the
properties ?le for each control that is to be added to the editor
instance, including the non-visible controls as Well as the
visible controls. As one example syntax, the de?nitions may
each be formatted using the folloWing tokens and delimiters:

controlNamekeyNaIne. [broWserNaIne]
.keyCOdeIkeyCOdeMOdi?er: keyCodeAlphanu
meric

(Blank space has been added before and after the “.” and “z”
delimiters, in this illustration, merely for emphasis.)

In this syntax, a value for the controlName token matches
the “name” attribute With Which the control is speci?ed on the
<addToolbar> tag or on <addControl> tags that are de?ned as
immediate child elements of the <createEditor> tag. See ref
erence number 320 in FIG. 3, Where the toolbar name is
“MyToolbar”. Thus, this same value is speci?ed as the ?rst
token of the toolbar entry 510 in properties ?le 500 of FIG. 5.
Similarly, a value for the controlName token on non-visible
controls matches the “name” attribute from the correspond

US 7,657,844 B2
11

ing <addControl> tag. Entry 540 of properties ?le 500 there
fore begins With the name value from entry 350 in FIG. 3.

For <addControl> tags that are de?ned as child elements of
an <addToolbar> tag, the keyName token shoWn above is also
speci?ed on corresponding entries in properties ?le 500 (and
this token is preferably omitted on the properties ?le entries
that de?ne key sequence mappings for the toolbar itself and
for non-visible controls). When used, a keyName token is
separated from the controlName token With a delimiter. In
preferred embodiments, this delimiter is “.” (i.e., a period
symbol). Thus, as illustrated at properties ?le entries 520,
53 0, a value is speci?ed for the keyName token. The value for
each keyName token matches the “name” attribute With
Which that control is speci?ed on the corresponding one of the
<addControl> tags. Thus, for example, the control associated
With properties ?le entry 520 uses “BoldButton” as the value
of the keyName token, thereby indicating that this mapping
520 is for the control speci?ed at 330 in FIG. 3.

A broWserName token is separated from the keyName
token, When used, or from the controlName token otherWise,
preferably using the same delimiter discussed above. In the
sample properties ?le 500, the syntax “IE5.5” is used to
identify the Internet Explorer broWser, version 5.5. Note that
square brackets are shoWn surrounding the broWserName
token in the syntax example shoWn above and Within the
properties ?le 500. In some cases, the broWser identi?er itself
may include the value used for the token delimiter (e.g., the
period symbol, Which is commonly used When identifying
softWare version numbers). These square brackets are there
fore used in preferred embodiments to enable a parser to
conclusively determine Which token speci?es the broWser
identi?er. (Other predetermined symbols may be substituted,
if desired.)
A reserved keyWord is preferably used for the next token,

and is shoWn in FIG. 5 as “keyCode”. This token is separated
from the broWserName token by another instance of the “.”
delimiter. A second delimiter, Which in preferred embodi
ments is “I” (i.e., an equal sign), separates the reserved token
“keycode” from a keyCodeModi?er token. This second
delimiter separates the left-hand side of the key sequence
de?nition from the right-hand side. The syntax that appears
on the left-hand side of the key sequence de?nition, up to and
including the reserved token, identi?es the control for Which
a key sequence is being de?ned. The syntax that appears on
the right-hand side of the key sequence de?nition, after the
“I” delimiter, speci?es the key sequence that is to be used at
run-time to invoke this control. The syntax for specifying the
key sequences Will noW be described.

The key sequence speci?cation syntax begins With a key
CodeModi?er token. This keyCodeModi?er token is fol
loWed by a third delimiter, Which in preferred embodiments is
“z” (i.e., a colon symbol), and this delimiter is then folloWed
by a keyCodeAlphanumeric token. In the examples shoWn in
FIG. 5, a numeric value of 17 is speci?ed as the keyCode
Modi?er token in each mapping de?nition 510, 520, 530, and
540. Each de?nition then has differing values for the key
CodeAlphanumeric token. In sample ?le 500, for example,
the values for this token are shoWn as numeric values ranging
between 13 and 16. (Alternatively, alphabetic values or a
combination of alphabetic and numeric values could be used,
if desired.) The key sequence de?nitions use values that cor
respond to the keys on the keyboard. As an example, the key
sequence de?nition “17:14”, Which is used according to the
mapping at 520 to invoke a function that sets a selected
document portion to bold, corresponds to simultaneously

20

25

30

35

40

45

50

55

60

65

12
pressing the Ctrl and “b” keys on the keyboard. As another
example, suppose the mapping ?le 500 contained the folloW
ing key sequence de?nition:

MyToolbarInsertTable. [IE5.5] .keyCode:l 7: 19

(With a corresponding tag entry in the <createEditor> de?ni
tion 300 of FIG. 3). In this example, the key sequence de?
nition “17:19” is used according to this mapping to invoke a
function that inserts a table at the current position in the
document (assuming this function has been de?ned for the
“InsertTable” keyName token) by simultaneously pressing
the Ctrl and “t” keys on the keyboard.

While sample ?le 500 includes values identifying only the
“IE5.5” broWser in the broWserName token, this ?le might
also contain additional sets of entries to de?ne the mappings
for other broWsers (as discussed above). In that case, entries
510-540 Would be repeated, With changes occurring only in
the broWserName token and, When neW key sequences are
being de?ned for use With that broWser, in either or both of the
keyCodeModi?er and keyCodeAlphanumeric tokens.

In an alternative approach, the name of the editor instance
(“MyEditor”, for sample ?le 300) may be prepended to each
entry in the mappings ?le 500.

Returning again to the discussion of FIG. 2, the user begins
interacting With the on-demand editor instance and that
instance intercepts or “traps” the user’s keyboard input
(Block 215). The trapped input is then tested (Block 220) to
see if the entered key sequence matches the key sequence for
launching a toolbar. (With reference to the sample mappings
de?ned in ?le 500 of FIG. 5, for example, the key sequence is
tested to determine Whether it corresponds to key 17 folloWed
by key 13, as speci?ed in the mapping at 510.) If this test has
a positive result, control transfers to Block 225 to process the
toolbar launch request. OtherWise, processing continues at
Block 240.

In Block 225, the detached toolbar is launched. As stated
earlier, preferred embodiments launch a toolbar in a pop-up
WindoW. Block 23 0 then traps the user’ s keyboard input While
navigating this toolbar, and Block 235 applies the function
indicated by this trapped input. For example, When the map
pings de?ned in sample ?le 500 are used, the currently
selected document portion Will be changed to italics if the key
sequence 17, 15 is trapped.

In preferred embodiments, a detached toolbar remains
open after applying a ?rst control to the document, enabling
the user to optionally select other controls to be applied. In
this approach, the same key sequence used to launch the
toolbar may be used to regain the focus When the focus reverts
to the parent WindoW upon executing the control on the docu
ment. (The processing of Block 225 may therefore be condi
tioned on Whether the toolbar is already launched.) Thus,
control returns to Block 215 folloWing completion of Block
235.

Using a modal dialog WindoW, as in the prior art, does not
ensure accessibility to controls. This is because not all broWs
ers support modal dialog WindoWs, and a modal dialog Win
doW does not alloW easy access to the information in the
parent WindoW (i.e., to the editor instance, in an editing sce
nario). The detached toolbar of preferred embodiments solves
the focus-sWitching problem, as has been discussed. If it is
desirable to support more than one detached toolbar concur
rently in an embodiment of the present invention, each With
its oWn simultaneously-displayed parent WindoW (as may
happen in a portal environment, for example), each pop-up
WindoW is preferably associated With its parent WindoW using
a dynamically-generated parent WindoW name (typically a

US 7,657,844 B2
13

random number) plus a unique WindoW control name that
uniquely identi?es the pop-up WindoW. In this approach, all
open pop-up WindoWs preferably have their identi?ers pre
served in a data structure such as a table. Then, When a key
sequence that requests returning focus to (or closing) a tool
bar is intercepted, this table can be consulted to determine
Which of the pop-up WindoWs that key sequence pertains to.
Proper actions can then be taken to bring focus to the correct
toolbar or to close the correct pop-up WindoW, as appropriate.
(Closing a toolbar’s pop-up WindoW is discussed beloW, With
reference to Blocks 260 and 265.)

When the test in Block 220 has a negative result, indicating
that the user’s input did not request launching the toolbar,
Block 240 tests to see if the key sequence is a request to
launch a different detached control. If this test has a positive
result, control transfers to Block 245, Where the detached
control is launched; otherwise, processing continues at Block
260. For example, if Block 240 detects the key sequence 17,
16, this indicates that Block 245 should launch a color-picker
function, according to the mapping at 540 in FIG. 5. (Indi
vidual decision blocks may be provided to test for each con
trol de?ned as a child of the <createEditor> tag, if desired.)
Refer to the discussion of FIG. 6, beloW, for more information
about launching and using a color-picker.

Block 250 attempts to load the requested control from a
repository. This approach may be used for a number of dif
ferent types of controls, an example of Which is the color
picker that has been discussed, Which require additional input
beyond a simple selection from a toolbar. Because the dialogs
used for the color-picker (and other types of controls that
require additional input and may therefore be handled using
the “yes” branch from Block 240) are full-?edged user inter
faces, they must themselves be accessible and thus suffer
from the same accessibility concerns Which have been dis
cussed.

In preferred embodiments, these “additional input” con
trols have special handling because of the dif?culty in main
taining multiple modal pop-up dialog WindoWs for providing
accessibility. For example, if a color-picker Was launched
from a detached toolbar, it Would be dif?cult to maintain
focus properly betWeen all three WindoWs (i.e., the editor, the
toolbar, and the color-picker) because all of the WindoWs
Would be ?ghting for modality. Accordingly, preferred
embodiments enable other controls to be de?ned for an editor
instance (as discussed above With reference to the <addCon
trol> tag 350 in FIG. 3), Where these controls Will pop up in a
modal dialog, responsive to a corresponding key sequence
de?nition, to alloW additional user input before applying
changes to the document.
A number of differences in various UI components may be

found among broWsers. To accommodate these differences
yet provide a solution for accessibility, preferred embodi
ments enable specifying a number of alternative implemen
tations for a particular control Within the repository that is to
be accessed at Block 250. Several different color-pickers
might be provided, for example. To select among the alterna
tives, preferred embodiments associate an identi?er With each
control implementation in the repository, and the “de?nition”
attribute on the <addControl> tag that speci?es this control
preferably begins With a special character string, such as
“id:”, to signify that the identi?er of a repository-stored con
trol is being referenced, as stated earlier. Thus, the syntax
‘de?nition:“id:colorpicker’” at 350 in FIG. 3 points to the
identi?er “colorpicker” of an element stored in the repository.
The identi?er from this attribute is therefore used to access

20

25

30

35

40

45

50

55

60

65

14
the repository, and the associated code is executed (rendering,
for example, a color-picker as discussed beloW With reference
to FIG. 6).

The processing shoWn in Block 255 is an optional aspect of
preferred embodiments, and may be used if Block 250 deter
mines that an implementation for this control is not available
in the repository. In this optional aspect, an “accessibility
coercion” approach is used, Whereby an attempt is made to
correct for several anticipated accessibility issues. This auto
mated-corrections approach is useful for already-Written Web
page content, Where it may be quite dif?cult to locate each
problematic portion of the content and make accessibility
corrections manually, as Well as for content Where the source
is unavailable and therefore cannot be corrected. Preferably,
de?nitions from the Web Accessibility Initiative of the W3C
(as discussed in the Working draft and recommendations
mentioned earlier) are used as guidelines for de?ning trans
formations that programmatically transform tags in the
HTML Web page markup to enforce accessibility. In pre
ferred embodiments, these transformations are applied using
style sheets (e. g., via Extensible Stylesheet Transformations,
or “XSLT”, the processing of Which is Well knoWn in the art).
TWo examples of coercions that can be applied during the
processing of Block 255 Will noW be described, by Way of
illustration but not of limitation of the types of coercions that
may be available With an embodiment of the present inven
tion.

First, a text equivalent may be programmatically supplied
for non-text elements in the Web page de?nition. For
example, if an image tag (having syntax “”) is
encountered, an alternative means of conveying the informa
tion (rather than using the image, Which cannot be processed
by a screen reader) is to programmatically supply the ?le
name of that image. HTML provides an “alt” (i .e., alternative)
attribute on an tag, the purpose of Which is to provide
a textual alternative. Preferred embodiments therefore obtain
the ?le name from the “src” (i.e., source) attribute of the
image, Which speci?es Where to ?nd the image itself, and
create an “alt” attribute Where the value is this ?le name

(excluding the directory, preferably). Often, the ?le name can
imply something about the image, and thus a screen reader
can read the value of this “alt” attribute to the user.

Second, forms may be made more accessible to assistive
technology through accessibility coercion. For example, if an
“<input . . . >” tag is encountered in the Web page de?nition,
that syntax is preferably changed programmatically to a
<label> tag. The value associated With that <input> tag (for
example, via the “name” attribute) is then programmatically
supplied as the value of an attribute (Which, for example, may
be named “for”) of the <label> tag, and the value of the
<label> tag is preferably that value from the original <input>
tag. So, if the folloWing tag

<input type:“text” nalne:“xyz” id:“xyz” . . . />

Was found in the Web page de?nition, that tag might be
changed to

by the processing of Block 255. As another example, if the
folloWing text

MyField<input type:“text” id:

US 7,657,844 B2
15

was found in the Web page de?nition, that text might be
changed to

by the processing of Block 255.
While this accessibility coercion approach will not address

all recommended accessibility guidelines, it can dramatically
improve the user’s experience when editing content accessed
(for example) with a screen reader.

Following completion of Block 255, control transfers to
Block 230, in preferred embodiments, to intercept the user’s
next keyboard input. (Alternatively, it may be desirable to
duplicate the functionality of Blocks 230 and 235 following
Block 255, for example to provide processing that accounts
for context-dependent differences between processing tool
bar selections and selections from an independently-launched
control such as a color-picker.)

Although not illustrated in the examples herein, a key
sequence is preferably de?ned with which the user can explic
itly request to close the open pop-up window for a toolbar.
The test in Block 260 addresses this scenario, following a
negative result for the test in Block 240, and checks to see if
the key sequence trapped at Block 215 was the close-toolbar
key sequence. If so, the pop-up window for that toolbar is
closed (Block 265), after which control returns to Block 215.

If the test in Block 260 has a negative result, then the
trapped input (which may be a browser command, for
example) is processed as in the prior art at Block 270. After
completion of Block 270, control returns to Block 215 to trap
the user’s next keyboard input (unless the input processed at
Block 270 was a request to end processing, in which case the
editor instance will be shut down).

Referring now to FIG. 6 (comprising FIGS. 6A and 6B), an
illustration of a pop-up color-picker window 600 according to
preferred embodiments is provided. As stated earlier, pre
ferred embodiments use a single image, comprised of a num
ber of different color swatches that appear to be independent,
and overlay this image with invisible mapping regions. FIG.
6 uses various styles of hashing instead of different colors to
present the color-picker image 620 within the window, as
different colors cannot be perceived adequately in the printed
?gure. In actual practice, the hashing will be replaced with
swatches of color, and a color-picker image will typically
have many more different choices than the 9 choices which
are illustrated in the sample image at 620.

Referring now to FIG. 6B, suppose the user navigates to the
square 630ithat is, to the invisible mapping region that is
positioned over square 630iand then presses a selection key
sequence. (A dark rectangle has been used in FIG. 6B to
illustrate the boundary of square 630, although this dark
rectangle would not typically appear in an actual embodiment
of the present invention; instead, an actual implementation
preferably uses the browser’s normal approach to visually
adjusting the display to indicate which region has been
selected.) Preferably, tab or arrow keys are used for navigat
ing among the regions of the color-picker image, and an
“Enter” or “Retum” key is used to signal the user’s selection,
as with existing browser selection techniques. Preferred
embodiments associate each of the mapping regions with an
appropriate action based on the underlying portion of the
image, and selection of one of the regions then causes the
associated action to be carried out. Thus, if the hash pattern at
630 was actually a representation of the color “Poppy red”,
which is shown in FIG. 6B as having an associated color
identi?er of “FF0041”, the dialog box at 610 is automatically

20

30

35

40

45

50

55

60

65

16
updated to display the color name (and optionally the color
identi?er) responsive to the user’s selection of the region
overlaying square 630. (In addition, the underlying action
presumably sets the selected document portion to the selected
color, in an analogous manner to the way in which prior art
color-pickers operate.)

Note that while preferred embodiments use invisible map
ping regions, in an alternative approach, it may be desirable to
provide some visual indication of the mapping regions, such
as a dashed outline corresponding to the boundary of each
region.

In some cases, the original image used for the color-picker
may be too small for low-vision users or users with various
types of assistive devices. Accordingly, in an optional aspect,
preferred embodiments may enable dynamically enlarging
the image. In this case, the overlaying mapping regions must
also be enlarged proportionally. Preferably, this is done at
load time by setting the image map’s logical siZe to an appro
priate siZe and then recalculating the boundaries of each
mapping region.
As has been demonstrated, the present invention provides

techniques that enable accessibility compliance within
advanced componentry. While preferred embodiments have
been described herein as supporting both detached toolbars
and detached controls that include color-pickers rendered as
images, alternative implementations may support only one of
these features, without deviating from the scope of the present
invention. In addition, other types of detached controls may
be supported in addition to, or instead of, the detached color
picker. Preferred embodiments are described in terms of
using an on-demand editor for content interactions, although
embodiments of the present invention may be used with other
types of content viewers without deviating from the inventive
techniques disclosed herein.
As will be appreciated by one of skill in the art, embodi

ments of the present invention may be provided as methods,
systems, computer program products, or services. Accord
ingly, the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment, or
an embodiment combining software and hardware aspects.
Furthermore, the present invention may take the form of a
computer program product which is embodied on one or more
computer-readable storage media (including, but not limited
to, disk storage, CD-ROM, optical storage, and so forth)
having computer-readable program code embodied therein.
The present invention has been described with reference to

?owchart illustrations and/or block diagrams of methods,
apparatus (systems), and computer program products accord
ing to embodiments of the invention. It will be understood
that each block of the ?owchart illustrations and/or block
diagrams, and combinations of blocks in the ?owchart illus
trations and/ or block diagrams, can be implemented by com
puter program instructions. These computer program instruc
tions may be provided to a processor of a general purpose
computer, special purpose computer, embedded processor, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions speci?ed in the ?owchart and/ or block diagram block or
blocks.

These computer program instructions may also be stored in
a computer-readable memory that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac

US 7,657,844 B2
17

ture including instruction means Which implement the func
tion speci?ed in the ?owchart and/or block diagram block or
blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per
formed on the computer or other programmable apparatus to
produce a computer-implemented process such that the
instructions Which execute on the computer or other pro gram
mable apparatus provide steps for implementing the func
tions speci?ed in the ?owchart and/ or block diagram block or
blocks.

While the preferred embodiments of the present invention
have been described, additional variations and modi?cations
in those embodiments may occur to those skilled in the art
once they learn of the basic inventive concepts. Therefore, it
is intended that the appended claims shall be construed to
include the preferred embodiments and all such variations
and modi?cations as fall Within the spirit and scope of the
invention.

What is claimed is:
1. A method of dynamically con?guring an accessible edi

tor, comprising using computer-readable program code
executing on a computer to perform steps of:

providing a plurality of selectable editing functions;
specifying, in computer-readable storage media for a par

ticular instance of the accessible editor, selected ones of
the provided editing functions that are to be available in
this editor instance; and

upon activating the editor instance, processing the speci?
cation from the computer readable storage media to
determine the selected ones and dynamically making the
determined selected ones available for selection in the
editor instance.

2. The method according to claim 1, Wherein the available
selected ones are available, to a user of the editor instance,
using only keyboard input.

3. The method according to claim 1, Wherein each of the
available selected ones is selectable from the editor instance
using a predetermined sequence of one or more keys.

4. The method according to claim 3, Wherein the predeter
mined key sequence for each of the available selected ones is
speci?ed in a mapping betWeen the speci?ed selected ones
and the predetermined key sequences.

5. The method according to claim 3, Wherein the predeter
mined key sequence for each of the available selected ones is
dependent upon a locale in Which the editor instance is acti
vated.

6. The method according to claim 3, Wherein the predeter
mined key sequence for each of the available selected ones is
dependent upon a user agent from Which the editor instance is
activated.

7. The method according to claim 1, Wherein at least one of
the selected ones operates to enable activating a detached
toolbar.

8. The method according to claim 7, Wherein the selected
ones also include at least one editing function that applies to
a document portion selected in the editor instance.

9. The method according to claim 7, Wherein the detached
toolbar is automatically launched, responsive to detecting a
predetermined key sequence that is de?ned as causing the
automatic launch.

10. The method according to claim 9, Wherein focus for
user input sWitches to the detached toolbar When the toolbar
is launched, Without altering a current selection status of
content rendered in the editor instance.

20

25

30

35

40

45

50

55

60

65

18
11. The method according to claim 1, Wherein at least one

of the selected ones operates to enable applying an action to a
document portion selected in the editor instance.

12. The method according to claim 1, Wherein at least one
of the selected ones operates to enable activating a detached
color-selection mechanism in Which a selection can be made
from among a plurality of colors provided as a single image,
such that the plurality of colors is unaffected by color contrast
changes made to a device on Which the editor instance is
activated.

13. The method according to claim 1, Wherein:

at least one of the selected ones operates to enable activat
ing a detached color-selection mechanism in Which a
selection can be made from among a plurality of colors;

the plurality of colors is provided as a single image; and

the selection is facilitated by providing mapping regions,
each of Which has a boundary that generally corresponds
to a boundary of a different one of the colors.

14. The method according to claim 13, Wherein the regions
are invisible.

15. The method according to claim 1, further comprising
the step of pro grammatically modifying a document rendered
in the editor instance to enforce predetermined accessibility
issues.

16. The method according to claim 15, Wherein the pro
grammatically modifying step further comprises the step of
pro grammatically altering image references in the document
to include a textual description of a source of the referenced

image.
17. The method according to claim 15, Wherein the pro

grammatically modifying step further comprises the step of
programmatically changing input areas of forms in the docu
ment to textual labels that include, as values, text from the
input areas.

18. The method according to claim 15, Wherein the pro
grammatically modifying step further comprises the step of
applying a style sheet that speci?es the programmatic modi
?cations.

19. The method according to claim 1, further comprising
the step of providing a service Wherein one or more of the
providing, specifying, and processing and dynamically mak
ing steps are carried out by a third party.

20. The method according to claim 1, further comprising
the step of providing a service Wherein one or more of the
providing, specifying, and processing and dynamically mak
ing steps are carried out for compensation.

21. A method of dynamically con?guring an accessible
content vieWer, comprising using computer-readable pro
gram code executing on a computer to perform steps of:

providing a plurality of selectable functions;
specifying, in computer-readable storage media for a par

ticular instance of the accessible content vieWer,
selected ones of the provided functions that are to be
available in this content vieWer instance; and

upon activating the content vieWer instance, processing the
speci?cation from the computer-readable storage media
to determine the selected ones and dynamically making
the determined selected ones available such that each of
the available selected ones is selectable from the content
vieWer instance using a predetermined sequence of one
or more keys.

US 7,657,844 B2
19

22. A system for dynamically con?guring an accessible
content vieWer, comprising:

a plurality of selectable functions;
a speci?cation, for a particular instance of the accessible

content vieWer, of selected ones of the provided func
tions that are to be available in this content vieWer

instance;
a computer comprising a processor; and

instructions Which are executable, using the processor, to
perform:
processing the speci?cation to determine the selected

ones and dynamically making the determined
selected ones available, upon activation of the content
vieWer instance; and

determining, When user input is received, Which of the
available selected ones should be activated by con
sulting a mapping that associates each of the speci?ed

10

20
selected ones With a predetermined sequence of one
or more keys usable for providing user input.

23. A computer program product for dynamically con?g
uring an accessible content vieWer, the computer program
product embodied on one or more computer readable storage
media having computer-readable program code embodied
therein for:

providing a plurality of selectable functions;
specifying, for a particular instance of the accessible con

tent vieWer, selected ones of the provided functions that
are to be available in this content vieWer instance; and

processing the speci?cation to determine the selected ones
and dynamically making the determined selected ones
available, upon activation of the content vieWer instance,
such that each of the available selected ones is selectable
from the content vieWer instance using a predetermined
sequence of one or more keys.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,657,844 B2 Page 1 of1
APPLICATION NO. : 10/836883
DATED : February 2, 2010
INVENTOR(S) : Gibson et a1.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The ?rst or sole Notice should read -

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 15 4(b)
by 1476 days.

Signed and Sealed this

Twenty-eighth Day of December, 2010

David J. Kappos
Director of the United States Patent and Trademark Oj?ce

