
US 20140245326Al

(12) Patent Application Publication (10) Pub. N0.: US 2014/0245326 A1
(19) United States

Kruglick (43) Pub. Date: Aug. 28, 2014

(54) LOCAL MESSAGE QUEUE PROCESSING Publication Classi?cation
FOR CO-LOCATED WORKERS

(51) Int. Cl.
(71) Applicant: EMPIRE TECHNOLOGY G06F 9/54 (2006-01)

DEVELOPMENT LLC, Wilmington, (52) U-S- Cl
DE (Us) CPC G06F 9/546 (2013.01)

USPC 719/314

(72) Inventor: Ezekiel Kruglick, Poway, CA (U S) (57) ABSTRACT

(21) Appl. No.: 14/009,101

(22) PCT Filed: Feb. 28, 2013

(86) PCT No.: PCT/USI3/28262

§ 371 (0X1)’
(2), (4) Date: Sep. 30, 2013

Technologies are provided for locally processing queue
requests from co-located workers. In some examples, infor
mation about the usage of remote datacenter queues by co
located workers may be used to determine one or more
matched queues. Messages from local workers to a remote
datacenter queue classi?ed as a matched queue may be stored
locally. Subsequently, local workers that request messages
from matched queues may be provided with the locally
stored messages.

f 400

VIRTUAL
MACH 1115(3) READ 0MB

1 COMMAND
405" CHANNEL

ll

QUEUE USAGE \
DETECTOR 318

316' I“
" \~— 312

E QUEUE CACHE : QUEUE USER TABLE

VIRTUAL MACHINE MANAGER “ 314

a.)

Aug. 28, 2014 Sheet 1 0f 7 US 2014/0245326 A1 Patent Application Publication

wmeOPmDO

$5353 iogxa N3,

mmPZmOSuQQ 443.55
fwnw

wwziuqz ,EDES H 3M

Aug. 28, 2014 Sheet 2 0f 7 US 2014/0245326 A1 Patent Application Publication

mmmcbOm wOQw wmmszm mmoo
/\ mww

US 2014/0245326 A1 Aug. 28, 2014 Sheet 3 0f 7 Patent Application Publication

3m :1 $3722 wziosa iPE;
Swimww: mamas v M55

mpwno 3., H J, 7&3
~68me ma?a Hana $2725 H v

@3228 . 8802
zwmww?mu 5%? 0_&<5 éoémz $~n§§> ., mamas $1on

v/Em fwom

US 2014/0245326 A1 Aug. 28, 2014 Sheet 4 0f 7 Patent Application Publication

w .67..

\vom

in}
//

mqmg. wwme mDmDO wwm:;/1 H ..i. Maw

wvm mapowwma / wo<w3mmwpa

W mIQ<o
“ wswna

. 352.10%

Y

,, Q5 9%

‘ §

7

xMOEmz wow /wov

mom k

Aug. 28, 2014 Sheet 5 0f 7 US 2014/0245326 A1 Patent Application Publication

Ammonia
Eu $50“.

GZFQQEOO mekO

Maw mijmszO meEc‘wz

O:

I (J. I i mmw wwO<mMth #mekmmm
HA

7

I 1

d?

Na mwogwo .Sawan.

INTERFACE BUS 5412

p q

mg mg woémmi wwéopm w MW .3. A)? w

A .C i? W
8m 6% .. v m

a“ “a woéowm 6550 w my $30528 395051 a“ wwéopm W 35%?me .202 £35sz m

i “

E a main wwéokw w
_ I | I I i i i I l I i i i i l i l l i l l. in w

_ mun wnm E052 . w

_ _\ 3 m W
_ .. ~ 5.3 w W _ @m mm 96 Emma u w _ $305on $052 ?lm 53 §<mon “ w

H w w a w H

mm _ . , “

“ wm?wéwm 82 E ~5an _ n

.l. _

m8 mwm

" amusing .82 ?g wswpo _ u _ wmoo momwwoomn. Mm” _ _

_ NH zogoanalq 2% n _
_ 562% an _ _ _ $06 555 @zcéwuo _ _

_ nag .\ 02% _ _

_ “Riga _ _

3m mowwaoE

_ 8m $0sz 53% _ _

~ _

r I wom??ég?m lllllllllll 1 I L. _
am“ 35% 05338 _ lllllllll‘illllllilltlllnlvllllnl-lill‘llll-lllllllllnlll-llillll’llnlllilillllllllllaltl

Patent Application Publication Aug. 28, 2014 Sheet 6 0f 7 US 2014/0245326 A1

COMPUTiNG DEVlCE 610

COMPUTER-READABLE MEDRJM QZQ

5.22
DETECT PRODUCER WORKER PROWDENG A MESSAGE

FOR A QUEUE

1
52:3

LOCALLY STORE THE MESSAGE

l
M

DETERM‘NE THAT A CONSUMER WORKER REQUESTS
MESSAGES FROM THE SAME QUEUE

l
QZQ

PROWDE THE STORED MESSAGE TO THE CONSUMER
WORKER

FIG. 6

Patent Application Publication Aug. 28, 2014 Sheet 7 0f 7 US 2014/0245326 A1

COMPUTER PROGRAM PRODUCT ZQQ

SiGNAL-BEARING MEDiUM m

IDA AT LEAST ONE OF

ONE OR MORE iNSTRUCTiONS FOR DETECTKNG A
PRODUCER WORKER PROVWiNG A MESSAGE FOR A
QUEUE;

ONE OR MORE ENSTRUCTIONS FOR LOCALLY
STORiNG THE MESSAGE;

ONE OR MORE iNSTRUCTiONS FOR DETERMiNiNG
WHETHER A CONSUMER WORKER is REQUESTiNG
MESSAGES FROM THE SAME QUEUE; AND

ONE OR MORE lNSTRUCTiONS FOR PROViDiNG THE
STORED MESSAGE TO THE CONSUMER WORKER IF THE
CONSUMER WORKER ES REQUESTING MESSAGES FROM
THE SAME QUEUE

I COMPUTER ‘ 3RECOR0ABLE| ' COMMUNiCATlONS l
' READABLE ‘ 1 MEDiUM MEDiUM I
| MEDEUM ! 3 708 I | 710 i
| me a 1 m I | W |
_ _ - — _ — -| -_ _ _ u» an- 000-. .J a» a.“ 00-00 in“ In» as in. anal. an.

FIG. 7

US 2014/0245326 A1

LOCAL MESSAGE QUEUE PROCESSING
FOR CO-LOCATED WORKERS

BACKGROUND

[0001] Unless otherwise indicated herein, the materials
described in this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion in
this section.
[0002] Ef?cient management of interacting threads and
workers needs ?ne granularity and awareness of process state
and newer processors offer hardware acceleration for thread
management. When interacting threads share hardware, vari
ous optimizations may be applied to hand off demand
between the two. These improvements are typically available
if smooth and fast worker handoff can be established between
the interacting threads but they allow improvements like pipe
line interleaving and fast task switching on successful specu
lative execution.
[0003] Meanwhile, datacenter multi-worker architectures
are currently highly network-centric, designed around mul
tiple minimum size worker/ service instances that intercom
municate via messaging or queues so that multiple source
workers can assign tasks onto a queue while multiple workers
pull tasks off the queue to turn them into the next stage
product output. Thus, existing multicore software can use
multiple cores well. Existing web services, however, are
designed to communicate via messaging capacities like mes
sage queues so even if two web services are on neighboring
cores they send data between each other via the networkivia
a trip through at least a virtual router at the Virtual Machine
Manager (VMM) level. This approach may be about 4-6
orders of magnitude slower than using intercore hardware.

SUMMARY

[0004] The present disclosure generally describes tech
niques for locally processing queue requests from co-located
workers.
[0005] According to some examples, a method is provided
for locally processing queue requests from co-located work
ers. The method may include detecting a producer worker at
a ?rst server sending a ?rst message to a datacenter queue at
least partially stored at a second server, storing the ?rst mes
sage at the ?rst server, detecting a consumer worker at the ?rst
server sending a message request to the datacenter queue, and
providing the stored ?rst message to the consumer worker in
response to the message request.
[0006] According to other examples, a virtual machine
manager (V MM) is provided for locally processing queue
requests from co-located workers. The VMM may include a
queue usage detector module and a processing module. The
queue usage detector module may be con?gured to detect a
producer worker at a ?rst server sending a ?rst message to a
datacenter queue at least partially stored at a second server
and detect a consumer worker at the ?rst server sending a
message request to the datacenter queue. The processing
module may be con?gured to store the ?rst mes sage at the ?rst
server and provide the stored ?rst message to the consumer
worker in response to the message request.
[0007] According to further examples, a cloud-based data
center is provided for locally processing queue requests from
co-located workers. The datacenter may include a ?rst and a
second virtual machine (VM) operable to be executed on one
or more physical machines and a datacenter controller. The

Aug. 28, 2014

datacenter controller may be con?gured to detect a producer
worker executing on the ?rst VM and sending a ?rst message
to a datacenter queue at least partially stored at a ?rst data
center location, store the ?rst message at a second datacenter
location different from the ?rst, detect a consumer worker
executing on the secondVM and sending a mes sage request to
the datacenter queue, and provide the stored ?rst message to
the consumer worker in response to the message request,
where the message is stored and provided from within a
server local to the producer worker and the consumer worker.
[0008] According to yet further examples, a computer read
able medium may store instructions for locally processing
queue requests from co-located workers. The instructions
may include detecting a producer worker at a ?rst server
sending a ?rst message to a datacenter queue at least partially
stored at a second server, storing the ?rst message at the ?rst
server, detecting a consumer worker at the ?rst server sending
a message request to the datacenter queue, and providing the
stored ?rst message to the consumer worker in response to the
message request.
[0009] The foregoing summary is illustrative only and is
not intended to be in any way limiting. In addition to the
illustrative aspects, embodiments, and features described
above, further aspects, embodiments, and features will
become apparent by reference to the drawings and the fol
lowing detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The foregoing and other features of this disclosure
will become more fully apparent from the following descrip
tion and appended claims, taken in conjunction with the
accompanying drawings. Understanding that these drawings
depict only several embodiments in accordance with the dis
closure and are, therefore, not to be considered limiting of its
scope, the disclosure will be described with additional speci
?city and detail through use of the accompanying drawings,
in which:
[0011] FIG. 1 illustrates an example datacenter-based sys
tem where local processing of queue requests from co-located
workers may be implemented;
[0012] FIG. 2 illustrates an example datacenter-based sys
tem having multiple co-located workers;
[0013] FIG. 3 illustrates an example virtual machine man
ager implementing local processing of queue requests from
co-located workers;
[0014] FIG. 4 illustrates the operation of the example vir
tual machine manager of FIG. 3;
[0015] FIG. 5 illustrates a general purpose computing
device, which may be used to provide local processing of
queue requests from co-located workers;
[0016] FIG. 6 is a ?ow diagram illustrating an example
method for locally processing queue requests from co-located
workers that may be performed by a computing device such as
the computing device in FIG. 5; and
[0017] FIG. 7 illustrates a block diagram of an example
computer program product,
[0018] all arranged in accordance with at least some
embodiments described herein.

DETAILED DESCRIPTION

[0019] In the following detailed description, reference is
made to the accompanying drawings, which form a part
hereof. In the drawings, similar symbols typically identify

US 2014/0245326 A1

similar components, unless context dictates otherwise. The
illustrative embodiments described in the detailed descrip
tion, drawings, and claims are not meant to be limiting. Other
embodiments may be utilized, and other changes may be
made, without departing from the spirit or scope of the subject
matter presented herein. It will be readily understood that the
aspects of the present disclosure, as generally described
herein, and illustrated in the Figures, can be arranged, substi
tuted, combined, separated, and designed in a wide variety of
different con?gurations, all of which are explicitly contem
plated herein.
[0020] This disclosure is generally drawn, inter alia, to
methods, apparatus, systems, devices, and/or computer pro
gram products related to locally processing queue requests
from co-located workers.
[0021] Brie?y stated, technologies are generally described
for locally processing queue requests from co-located work
ers. In some examples, information about the usage of remote
datacenter queues by co-located workers may be used to
determine one or more matched queues. Messages from local
workers to a remote datacenter queue classi?ed as a matched

queue may be stored locally. Subsequently, local workers that
request messages from matched queues may be provided with
the locally-stored messages.
[0022] FIG. 1 illustrates an example datacenter-based sys
tem where local processing of queue requests from co-located
workers may be implemented, arranged in accordance with at
least some embodiments described herein.

[0023] As shown in a diagram 100, a physical datacenter
102 may include one or more physical servers 110, 111, and
113, each of which may be con?gured to provide one or more
virtual machines 104. For example, the physical servers 111
and 113 may be con?gured to provide four virtual machines
and two virtual machines, respectively. In some embodi
ments, one or more virtual machines may be used as a virtual
datacenter. For example, the four virtual machines provided
by the server 111 may be combined into a virtual datacenter
112. The virtual machines 104 and/or the virtual datacenter
112 may be con?gured to provide cloud-related data/comput
ing services such as various applications, data storage, data
processing, or comparable ones to a group of customers 108,
such as individual users or enterprise customers, via a cloud
106.

[0024] FIG. 2 illustrates an example datacenter-based sys
tem having multiple co-located workers, arranged in accor
dance with at least some embodiments described herein.

[0025] As shown in a diagram 200, a datacenter (e.g., the
physical datacenter 102 in FIG. 1) may include one or more
layers of servers and routers, which may be arranged in a
hierarchical fashion. The datacenter shown in the diagram
200 has a network of three router layers with the datacenter
being a four-layer datacenter, although in other embodiments
a datacenter may have more or fewer layers. The datacenter
may include one or more application servers 228. In some

embodiments, the application servers 228 may be con?gured
to provide virtual machines (e.g., the virtual machines 104
described above in relation to FIG. 1) and/or execute one or
more customer applications. The datacenter may also include
one or more edge routers 226 that reside in the ?rst network
layer, where each edge router may couple to one or more of
the application servers 228. The edge routers 226 in turn may
couple to one or more aggregation routers 224, which may
reside in a second layer of the network. In some embodi
ments, each of the aggregation routers 224 may couple to two

Aug. 28, 2014

or more of the edge routers 226 and serve to combine or
“aggregate” the network traf?c from the connected edge rout
ers. Finally, each of the aggregation routers 228 may couple to
one or more core routers 222 in a third network layer.

[0026] As described above, the application servers 228 may
be con?gured to provide virtual machines on which customer
applications may execute. A customer application may be
con?gured to execute as one or more virtual machine

instances, also known as workers, and in some embodiments
an application server may be con?gured to execute one or
more workers. For example, an application server 230 may be
con?gured to execute workers 232 and 234, and an applica
tion server 236 may be con?gured to execute workers 238 and
240. As a result, an individual application server (e.g., the
application server 230 or 236) may have multiple workers
co-located and executing on the same hardware. If a particular
application server includes multi-core processors (processors
having multiple processing cores integrated on the same die),
different processing cores may execute different virtual
machines and different workers on the same processor. For
example, different workers may each be con?gured to
execute on different virtual machines, where the virtual
machines are con?gured to execute on the same physical
hardware (i.e., processor or server). In some cases, the differ
ent processing cores may execute the different virtual
machines/workers at approximately the same time.

[0027] In some embodiments, a particular worker may be
responsible for executing a particular process, function, or
series of functions, and multiple workers may collaborate to
accomplish more complex tasks or processes. For example,
one worker may generate data or information for further
processing. This worker, known as a producer worker, may
package the generated information into one or more mes
sages. Another worker, known as a consumer worker, may
then retrieve the message(s), extract the information in the
message(s), and perform some work on the information. The
consumer worker may then produce result(s) and/ or generate
other messages for further processing.

[0028] To facilitate mes sage handling and transfer, the mes
sages generated by producer workers may be stored at one or
more datacenter queues. For example, datacenter queues may
be stored at queue servers 242 and/or 244. Consumer workers
may then retrieve messages from the queue(s) for processing.
In some embodiments, each individual customer application
may have an associated datacenter queue. Workers executing
as part of a particular customer application may store and/or
retrieve messages from the datacenter queue associated with
that particular customer application.

[0029] In the diagram 200, the application servers on which
workers execute (e.g., the servers 230 and 236) may be dif
ferent from the application servers on which the datacenter
queues reside (e.g., the queue servers 242 and 244). In this
situation, a message generated by a producer worker may
traverse the entire network (e.g., the edge routers 226, the
aggregation routers 224, and the core routers 222) in order to
be placed on a datacenter queue. For example, a message
generated by a producer worker executing on virtual machine
232 may be routed through the edge routers 226, the aggre
gation routers 224, and the core routers 222 before reaching
one of the queue servers 242 or 244. Similarly, a message
retrieved by a consumer worker from a datacenter queue may
also have to traverse the entire network, as would each request
for such messages or lists of messages.

US 2014/0245326 A1

[0030] As discussed above, an application server having
multi-core processors may be con?gured to execute multiple,
different workers. In some embodiments, a producer worker
and a consumer worker may both execute on the same appli
cation server (e. g., the workers 232 and 234 on the application
server 230) and store/receive messages from the same data
center queue. If the datacenter queue is stored at another
server (e.g., the queue server 242), then produced and con
sumed messages may traverse the entire network, even
though the producer and consumer workers may be co-lo
cated on the same server or even the same multi-core proces

sor. As a result, message processing may be relatively slow as
compared to using local message handling, and many of the
advantages of multi-core systems, such as thread manage
ment hardware acceleration or multiprocessor load balancing
optimizations, may be lost due to network delays.
[0031] FIG. 3 illustrates an example virtual machine man
ager implementing local processing of queue requests from
co-located workers, arranged in accordance with at least
some embodiments described herein.

[0032] According to a diagram 300, a virtual machine man
ager (V MM) 304 may mediate communications between vir
tual machines 302 and a network 306. In some embodiments,
the VMM 304 may be associated with a particular application
server in a datacenter, such as the application server 230 in
FIG. 2. The virtual machines 302 may execute one or more
producer and/ or consumer workers (e. g., the workers 232 and
234 in FIG. 2), and the network 306 may correspond to the
rest of the datacenter (e.g., the edge routers 226, the aggre
gation routers 224, and/ or the core routers 222) or to an
external network.
[0033] In some embodiments, producer workers executing
on the virtual machines 302 may generate messages contain
ing data for further processing. The messages may then be
transmitted through the VMM 304 for forwarding to a data
center queue stored at a different server (e. g., the queue serv
ers 242 or 244 in FIG. 2). The VMM 304 may forward the
messages through a virtualized network connection 31 0 to the
datacenter queue, via the network 306.

[0034] While forwarding the messages to the datacenter
queue, the VMM 304 may also observe network traf?c
through the virtualized network connection using a queue
usage detector 312. The queue usage detector 312 may detect
outgoing messages to queues (e.g., messages generated by
producer workers executing in the virtual machines 302) and
identify the producer workers and queues associated with
those outgoing messages. The queue usage detector 312 may
also detect message requests to queues (e.g., requests sent by
consumer workers executing in the virtual machines 302) and
identify the consumer workers and queues associated with
those message requests. Detection may be achieved by
observing network destinations associated with datacenter
queues, which are often run by the datacenter. Detection may
alternately be achieved by observing message headers or
formats and recognizing queue commands, identities, or ses
sions. Detection may involve altering one or more settings
within the hardware virtualization support of a processor,
such as setting bits in the IOMap that will ensure the VMM
receives a chance to handle messages passed to the network.

[0035] A queue user table 314 may then be constructed or
updated based on the observed queue usage information. The
queue user table 314 may include information about producer
workers executing on the virtual machines 302, consumer
workers executing on the virtual machines 302, and the

Aug. 28, 2014

queues associated with each worker. The VMM 304 may then
use the queue user table to determine matching local pro
ducer/consumer worker pairs by identifying messages (from
a local producer worker) and requests (from a local consumer
worker) to the same datacenter queue. This datacenter queue
may be known as a “matched queue”.

[0036] Once one or more matched queues have been iden
ti?ed, matched queue information may be provided to a
matched queue tra?ic intercept module 3 08. In some embodi
ments, outgoing messages and message requests to data
center queues may be routed through the intercept module
308. The intercept module 308 may intercept outgoing mes
sages to matched queues, store the intercepted messages in a
queue cache 316, and provide stored messages from the
queue cache 316 in response to message requests to the
matched queues. This may increase the speed of message
handling between local producer and consumer workers,
because local consumer workers may receive messages from
the local queue cache 316 instead of a remote datacenter
queue stored on a relatively distant server. A command chan
nel 318 may allow datacenter queues to relay certain com
mands to be performed on the queue cache 316.

[0037] FIG. 4 illustrates the operation of the example vir
tual machine manager of FIG. 3, arranged in accordance with
at least some embodiments described herein.

[0038] According to a diagram 400, a producer worker
executing on the virtual machines 302 may generate a mes
sage intended for a datacenter queue stored at a different
server. The producer worker may transmit the message as a
write command 402 through the VMM 304 for the datacenter
queue. When the write command 402 reaches the VMM 304,
it may ?rst pass through the matched queue traf?c intercept
module 308. The intercept module 308 may forward the write
command 402 on to the virtualized network connection 310
and henceforth to the network 306 and the remote datacenter
queue. However, the intercept module may also determine if
the write command 402 is intended for a matched queue (as
described above). If so, the intercept module 308 may divert
a copy of the write command 402 to the queue cache 316 in
addition to forwarding the write command 402 to the virtu
alized network connection 310. In some cases the forwarded
write command may be delayed to provide an opportunity for
local consumption and deleted if the message is consumed
locally within a prede?ned time period. The copy of the write
command 402 may then be executed on the queue cache 316,
writing the message generated by the producer worker into
the queue cache 316.

[0039] A consumer worker executing on the virtual
machines 302 may then request a message from the same
datacenter queue via a read command 404. The read com
mand 404, like the write command 402, may be transmitted to
the VMM 304 for forwarding to the datacenter queue, and
may pass through the intercept module 308. The intercept
module 308 may forward the read command 404 on, but may
also determine that the read command 404 is intended for a
matched queue. The intercept module 308 may then also
divert a copy of the read command 404 to the queue cache
316, as with the write command 402 described above. The
copy of the read command 404 may then be executed on the
queue cache 316, which may return a message 406 to the
consumer worker. In some embodiments, the message 406
may be the message written by the write command 402. As a
result, messages may be passed between producer workers
and consumer workers both executing on the virtual machines

US 2014/0245326 A1

3 02 without incurring network delays from having to traverse
the datacenter network, as described above in relation to FIG.
2. At the same time, the remote datacenter queue may still be
updated based on the write command 402 and the read com
mand 404 from the local workers, because the intercept mod
ule 308 forwards those commands on in addition to copying
them for the local queue cache 316. In other examples, the
read command may not be forwarded if it can be satis?ed
locally. This approach may provide e?iciency if the write
command has been delayed as discussed above.
[0040] The local queue cache 316 may store and provide
messages from and to workers on the virtual machines 302; in
effect serving as a local datacenter queue that can respond to
requests from local consumer workers signi?cantly faster
than the remote datacenter queue. As described above, the
intercept module 308 may direct the write command 402 and
the read command 404 to both the remote datacenter queue
and the local queue cache 316. In fact, in some embodiments
the queue cache 316 may include a partial copy or an entire
copy of a remote datacenter queue.

[0041] In order to assure that the remote datacenter queue
and the local queue cache 316 remain reasonably consistent,
commands from the remote datacenter queue may be pro
vided to the VMM 304 via the command channel 318. For
example, suppose that the write command 402 places a par
ticular message on both the remote datacenter queue and the
queue cache 316. Another consumer worker having access to
the remote datacenter queue but not executing on the virtual
machines 302 may be able to request the message. If the other
consumer worker completes processing of the message, it
may send a delete command to the remote datacenter queue
deleting the message. In order to assure that the message copy
on the queue cache 316 is also deleted, the remote datacenter
queue may transmit a delete command via the command
channel 318 to delete the message copy on the queue cache
316.

[0042] In some embodiments, the VMM 304 may also
assist in maintaining consistency between the remote data
center queue and the local queue cache 316. For example, the
VMM 304 may be con?gured to forward a message request
from a consumer worker to the remote datacenter queue if the
remote datacenter queue is con?gured to hide the requested
message after receiving the message request. This function
ality may prevent another consumer worker from receiving
the same requested message and thus duplicate processing. If
the remote datacenter queue does not implement this func
tionality, the VMM 304 may refrain from forwarding the
message request.
[0043] FIG. 5 illustrates a general purpose computing
device, which may be used to provide local processing of
queue requests from co-located workers, arranged in accor
dance with at least some embodiments described herein.

[0044] For example, the computing device 500 may be used
to implement local message queue processing for co-located
workers as described herein. In an example basic con?gura
tion 502, the computing device 500 may include one or more
processors 504 and a system memory 506.A memory bus 508
may be used for communicating between the processor 504
and the system memory 506. The basic con?guration 502 is
illustrated in FIG. 5 by those components within the inner
dashed line.
[0045] Depending on the desired con?guration, the proces
sor 504 may be of any type, including but not limited to a
microprocessor (uP), a microcontroller (uC), a digital signal

Aug. 28, 2014

processor (DSP), or any combination thereof. The processor
504 may include one more levels of caching, such as a level
cache memory 512, a processor core 514, and registers 516.
The example processor core 514 may include an arithmetic
logic unit (ALU), a ?oating point unit (FPU), a digital signal
processing core (DSP Core), or any combination thereof. An
example memory controller 518 may also be used with the
processor 504, or in some implementations the memory con
troller 518 may be an internal part of the processor 504.

[0046] Depending on the desired con?guration, the system
memory 506 may be of any type including but not limited to
volatile memory (such as RAM), non-volatile memory (such
as ROM, ?ash memory, etc.) or any combination thereof. The
system memory 506 may include an operating system 520, a
virtual machine manager (V MM) application 522, and pro
gram data 524. The VMM application 522 may include a
queue detection module 526 for detecting queue usage of
local workers and a queue intercept module 528 for intercept
ing messages and message requests from local workers to
remote datacenter queues as described herein. The program
data 524 may include, among other data, queue cache data
530 or the like, as described herein.

[0047] The computing device 500 may have additional fea
tures or functionality, and additional interfaces to facilitate
communications between the basic con?guration 502 and any
desired devices and interfaces. For example, a bus/interface
controller 530 may be used to facilitate communications
between the basic con?guration 502 and one or more data
storage devices 532 via a storage interface bus 534. The data
storage devices 532 may be one or more removable storage
devices 536, one or more non-removable storage devices 538,
or a combination thereof. Examples of the removable storage
and the non-removable storage devices include magnetic disk
devices such as ?exible disk drives and hard-disk drives
(HDD), optical disk drives such as compact disk (CD) drives
or digital versatile disk (DVD) drives, solid state drives
(SSD), and tape drives to name a few. Example computer
storage media may include volatile and nonvolatile, remov
able and non-removable media implemented in any method
or technology for storage of information, such as computer
readable instructions, data structures, program modules, or
other data.

[0048] The system memory 506, the removable storage
devices 536 and the non-removable storage devices 538 are
examples of computer storage media. Computer storage
media includes, but is not limited to, RAM, ROM, EEPROM,
?ash memory or other memory technology, CD-ROM, digital
versatile disks (DVD), solid state drives, or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which may be used to store the desired information
and which may be accessed by the computing device 500.
Any such computer storage media may be part of the com
puting device 500.
[0049] The computing device 500 may also include an
interface bus 540 for facilitating communication from various
interface devices (e.g., one or more output devices 542, one or
more peripheral interfaces 544, and one or more communi
cation devices 566) to the basic con?guration 502 via the
bus/interface controller 530. Some of the example output
devices 542 include a graphics processing unit 548 and an
audio processing unit 550, which may be con?gured to com
municate to various external devices such as a display or
speakers via one or moreA/V ports 552. One or more example

US 2014/0245326 A1

peripheral interfaces 544 may include a serial interface con
troller 554 or a parallel interface controller 556, which may be
con?gured to communicate with external devices such as
input devices (e.g., keyboard, mouse, pen, voice input device,
touch input device, etc.) or other peripheral devices (e.g.,
printer, scanner, etc.) via one or more I/O ports 558. An
example communication device 566 includes a network con
troller 560, which may be arranged to facilitate communica
tions with one or more other computing devices 562 over a
network communication link via one or more communication
ports 564. The one or more other computing devices 562 may
include servers at a datacenter, customer equipment, and
comparable devices.
[0050] The network communication link may be one
example of a communication media. Communication media
may typically be embodied by computer readable instruc
tions, data structures, program modules, or other data in a
modulated data signal, such as a carrier wave or other trans
port mechanism, and may include any information delivery
media. A “modulated data signal” may be a signal that has one
or more of its characteristics set or changed in such a manner
as to encode information in the signal. By way of example,
and not limitation, communication media may include wired
media such as a wired network or direct-wired connection,
and wireless media such as acoustic, radio frequency (RF),
microwave, infrared (IR) and other wireless media. The term
computer readable media as used herein may include both
storage media and communication media.
[0051] The computing device 500 may be implemented as
a part of a general purpose or specialized server, mainframe,
or similar computer that includes any of the above functions.
The computing device 500 may also be implemented as a
personal computer including both laptop computer and non
laptop computer con?gurations.
[0052] Example embodiments may also include methods
for implementing local message queue processing for co
located workers. These methods can be implemented in any
number of ways, including the structures described herein.
One such way may be by machine operations, of devices of
the type described in the present disclosure. Another optional
way may be for one or more of the individual operations of the
methods to be performed in conjunction with one or more
human operators performing some of the operations while
other operations may be performed by machines. These
human operators need not be collocated with each other, but
each can be with a machine that performs a portion of the
program. In other examples, the human interaction can be
automated such as by pre-selected criteria that may be
machine automated.
[0053] FIG. 6 is a ?ow diagram illustrating an example
method for locally processing queue requests from co-located
workers that may be performed by a computing device such as
the computing device in FIG. 5, arranged in accordance with
at least some embodiments described herein.

[0054] Example methods may include one or more opera
tions, functions or actions as illustrated by one or more of
blocks 622, 624, 626, and/or 628, and may in some embodi
ments be performed by a computing device such as the com
puting device 500 in FIG. 5. The operations described in the
blocks 622-628 may also be stored as computer-executable
instructions in a computer-readable medium such as a com
puter-readable medium 620 of a computing device 610.
[0055] An example process for locally processing queue
requests from co-located workers may begin with block 622,

Aug. 28, 2014

“DETECT PRODUCER WORKER PROVIDING A MES
SAGE FORA QUEUE”, where a queue usage detector (e. g.,
the queue usage detector 312) may detect a local producer
worker (e.g., a producer worker executing on the virtual
machines 302) providing messages for a remote datacenter
queue. For example, the queue usage detector may detect a
write command (e.g., the write command 402) from a local
worker destined for a remote datacenter queue. In some
embodiments, if the local producer worker and/ or the remote
datacenter queue are known to be associated with a matched
queue as described above, an intercept module (e. g., the inter
cept module 308) may copy the message as described above
in FIG. 4.

[0056] Block 622 may be followed by block 624,
“LOCALLY STORE THE MESSAGE”, where the intercept
module may send the copied message to a local queue cache
(e.g., the queue cache 316) for local storage.
[0057] Block 624 may be followed by block 626, “DETER
MINE THATA CONSUMER WORKER REQUESTS MES
SAGES FROM THE SAME QUEUE”, where the intercept
module may determine that a local consumer worker (e.g., a
consumer worker executing on the virtual machines 302) is
requesting a message from the same remote datacenter queue.
For example, the intercept module may determine that the
consumer worker and/or the remote datacenter queue are
associated with the same matched queue, as described above.
The intercept module may then copy the message request, as
described above in FIG. 4.

[0058] Finally, block 626 may be followed by block 628,
“PROVIDE THE STORED MESSAGE TO THE CON
SUMER WORKER”, where the intercept module may send
the copied message request to the local queue cache, which in
turn may provide the message stored in block 624 to the
requesting consumer worker, as described above in relation to
FIG. 4.
[0059] FIG. 7 illustrates a block diagram of an example
computer program product, arranged in accordance with at
least some embodiments described herein.

[0060] In some examples, as shown in FIG. 7, the computer
program product 700 may include a signal bearing medium
702 that may also include one or more machine readable
instructions 704 that, when executed by, for example, a pro
cessor, may provide the functionality described herein. Thus,
for example, referring to the processor 504 in FIG. 5, the
VMM application 522 may undertake one or more of the tasks
shown in FIG. 7 in response to the instructions 704 conveyed
to the processor 504 by the medium 702 to perform actions
associated with local message queue processing for co-lo
cated workers as described herein. Some of those instructions
may include, for example, detecting a producer worker pro
viding a message for a queue, locally storing the message,
determining whether a consumer worker is requesting mes
sages from the same queue, and/ or providing the stored mes
sage to the consumer worker if the consumer worker is
requesting messages from the same queue, according to some
embodiments described herein.
[0061] In some implementations, the signal bearing
medium 702 depicted in FIG. 7 may encompass a computer
readable medium 706, such as, but not limited to, a hard disk
drive, a solid state drive, a Compact Disc (CD), a Digital
Versatile Disk (DVD), a digital tape, memory, etc. In some
implementations, the signal bearing medium 702 may
encompass a recordable medium 708, such as, but not limited
to, memory, read/write (R/W) CDs, R/W DVDs, etc. In some

US 2014/0245326 A1

implementations, the signal bearing medium 702 may
encompass a communications medium 710, such as, but not
limited to, a digital and/or an analog communication medium
(e.g., a ?ber optic cable, a waveguide, a wired communica
tions link, a wireless communication link, etc.). Thus, for
example, the program product 700 may be conveyed to one or
more modules of the processor 704 by an RF signal bearing
medium, where the signal bearing medium 702 is conveyed
by the wireless communications medium 710 (e. g., a wireless
communications medium conforming with the IEEE 802.11
standard). The computer program product 700 may be deliv
ered as a module for addition to a VMM such as a VMWare

Installation Bundle (VIB).
[0062] According to some examples, a method for locally
processing queue requests from co-located workers in a data
center may include detecting a producer worker at a ?rst
server sending a ?rst message to a datacenter queue at least
partially stored at a second server, storing the ?rst message at
the ?rst server, detecting a consumer worker at the ?rst server
sending a message request to the datacenter queue, and pro
viding the stored ?rst message to the consumer worker in
response to the message request.
[0063] According to some embodiments, the method may
further include intercepting the ?rst message sent by the
producer worker before storing the ?rst message and/or stor
ing the ?rst message at the ?rst server in a queue cache. The
queue cache may include a copy or a partial copy of the
datacenter queue. The method may further include building a
table of queue usage based on at least one observed datacenter
queue request and/ or observing the at least one observed
datacenter queue request.
[0064] According to other embodiments, the producer
worker and the consumer worker may be co-located on a
multi-core device at the ?rst server and/or executed on differ
ent virtual machines, the different virtual machines con?g
ured to execute on the same physical hardware. The method
may further include receiving a signal from a command chan
nel associated with the datacenter queue and modifying the
stored ?rst message in response to receiving the signal. Modi
fying the stored ?rst message may include deleting the ?rst
message.
[0065] According to further embodiments, the method may
further include intercepting the message request from the
consumer worker to the datacenter queue, forwarding the
message request to the datacenter queue if a ?rst criterion is
met, and refraining from forwarding the message request to
the datacenter queue if the ?rst criterion is not met. The ?rst
criterion may include whether the datacenter queue is con?g
ured to hide a requested message upon receiving the message
request from the consumer worker.
[0066] According to other examples, a virtual machine
manager (V MM) for locally processing queue requests from
co-located workers in a datacenter may include a queue usage
detector module and a processing module. The queue usage
detector module may be con?gured to detect a producer
worker at a ?rst server sending a ?rst message to a datacenter
queue at least partially stored at a second server and detect a
consumer worker at the ?rst server sending a message request
to the datacenter queue. The processing module may be con
?gured to store the ?rst message at the ?rst server and provide
the stored ?rst message to the consumer worker in response to
the message request.
[0067] According to some embodiments, the processing
module may be further con?gured to intercept the ?rst mes

Aug. 28, 2014

sage sent by the producer worker before storing the ?rst
message. The VMM may further include a queue cache con
?gured to store the ?rst message. The queue cache may
include a copy or a partial copy of the datacenter queue. The
processing module may be further con?gured to build a table
of queue usage based on at least one observed datacenter
queue request, and the queue usage detector module may be
con?gured to observe the at least one observed datacenter
queue request.
[0068] According to other embodiments, the producer
worker and the consumer worker may be co-located on a
multi-core device at the ?rst server and/or executed on differ
ent virtual machines, the different virtual machines con?g
ured to execute on the same physical hardware. The process
ing module may be further con?gured to receive a signal from
a command channel associated with the datacenter queue and
modify the stored ?rst message in response to receiving the
signal. Modifying the stored ?rst message may include delet
ing the ?rst message.
[0069] According to further embodiments, the processing
module may be further con?gured to intercept the message
request from the consumer worker to the datacenter queue,
forward the message request to the datacenter queue if a ?rst
criterion is met, and refrain from forwarding the message
request to the datacenter queue if the ?rst criterion is not met.
The ?rst criterion may include whether the datacenter queue
is con?gured to hide a requested message upon receiving the
message request from the consumer worker.

[0070] According to further examples, a cloud-based data
center is provided for locally processing queue requests from
co-located workers. The datacenter may include a ?rst and a
second virtual machine (V M) operable to be executed on one
or more physical machines and a datacenter controller. The
datacenter controller may be con?gured to detect a producer
worker executing on the ?rst VM and sending a ?rst message
to a datacenter queue at least partially stored at a ?rst data
center location, store the ?rst message at a second datacenter
location different from the ?rst, detect a consumer worker
executing on the secondVM and sending a mes sage request to
the datacenter queue, and provide the stored ?rst message to
the consumer worker in response to the message request,
where the message is stored and provided from within a
server local to the producer worker and the consumer worker.

[0071] According to some embodiments, the controller
may be further con?gured to intercept the ?rst message sent
by the producer worker before storing the ?rst message and/ or
store the ?rst message in a queue cache at the second data
center location. The queue cache may include a copy or a
partial copy of the datacenter queue. The controller may be
further con?gured to build a table of queue usage based on at
least one observed datacenter queue request and/or observe
the at least one observed datacenter queue request.

[0072] According to other embodiments, the producer
worker and the consumer worker may be co-located on a
multi-core device at the ?rst datacenter location and/or
executed on different virtual machines, the different virtual
machines con?gured to execute on the same physical hard
ware. The controller may be fur‘ther con?gured to receive a
signal from a command channel associated with the data
center queue and modify the stored ?rst message in response
to receiving the signal. Modifying the stored ?rst message
may include deleting the ?rst message.
[0073] According to further embodiments, the controller
may be further con?gured to intercept the message request

US 2014/0245326 A1

from the consumer worker to the datacenter queue, forward
the message request to the datacenter queue if a ?rst criterion
is met, and refrain from forwarding the message request to the
datacenter queue if the ?rst criterion is not met. The ?rst
criterion may include whether the datacenter queue is con?g
ured to hide a requested message upon receiving the message
request from the consumer worker.

[0074] According to yet further examples, a computer
readable storage medium may store instructions for locally
processing queue requests from co-located workers in a data
center. The instructions may include detecting a producer
worker at a ?rst server sending a ?rst message to a datacenter
queue at least partially stored at a second server, storing the
?rst message at the ?rst server, detecting a consumer worker
at the ?rst server sending a message request to the datacenter
queue, and providing the stored ?rst message to the consumer
worker in response to the message request.
[0075] According to some embodiments, the instructions
may further include intercepting the ?rst message sent by the
producer worker before storing the ?rst message and/or stor
ing the ?rst message at the ?rst server in a queue cache. The
queue cache may include a copy or a partial copy of the
datacenter queue. The instructions may further include build
ing a table of queue usage based on at least one observed
datacenter queue request and/or observing the at least one
observed datacenter queue request.
[0076] According to other embodiments, the producer
worker and the consumer worker may be co-located on a
multi-core device at the ?rst server and/or executed on differ
ent virtual machines, the different virtual machines con?g
ured to execute on the same physical hardware. The instruc
tions may further include receiving a signal from a command
channel associated with the datacenter queue and modifying
the stored ?rst message in response to receiving the signal.
Modifying the stored ?rst message may include deleting the
?rst message.
[0077] According to further embodiments, the instructions
may further include intercepting the message request from
the consumer worker to the datacenter queue, forwarding the
message request to the datacenter queue if a ?rst criterion is
met, and refraining from forwarding the message request to
the datacenter queue if the ?rst criterion is not met. The ?rst
criterion may include whether the datacenter queue is con?g
ured to hide a requested message upon receiving the message
request from the consumer worker.
[0078] There is little distinction left between hardware and
software implementations of aspects of systems; the use of
hardware or software is generally (but not always, in that in
certain contexts the choice between hardware and software
may become signi?cant) a design choice representing cost vs.
ef?ciency tradeoffs. There are various vehicles by which pro
cesses and/or systems and/or other technologies described
herein may be effected (e.g., hardware, software, and/ or ?rm
ware), and that the preferred vehicle will vary with the context
in which the processes and/ or systems and/ or other technolo
gies are deployed. For example, if an implementer determines
that speed and accuracy are paramount, the implementer may
opt for a mainly hardware and/or ?rmware vehicle; if ?ex
ibility is paramount, the implementer may opt for a mainly
software implementation; or, yet again alternatively, the
implementer may opt for some combination of hardware,
software, and/ or ?rmware.
[0079] The foregoing detailed description has set forth vari
ous embodiments of the devices and/ or processes via the use

Aug. 28, 2014

of block diagrams, ?owcharts, and/or examples. Insofar as
such block diagrams, ?owcharts, and/or examples contain
one or more functions and/ or operations, it will be understood
by those within the art that each function and/or operation
within such block diagrams, ?owcharts, or examples may be
implemented, individually and/or collectively, by a wide
range of hardware, software, ?rmware, or virtually any com
bination thereof. In one embodiment, several portions of the
subject matter described herein may be implemented via
Application Speci?c Integrated Circuits (ASICs), Field Pro
grammable Gate Arrays (FPGAs), digital signal processors
(DSPs), or other integrated formats. However, those skilled in
the art will recognize that some aspects of the embodiments
disclosed herein, in whole or in part, may be equivalently
implemented in integrated circuits, as one or more computer
programs running on one or more computers (e.g., as one or

more programs running on one or more computer systems), as
one or more programs running on one or more processors

(e.g., as one or more programs running on one or more micro

processors), as ?rmware, or as virtually any combination
thereof, and that designing the circuitry and/or writing the
code for the software and or ?rmware would be well within
the skill of one of skill in the art in light of this disclosure.

[0080] The present disclosure is not to be limited in terms of
the particular embodiments described in this application,
which are intended as illustrations of various aspects. Many
modi?cations and variations can be made without departing
from its spirit and scope, as will be apparent to those skilled in
the art. Functionally equivalent methods and apparatuses
within the scope of the disclosure, in addition to those enu
merated herein, will be apparent to those skilled in the art
from the foregoing descriptions. Such modi?cations and
variations are intended to fall within the scope of the
appended claims. The present disclosure is to be limited only
by the terms of the appended claims, along with the full scope
of equivalents to which such claims are entitled. It is to be
understood that this disclosure is not limited to particular
methods, reagents, compounds compositions or biological
systems, which can, of course, vary. It is also to be understood
that the terminology used herein is for the purpose of describ
ing particular embodiments only, and is not intended to be
limiting.
[0081] In addition, those skilled in the art will appreciate
that the mechanisms of the subject matter described herein
are capable of being distributed as a program product in a
variety of forms, and that an illustrative embodiment of the
subject matter described herein applies regardless of the par
ticular type of signal bearing medium used to actually carry
out the distribution. Examples of a signal bearing medium
include, but are not limited to, the following: a recordable
type medium such as a ?oppy disk, a hard disk drive, a
Compact Disc (CD), a Digital Versatile Disk (DVD), a digital
tape, a computer memory, a solid state drive, etc.; and a
transmission type medium such as a digital and/or an analog
communication medium (e.g., a ?ber optic cable, a
waveguide, a wired communications link, a wireless commu
nication link, etc.).
[0082] Those skilled in the art will recognize that it is
common within the art to describe devices and/ or processes in
the fashion set forth herein, and thereafter use engineering
practices to integrate such described devices and/or processes
into data processing systems. That is, at least a portion of the
devices and/ or processes described herein may be integrated
into a data processing system via a reasonable amount of

US 2014/0245326 A1

experimentation. Those having skill in the art will recognize
that a typical data processing system generally includes one
or more of a system unit housing, a video display device, a
memory such as volatile and non-volatile memory, proces
sors such as microprocessors and digital signal processors,
computational entities such as operating systems, drivers,
graphical user interfaces, and applications programs, one or
more interaction devices, such as a touch pad or screen,
and/ or control systems including feedback loops and control
motors (e.g., feedback for sensing position and/or velocity of
gantry systems; control motors for moving and/or adjusting
components and/ or quantities).

[0083] A typical data processing system may be imple
mented utilizing any suitable commercially available compo
nents, such as those typically found in data computing/com
munication and/or network computing/communication
systems. The herein described subject matter sometimes
illustrates different components contained within, or con
nected with, different other components. It is to be understood
that such depicted architectures are merely exemplary, and
that in fact many other architectures may be implemented
which achieve the same functionality. In a conceptual sense,
any arrangement of components to achieve the same func
tionality is effectively “associated” such that the desired func
tionality is achieved. Hence, any two components herein
combined to achieve a particular functionality may be seen as
“associated with” each other such that the desired function
ality is achieved, irrespective of architectures or intermediate
components. Likewise, any two components so associated
may also be viewed as being “operably connected”, or “oper
ably coupled”, to each other to achieve the desired function
ality, and any two components capable of being so associated
may also be viewed as being “operably couplable”, to each
other to achieve the desired functionality. Speci?c examples
of operably couplable include but are not limited to physically
connectable and/or physically interacting components and/or
wirelessly interactable and/or wirelessly interacting compo
nents and/or logically interacting and/or logically inter
actable components.
[0084] With respect to the use of substantially any plural
and/ or singular terms herein, those having skill in the art can
translate from the plural to the singular and/ or from the sin
gular to the plural as is appropriate to the context and/or
application. The various singular/plural permutations may be
expressly set forth herein for sake of clarity.
[0085] It will be understood by those within the art that, in
general, terms used herein, and especially in the appended
claims (e.g., bodies of the appended claims) are generally
intended as “open” terms (e.g., the term “including” should
be interpreted as “including but not limited to,” the term
“having” should be interpreted as “having at least,” the term
“includes” should be interpreted as “includes but is not lim
ited to,” etc .). It will be further understood by those within the
art that if a speci?c number of an introduced claim recitation
is intended, such an intent will be explicitly recited in the
claim, and in the absence of such recitation no such intent is
present. For example, as an aid to understanding, the follow
ing appended claims may contain usage of the introductory
phrases “at least one” and “one or more” to introduce claim
recitations. However, the use of such phrases should not be
construed to imply that the introduction of a claim recitation
by the inde?nite articles “a” or “an” limits any particular
claim containing such introduced claim recitation to embodi
ments containing only one such recitation, even when the

Aug. 28, 2014

same claim includes the introductory phrases “one or more”
“ a, or “at least one” and inde?nite articles such as a or “an”

(e.g., “a” and/ or “an” should be interpreted to mean “at least
one” or “one or more”); the same holds true for the use of
de?nite articles used to introduce claim recitations. In addi
tion, even if a speci?c number of an introduced claim recita
tion is explicitly recited, those skilled in the art will recognize
that such recitation should be interpreted to mean at least the
recited number (e. g., the bare recitation of “two recitations,”
without other modi?ers, means at least two recitations, or two
or more recitations).

[0086] Furthermore, in those instances where a convention
analogous to “at least one of A, B, and C, etc.” is used, in
general such a construction is intended in the sense one hav
ing skill in the art would understand the convention (e.g., “a
system having at least one of A, B, and C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/ or
A, B, and C together, etc.). It will be further understood by
those within the art that virtually any disjunctive word and/or
phrase presenting two or more alternative terms, whether in
the description, claims, or drawings, should be understood to
contemplate the possibilities of including one of the terms,
either of the terms, or both terms. For example, the phrase “A
or B” will be understood to include the possibilities of “A” or’
“B” or “A and B.”

[0087] In addition, where features or aspects of the disclo
sure are described in terms of Markush groups, those skilled
in the art will recognize that the disclosure is also thereby
described in terms of any individual member or subgroup of
members of the Markush group.

[0088] As will be understood by one skilled in the art, for
any and all purposes, such as in terms of providing a written
description, all ranges disclosed herein also encompass any
and all possible subranges and combinations of subranges
thereof. Any listed range can be easily recognized as suf?
ciently describing and enabling the same range being broken
down into at least equal halves, thirds, quarters, ?fths, tenths,
etc. As a non-limiting example, each range discussed herein
can be readily broken down into a lower third, middle third
and upper third, etc. As will also be understood by one skilled
in the art all language such as “up to,” “at least,” “greater
than,” “less than,” and the like include the number recited and
refer to ranges which can be subsequently broken down into
subranges as discussed above. Finally, as will be understood
by one skilled in the art, a range includes each individual
member. Thus, for example, a group having 1-3 cells refers to
groups having 1, 2, or 3 cells. Similarly, a group having 1-5
cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.
[0089] While various aspects and embodiments have been
disclosed herein, other aspects and embodiments will be
apparent to those skilled in the art. The various aspects and
embodiments disclosed herein are for purposes of illustration
and are not intended to be limiting, with the true scope and
spirit being indicated by the following claims.

1. A method to locally process queue requests from co
located workers in a datacenter, the method comprising:

detecting a producer worker at a ?rst server sending a ?rst
message to a datacenter queue at least partially stored at
a second server;

storing the ?rst message in a queue cache at the ?rst server,
wherein the queue cache includes one of a copy and a
partial copy of the datacenter queue;

US 2014/0245326 A1

detecting a consumer worker at the ?rst server sending a
message request to the datacenter queue;

providing the stored ?rst message to the consumer worker
in response to the message request;

receiving a signal from a command channel associated
with the datacenter queue; and

modifying the stored ?rst message in response to receiving
the signal.

2. The method of claim 1, further comprising intercepting
the ?rst message sent by the producer worker before storing
the ?rst message.

3.-6. (canceled)
7. The method of claim 1, wherein the producer worker and

the consumer worker are co-located on a multi-core device at

the ?rst server.
8. The method of claim 1, wherein the producer worker and

the consumer worker are executed on different virtual
machines, the different virtual machines con?gured to
execute on the same physical hardware.

9. (canceled)
10. The method of claim 1, wherein modifying the stored

?rst message includes deleting the ?rst message.
11. The method of claim 1, further comprising:
intercepting the message request from the consumer

worker to the datacenter queue;
forwarding the message request to the datacenter queue if

a ?rst criterion is met; and
refraining from forwarding the message request to the

datacenter queue if the ?rst criterion is not met.
12. The method of claim 11, wherein the ?rst criterion

includes whether the datacenter queue is con?gured to hide a
requested message upon receiving the message request from
the consumer worker.

13. A virtual machine manager (V MM) to locally process
queue requests from co-located workers in a datacenter, the
VMM comprising:

a queue usage detector module con?gured to:
detect a producer worker at a ?rst server, wherein the

producer worker sends a ?rst message to a datacenter
queue at least partially stored at a second server; and

detect a consumer worker at the ?rst server, wherein the
consumer worker sends a message request to the data
center queue, and wherein the producer worker and
the consumer worker are co-located on a multi-core

device at the ?rst server; and
a processing module con?gured to:

intercept the ?rst message sent by the producer worker;
store the ?rst message at the ?rst server;
provide the stored ?rst message to the consumer worker

in response to the message request;
receive a signal from a command channel associated

with the datacenter queue; and
modify the stored ?rst message in response to receiving

the signal.
14.-16. (canceled)
17. The VMM of claim 13, wherein the processing module

is further con?gured to build a table of queue usage based on
at least one observed datacenter queue request.

18. The VMM of claim 17, wherein the queue usage detec
tor module is further con?gured to observe the at least one
observed datacenter queue request.

19. (canceled)
20. The VMM of claim 13, wherein the producer worker

and the consumer worker are executed on different virtual

Aug. 28, 2014

machines, the different virtual machines con?gured to
execute on the same physical hardware.

21. (canceled)
22. (canceled)
23. The VMM of claim 13, wherein the processing module

is further con?gured to:
intercept the message request from the consumer worker to

the datacenter queue;
forward the message request to the datacenter queue if a

?rst criterion is met; and
refrain from forwarding the message request to the data

center queue if the ?rst criterion is not met.
24. The VMM of claim 23, wherein the ?rst criterion

includes whether the datacenter queue is con?gured to hide
the requested message upon receiving the message request
from the consumer worker.

25. A cloud-based datacenter con?gured to locally process
queue requests from co-located workers in the datacenter, the
datacenter comprising:

a ?rst and a second virtual machine (VM) operable to be
executed on one or more physical machines; and

a datacenter controller con?gured to:
detect a producer worker that is executed on a ?rst VM

and sends a ?rst message to a datacenter queue at least
partially stored at a ?rst datacenter location;

intercept the ?rst message sent by the producer worker
before storing the ?rst message;

store the ?rst message in a queue cache at a second
datacenter location different from the ?rst;

detect a consumer worker that is executed on a second

VM and sends a message request to the datacenter
queue;

provide the stored ?rst message to the consumer worker
in response to the message request, wherein the ?rst
message is stored and provided from within a server to
the producer worker and the consumer worker;

receive a signal from a command channel associated
with the datacenter queue; and

modify the stored ?rst message in response to receiving
the signal.

26. The datacenter of claim 25, wherein the controller is
further con?gured to intercept the ?rst message sent by the
producer worker before storing the ?rst message.

27. (canceled)
28. The datacenter of claim 25, wherein the queue cache

includes one of a copy and a partial copy of the datacenter
queue.

29. The datacenter of claim 25, wherein the controller is
further con?gured to build a table of queue usage based on at
least one observed datacenter queue request.

30. The datacenter of claim 29, wherein the controller is
further con?gured to observe the at least one observed data
center queue request.

31. The datacenter of claim 25, wherein the producer
worker and the consumer worker are co-located on a multi
core device at the ?rst datacenter location.

32. The datacenter of claim 25, wherein the ?rst and second
VMs are con?gured to execute on the same physical machine.

33. (canceled)
34. The datacenter of claim 25, wherein the controller is

further con?gured to modify the stored ?rst message by delet
ing the ?rst message.

35. The datacenter of claim 25, wherein the controller is
further con?gured to:

US 2014/0245326 A1 Aug. 28, 2014
10

intercept the message request from the consumer worker to
the datacenter queue;

forward the message request to the datacenter queue if a
?rst criterion is met; and

refrain from forwarding the message request to the data
center queue if the ?rst criterion is not met.

36. The datacenter of claim 35, wherein the ?rst criterion
includes whether the datacenter queue is con?gured to hide
the requested message upon receiving the message request
from the consumer worker.

37. (canceled)

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Description
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description/Claims
	Page 17 - Claims
	Page 18 - Claims

