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GRAPHIC MEMORY MANAGEMENT WITH 
INVISIBLE HARDWARE-MANAGED PAGE 

FAULTING 

BACKGROUND AND SUMMARY OF THE 
INVENTION 

The present application relates to computer graphics ren 
dering systems and methods, and particularly to handling of 
texture data used by rendering accelerators for 3D graphics. 

Background: 3D Computer Graphics 
One of the driving features in the performance of most 

single-user computers is computer graphics. This is particu 
larly important in computer games and Workstations, but is 
generally very important across the personal computer mar 
ket. 

For some years the most critical area of graphics develop 
ment has been in three-dimensional (“3D”) graphics. The 
peculiar demands of 3D graphics are driven by the need to 
present a realistic vieW, on a computer monitor, of a three 
dimensional scene. The pattern Written onto the tWo-dimen 
sional screen must therefore be derived from the three-dimen 
sional geometries in such a Way that the user can easily “see” 
the three-dimensional scene (as if the screen Were merely a 
WindoW into a real three-dimensional scene). This requires 
extensive computation to obtain the correct image for display, 
taking account of surface textures, lighting, shadoWing, and 
other characteristics. 

The starting point (for the aspects of computer graphics 
considered in the present application) is a three-dimensional 
scene, With speci?ed vieWpoint and lighting (etc.). The ele 
ments of a 3D scene are normally de?ned by sets of polygons 
(typically triangles), each having attributes such as color, 
re?ectivity, and spatial location. (For example, a Walking 
human, at a given instant, might be translated into a feW 
hundred triangles Which map out the surface of the human’s 
body.) Textures are “applied” onto the polygons, to provide 
detail in the scene. (For example, a ?at carpeted ?oor Will look 
far more realistic if a simple repeating texture pattern is 
applied onto it.) Designers use specialiZed modelling soft 
Ware tools, such as 3D Studio, to build textured polygonal 
models. 

The 3D graphics pipeline consists of tWo major stages, or 
subsystems, referred to as geometry and rendering. The 
geometry stage is responsible for managing all polygon 
activities and for converting three-dimensional spatial data 
into a tWo-dimensional representation of the vieWed scene, 
With properly-transformed polygons. The polygons in the 
three-dimensional scene, With their applied textures, must 
then be transformed to obtain their correct appearance from 
the vieWpoint of the moment; this transformation requires 
calculation of lighting (and apparent brightness), foreshort 
ening, obstruction, etc. 

HoWever, even after these transformations and extensive 
calculations have been done, there is still a large amount of 
data manipulation to be done: the correct values for EACH 
PIXEL of the transformed polygons must be derived from the 
tWo-dimensional representation. (This requires not only 
interpolation of pixel values Within a polygon, but also correct 
application of properly oriented texture maps.) The rendering 
stage is responsible for these activities: it “renders” the tWo 
dimensional data from the geometry stage to produce correct 
values for all pixels of each frame of the image sequence. 

The most challenging 3D graphics applications are 
dynamic rather than static. In addition to changing objects in 
the scene, many applications also seek to convey an illusion of 
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2 
movement by changing the scene in response to the user’s 
input. Whenever a change in the orientation or position of the 
camera is desired, every object in a scene must be recalculated 
relative to the neW vieW. As can be imagined, a fast-paced 
game needing to maintain a high frame rate Will require many 
calculations and many memory accesses. 

FIG. 2 shoWs a high-level overvieW of the processes per 
formed in the overall 3D graphics pipeline. HoWever, this is a 
very general overvieW, Which ignores the crucial issues of 
What hardWare performs Which operations. 

HardWare Acceleration 
Since rendering is a computationally intensive operation, 

numerous designs have of?oaded it from the main CPU. An 
example of this is the GLINT chip described beloW. 

Texturing 
There are different Ways to add complexity to a 3D scene. 

Creating more and more detailed models, consisting of a 
greater number of polygons, is one Way to add visual interest 
to a scene. HoWever, adding polygons necessitates paying the 
price of having to manipulate more geometry. 3D systems 
have What is knoWn as a “polygon budget,” an approximate 
number of polygons that can be manipulated Without unac 
ceptable performance degradation. In general, feWer poly 
gons yield higher frame rates. 
The visual appeal of computer graphics rendering is 

greatly enhanced by the use of “textures.” A texture is a 
tWo-dimensional image Which is mapped into the data to be 
rendered. Textures provide a very e?icient Way to generate 
the level of minor surface detail Which makes synthetic 
images realistic, Without requiring transfer of immense 
amounts of data. Texture patterns provide realistic detail at 
the sub-polygon level, so the higher-level tasks of polygon 
processing are not overloaded. See Foley et al., Computer 
Graphics: Principles and Practice (2.ed. 1990, corr. 1995), 
especially at pages 741-744; Paul S. Heckbert, “Fundamen 
tals of Texture Mapping and Image Warping,” Thesis submit 
ted to Dept. of EE and Computer Science, University of 
California, Berkeley, Jun. 17, 1994; Heckbert, “Survey of 
Computer Graphics,” IEEE Computer Graphics, November 
1986, pp. 56; all of Which are hereby incorporated by refer 
ence. Game programmers have also found that texture map 
ping is generally a very ef?cient Way to achieve very dynamic 
images Without requiring a hugely increased memory band 
Width for data handling. 
A typical graphics system reads data from a texture map, 

processes it, and Writes color data to display memory. The 
processing may include mipmap ?ltering Which requires 
access to several maps. The texture map need not be limited to 
colors, but can hold other information that can be applied to a 
surface to affect its appearance; this could include height 
perturbation to give the effect of roughness. The individual 
elements of a texture map are called “texels.” 
AWkWard side-effects of texture mapping occur unless the 

renderer can apply texture maps With correct perspective. 
Perspective-corrected texture mapping involves an algorithm 
that translates “texels” (pixels from the bitmap texture image) 
into display pixels in accordance With the spatial orientation 
of the surface. Since the surfaces are transformed (by the host 
or geometry engine) to produce a 2D vieW, the textures Will 
need to be similarly transformed by a linear transform (nor 
mally projective or “a?ine”). (In conventional terminology, 
the coordinates of the object surface, i.e. the primitive being 
rendered, are referred to as an (s,t) coordinate space, and the 
map of the stored texture is referred to a (u,v) coordinate 
space.) The transformation in the resulting mapping means 
that a horizontal line in the (x,y) display space is very likely to 
correspond to a slanted line in the (u,v) space of the texture 
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map, and hence many additional reads Will occur, due to the 
texturing operation, as rendering Walks along a horizontal 
line of pixels. 

Data and Memory Management 
Due to the extremely high data rates required at the end of 

the rendering pipeline, many features of computer architec 
ture take on neW complexities in the context of computer 
graphics (and especially in the area of texture management). 

Virtual Memory Management 
One of the basic tools of computer architecture is “virtual” 

memory. This is a technique Which alloWs application soft 
Ware to use a very large range of memory addresses, Without 
knoWing hoW much physical memory is actually present on 
the computer, nor hoW the virtual addresses correspond to the 
physical addresses Which are actually used to address the 
physical memory chips (or other memory devices) over a bus. 
Some further discussion of Virtual memory management 

can be found in Hennessy & Patterson, Computer Architec 
ture: a Quantititive Approach (2.ed. 1996); HWang and 
Briggs, Computer Architecture and Parallel Processing 
(1984); Subieta, Object-based virtual memory for PCs 
(1990); Can, Virtual memory management (1984); Lau, Per 
formance improvement of virtual memory systems (1982); 
and Loshin, Ef?cient Memory Programming (1998); all of 
Which are hereby incorporated by reference. An excellent 
hypertext tutorial is found in the Web pages Which start at 
http://cne.gmu.edu/Modules/VM/, and this hypertext tutorial 
is also hereby incorporated by reference. Another useful 
online resource is found at http://WWW.harlequin.com/mm/ 
reference/faq.html, and this too is hereby incorporated by 
reference. Much current Work can be found in the annual 
proceedings of the ACM lntemational Symposium on 
Memory Management (ISMM), Which are all hereby incor 
porated by reference. 
AGP and GART 
Beginning With the Pentium III, some Intel processors 

have included the capability for anAccelerated Graphics Port 
(AGP). The AGP provides a high-speed dedicated bus for fast 
transfer of graphics data. (Unlike the PCI bus, the AGP bus is 
pipelined, and alloWs only tWo devices on it.) 

To support this high-speed bus, the Intel speci?cation also 
provides a special protocol for “AGP memory.” This is not 
physically separate memory, but just dynamically-allocated 
system DRAM areas Which the graphics chip can access 
quickly. The Intel chip set includes address translation hard 
Ware Which makes the “AGP memory” look continuous to the 
graphics controller. This permits the graphics chip to access 
large texture bitmaps (eg 128 KB) as a single entity. 

Intel’s built-in chip set hardWare is called the GART 
(Graphics Address Remapping Table). The GART hardWare 
is someWhat similar in function to the paging hardWare in the 
CPU chip, in that the processor “linear” virtual addresses get 
automatically translated into physical addresses (Which may 
point to system RAM and local Frame Buffer memory, as Well 
as the AGP RAM). 

HoWever, this translation is fairly in?exible, and com 
pletely out of the user’s control. Thus it cannot be optimiZed 
forparticular applications, softWare architectures, or graphics 
accelerator architectures. 

Image Copying and Scaling 
One common operation in computer graphics is to copy a 

rectangular image to the screen, but only draW certain parts of 
it. For example, a texture image may be stored on an other 
Wise blank page; When the texture image is desired to be 
inserted into a display, the blank background page is obvi 
ously unneeded. The parts of the source image not to be 
copied are de?ned by setting them to a speci?c color, called 
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4 
the “key” color. During the copy, a test is made for the exist 
ence of this key color, and any pixels of this key color are 
rejected and therefore not copied. This technique alloWs an 
image of any shape to be copied onto a background, since the 
unWanted pixels are automatically excluded. For example, 
this could be used to shoW an explosion, Where the ?ames are 
represented by an image. 
As the explosion continues, or as the vieWer moves closer 

to it, its siZe increases. This effect is produced by scaling the 
image during the copy. Magnifying the image produces 
unWanted side effects, hoWever, and the ?nal image may 
appear blocky and unconvincing. When a texture has more 
than one color on the interior of the object, as is usually the 
case, the interior of the scaled texture Will also be blocky and 
unattractive, since there Will be no smooth transition betWeen 
blocks of different color. 
The normal Way to deal With this is to bilinear-?lter the 

image during the copy so that pixels in the source image are 
blended With their neighbors to remove the blocky effect. As 
described above, this procedure blends the color of a given 
pixel With the colors of that pixel’s nearest neighbors, to 
produce a smoother image overall. This Works Within the 
valid parts of the image, but leaves extremely block edges. 

There are three primary artifacts, or defects in the resulting 
image, caused by bilinear ?ltering and magni?cation of the 
image during copy. Each of these defects reduce the quality of 
the resultant image, but are typically unavoidable in present 
systems. 
The ?rst defect is a border effect caused by including some 

of the key color, Which should not be plotted, in the pixels that 
are valid for plotting. During the bilinear ?ltering operation, 
the edge pixels Will be colored in part by neighboring pixels 
Which Would not otherWise be copied at all. As a result, the 
edge pixels Will spuriously include some of the key color, and 
Will form a border around the plotted object. The resulting 
image Will appear to have a dark or shimmering outline, 
Which is obviously not intended. 

The second problem is the accuracy With Which the cut-out 
can be performed. When the source image is ?ltered, the 
normal Way of deciding Whether or not to plot a pixel is to test 
if any of the contributing pixels is valid, or if any of them are 
invalid. Since all of the edge pixels Will have been blended 
With a key color neighbor, and the bordering invalid pixels 
Will have been blended With a valid neighboring pixel, both 
approaches lead to ?nal image that has a different siZe before 
?ltering as compared to after ?ltering. The ?rst method makes 
the ?nal image too big, While the second method makes it too 
small. 
The third problem is that While bilinear ?ltering may 

smooth the color transitions Within the selected region of the 
copy, the edge of the cut-out does not get smoothed and 
remains blocky. 

Background: Bit-Blitting 
Bit-blit, also Written as bit blit and bitblt, is a pixel block 

copying procedure. The term “bitblt” is short form for “bit 
block transfer.” One of the most common uses of the bit-blit 
is in copying pixels from the back framebuffer, Where they 
Were Written by the graphics processor, to the front frame 
buffer, from Where they Will be scanned and displayed. Blit 
ting is also used to simply move a block of pixels from one set 
of memory locations to another, Which effectively moves 
those pixels on the display, e. g. scrolling of text or moving a 
WindoW on the screen. 

Virtual Texture Memory 
VirtualiZation of texture memory, like virtualiZation of host 

memory, gives the user the impression of a memory space 
Which is larger than can be physically accommodated in real 



US 7,710,425 B1 
5 

memory. This is achieved by partitioning the memory space 
into a small physical Working set and a large virtual set With 
dynamic swapping betWeen the tWo. For virtual memory 
management in CPUs the physical Working set is main 
memory and the virtual set is disk storage. 

The sWapping required for virtual memory management is 
normally done automatically (as far as the application soft 
Ware is concerned). There is a vast amount of literature con 
cerning CPU based virtual memory systems and their man 
agement. 

The apparently-larger virtual texture memory space 
increases performance as the optimum set of textures (or part 
of textures) are chosen for residence by the hardWare. It also 
simpli?es the management of texture memory by the driver 
and/or application Where either or both try to manage the 
memory manually. This is akin to program overlays before 
the days of virtual memory on CPUs Where the program had 
to dynamically load and unload segments of itself. 

The present inventor has realiZed that managing the texture 
memory in the driver or by the application is very dif?cult (or 
impossible) to do properly, because: 
1. What does the driver/application do When it runs out of 
memory and needs to ?t another texture in? Which 
texture(s) does it delete? 

2. The texture has to be completely resident and physically 
contiguous so a large enough space must be made avail 
able. 

3. A texture Which is about to be used MUST NOT be deleted 
or moved: otherWise all command buffers Will be outdated. 

4. In some cases a texture map Will not ?t into memory even 
When all other textures are deleted (a 2K><2K 32 bpp tex 
ture map takes 16 MBytes of memory). 

5. The texture heap must be compacted to reclaim storage. 
The idea of applying virtual management techniques to 

textures in 3D graphics hardWare appears to be suggested, for 
example, by US. Pat. No. 5,790,130 to Gannett. This patent 
suggests that “A graphics hardWare device, coupled to the 
host computer, renders texture mapped images, and includes 
a local memory that stores at least a portion of the texture data 
stored in the system memory at any one time. A softWare 
daemon runs on the processor of the host computer and man 
ages transferring texture data from the system memory to the 
local memory When needed by the hardWare device to render 
an image.” (Abstract) This and/or other virtual texture 
memory schemes are believed to have been used in some 
products of HP and SGI. HoWever, the present inventor has 
realiZed that these schemes are ill-suited for most personal 
computer applications (and many Workstation applications). 
The main aim in these implementation seems to have been to 
alloW very large texture maps (16M><16M or larger) to be 
used. By contrast, the innovations in the present application 
are not motivated only by desire for such large maps, but to 
remove the softWare problems in managing the compara 
tively small amount of texture storage (vs the large amounts 
of texture storage in SGI and HP machines) e?iciently. Thus 
it is possible that the architectural innovations disclosed 
herein can be used in combination With those used by SGI and 
HP. 

Graphics Memory Management With Invisible HardWare 
Managed Page Faulting 
As noted above, virtual memory architectures have long 

been used in general-purpose computers. HoWever, there 
turns out to be some surprising di?iculties in using this idea in 
computer graphics (especially for texture memory). The 
present application discloses several innovations related to 
virtualiZation and caching of texture memory. 
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6 
In particular, the present application discloses a computer 

system in Which a graphics accelerator unit manages page 
faulting of texture data invisibly to the host processor. 
When a logical page fault occurs and the page of texture is 

in the second level of memory (i.e. the host’s physical 
memory), it Will be fetched in automatically by the graphics 
memory manager, and the host is not aWare anything has 
happened. In a preferred embodiment, a number of automatic 
mechanisms Would be in place for this to happen: 

a. Determine Where the page is located in host physical 
memory. 

b. Determine Which page out of the Working set (in level 1 
memory) to use. In a sample embodiment, this determination 
uses the least recently used algorithm. 

c. Make this page the most recently used page (as Well as 
continuing to keep the least-recently-used list up to date as 
other pages are used). 

d. Update the page tables for the neW page and remove any 
reference to the page just bumped out of memory (if any). 

e. DoWnload the page. 

f. Restart texture processing. 

Note that if the faulting logical page identi?es a page in the 
third level memory the host does (a) (after having made the 
page available), but the hardWare carries on and does b, c, d, 
e and f. 

It should be noted that, once an interrupt is issued to get 
memory services, What happens in hardWare is not a concern 
for the host nor for the rendering software. 

Notable (and separately innovative) features of the virtual 
texture mapping architecture described in the present appli 
cation include at least the folloWing: A single chip solution is 
provided; TWo or three levels of texture memory hierarchy are 
supported; The page faulting is all done in hardWare With no 
host intervention; The texture memory management function 
can be used to manage texture storage in the host memory in 
addition to the texture storage in our normal texture memory; 
multiple memory pools are supported; and multiple rasteriZ 
ers can be supported. The present application is one of nine 
applications ?led simultaneously, Which are all contemplated 
to be implemented together in a common system. The other 
applications are (U .S. non-provisional application Ser. Nos. 
09/591,533, 09/591,532, 09/591,228, 09/591,231, 09/591, 
225, 09/591,226, 09/591,229, 09/591,230, and09/591,227 all 
?led Jun. 9, 2000), and all are hereby incorporated by refer 
ence. 

BRIEF DESCRIPTION OF THE DRAWING 

The disclosed inventions Will be described With reference 
to the accompanying draWings, Which shoW important 
sample embodiments of the invention and Which are incorpo 
rated in the speci?cation hereof by reference, Wherein: 

FIG. 1 is an overvieW of a computer system, With a render 
ing subsystem, Which incorporates the disclosed graphics 
memory management ideas. 

FIG. 2 is a very high-level vieW of other processes per 
formed in a 3D graphics computer system. 

FIG. 3 shoWs a block diagram of a 3D graphics accelerator 
subsystem. 

FIGS. 4A and 4B are a pair of How charts Which shoW hoW 
a texture is loaded, depending on Whether a cache miss 
occurs. 
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FIG. 5 shows a 2-D coordinate space mapped to a 1-D 
address range. 

FIG. 6 shoWs a 2x2 patch arrangement Within a texture 
map. 

FIGS. 7A and 7B shoW layouts in memory for the various 
supported formats. 

FIG. 8 shoWs hoW the map level and address can be 
encoded into the least amount of bits. 

FIG. 9 shoWs Which texels the memory reads bring in and 
the corresponding output fragments they Will satisfy. 

FIG. 10 shoWs a block diagram of the Texture Read Unit. 
FIG. 11 shoWs a block diagram of the Primary Cache 

Manager. 
FIG. 12 shoWs a block diagram of the Cache Directory. 
FIG. 13 shoWs a block diagram of the CAM Cell. 
FIG. 14 shoWs a block diagram of the Translation Look 

aside Buffer (TLB). 
FIG. 15 shoWs a block diagram of an individual CAM cell. 
FIG. 16 shoWs a sample con?guration Where tWo rasteriZ 

ers are served by a common memory manager and bus inter 
face chip. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

The numerous innovative teachings of the present applica 
tion Will be described With particular reference to the pres 
ently preferred embodiment (by Way of example, and not of 
limitation). 

The folloWing pages give details of a sample embodiment 
of the preferred rendering accelerator chip (referred to as ‘P3” 
in the following document, although not all details may apply 
to every chip revision marketed as P3). Particular attention 
Will be paid to the Texture Read Unit of this chip, Where many 
of the disclosed inventions are implemented. Commonly 
oWned US. application Ser. Nos. 09/322,828, 09/280,250, 
and 09/266,052 provide various other details of the contexts 
Within Which the claimed inventions are most preferably 
implemented, and are all incorporated herein by reference. 
The present application is one of nine applications ?led 
simultaneously, Which are all contemplated to be imple 
mented together in a common system. The other applications 
are (U .S. non-provisional application Ser. Nos. 09/591,533, 
09/591,532, 09/591,228, 09/591,231, 09/591,225, 09/591, 
226, 09/591,229, 09/591,230, and 09/591,227 all ?led Jun. 9, 
2000), and all are hereby incorporated by reference. Also 
incorporated by reference are commonly oWned co-pending 
US. provisional priority applications 60/138,350 and 60/ 138, 
248, both ?led Jun. 9, 1999, and provisional applications 
60/143,826, 60/143,712, 60/143,661, 60/143,655, 60/143, 
822, 60/143,825, 60/143,654, 60/143,660, 60/143,650, all 
?led on Jul. 13, 1999. 

The preferred embodiments presented are implemented in 
a PERMJEDIA 3TM (P3) graphics core produced by 3D Labs, Inc. 
The overall architecture of the graphics core is best vieWed 
using the softWare paradigm of a message passing system. In 
this system all the processing units are connected in a long 
pipeline With communication With the adjacent units being 
done through message passing. BetWeen each unit there is a 
small amount of buffering, the siZe being speci?c to the local 
communications requirements and speed of the tWo units. 
The message rate is variable and depends on the rendering 
mode. The messages do not propagate through the system at 
a ?xed rate typical of a more traditional pipeline system. If the 
receiving block cannot accept a message, because its input 
buffer is full, then the sending block stalls until space is 
available. A more expensive version of this chip is also con 
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8 
templated, and Will be referred to as “RX” in the folloWing 
description; the RX has the same functionality as the P3 chip, 
but has more memory etc. Both chips, and other members of 
the 3Dlabs family of pipelined rendering accelerators, may 
also be referred to generically as “GLINT” chips. 

FIG. 1 shoWs a block diagram of a sample computer system 
context; hoWever, the disclosed techniques can advanta 
geously be incorporated in any number of graphics systems. 

FIG. 3 shoWs a block diagram of a graphics processor 
Which can incorporate the disclosed embodiments of the 
read-modify-Write solutions in its rendering subsystem. A 
sample board incorporating the P3TM graphics processor may 
include these elements: 

the P3TM graphics core itself; 
a PCI/AGP interface; 
DMA controllers for PCI/AGP interface to the graphics 

core and memory; 
SGRAM/SDRAM, to Which the chip has read-Write access 

through its frame buffer (EB) and local buffer (LB) 
ports; 

a RAMDAC, Which provides analog color values in accor 
dance With the color values read out from the SGRAM/ 
SDRAM; and 

a video stream interface for output and display connectiv 
ity. 

Various claimed features, and/or features of particular 
interest, are found in the Texture Read Unit, Which Will noW 
be described in detail. 

Texture Read Unit Description 
The Texture Read Unit’ s main job is to manage the primary 

texture cache (the data part is in the Texture Filter Unit) and 
load texel data into it, preferably in advance of When it is 
needed. The primary cache can be used as one large cache or 
as tWo smaller (half siZe) caches depending on the type of 
texture mapping being done. The single large cache is an 
optimiZation and alloWs higher cache hits When the texture 
map is large or the polygon is large and a single bilinear 
texture is used. 
When texture needs to be loaded the address(es) are calcu 

lated for the texel data. These addresses may be physical 
addresses in Which case the address is issued to the Memory 
Controller and some time later the data returned. Altema 
tively the address may be a logical one so the folloWing steps 
are taken to resolve (or translate) it: 
The logical address (really just the page part) is looked up 

in the Translation Look aside Buffer (TLB) and if 
present the corresponding physical address is issued to 
the Memory Controller. 

The address translation may fail in the TLB so the page 
table in memory is accessed and if the page is resident 
the physical address is looked up, the TLB updated and 
the physical address is issued to the Memory Controller. 

The page may not be resident in the Working set so the page 
is read from host memory (or the host asked for it via an 
interrupt) and When it has been loaded the neWly updated 
page table is read, the TLB updated and the physical 
address is issued to the Memory Controller. The page 
may be marked as a host texture in Which case the 
address mapping is done, but the texture is not doWn 
loaded. 

The unit is controlled by the TextureReadMode0 and Tex 
tureReadMode1 messages for texture 0 and texture 1 respec 
tively. Both messages have an identical format, hoWever some 
modes are mutually exclusive as there are not enough 
resources to alloW all combinations. The supported combina 
tions are: 


















































