
US007710425B1

(12) Unlted States Patent (10) Patent N0.2 US 7,710,425 B1
Baldwin (45) Date of Patent: May 4, 2010

(54) GRAPHIC MEMORY MANAGEMENT WITH 5,842,015 A 11/1998 Cunniff et a1.
INVISIBLE HARDWARE-MANAGED PAGE 5,880,737 A 3/ 1999 Grif?n et a1.
FAULTING 5,886,705 A * 3/1999 LentZ 345/582

5,886,706 A 3/1999 Alcorn et a1.
75 _ . . - 5,999,189 A 12/1999 Kajiya et a1.

() Inventor. Ring/3d Robert Baldwln, Weybr1dge 6,002,407 A 0/1999 Fadden
6,002,410 A l2/l999 Battle

. . 6,011,565 A l/2000 Kuo et a1.
(73) AsslgneeZ 3Dlabs II“- Ltd's Hamllton (BM) 6,124,865 A * 9/2000 Meinerth et a1. 345/501

* _ _ _ _ _ 6,202,146 B1 * 3/2001 Slaughter et a1. 713/1

() Nome? subiectto any dlsclalmer?heterm Ofthls 6,246,422 B1* 6/2001 Emberling et a1. 345/552
patent is extended or adjusted under 35 6,249,853 B1 * 6/2001 Porter?eld 711/206
U.S.C. 154(b) by 2595 days. 6,295,068 B1 * 9/2001 Peddada et a1. 345/582

6,297,832 B1 * 10/2001 MiZuyabu et a1. 345/531

(21) Appl.No.: 09/591,225 6,344,852 B1 2/2002 Zhu
6,362,826 B1 * 3/2002 Doyle et a1. 345/532

(22) Filed; Jun_9,2000 6,374,404 B1* 4/2002 BrotZ et a1. 6,407,998 B1 * 6/2002 Polit et a1. 370/365

(51) IHLCL 6,538,650 B1 * 3/2003 Prasoonkumar et a1. 345/419

G06F 13/00 (200601) FOREIGN PATENT DOCUMENTS
G06T 11/40 (2006.01)
G06F 12/00 (2006.01) EP 766177 A1 * 4/1997

(52) US. Cl. 345/538; 345/552; 345/564 OTHER PUBLICATIONS
(58) Field of Classi?cation Search 345/50le503,

345/519, 531, 532, 520, 545, 541, 542, 552, Jim Blinn’s Corner, “The Truth About Texture Mapping” by James
345/557 566 568 582. '711/118 133 136 Blinn, IEEE Computer Graphics & Application, Mar. 1990, pp.

711/147, 151, 153, 154, 159, 160, 2024207 78-8“
See application ?le for complete search history. (Continued)

(56) References Cited Primary ExamineriAaron M Richer

5,548,709
5,548,740
5,594,860
5,611,064
5,696,927
5,706,481
5,790,130
5,828,382
5,831,640

A
A
A
A
A
A
A
A
A

8/1996
8/1996

* 1/1997

3/1997
* 12/1997

1/1998
8/1998

10/1998
11/1998

U.S. PATENT DOCUMENTS

Hannah et a1.
Kiyohara 345/543

Gauthier 345/543

Maund et a1.
MacDonald et a1. 711/207

Hannah et a1.
Gannett
Wilde
Wang et 31.

Wait for next fragment

421

Get missing texel details

Get Next Free Cache Line

Issue read texel patch
command to address generator

with destination cache line
address. The address generator
will write load details into T FIFO

after memory read(s) have
been issued

8 texels
referenced by fragment

in cache

Write message into 0
with details of cache lines used
by fragment, fragment details
and cache loads set in the
number of loads required

to update cache

(74) Attorney, Agent, or FirmiRobert Groover; Malcolm W.
Pipes; Groover & Associates

(57) ABSTRACT

A computer system in Which a graphics accelerator unit man
ages page faulting of texture data invisibly to the host proces
sor.

11 Claims, 14 Drawing Sheets

Write message into M FIF
with details of cache lines used
by fragment, fragment details

and cache loads = 0

US 7,710,425 B1
Page 2

OTHER PUBLICATIONS

Cox et al., “Multi-Level Texture Caching for 3D Graphics Hard
Ware,” Proceedings of the 25th International Symposium on Com
puter Architechture, 1998.
Foley et al., Computer Graphics: Principles and Practice (2.ed. 1990,
corr.l995), pp. 741-744.
Hakura and Gupta, “The Design and Analysis of a Cache Architec
ture for Texture Mapping,” Proceedings of the 24th International
Symposium on ComputerArchitechture, 1997.
Paul S. Heckbert, “Fundamentals of Texture Mapping and Image
Warping,” Thesis submitted to Dept. of EB and Computer Science,
University of California, Berkeley, Jun. 17, 1994.
Heckbert, “Survey of Computer Graphics,” IEEE Computer Graph
ics, Nov. 1986, pp. 56.
Igehy et al., “Prefetching in a Texture Cache Architecture”, IEEE.

Blinn, Jim Blinn’s Corner: “Dirty Pixels”, IEEE Computer Graphics
andApplications Journal, Jan. 1989, vol. 9, issue 4.
Blinn, Jim Blinn’ s Corner: “A Trip Down the Graphics Pipeline: Line
Clipping”, IEEE Computer Graphics and Applications Journal, Jan.
1991, vol. 11, issue I.
Blinn, Jim Blinn’s Corner: “A Trip Down the Graphics Pipeline:
Pixel Coordinates”, IEEE Computer Graphics and Applications
Journal, Jul. 1991, vol. 11, issue 4.
Blinn, Jim Blinn’s Corner: “A Trip Down the Graphics Pipeline:Sub
Pixelic Particles” IEEE Computer Graphics and Applications Jour
nal, Sep. 1991, vol. 11, issue 5.
Blinn, Jim Blinn’s Corner: “A Trip Down the Graphics Pipeline:
Grandpa, What Dopes VieWport Mean?”, IEEE Computer Graphics
andApplications Journal, Jan. 1992, vol. 12, iss. l.

* cited by examiner

US. Patent May 4, 2010 Sheet 1 0f 14 US 7,710,425 B1

SYSTEM BUS
A

BRIDGEIMEM
CONTROLLER MICROPROCESSOR

4_27 Q
KEYBOARD

IIF MANAGER
13-5- L RAM

4i) 4.8.5. MOUSE 460
£0 _|_ —— L2 CACHE

FLASH/NV MEMORY

@
DISPLAY VDA

5.52 £51

& HDD
4E

DISK l/F
FDD

4Q 5Q
CD-ROM

5%

ROM - BIOS

4_5§

PCMCIA AUDIO l/F SPEAKER

4.912 5E iZZ

V

FIG. 1

US. Patent May 4, 2010 Sheet 2 or 14 US 7,710,425 B1

l World coordinates (3D)

Transforms into view
coordinates and

canonical view volume
Transform

\fiew coordinates (3D)

Cup Clip against canonical
view volume

View coordinates (3D)

Project on to view plane

\fiew coordinates (20)

W

Transform Map into view port

Normalized device coordinates

Transform to physical
device coordinates

Physical device coordinates

Render

FIG. 2

US. Patent May 4, 2010 Sheet 4 or 14 US 7,710,425 B1

T FIFO empty
or Texel Data FlFO

403 Write data from Texel Data
\ FIFO to cache

line given by T FIFO

405\ Update Cache lines
loaded count

407\ Flush entry from both
FlFOs

409

4” lines loaded new
lines needed by

fragment
'2

' YES

Send fragment message
to Filter Unit

413\
415
\ Flush entry from M FlFO I

cache lines loaded =
new lines needed by fragment

T

FIG. 4A

US. Patent May 4, 2010 Sheet 5 0f 14 US 7,710,425 B1

(Start)

Wait for next fragment I

421 8 texels
referenced by fragment YES

in cache
? Write message into M FIFO
No with details of cache lines used

423 ‘ by fragment, fragment details
\ Get missing texel details I and Cache loads = 0

f

425
\ Get Next Free Cache Line I

Issue read texel patch
command to address generator

429\ with destination cache line
address. The address generator
will write load details into T FlFO

after memory read(s) have
been issued

referenced by fragment
in cache

Write message into M FlFO
with details of cache lines used
by fragment, fragment details
and cache loads set to the
number of loads required

to update cache

FIG. 4B

US. Patent May 4, 2010 Sheet 6 0f 14 US 7,710,425 B1

2D screen layout
width

5? f;

m

16 0 1 -—— n

64

ID memomayout Memory Page(1Kwords)

| 0 I 1"]—-—| n l m I
1024

: width/64*1024 ;

FIG.5

T0 T1 T0 T1 T0 T1 T0 T1 T0 T1
(0,4)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(7,4)(3,4)(9,4)
T2 T3 T2 T3 T2 T3 T2 T3 T2 T3

(°,3)(1,3)(2,3)(3,3)(4,3)(53)(6,3)(7.3)(3,3)(9,3)
T0 T1 T0 T1 T0 T1 T0 T1 T0 T1

(QZHLZHZJ)(3,2)(4,2)(5,2)(6,2)(7,2)(3,2)(9,2)
‘ ‘ T2 T3/T2/T3 T2 T3

A ,%<8,1H9-1>
7 7 7/ // 7 T0 T1 J

k ‘wrffr, . .r8.r>)(9.0)

Q 32 bit texels in memory word
[11111] 16 bit texels in memory word
@ 8 bit texels in memory word

FIG. 6

US. Patent May 4, 2010 Sheet 7 0f 14 US 7,710,425 B1

Linear or Patch64 Memory Layouts

32 bits per texel

129112104 96 88 8Q 72 64 56' 48 4Q 32 24. 16‘ 8' O
(3, 0) (2, 0) (1, 0) (0, 0)

16 bits per texel

120112104. 96 88 80 7g 64 56‘ 48 40 32 24' 16 8' 0
(7,0) (6,0) (5,0) (4,0) (3,0) (21 0) (1,0) (0,0)

8 bits per texel
120112104 96 88 8O 72 64 56 48 40 32 2416 8 0

(15,0) (11,0) (13,0) (12,0) (11,0) (10,0) (0,0) (0, 0) (1, 0) (6,0) (5, 0) (4,0) (3, 0) (2,0) (1,0) (0,0)

FIG. 7A

Patch32_2 or Patch2 Memory Layouts

32 bits per texel

1291121104‘ 96 88 8Q 72 64 56. 48 4Q 32 24' 16' 8' 0
(1,1) (0,1) (1, 0) (0, 0)

16 bits per texel

120112104‘ 96 88 80 7264 56' 48 40 32 24‘ 16 8' 0
(3,1) (2.1) (3,0) (2.0) (1.1) (0.1) (1,0) (0,0)

8 bits per texel
120112104 96 88 80 72 64 56 48 40 32 2416 8 0

(7,1) (6.1) (7-0) (6.0) (511) (4.1) (5.0) (410i (311) (2,1) (3,0) (Z0) (1.1) (0,1) (1.0) (010)

FIG. 7B

US. Patent May 4, 2010 Sheet 8 0f 14 US 7,710,425 B1

. 16. I

10...]10
. .12.

Map 0

22 20 .12. .16.
l1] 100 ' Map 1

.16. . .12. . .
j0...j8

2220M.
11000
i I

Map 2

.12. .
10.47 r i0...i7 '

.16... 2% .20. H
1 1 1 Map 3...11

FIG. 8
.n.

0 0
0 1 0 1 1|

* * * *

Number of memory reads for fragment

FIG. 9

S .m e m g

m 0 O

0 4| 0 1| 4|

m * * * * *

W m,

0 0

m * *

M

0 All 0 1 1

* * * *

Texel

Rastensatlon direction

my @100 B

US. Patent May 4, 2010 Sheet 10 or 14 US 7,710,425 B1

To the Address Generator

AGO FlFO AGl FlFO

i. l, i. 1,
map, map,
cacheLine, cacheLlne,
?lter ?lter
command

Cache Cache
DirectoryO Directoryl

i0, i1, map valid i0, i1, map valid
l), i1 l0. 11

Message stream ,

FIG. 11

US. Patent May 4, 2010 Sheet 12 or 14 US 7,710,425 B1

LoadData LoadEnable invalidate

22 P3)27(RX)
W key

s’él

r7. NNI

FIG. 13

US. Patent May 4, 2010 Sheet 13 or 14 US 7,710,425 B1

Physical Page

LoadAddr

lnTLB

-l"|llllllllll||llll| lnlll'ulnlll] CAM Cell
15
63 (
CAM

I I I | I l I l l ' l I l | l I I I I I | I | ‘ ' | I In.

FIG. 14

US. Patent May 4, 2010 Sheet 14 or 14 US 7,710,425 B1

LoadAddr ‘ Decode‘ Select

Select and LoadEnabie
LoadDala Select and invalidate | invalidate TLB

lResel
Set Valid

FF

: " Match

Logical Page & ——

FIG. 15

CPUs

GLiNT \
MMU

GLiNT / Memory

FIG. 16

US 7,710,425 B1
1

GRAPHIC MEMORY MANAGEMENT WITH
INVISIBLE HARDWARE-MANAGED PAGE

FAULTING

BACKGROUND AND SUMMARY OF THE
INVENTION

The present application relates to computer graphics ren
dering systems and methods, and particularly to handling of
texture data used by rendering accelerators for 3D graphics.

Background: 3D Computer Graphics
One of the driving features in the performance of most

single-user computers is computer graphics. This is particu
larly important in computer games and Workstations, but is
generally very important across the personal computer mar
ket.

For some years the most critical area of graphics develop
ment has been in three-dimensional (“3D”) graphics. The
peculiar demands of 3D graphics are driven by the need to
present a realistic vieW, on a computer monitor, of a three
dimensional scene. The pattern Written onto the tWo-dimen
sional screen must therefore be derived from the three-dimen
sional geometries in such a Way that the user can easily “see”
the three-dimensional scene (as if the screen Were merely a
WindoW into a real three-dimensional scene). This requires
extensive computation to obtain the correct image for display,
taking account of surface textures, lighting, shadoWing, and
other characteristics.

The starting point (for the aspects of computer graphics
considered in the present application) is a three-dimensional
scene, With speci?ed vieWpoint and lighting (etc.). The ele
ments of a 3D scene are normally de?ned by sets of polygons
(typically triangles), each having attributes such as color,
re?ectivity, and spatial location. (For example, a Walking
human, at a given instant, might be translated into a feW
hundred triangles Which map out the surface of the human’s
body.) Textures are “applied” onto the polygons, to provide
detail in the scene. (For example, a ?at carpeted ?oor Will look
far more realistic if a simple repeating texture pattern is
applied onto it.) Designers use specialiZed modelling soft
Ware tools, such as 3D Studio, to build textured polygonal
models.

The 3D graphics pipeline consists of tWo major stages, or
subsystems, referred to as geometry and rendering. The
geometry stage is responsible for managing all polygon
activities and for converting three-dimensional spatial data
into a tWo-dimensional representation of the vieWed scene,
With properly-transformed polygons. The polygons in the
three-dimensional scene, With their applied textures, must
then be transformed to obtain their correct appearance from
the vieWpoint of the moment; this transformation requires
calculation of lighting (and apparent brightness), foreshort
ening, obstruction, etc.

HoWever, even after these transformations and extensive
calculations have been done, there is still a large amount of
data manipulation to be done: the correct values for EACH
PIXEL of the transformed polygons must be derived from the
tWo-dimensional representation. (This requires not only
interpolation of pixel values Within a polygon, but also correct
application of properly oriented texture maps.) The rendering
stage is responsible for these activities: it “renders” the tWo
dimensional data from the geometry stage to produce correct
values for all pixels of each frame of the image sequence.

The most challenging 3D graphics applications are
dynamic rather than static. In addition to changing objects in
the scene, many applications also seek to convey an illusion of

20

25

30

35

40

45

50

55

60

65

2
movement by changing the scene in response to the user’s
input. Whenever a change in the orientation or position of the
camera is desired, every object in a scene must be recalculated
relative to the neW vieW. As can be imagined, a fast-paced
game needing to maintain a high frame rate Will require many
calculations and many memory accesses.

FIG. 2 shoWs a high-level overvieW of the processes per
formed in the overall 3D graphics pipeline. HoWever, this is a
very general overvieW, Which ignores the crucial issues of
What hardWare performs Which operations.

HardWare Acceleration
Since rendering is a computationally intensive operation,

numerous designs have of?oaded it from the main CPU. An
example of this is the GLINT chip described beloW.

Texturing
There are different Ways to add complexity to a 3D scene.

Creating more and more detailed models, consisting of a
greater number of polygons, is one Way to add visual interest
to a scene. HoWever, adding polygons necessitates paying the
price of having to manipulate more geometry. 3D systems
have What is knoWn as a “polygon budget,” an approximate
number of polygons that can be manipulated Without unac
ceptable performance degradation. In general, feWer poly
gons yield higher frame rates.
The visual appeal of computer graphics rendering is

greatly enhanced by the use of “textures.” A texture is a
tWo-dimensional image Which is mapped into the data to be
rendered. Textures provide a very e?icient Way to generate
the level of minor surface detail Which makes synthetic
images realistic, Without requiring transfer of immense
amounts of data. Texture patterns provide realistic detail at
the sub-polygon level, so the higher-level tasks of polygon
processing are not overloaded. See Foley et al., Computer
Graphics: Principles and Practice (2.ed. 1990, corr. 1995),
especially at pages 741-744; Paul S. Heckbert, “Fundamen
tals of Texture Mapping and Image Warping,” Thesis submit
ted to Dept. of EE and Computer Science, University of
California, Berkeley, Jun. 17, 1994; Heckbert, “Survey of
Computer Graphics,” IEEE Computer Graphics, November
1986, pp. 56; all of Which are hereby incorporated by refer
ence. Game programmers have also found that texture map
ping is generally a very ef?cient Way to achieve very dynamic
images Without requiring a hugely increased memory band
Width for data handling.
A typical graphics system reads data from a texture map,

processes it, and Writes color data to display memory. The
processing may include mipmap ?ltering Which requires
access to several maps. The texture map need not be limited to
colors, but can hold other information that can be applied to a
surface to affect its appearance; this could include height
perturbation to give the effect of roughness. The individual
elements of a texture map are called “texels.”
AWkWard side-effects of texture mapping occur unless the

renderer can apply texture maps With correct perspective.
Perspective-corrected texture mapping involves an algorithm
that translates “texels” (pixels from the bitmap texture image)
into display pixels in accordance With the spatial orientation
of the surface. Since the surfaces are transformed (by the host
or geometry engine) to produce a 2D vieW, the textures Will
need to be similarly transformed by a linear transform (nor
mally projective or “a?ine”). (In conventional terminology,
the coordinates of the object surface, i.e. the primitive being
rendered, are referred to as an (s,t) coordinate space, and the
map of the stored texture is referred to a (u,v) coordinate
space.) The transformation in the resulting mapping means
that a horizontal line in the (x,y) display space is very likely to
correspond to a slanted line in the (u,v) space of the texture

US 7,710,425 B1
3

map, and hence many additional reads Will occur, due to the
texturing operation, as rendering Walks along a horizontal
line of pixels.

Data and Memory Management
Due to the extremely high data rates required at the end of

the rendering pipeline, many features of computer architec
ture take on neW complexities in the context of computer
graphics (and especially in the area of texture management).

Virtual Memory Management
One of the basic tools of computer architecture is “virtual”

memory. This is a technique Which alloWs application soft
Ware to use a very large range of memory addresses, Without
knoWing hoW much physical memory is actually present on
the computer, nor hoW the virtual addresses correspond to the
physical addresses Which are actually used to address the
physical memory chips (or other memory devices) over a bus.
Some further discussion of Virtual memory management

can be found in Hennessy & Patterson, Computer Architec
ture: a Quantititive Approach (2.ed. 1996); HWang and
Briggs, Computer Architecture and Parallel Processing
(1984); Subieta, Object-based virtual memory for PCs
(1990); Can, Virtual memory management (1984); Lau, Per
formance improvement of virtual memory systems (1982);
and Loshin, Ef?cient Memory Programming (1998); all of
Which are hereby incorporated by reference. An excellent
hypertext tutorial is found in the Web pages Which start at
http://cne.gmu.edu/Modules/VM/, and this hypertext tutorial
is also hereby incorporated by reference. Another useful
online resource is found at http://WWW.harlequin.com/mm/
reference/faq.html, and this too is hereby incorporated by
reference. Much current Work can be found in the annual
proceedings of the ACM lntemational Symposium on
Memory Management (ISMM), Which are all hereby incor
porated by reference.
AGP and GART
Beginning With the Pentium III, some Intel processors

have included the capability for anAccelerated Graphics Port
(AGP). The AGP provides a high-speed dedicated bus for fast
transfer of graphics data. (Unlike the PCI bus, the AGP bus is
pipelined, and alloWs only tWo devices on it.)

To support this high-speed bus, the Intel speci?cation also
provides a special protocol for “AGP memory.” This is not
physically separate memory, but just dynamically-allocated
system DRAM areas Which the graphics chip can access
quickly. The Intel chip set includes address translation hard
Ware Which makes the “AGP memory” look continuous to the
graphics controller. This permits the graphics chip to access
large texture bitmaps (eg 128 KB) as a single entity.

Intel’s built-in chip set hardWare is called the GART
(Graphics Address Remapping Table). The GART hardWare
is someWhat similar in function to the paging hardWare in the
CPU chip, in that the processor “linear” virtual addresses get
automatically translated into physical addresses (Which may
point to system RAM and local Frame Buffer memory, as Well
as the AGP RAM).

HoWever, this translation is fairly in?exible, and com
pletely out of the user’s control. Thus it cannot be optimiZed
forparticular applications, softWare architectures, or graphics
accelerator architectures.

Image Copying and Scaling
One common operation in computer graphics is to copy a

rectangular image to the screen, but only draW certain parts of
it. For example, a texture image may be stored on an other
Wise blank page; When the texture image is desired to be
inserted into a display, the blank background page is obvi
ously unneeded. The parts of the source image not to be
copied are de?ned by setting them to a speci?c color, called

20

25

30

35

40

45

50

55

60

65

4
the “key” color. During the copy, a test is made for the exist
ence of this key color, and any pixels of this key color are
rejected and therefore not copied. This technique alloWs an
image of any shape to be copied onto a background, since the
unWanted pixels are automatically excluded. For example,
this could be used to shoW an explosion, Where the ?ames are
represented by an image.
As the explosion continues, or as the vieWer moves closer

to it, its siZe increases. This effect is produced by scaling the
image during the copy. Magnifying the image produces
unWanted side effects, hoWever, and the ?nal image may
appear blocky and unconvincing. When a texture has more
than one color on the interior of the object, as is usually the
case, the interior of the scaled texture Will also be blocky and
unattractive, since there Will be no smooth transition betWeen
blocks of different color.
The normal Way to deal With this is to bilinear-?lter the

image during the copy so that pixels in the source image are
blended With their neighbors to remove the blocky effect. As
described above, this procedure blends the color of a given
pixel With the colors of that pixel’s nearest neighbors, to
produce a smoother image overall. This Works Within the
valid parts of the image, but leaves extremely block edges.

There are three primary artifacts, or defects in the resulting
image, caused by bilinear ?ltering and magni?cation of the
image during copy. Each of these defects reduce the quality of
the resultant image, but are typically unavoidable in present
systems.
The ?rst defect is a border effect caused by including some

of the key color, Which should not be plotted, in the pixels that
are valid for plotting. During the bilinear ?ltering operation,
the edge pixels Will be colored in part by neighboring pixels
Which Would not otherWise be copied at all. As a result, the
edge pixels Will spuriously include some of the key color, and
Will form a border around the plotted object. The resulting
image Will appear to have a dark or shimmering outline,
Which is obviously not intended.

The second problem is the accuracy With Which the cut-out
can be performed. When the source image is ?ltered, the
normal Way of deciding Whether or not to plot a pixel is to test
if any of the contributing pixels is valid, or if any of them are
invalid. Since all of the edge pixels Will have been blended
With a key color neighbor, and the bordering invalid pixels
Will have been blended With a valid neighboring pixel, both
approaches lead to ?nal image that has a different siZe before
?ltering as compared to after ?ltering. The ?rst method makes
the ?nal image too big, While the second method makes it too
small.
The third problem is that While bilinear ?ltering may

smooth the color transitions Within the selected region of the
copy, the edge of the cut-out does not get smoothed and
remains blocky.

Background: Bit-Blitting
Bit-blit, also Written as bit blit and bitblt, is a pixel block

copying procedure. The term “bitblt” is short form for “bit
block transfer.” One of the most common uses of the bit-blit
is in copying pixels from the back framebuffer, Where they
Were Written by the graphics processor, to the front frame
buffer, from Where they Will be scanned and displayed. Blit
ting is also used to simply move a block of pixels from one set
of memory locations to another, Which effectively moves
those pixels on the display, e. g. scrolling of text or moving a
WindoW on the screen.

Virtual Texture Memory
VirtualiZation of texture memory, like virtualiZation of host

memory, gives the user the impression of a memory space
Which is larger than can be physically accommodated in real

US 7,710,425 B1
5

memory. This is achieved by partitioning the memory space
into a small physical Working set and a large virtual set With
dynamic swapping betWeen the tWo. For virtual memory
management in CPUs the physical Working set is main
memory and the virtual set is disk storage.

The sWapping required for virtual memory management is
normally done automatically (as far as the application soft
Ware is concerned). There is a vast amount of literature con
cerning CPU based virtual memory systems and their man
agement.

The apparently-larger virtual texture memory space
increases performance as the optimum set of textures (or part
of textures) are chosen for residence by the hardWare. It also
simpli?es the management of texture memory by the driver
and/or application Where either or both try to manage the
memory manually. This is akin to program overlays before
the days of virtual memory on CPUs Where the program had
to dynamically load and unload segments of itself.

The present inventor has realiZed that managing the texture
memory in the driver or by the application is very dif?cult (or
impossible) to do properly, because:
1. What does the driver/application do When it runs out of
memory and needs to ?t another texture in? Which
texture(s) does it delete?

2. The texture has to be completely resident and physically
contiguous so a large enough space must be made avail
able.

3. A texture Which is about to be used MUST NOT be deleted
or moved: otherWise all command buffers Will be outdated.

4. In some cases a texture map Will not ?t into memory even
When all other textures are deleted (a 2K><2K 32 bpp tex
ture map takes 16 MBytes of memory).

5. The texture heap must be compacted to reclaim storage.
The idea of applying virtual management techniques to

textures in 3D graphics hardWare appears to be suggested, for
example, by US. Pat. No. 5,790,130 to Gannett. This patent
suggests that “A graphics hardWare device, coupled to the
host computer, renders texture mapped images, and includes
a local memory that stores at least a portion of the texture data
stored in the system memory at any one time. A softWare
daemon runs on the processor of the host computer and man
ages transferring texture data from the system memory to the
local memory When needed by the hardWare device to render
an image.” (Abstract) This and/or other virtual texture
memory schemes are believed to have been used in some
products of HP and SGI. HoWever, the present inventor has
realiZed that these schemes are ill-suited for most personal
computer applications (and many Workstation applications).
The main aim in these implementation seems to have been to
alloW very large texture maps (16M><16M or larger) to be
used. By contrast, the innovations in the present application
are not motivated only by desire for such large maps, but to
remove the softWare problems in managing the compara
tively small amount of texture storage (vs the large amounts
of texture storage in SGI and HP machines) e?iciently. Thus
it is possible that the architectural innovations disclosed
herein can be used in combination With those used by SGI and
HP.

Graphics Memory Management With Invisible HardWare
Managed Page Faulting
As noted above, virtual memory architectures have long

been used in general-purpose computers. HoWever, there
turns out to be some surprising di?iculties in using this idea in
computer graphics (especially for texture memory). The
present application discloses several innovations related to
virtualiZation and caching of texture memory.

20

25

30

40

45

55

60

65

6
In particular, the present application discloses a computer

system in Which a graphics accelerator unit manages page
faulting of texture data invisibly to the host processor.
When a logical page fault occurs and the page of texture is

in the second level of memory (i.e. the host’s physical
memory), it Will be fetched in automatically by the graphics
memory manager, and the host is not aWare anything has
happened. In a preferred embodiment, a number of automatic
mechanisms Would be in place for this to happen:

a. Determine Where the page is located in host physical
memory.

b. Determine Which page out of the Working set (in level 1
memory) to use. In a sample embodiment, this determination
uses the least recently used algorithm.

c. Make this page the most recently used page (as Well as
continuing to keep the least-recently-used list up to date as
other pages are used).

d. Update the page tables for the neW page and remove any
reference to the page just bumped out of memory (if any).

e. DoWnload the page.

f. Restart texture processing.

Note that if the faulting logical page identi?es a page in the
third level memory the host does (a) (after having made the
page available), but the hardWare carries on and does b, c, d,
e and f.

It should be noted that, once an interrupt is issued to get
memory services, What happens in hardWare is not a concern
for the host nor for the rendering software.

Notable (and separately innovative) features of the virtual
texture mapping architecture described in the present appli
cation include at least the folloWing: A single chip solution is
provided; TWo or three levels of texture memory hierarchy are
supported; The page faulting is all done in hardWare With no
host intervention; The texture memory management function
can be used to manage texture storage in the host memory in
addition to the texture storage in our normal texture memory;
multiple memory pools are supported; and multiple rasteriZ
ers can be supported. The present application is one of nine
applications ?led simultaneously, Which are all contemplated
to be implemented together in a common system. The other
applications are (U .S. non-provisional application Ser. Nos.
09/591,533, 09/591,532, 09/591,228, 09/591,231, 09/591,
225, 09/591,226, 09/591,229, 09/591,230, and09/591,227 all
?led Jun. 9, 2000), and all are hereby incorporated by refer
ence.

BRIEF DESCRIPTION OF THE DRAWING

The disclosed inventions Will be described With reference
to the accompanying draWings, Which shoW important
sample embodiments of the invention and Which are incorpo
rated in the speci?cation hereof by reference, Wherein:

FIG. 1 is an overvieW of a computer system, With a render
ing subsystem, Which incorporates the disclosed graphics
memory management ideas.

FIG. 2 is a very high-level vieW of other processes per
formed in a 3D graphics computer system.

FIG. 3 shoWs a block diagram of a 3D graphics accelerator
subsystem.

FIGS. 4A and 4B are a pair of How charts Which shoW hoW
a texture is loaded, depending on Whether a cache miss
occurs.

US 7,710,425 B1
7

FIG. 5 shows a 2-D coordinate space mapped to a 1-D
address range.

FIG. 6 shoWs a 2x2 patch arrangement Within a texture
map.

FIGS. 7A and 7B shoW layouts in memory for the various
supported formats.

FIG. 8 shoWs hoW the map level and address can be
encoded into the least amount of bits.

FIG. 9 shoWs Which texels the memory reads bring in and
the corresponding output fragments they Will satisfy.

FIG. 10 shoWs a block diagram of the Texture Read Unit.
FIG. 11 shoWs a block diagram of the Primary Cache

Manager.
FIG. 12 shoWs a block diagram of the Cache Directory.
FIG. 13 shoWs a block diagram of the CAM Cell.
FIG. 14 shoWs a block diagram of the Translation Look

aside Buffer (TLB).
FIG. 15 shoWs a block diagram of an individual CAM cell.
FIG. 16 shoWs a sample con?guration Where tWo rasteriZ

ers are served by a common memory manager and bus inter
face chip.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The numerous innovative teachings of the present applica
tion Will be described With particular reference to the pres
ently preferred embodiment (by Way of example, and not of
limitation).

The folloWing pages give details of a sample embodiment
of the preferred rendering accelerator chip (referred to as ‘P3”
in the following document, although not all details may apply
to every chip revision marketed as P3). Particular attention
Will be paid to the Texture Read Unit of this chip, Where many
of the disclosed inventions are implemented. Commonly
oWned US. application Ser. Nos. 09/322,828, 09/280,250,
and 09/266,052 provide various other details of the contexts
Within Which the claimed inventions are most preferably
implemented, and are all incorporated herein by reference.
The present application is one of nine applications ?led
simultaneously, Which are all contemplated to be imple
mented together in a common system. The other applications
are (U .S. non-provisional application Ser. Nos. 09/591,533,
09/591,532, 09/591,228, 09/591,231, 09/591,225, 09/591,
226, 09/591,229, 09/591,230, and 09/591,227 all ?led Jun. 9,
2000), and all are hereby incorporated by reference. Also
incorporated by reference are commonly oWned co-pending
US. provisional priority applications 60/138,350 and 60/ 138,
248, both ?led Jun. 9, 1999, and provisional applications
60/143,826, 60/143,712, 60/143,661, 60/143,655, 60/143,
822, 60/143,825, 60/143,654, 60/143,660, 60/143,650, all
?led on Jul. 13, 1999.

The preferred embodiments presented are implemented in
a PERMJEDIA 3TM (P3) graphics core produced by 3D Labs, Inc.
The overall architecture of the graphics core is best vieWed
using the softWare paradigm of a message passing system. In
this system all the processing units are connected in a long
pipeline With communication With the adjacent units being
done through message passing. BetWeen each unit there is a
small amount of buffering, the siZe being speci?c to the local
communications requirements and speed of the tWo units.
The message rate is variable and depends on the rendering
mode. The messages do not propagate through the system at
a ?xed rate typical of a more traditional pipeline system. If the
receiving block cannot accept a message, because its input
buffer is full, then the sending block stalls until space is
available. A more expensive version of this chip is also con

20

25

30

35

40

45

50

55

60

65

8
templated, and Will be referred to as “RX” in the folloWing
description; the RX has the same functionality as the P3 chip,
but has more memory etc. Both chips, and other members of
the 3Dlabs family of pipelined rendering accelerators, may
also be referred to generically as “GLINT” chips.

FIG. 1 shoWs a block diagram of a sample computer system
context; hoWever, the disclosed techniques can advanta
geously be incorporated in any number of graphics systems.

FIG. 3 shoWs a block diagram of a graphics processor
Which can incorporate the disclosed embodiments of the
read-modify-Write solutions in its rendering subsystem. A
sample board incorporating the P3TM graphics processor may
include these elements:

the P3TM graphics core itself;
a PCI/AGP interface;
DMA controllers for PCI/AGP interface to the graphics

core and memory;
SGRAM/SDRAM, to Which the chip has read-Write access

through its frame buffer (EB) and local buffer (LB)
ports;

a RAMDAC, Which provides analog color values in accor
dance With the color values read out from the SGRAM/
SDRAM; and

a video stream interface for output and display connectiv
ity.

Various claimed features, and/or features of particular
interest, are found in the Texture Read Unit, Which Will noW
be described in detail.

Texture Read Unit Description
The Texture Read Unit’ s main job is to manage the primary

texture cache (the data part is in the Texture Filter Unit) and
load texel data into it, preferably in advance of When it is
needed. The primary cache can be used as one large cache or
as tWo smaller (half siZe) caches depending on the type of
texture mapping being done. The single large cache is an
optimiZation and alloWs higher cache hits When the texture
map is large or the polygon is large and a single bilinear
texture is used.
When texture needs to be loaded the address(es) are calcu

lated for the texel data. These addresses may be physical
addresses in Which case the address is issued to the Memory
Controller and some time later the data returned. Altema
tively the address may be a logical one so the folloWing steps
are taken to resolve (or translate) it:
The logical address (really just the page part) is looked up

in the Translation Look aside Buffer (TLB) and if
present the corresponding physical address is issued to
the Memory Controller.

The address translation may fail in the TLB so the page
table in memory is accessed and if the page is resident
the physical address is looked up, the TLB updated and
the physical address is issued to the Memory Controller.

The page may not be resident in the Working set so the page
is read from host memory (or the host asked for it via an
interrupt) and When it has been loaded the neWly updated
page table is read, the TLB updated and the physical
address is issued to the Memory Controller. The page
may be marked as a host texture in Which case the
address mapping is done, but the texture is not doWn
loaded.

The unit is controlled by the TextureReadMode0 and Tex
tureReadMode1 messages for texture 0 and texture 1 respec
tively. Both messages have an identical format, hoWever some
modes are mutually exclusive as there are not enough
resources to alloW all combinations. The supported combina
tions are:

