

US008886536B2

(12) United States Patent

Freeman et al.

(54) SYSTEM AND METHOD FOR DELIVERING TARGETED ADVERTISEMENTS AND TRACKING ADVERTISEMENT INTERACTIONS IN VOICE RECOGNITION CONTEXTS

(71) Applicant: VoiceBox Technologies Corporation, Bellevue, WA (US)

(72) Inventors: **Tom Freeman**, Mercer Island, WA (US);

(73) Assignee: VoiceBox Technologies Corporation,

Bellevue, WA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

Mike Kennwick, Bellevue, WA (US)

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/016,757

(22) Filed: Sep. 3, 2013

(65) Prior Publication Data

US 2014/0012577 A1 Jan. 9, 2014

Related U.S. Application Data

- (63) Continuation of application No. 13/371,870, filed on Feb. 13, 2012, now Pat. No. 8,527,274, which is a continuation of application No. 12/847,564, filed on Jul. 30, 2010, now Pat. No. 8,145,489, which is a continuation of application No. 11/671,526, filed on Feb. 6, 2007, now Pat. No. 7,818,176.
- (51) Int. Cl.

 G10L 15/18 (2013.01)

 G06F 17/27 (2006.01)

 G10L 21/00 (2013.01)

 G06Q 30/00 (2012.01)

 G10L 15/26 (2006.01)

 G06Q 30/02 (2012.01)

(52) **U.S. Cl.**

CPC *G10L 15/18* (2013.01); *G10L 15/265* (2013.01); *G06Q 30/0251* (2013.01); *G06Q 30/0241* (2013.01); *G06Q 30/0242* (2013.01)

(10) Patent No.: US 8,886,536 B2 (45) Date of Patent: Nov. 11, 2014

USPC **704/257**; 704/9; 704/270.1; 705/14.4

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,430,669 A		-		
4,821,027 A	4/1989	Mallory et al.	•••••	340/521
	(Cont	tinued)		

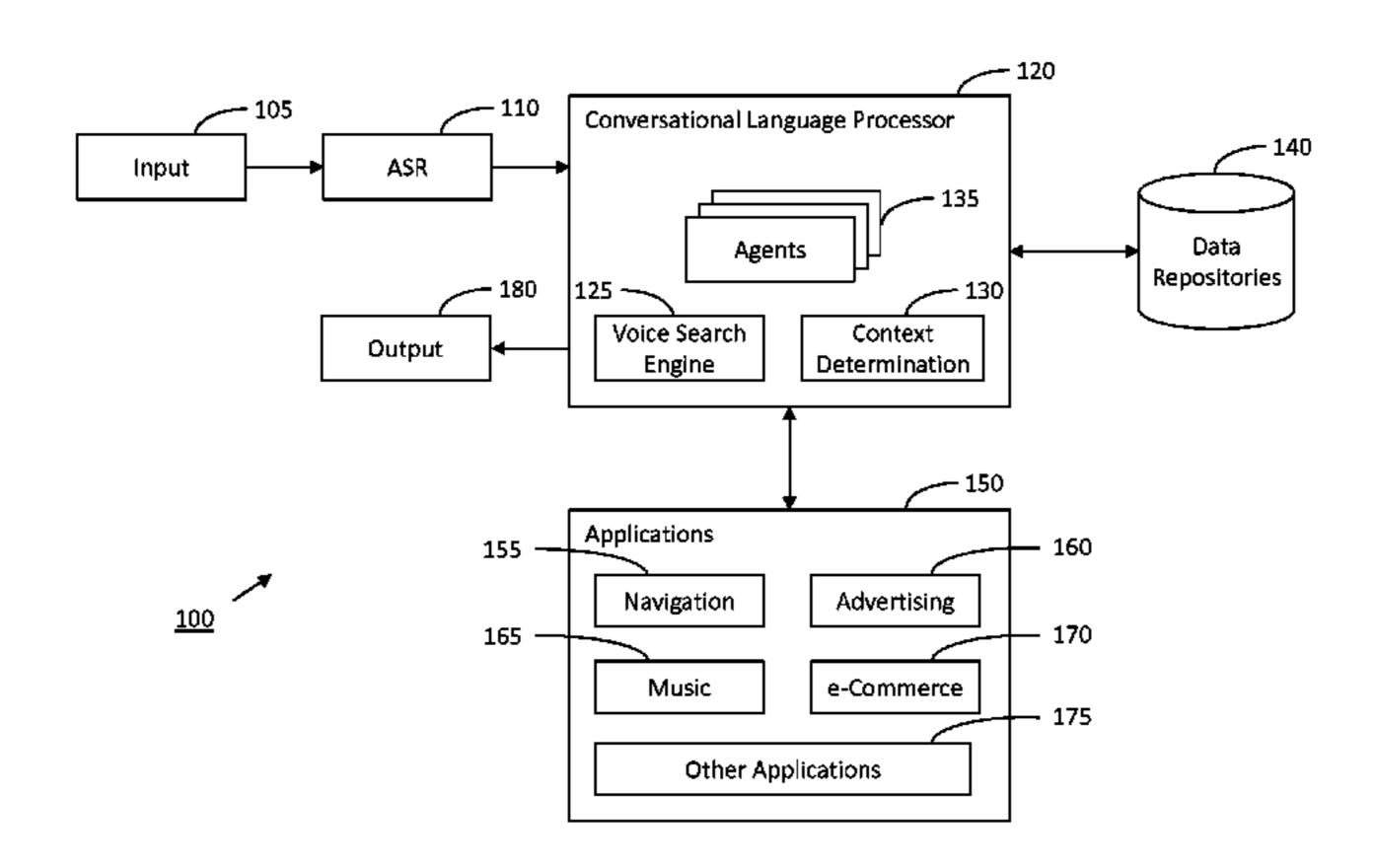
FOREIGN PATENT DOCUMENTS

EP 1 320 043 A2 6/2003 EP 1 646 037 4/2006

(Continued)

OTHER PUBLICATIONS

Reuters, "IBM to Enable Honda Drivers to Talk to Cars", Charles Schwab & Co., Inc., Jul. 28, 2002, 1 page.


(Continued)

Primary Examiner — Brian Albertalli (74) Attorney, Agent, or Firm — Pillsbury Winthrop Shaw Pittman LLP

(57) ABSTRACT

The system and method described herein may use various natural language models to deliver targeted advertisements and track advertisement interactions in voice recognition contexts. In particular, in response to an input device receiving an utterance, a conversational language processor may select and deliver one or more advertisements targeted to a user that spoke the utterance based on cognitive models associated with the user, various users having similar characteristics to the user, an environment in which the user spoke the utterance, or other criteria. Further, subsequent interaction with the targeted advertisements may be tracked to build and refine the cognitive models and thereby enhance the information used to deliver targeted advertisements in response to subsequent utterances.

55 Claims, 3 Drawing Sheets

(56)	Referen	ices Cited	5,995,119 5,995,928		Cosatto et al
U.S	S. PATENT	DOCUMENTS	6,009,382		Martino et al 704/1
			6,014,559		Amin 455/413
4,829,423 A		Tennant et al 364/200	6,018,708		Dahan et al 704/244 Gorin et al 704/1
4,910,784 A		Doddington et al 381/43	6,021,384 6,028,514		Lemelson et al 340/539
5,027,406 A 5,155,743 A		Roberts et al	6,035,267		Watanabe et al 704/1
5,164,904 A		Sumner 364/436	6,044,347		Abella et al 704/272
5,208,748 A		Flores et al 364/419	6,049,602		Foladare et al 379/265
5,274,560 A		LaRue 364/444	6,049,607 6,058,187		Marash et al
5,357,596 A		Takebayashi et al 395/2.84 Skinner 395/600	6,067,513		Ishimitsu 704/233
5,377,330 A 5,386,556 A		Hedin et al 395/600	6,076,059		Glickman et al 704/260
5,424,947 A		Nagao et al 364/419.08	6,078,886		Dragosh et al 704/270
5,471,318 A		Ahuja et al 358/400	6,081,774 6,085,186		De Hita et al
5,475,733 A		Eisdorfer et al	6,101,241		Boyce et al 379/88.01
5,488,652 A 5,499,289 A		Bielby et al 379/88 Bruno et al 379/220	6,108,631		Ruhl 704/270
5,500,920 A		Kupiec	6,119,087		Kuhn et al 704/270
5,517,560 A	5/1996	Greenspan 379/114	6,122,613		Baker 704/235
5,533,108 A		Harris et al 379/201	6,134,235 6,144,667		Goldman et al 370/352 Doshi et al 370/401
5,537,436 A 5,539,744 A		Bottoms et al 375/222 Chu et al 370/60	, ,		Surace et al 704/257
5,557,667 A		Bruno et al 379/201	, ,		Dahlke et al 379/88.03
5,559,864 A		Kennedy, Jr 379/59	, ,		Jackson et al 379/230
5,563,937 A		Bruno et al 379/201	, ,		Gillick et al 704/240
5,577,165 A		Takebayashi et al 395/2.84	6,173,266 6,173,279		Marx et al
5,590,039 A 5,608,635 A		Ikeda et al	6,175,858		Bulfer et al 709/206
5,617,407 A		Bareis 369/275.3	6,185,535		Hedin et al 704/270
5,633,922 A		August et al 379/220	6,188,982		Chiang
5,652,570 A		Lepkofker 340/573	6,192,110 6,192,338		Abella et al
5,675,629 A 5,696,965 A		Raffel et al	6,195,634		Dudemaine et al 704/231
5,708,422 A		Blonder et al 340/825.34	6,195,651		Handel et al 707/2
5,721,938 A		Stuckey 395/754	6,199,043		Happ 704/272
, ,		Chakrin et al 455/551	6,208,964 6,208,972		Sabourin
5,740,256 A	4/1998	Castello Da Costa	6,219,346		Maxemchuk 370/338
5,742,763 A	4/1998	et al	6,219,643		Cohen et al 704/257
5,748,841 A		Morin et al 395/2.66	6,226,612		Srenger et al 704/256
5,748,974 A		Johnson 395/759	6,233,556		Teunen et al 704/250
5,752,052 A		Richardson et al 395/759	6,233,559 6,233,561		Balakrishnan 704/275 Junqua et al 704/277
5,754,784 A 5,761,631 A		Garland et al	6,236,968		Kanevsky et al 704/275
5,774,841 A		Salazar et al 704/225	6,246,981		Papineni et al 704/235
5,774,859 A		Houser et al 704/275	6,246,990		Happ 704/275
5,794,050 A		Dahlgren et al 395/708	6,266,636 6,269,336		Kosaka et al 704/244 Ladd et al 704/270
5,794,196 A 5,797,112 A		Yegnanarayanan et al 704/255 Komatsu et al 701/201	6,272,455		Hoshen et al 704/1
5,799,112 A 5,799,276 A		Komissarchik et al 701/201	6,275,231	B1 8/2001	Obradovich 345/349
5,802,510 A		Jones 707/2	6,278,377		DeLine et al 340/815.4
5,832,221 A		Jones 375/200.36	6,278,968 6,288,319		Franz et al 704/3 Catona 84/609
5,839,107 A		Gupta et al 704/270	6,292,767		Jackson et al 704/1
5,848,396 A 5,855,000 A		Gerace	6,301,560	B1 10/2001	Masters 704/251
5,867,817 A		Catallo et al 704/255	6,308,151		Smith
5,878,385 A		Bralich et al 704/9	6,314,402 6,321,196		Monaco et al
5,878,386 A		Coughlin 704/10	6,356,869		Chapados et al 704/275
5,892,813 A 5,892,900 A		Morin et al 379/88.01 Ginter et al 395/186	6,362,748		Huang 340/901
5,895,464 A		Bhandari et al 707/3	6,366,882		Bijl et al 704/235
5,895,466 A		Goldberg et al 707/5	6,366,886 6,374,214		Dragosh et al 704/270.1 Friedland et al 704/235
5,897,613 A		Chan 704/210	6,377,913		Coffman et al 704/233
5,902,347 A 5,911,120 A		Backman et al 701/200 Jarett et al 455/417	6,381,535		Durocher et al 701/202
5,911,120 A 5,918,222 A		Fukui et al 707/1	6,385,596		Wiser et al 705/51
5,926,784 A	7/1999	Richardson et al 704/9	6,385,646		Brown et al 709/217
5,933,822 A		Braden-Harder et al 707/5	6,393,403 6,393,428		Majaniemi
5,950,167 A 5,953,393 A		Yaker	6,393,428		Li et al 707/102
5,955,395 A 5,960,397 A		Rahim 704/244	6,404,878		Jackson et al 379/221.01
5,960,399 A		Barclay et al 704/270	6,405,170		Phillips et al 704/270
5,960,447 A	9/1999	Holt et al 707/500	6,408,272		White et al 704/270.1
5,963,894 A		Richardson et al 704/9	6,411,810		Maxemchuk 455/453
5,963,940 A		Liddy et al			Ruhl
5,987,404 A 5,991,721 A		Della Pietra et al 704/9 Asano et al 704/257	6,415,257 6,418,210		Junqua et al 704/275 Sayko 379/142.15
5,551,141 A	11/1/22	1 100110 Vt 011 / VT/23/	0,710,210	1/2002	Sagro 313/174.13

(56)	Doforon	ces Cited		6,721,001	R1	4/2004	Berstis	348/231-3
(56)	Kelefell	ices Citeu		6,721,633			Funk et al.	
U	J.S. PATENT	DOCUMENTS		6,721,706			Strubbe et al	
6,420,975 E	31 7/2002	DeLine et al 3	40/8154	6,726,636 6,735,592			Der Ghazarian et al Neumann et al	
6,429,813 E		Feigen 34		6,739,556			Langston	
6,430,285 E		Bauer et al 37		6,741,931 6,742,021			Kohut et al	
6,430,531 E 6,434,523 E		Polish Monaco		6,745,161			Arnold et al	
6,434,524 E		Weber		6,751,591			Gorin et al	
6,434,529 E		Walker et al		6,751,612 6,754,485			Schuetze et al Obradovich et al	
6,442,522 E 6,446,114 E		Carberry et al		6,754,627	B2	6/2004	Woodward	704/235
6,453,153 E	9/2002	Bowker et al	455/67.4	6,757,544			Rangarajan et al	
6,453,292 E 6,456,711 E		Ramaswamy et al 37		6,757,718 6,795,808			Halverson et al	
6,456,974 E		Baker et al 7		6,801,604		10/2004	Maes et al	379/88.17
6,466,654 E		Cooper et al 3		6,801,893 6,813,341			Backfried et al	
6,466,899 E 6,470,315 E		Yano et al Netsch et al		6,829,603			Chai et al	
6,487,494 E		Odinak et al		6,832,230			Zilliacus et al	
6,487,495 E		Gale et al		6,833,848 6,850,603			Wolff et al Eberle et al	
6,498,797 E 6,499,013 E		Anerousis et al		6,856,990	B2		Barile et al	
6,501,833 E	32 12/2002	Phillips et al 3	79/88.07	6,865,481			Kawazoe et al	
6,501,834 E		Milewski et al 3		6,868,380 6,868,385			KroekerGerson	
6,505,155 E 6,510,417 E		Vanbuskirk et al		6,873,837			Yoshioka et al	
6,513,006 E		Howard et al		6,877,001			Wolf et al	
6,522,746 E		Marchok et al 37		6,877,134 6,901,366			Fuller et al	
6,523,061 E 6,532,444 E		Halverson et al		6,910,003			Arnold et al	
6,539,348 E	3/2003	Bond et al	704/9	6,912,498			Stevens et al	
6,549,629 E 6,553,372 E		Finn et al		6,915,126 6,928,614			Mazzara, Jr Everhart	
6,556,970 E		Brassell et al		6,934,756			Maes	
6,556,973 E	31 4/2003	Lewin	704/277	6,937,977			Gerson	
6,560,576 E		Cohen et al		6,937,982 6,944,594			Kitaoka et al	
6,560,590 E 6,567,778 E		Shwe et al		6,950,821			Faybishenko et al	
6,567,797 E	31 5/2003	Schuetze et al	707/2	6,954,755			Reisman	
6,570,555 E 6,570,964 E		Prevost et al		6,959,276 6,961,700			Droppo et al	
6,571,279 E		Herz et al		6,963,759		11/2005	Gerson	455/563
6,574,597 E	6/2003	Mohri et al	704/251	6,964,023			Maes et al	
6,574,624 E 6,578,022 E		Johnson et alFoulger et al		6,968,311 6,973,387			Knockeart et al	
6,581,103 E		Dengler		6,975,993		12/2005	Keiller	704/275
6,584,439 E	31 6/2003	Geilhufe et al	704/270	6,980,092			Turnbull et al	
6,587,858 E 6,591,239 E		Strazza McCall et al		, ,			Belfiore et al	
6,594,257 E		Doshi et al.		6,996,531	B2	2/2006	Korall et al	704/270
6,594,367 E		Marash et al		7,003,463 7,016,849			Maes et al	
6,598,018 E 6,601,026 E		Junqua		7,010,649			Thrift et al	
6,604,075 E		Brown et al 7		7,024,364			Guerra et al	
6,604,077 E		Dragosh et al		7,027,586 7,027,975			Bushey et al	
6,606,598 E 6,611,692 E		Holthouse et al		7,035,415			Belt et al	
6,614,773 E	9/2003	Maxemchuk	370/337	7,036,128			Julia et al	
6,615,172 E		Bennett et al		7,043,425 7,054,817			Pao	
6,622,119 E 6,629,066 E		Ramaswamy et al Jackson et al		7,058,890			George et al	
6,631,346 E	31 10/2003	Karaorman et al	704/9	7,062,488			Reisman	
6,631,351 E 6,633,846 E		Ramachandran et al Bennett et al		7,069,220 7,072,834			Coffman et al	
6,636,790 E		Lightner et al		7,076,362			Ohtsuji et al	
6,643,620 E	31 11/2003	Contolini et al	704/270	7,082,469			Gold et al	
6,650,747 E 6,658,388 E		Bala et al 37 Kleindienst et al		7,085,708 7,092,928			Manson Elad et al	
6,678,680 E		Woo		7,107,210			Deng et al	
6,681,206 E	31 1/2004	Gorin et al	704/243	7,107,218		9/2006	Preston	704/270
6,691,151 E 6,701,294 E		Cheyer et alBall et al		7,110,951 7,127,400			Lemelson et al Koch	
6,701,294 E		Parolkar et al 3		7,127,400			Abburi	
6,704,576 E	3/2004	Brachman et al	455/503	7,136,875	B2	11/2006	Anderson et al	707/104.1
6,704,708 E		Pickering		·			Coffman et al	
6,707,421 E 6,708,150 E		Drury et al		7,143,037 7,143,039			Chestnut	
0,700,130 E	J1 3/2004	TIII ayaiila Clail	1 UH/ ZH 3	7,143,039	ועו	11/2000	Surchian Clas	/ UH/Z/U

(56)	Refere	nces Cited	7,693,720 B2		Kennewick et al 704/2	
U.S	S. PATENT	DOCUMENTS	7,729,916 B2 7,729,918 B2 7,729,920 B2	6/2010	Coffman et al. 704/2 Walker et al. 704/2 Chaar et al. 704/2	275
7,146,319 B2	12/2006	Hunt 704/254	7,734,287 B2	6/2010	Ying 455/4	123
7,149,696 B2	12/2006	Shimizu et al 705/1	7,748,021 B2		Obradovich 725/1	
7,165,028 B2		Gong 704/233	7,788,084 B2 7,801,731 B2		Brun et al 704/2 Odinak et al 704/2	
7,170,993 B2		Anderson et al 379/265.09	7,801,731 B2 7,809,570 B2		Kennewick et al 704/2	
7,171,291 B2 7,174,300 B2		Obradovich 701/29 Bush 704/275	7,818,176 B2		Freeman et al 704/2	
7,177,798 B2		Hsu et al	7,831,426 B2		Bennett 704/2	
7,184,957 B2		Brookes et al 704/246	, ,		Belvin et al 704/2	
7,190,770 B2		Ando et al 379/88.01	7,856,358 B2* 7,873,519 B2		Ho	
7,197,069 B2		Agazzi et al 375/233	7,873,513 B2 7,873,523 B2		Potter et al 704/2	
7,197,460 B1 7,203,644 B2		Gupta et al 704/270.1 Anderson et al 704/246	7,873,654 B2		Bernard 707/7	
7,205,611 B2 7,206,418 B2		Yang et al	7,881,936 B2		Longe et al 704/2	
7,207,011 B2	4/2007	Mulvey et al 715/812	7,890,324 B2		Bangalore et al 704/2	
7,215,941 B2		Beckmann et al 455/404.1	7,894,849 B2 7,902,969 B2		Kass et al 455/550 Obradovich 340/4	
7,228,276 B2 7,231,343 B1		Omote et al 704/243 Treadgold et al 704/9	7,902,367 B2 7,917,367 B2		Di Cristo et al 704/270	
7,231,343 B1 7,236,923 B1		Gupta 704/9	7,920,682 B2		Byrne et al 379/88.	
7,254,482 B2		Kawasaki et al 701/211	7,949,529 B2		Weider et al 704/2	
7,272,212 B2	9/2007	Eberle et al 379/88.17	7,949,537 B2		Walker et al 704/2	
7,277,854 B2		Bennett et al 704/257	7,953,732 B2 7,974,875 B1		Frank et al	
7,283,829 B2		Christenson et al 455/461	7,974,873 B1 7,983,917 B2		Kennewick et al 703/12	
7,283,951 B2 7,289,606 B2		Marchisio et al 704/9 Sibal et al 379/52	7,984,287 B2		Gopalakrishnan et al 713/1	
7,299,186 B2		Kuzunuki et al 704/270.1	8,005,683 B2		Tessel et al 704/2	
7,301,093 B2		Sater et al 84/615	8,015,006 B2		Kennewick et al 704/2	
7,305,381 B1		Poppink et al 1/1	8,060,367 B2 8,069,046 B2		Keaveney	
7,321,850 B2		Wakita 704/10	8,009,040 B2 8,073,681 B2		Baldwin et al 704/2	
7,328,155 B2 7,337,116 B2		Endo et al 704/251 Charlesworth et al 704/254	8,077,975 B2		Ma et al	
7,340,040 B1		Saylor et al 379/67.1	8,082,153 B2	12/2011	Coffman et al 704/2	:70
7,366,285 B2		Parolkar et al 379/88.17	8,086,463 B2	12/2011	Ativanichayaphong	
7,366,669 B2		Nishitani et al 704/256	0 112 275 D2	2/2012	et al	
7,376,645 B2		Bernard	8,112,275 B2 8,140,327 B2		Kennewick et al 704/2 Kennewick et al 704/2	
7,386,443 B1 7,398,209 B2		Parthasarathy et al 704/201 Kennewick et al 704/255	8,140,335 B2		Kennewick et al 704/2	
7,396,209 B2 7,406,421 B2		Odinak et al 704/275	8,145,489 B2		Freeman et al 704/2	
7,415,414 B2		Azara et al 704/270	8,150,694 B2		Kennewick et al 704/2	
7,421,393 B1		Di Fabbrizio et al 704/275	8,155,962 B2		Kennewick et al 704/2	
7,424,431 B2		Greene et al 704/270	8,170,867 B2 8,195,468 B2		Germain	
7,447,635 B1 7,451,088 B1		Konopka et al 704/275 Ehlen et al 704/270.1	8,193,408 B2 8,219,399 B2		Lutz et al 704/2	
7,451,088 B1 7,454,608 B2		Gopalakrishnan et al 713/100	8,219,599 B2		Tunstall-Pedoe 707/9	
7,461,059 B2		Richardson et al 707/5	8,224,652 B2		Wang et al 704/2	
7,472,020 B2	12/2008	Brulle-Drews 701/211	8,255,224 B2		Singleton et al 704/2	
, ,		Gorin et al 704/240	8,326,627 B2		Kennewick et al 704/27	
7,472,075 B2 7,477,909 B2		Odinak et al 705/26 Roth 455/466	, ,		Di Cristo et al 704/270 Baldwin et al 704/2	
7,477,909 B2 7,478,036 B2		Shen et al 704/9	8,332,224 B2		Di Cristo et al 704/2	
7,487,088 B1		Gorin et al 704/240	8,370,147 B2		Kennewick et al 704/2	
7,487,110 B2		Bennett et al 705/26	8,447,607 B2		Weider et al 704/2	
7,493,259 B2		Jones et al 704/257	8,452,598 B2 8,500,403 B2*		Kennewick et al 704/2	
7,493,559 B1 7,502,672 B1		Wolff et al 715/727 Kolls 701/29	8,509,403 B2 * 8,515,765 B2		Chiu et al	
7,502,072 B1 7,502,738 B2		Kennewick et al 701/29	8,527,274 B2		Freeman et al 704/2	
7,516,076 B2		Walker et al 704/275	8,589,161 B2	11/2013	Kennewick et al 704/2	:52
7,529,675 B2	5/2009	Maes 704/270.1	8,620,659 B2		Di Cristo et al 704/2	
7,536,297 B2		Byrd et al 704/10	8,719,009 B2		Baldwin et al 704/2 Kennewick et al 704/2	
7,536,374 B2		Au	8,719,026 B2 8,738,380 B2		Baldwin et al 704/2	
7,542,894 B2 7,546,382 B2		Murata 704/9 Healey et al 709/246	, ,		Howard et al 704/2	
7,548,491 B2		Macfarlane			Kroeker et al 704/2	
7,552,054 B1		Stifelman et al 704/270	2001/0054087 A1		Flom et al 709/2	
7,558,730 B2		Davis et al 704/235	2002/0015500 A1		Belt et al	
7,574,362 B2		Walker et al 704/275	2002/0022927 A1 2002/0029261 A1		Lemelson et al 701/3 Shibata 709/2	
7,577,244 B2 7,606,708 B2		Taschereau	2002/0029201 A1 2002/0032752 A1		Gold et al 709/2	
7,600,708 B2 7,620,549 B2		Di Cristo et al 704/257	2002/0032732 AT 2002/0035501 A1		Handel et al 705/2	
7,634,409 B2		Kennewick et al 704/257	2002/0040297 A1		Tsiao et al 704/2	
7,640,006 B2		Portman et al 455/412.1	2002/0049535 A1	4/2002	Rigo et al 701/2	11
7,640,160 B2		Di Cristo et al 704/257	2002/0049805 A1		Yamada et al 709/2	
7,640,272 B2		Mahajan et al 707/104.1	2002/0065568 A1		Silfvast et al 700/	
·		Hwang et al 704/240			Heinrich 381/1	
7,676,369 B2		Fujimoto et al 704/270 Morikawa 704/211	2002/0069059 A1		Smith	
7,684,977 B2	3/2010	Morikawa 704/211	2002/0069071 A1	0/2002	Knockeart et al 704/2	,13

(56)	Referer	nces Cited				DeGolia	
U.S.	. PATENT	DOCUMENTS	2005/0283752 2006/0041431	A 1	2/2006	Fruchter et al	704/270.1
			2006/0047509			Ding et al	
2002/0082911 A1		Dunn et al 705/14	2006/0206310 2006/0217133			Ravikumar et al Christenson et al	
2002/0087326 A1		Lee et al 704/270.1	2006/0217133			Yin et al	
2002/0087525 A1		Abbott et al	2000/0283002			Cristo et al	
2002/0107694 A1		Lerg 704/273	2007/0033003			(Kelleher) François	
2002/0120609 A1		Lang et al 707/1	2007/0033020	711	2,2007	et al	
2002/0124050 A1 2002/0133354 A1		Middeljans 709/203 Ross et al 704/275	2007/0038436	A 1	2/2007	Cristo et al	
2002/0133334 A1 2002/0133402 A1		Faber et al 704/2/3	2007/0043569			Potter, III et al	
2002/0135402 AT		Maes et al 345/767	2007/0043574			Coffman et al	
2002/0133010 /11 2002/0138248 A1		Corston-Oliver et al 704/1	2007/0043868	$\mathbf{A1}$	2/2007	Kumar et al	709/226
2002/0143532 A1		McLean et al 704/235	2007/0050191	A 1	3/2007	Weider et al	704/275
2002/0143535 A1		Kist et al 704/251	2007/0055525	$\mathbf{A1}$	3/2007	Kennewick et al	704/257
2002/0161646 A1	10/2002	Gailey et al 705/14	2007/0061067			Zeinstra et al	
2002/0173333 A1		Buchholz et al 455/527	2007/0061735			Hoffberg et al	
2002/0173961 A1		Guerra 704/258	2007/0073544			Millett et al	
2002/0184373 A1		Maes 709/228	2007/0078708			Yu et al	
2002/0188602 A1		Stubler et al 707/3	2007/0078709 2007/0118357			Rajaram Kasravi et al	
2002/0198714 A1		Zhou 704/252	2007/0118337			Ramati et al	
2003/0014261 A1 2003/0016835 A1		Kageyama 704/275 Elko et al 381/92	2007/0133101			Satomi et al	
2003/0010833 A1 2003/0046346 A1		Mumick et al 709/205	2007/0110335			Altherg et al	
2003/0040340 A1 2003/0064709 A1		Gailey et al 455/412	2007/0179778			Gong et al.	
2003/0061703 A1		Funk et al 701/1	2007/0186165			Maislos et al	
2003/0069734 A1		Everhart 704/275	2007/0198267	A 1	8/2007	Jones et al	704/257
2003/0088421 A1		Maes et al 704/270.1	2007/0203736	A1*		Ashton	
2003/0097249 A1	5/2003	Walker et al 704/1	2007/0214182			Rosenberg	
2003/0110037 A1	6/2003	Walker et al 704/257	2007/0250901			McIntire et al	
2003/0112267 A1		Belrose 345/728	2007/0265850			Kennewick et al	
2003/0115062 A1		Walker et al 704/258	2007/0299824			Pan et al	
2003/0120493 A1		Gupta 704/270.1	2008/0034032			Healey et al	
2003/0135488 A1		Amir et al	2008/0065386 2008/0091406			Baldwin et al	
2003/0144846 A1 2003/0158731 A1		Denenberg et al 704/277	2008/0001400			Printz et al	
2003/0138/31 A1 2003/0161448 A1		Falcon et al	2008/0109781			Reuther et al	
2003/0101448 A1 2003/0182132 A1		Niemoeller 704/275	2008/0115163			Gilboa et al.	
2003/0102132 711 2003/0204492 A1		Wolf et al 707/3	2008/0133215			Sarukkai	
2003/0206640 A1		Malvar et al 381/93	2008/0140385	A 1	6/2008	Mahajan et al	704/9
2003/0212550 A1		Ubale 704/215	2008/0147410	A1	6/2008	Odinak	704/270.1
2003/0212558 A1	11/2003	Matula 704/260	2008/0154604			Sathish et al	
2003/0212562 A1		Patel et al 704/275	2008/0177530			Cross et al	
2003/0225825 A1		Healey et al 709/203	2008/0189110			Freeman et al	
2003/0236664 A1		Sharma 704/251	2008/0235023 2008/0235027			Kennewick et al Cross	
2004/0006475 A1		Ehlen et al	2008/0233027			Kennewick et al	
2004/0010358 A1		Oesterling et al 701/49	2008/0319731			Jones et al	
2004/0025115 A1 2004/0044516 A1		Sienel et al	2009/0052639			Agarwal et al	
2004/0044310 A1 2004/0098245 A1		Walker et al 704/3	2009/0076827			Bulitta et al	
2004/0117179 A1		Balasuriya 704/231	2009/0106029			DeLine et al	
2004/0117804 A1		Scahill et al 719/320	2009/0117885	$\mathbf{A}1$	5/2009	Roth	455/414.3
2004/0122674 A1	6/2004	Bangalore et al 704/276	2009/0144271			Richardson et al	
2004/0140989 A1	7/2004	Papageorge 345/700	2009/0150156			Kennewick et al	
2004/0158555 A1		Seedman et al 707/3	2009/0171664			Kennewick et al	
2004/0166832 A1		Portman et al 455/412.1	2009/0216540			Tessel et al	
2004/0167771 A1		Duan et al	2009/0271194 2009/0273563			Davis et al Pryor	
2004/0172258 A1		Dominach et al 704/277	2009/02/3303			Anderson et al	
2004/0193408 A1 2004/0193420 A1		Hunt	2009/0299745			Kennewick et al	
2004/0193420 A1 2004/0199375 A1		Ehsani et al 704/237	2009/0307031			Winkler et al	
2004/0195575 A1 2004/0205671 A1		Sukehiro et al 715/532	2009/0313026			Coffman et al	
2004/0243417 A9		Pitts, III et al 704/276	2010/0023320	A 1	1/2010	Di Cristo et al	704/9
2005/0015256 A1		Kargman 704/272	2010/0029261	A 1		Mikkelsen et al	
2005/0021334 A1		Iwahashi 704/240	2010/0036967			Caine et al	
2005/0021470 A1		Martin et al 705/51	2010/0049501			Kennewick et al	
2005/0021826 A1		Kumar 709/232	2010/0049514			Kennewick et al	
2005/0033574 A1		Kim et al 704/251	2010/0057443			Di Cristo et al	
2005/0033582 A1*		Gadd et al 704/277	2010/0063880			Atsmon et al	
2005/0043940 A1		Elder 704/9	2010/0145700 2010/0185512			Kennewick et al Borger et al	
2005/0114116 A1 2005/0125232 A1		Fiedler 704/201 Gadd 704/270.1	2010/0185512			Kennewick et al	
2005/0123232 A1 2005/0131673 A1		Koizumi et al 704/270.1	2010/0204980			Kennewick et al	
2005/0131073 A1 2005/0137850 A1		Odell 704/4	2010/0204994			Baldwin et al	
2005/0137830 A1 2005/0137877 A1		Oesterling et al 704/4	2010/021/004			Kennewick et al	
2005/0137877 A1 2005/0143994 A1		Mori et al 704/273				Freeman et al	
		Gupta et al 704/233				Odinak et al	
2005/0210234 A1 2005/0234727 A1		Chiu 704/270.1	2010/0312300			Kennewick et al	
ZUUDIUZDTIZI AI	10/2003	CHIM / UT/ 2 / U.1	2011/011202/	. * 1	5/2011	TROTTILO VY TOR OL AL	, <i>t</i> UT/J

(56) References Cited

U.S. PATENT DOCUMENTS

2011/0112921 A1	5/2011	Kennewick et al 705/26.1
2011/0131036 A1	6/2011	Di Cristo et al 704/9
2011/0131045 A1	6/2011	Cristo et al 704/249
2011/0231182 A1	9/2011	Weider et al 704/9
2011/0231188 A1	9/2011	Kennewick et al 704/236
2012/0022857 A1	1/2012	Baldwin et al 704/9
2012/0101809 A1	4/2012	Kennewick et al 704/9
2012/0101810 A1		Kennewick et al 704/9
2012/0109753 A1		Kennewick et al 705/14.58
2012/0150636 A1	6/2012	Freeman et al 705/14.49
2012/0278073 A1		Weider et al 704/235
2013/0054228 A1		Baldwin et al 704/9
2013/0211710 A1	8/2013	Kennewick et al 701/419
2013/0253929 A1	9/2013	Weider et al 704/235
2013/0297293 A1	11/2013	Di Cristo et al 704/9
2013/0304473 A1		Baldwin et al 704/257
2013/0339022 A1		Baldwin et al 704/257
2013/0333022 A1		Di Cristo et al 704/254
2014/0156278 A1	6/2014	Kennewick et al 704/254

FOREIGN PATENT DOCUMENTS

JP	2006-146881	6/2006
JP	2008-027454	2/2008
JP	2008-139928	6/2008
WO	WO 99/46763	9/1999
WO	WO 00/21232	4/2000
WO	WO 00/46792	8/2000
WO	WO 01/78065	10/2001
WO	WO 2004/072954	8/2004
WO	WO 2007/019318	2/2007
WO	WO 2007/021587	2/2007
WO	WO 2007/027546	3/2007
WO	WO 2007/027989	3/2007
WO	WO 2008/098039	8/2008
WO	WO 2008/118195	10/2008
WO	WO 2009/075912	6/2009
WO	WO 2009/145796	12/2009
WO	WO 2010/096752	8/2010

OTHER PUBLICATIONS

Lin, Bor-shen, et al., "A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History", ASRU'99, 1999, 4 pages.

Kuhn, Thomas, et al., "Hybrid In-Car Speech Recognition for Mobile Multimedia Applications", Vehicular Technology Conference, IEEE, Jul. 1999, pp. 2009-2013.

Belvin, Robert, et al., "Development of the HRL Route Navigation Dialogue System", Proceedings of the First International Conference on Human Language Technology Research, San Diego, 2001, pp. 1-5.

Lind, R., et al., "The Network Vehicle—A Glimpse into the Future of Mobile Multi-Media", *IEEE Aerosp. Electron. Systems Magazine*, vol. 14, No. 9, Sep. 1999, pp. 27-32.

Zhao, Yilin, "Telematics: Safe and Fun Driving", *IEEE Intelligent Systems*, vol. 17, Issue 1, 2002, pp. 10-14.

Chai et al., "MIND: A Semantics-Based Multimodal Interpretation Framework for Conversational System", *Proceedings of the International Class Workshop on Natural, Intelligent and Effective Interaction in Multimodal Dialogue Systems*, Jun. 2002, pp. 37-46.

Cheyer et al., "Multimodal Maps: An Agent-Based Approach", *International Conference on Cooperative Multimodal Communication* (CMC/95), May 24-26, 1995, pp. 111-121.

Elio et al., "On Abstract Task Models and Conversation Policies" in Workshop on Specifying and Implementing Conversation Policies, *Autonomous Agents '99*, Seattle, 1999, 10 pages.

Turunen, "Adaptive Interaction Methods in Speech User Interfaces", Conference on Human Factors in Computing Systems, Seattle, Washington, 2001, pp. 91-92.

Mao, Mark Z., "Automatic Training Set Segmentation for Multi-Pass Speech Recognition", Department of Electrical Engineering, Stanford University, CA, copyright 2005, IEEE, pp. I-685 to I-688. Vanhoucke, Vincent, "Confidence Scoring and Rejection Using Multi-Pass Speech Recognition", Nuance Communications, Menlo Park, CA, 2005, 4 pages.

Weng, Fuliang, et al., "Efficient Lattice Representation and Generation", Speech Technology and Research Laboratory, SRI International, Menlo Park, CA, 1998, 4 pages.

El Meliani et al., "A Syllabic-Filler-Based Continuous Speech Recognizer for Unlimited Vocabulary", Canadian Conference on Electrical and Computer Engineering, vol. 2, Sep. 5-8, 1995, pp. 1007-1010.

Arrington, Michael, "Google Redefines GPS Navigation Landscape: Google Maps Navigation for Android 2.0", TechCrunch, printed from the Internet http://www.techcrunch.com/2009/10/28/google-redefines-car-gps-navigation-google-maps-navigation-android/, Oct. 28, 2009, 4 pages.

Bazzi, Issam et al., "Heterogeneous Lexical Units for Automatic Speech Recognition: Preliminary Investigations", *Processing of the IEEE International Conference on Acoustics, Speech, and Signal Processing*, vol. 3, Jun. 5-9, 2000, XP010507574, pp. 1257-1260. O'Shaughnessy, Douglas, "Interacting with Computers by Voice: Automatic Speech Recognition and Synthesis", *Proceedings of the IEEE*, vol. 91, No. 9, Sep. 1, 2003, XP011100665, pp. 1272-1305. Statement in Accordance with the Notice from the European Patent Office dated Oct. 1, 2007 Concerning Business Methods (OJ EPO Nov. 2007, 592-593), XP002456252.

^{*} cited by examiner

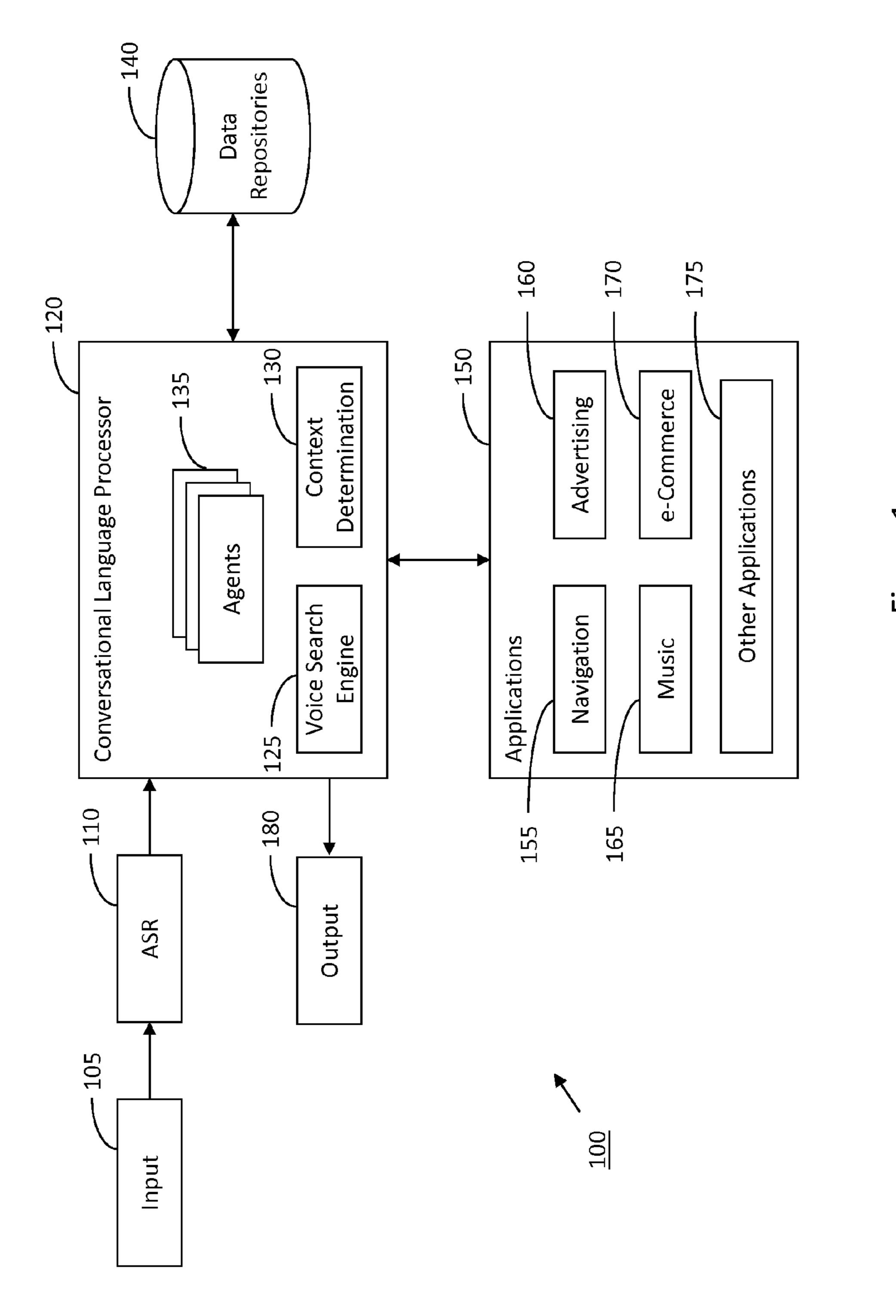


Figure 1

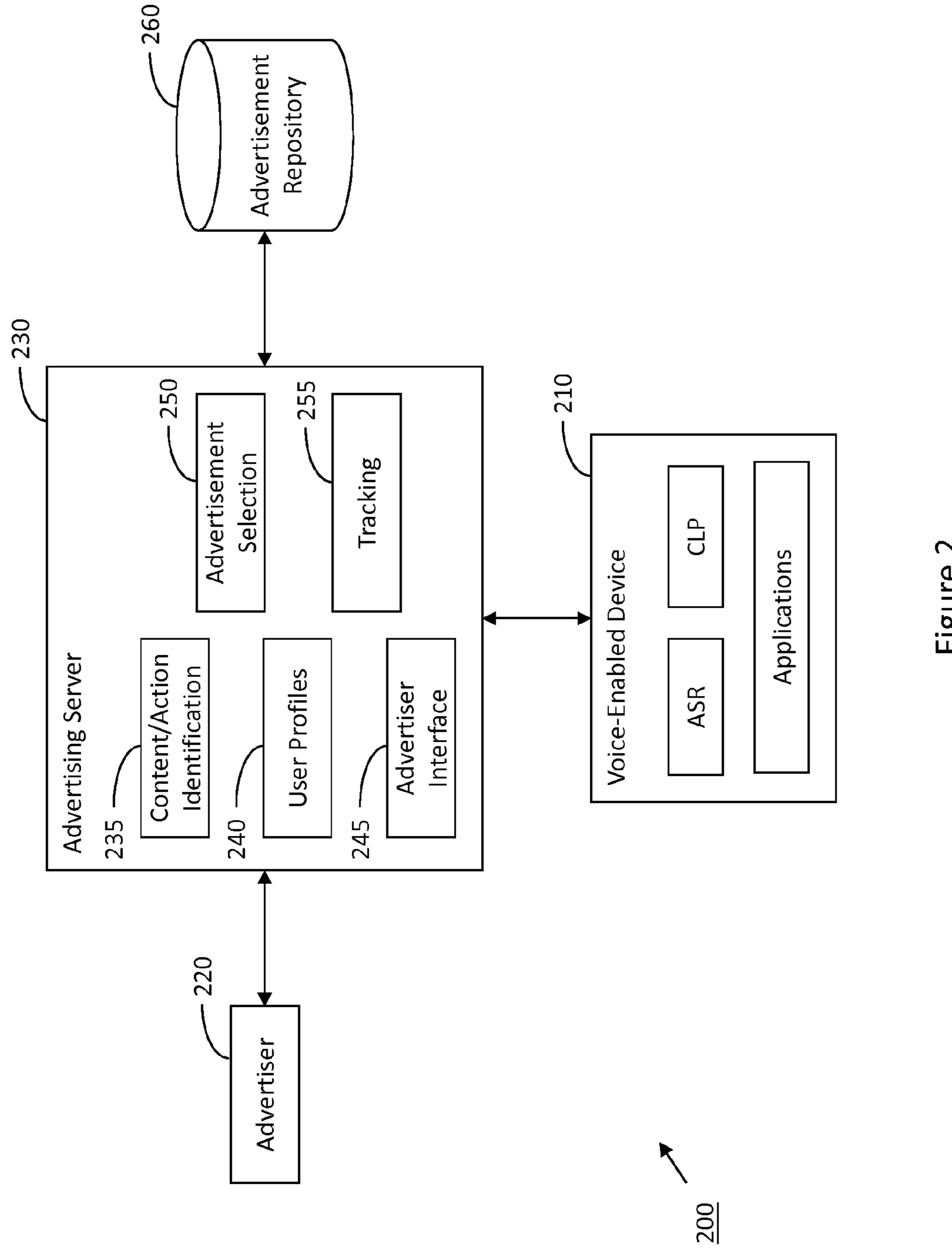
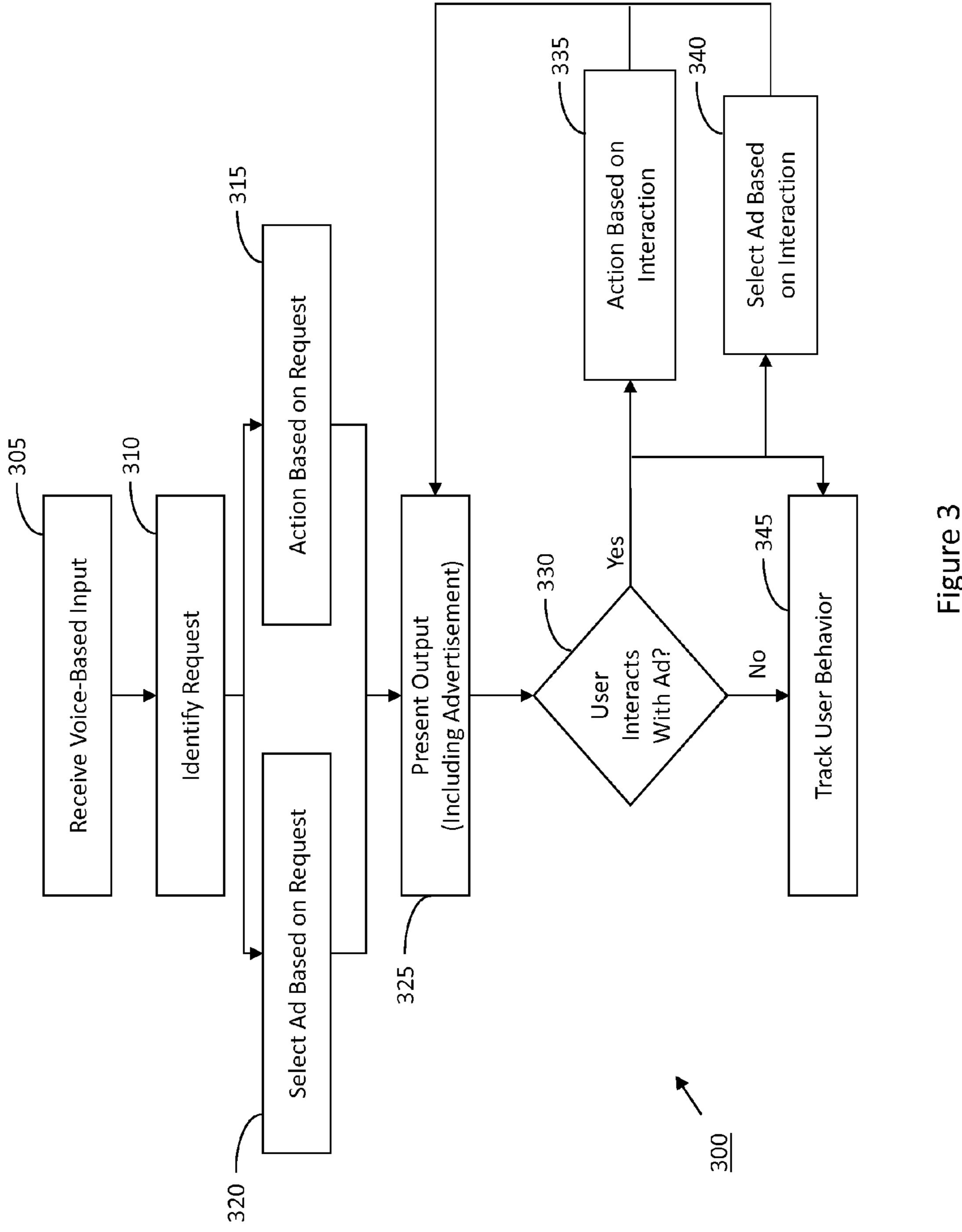



Figure 2

SYSTEM AND METHOD FOR DELIVERING TARGETED ADVERTISEMENTS AND TRACKING ADVERTISEMENT INTERACTIONS IN VOICE RECOGNITION CONTEXTS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of Ser. No. 13/371,870, 10 entitled "System and Method for Delivering Target Advertisements and Tracking Advertisement Interactions in Voice Recognition Context," filed Feb. 13, 2012 (which issued as U.S. Pat. No. 8,527,274 on Sep. 3, 2013), which is a continuation of U.S. patent application Ser. No. 12/847,564, entitled 15 "System and Method for Selecting and Presenting Advertisements Based on Natural Language Processing of Voice-Based Input," filed Jul. 30, 2010 (which issued as U.S. Pat. No. 8,145,489 on Mar. 27, 2012), which is a continuation of U.S. patent application Ser. No. 11/671,526, entitled "System and 20 Method for Selecting and Presenting Advertisements Based on Natural Language Processing of Voice-Based Input," filed Feb. 6, 2007 (which issued as U.S. Pat. No. 7,818,176 on Oct. 19, 2010), the contents of which are hereby incorporated by reference in their entirety.

FIELD OF THE INVENTION

The present invention relates to selecting and presenting advertisements based on natural language processing of ³⁰ voice-based input.

BACKGROUND OF THE INVENTION

As technology advances, consumer electronics devices 35 tend to play larger roles due to increased functionality and mobility. For example, mobile phones, navigation devices, embedded devices, and other such devices provide a wealth of functionality beyond core applications. However, increased functionality adds difficulty to the learning curve associated 40 with using electronic devices, and increased mobility intensifies the demand for simple mechanisms to interact with devices on the go. For example, existing systems tend to have complex human to machine interfaces, which may inhibit mass-market adoption for various technologies. For example, 45 when a user wishes to perform a relatively simple task on a mobile phone, such as purchasing a ring tone, the user often is forced to navigate through a series of menus and press a series of buttons. In some instances, this may result in the transaction not necessarily occurring, as the user may prefer to avoid 50 the hassles altogether. As such, there is ever-growing demand for ways to exploit technology in intuitive ways.

Voice recognition software may enable a user to exploit applications and features of a device that may otherwise be unfamiliar, unknown, or difficult to use. However, many 55 existing voice user interfaces (when they actually work) still require significant learning on the part of the user. For example, users often cannot directly issue a request for a system to retrieve information or perform an action without having to memorize specific syntaxes, words, phrases, concepts, semantic indicators, or other keywords/qualifiers. Similarly, when users are uncertain of particular needs, many existing systems do not engage the user in a productive, cooperative dialogue to resolve requests and advance a conversation. Instead, many existing speech interfaces force 65 users to use a fixed set commands or keywords to communicate requests in ways that systems can understand. Using

2

existing voice user interfaces, there is virtually no option for dialogue between the user and the system to satisfy mutual goals.

The lack of adequate voice user interfaces results in missed opportunities for providing valuable and relevant information to users. Not only does this potentially leave user requests unresolved, in certain instances, providers of goods and services may lose out on potential business. In an increasingly global marketplace, where marketers are continually looking for new and effective ways to reach consumers, the problems with existing voice user interfaces leaves a large segment of consumer demand unfulfilled. Furthermore, existing techniques for marketing, advertising, or otherwise calling consumers to action fail to effectively utilize voice-based information, which is one of the most natural, intuitive methods of human interaction.

Existing systems suffer from these and other problems.

SUMMARY OF THE INVENTION

According to various aspects of the invention, a system and method for selecting and presenting advertisements based on natural language processing of voice-based inputs is provided. A natural language voice-based input may be received by a voice user interface. The voice-based input may include a user utterance, and a request may be identified from the utterance. Appropriate action may be taken to service the request, while one or more advertisements may be selected and presented to the user. Advertisements may be selected based on various criteria, including content of the input (e.g., concepts, semantic indicators, etc.), an activity related to the input (e.g., a relation to a request, a requested application, etc.), user profiles (e.g., demographics, preferences, location, etc.), or in other ways. A user may subsequently interact with the advertisement (e.g., via a voice-based input), and action may be taken in response to the interaction. Furthermore, the interaction may be tracked to build statistical profiles of user behavior based on affinities or clusters among advertisements, user profiles, contexts, topics, semantic indicators, concepts, or other criteria.

According to various aspects of the invention, advertisers may create advertisements, which may be stored in an advertisement repository. For example, advertisements may include sponsored messages, calls to action, purchase opportunities, trial downloads, or any other marketing communication, as would be apparent to those skilled in the art. Advertisers may specify various parameters to associate with the advertisements, such as various contexts or topic concepts (e.g., semantic indicators for a "music" concept may include words such as "music," "tunes," "songs," etc.), target demographics (e.g., a preferred audience), marketing criteria or prices for insertion (e.g., dynamic or static pricing based on various marketing criteria), or other information, as would be apparent. The advertisement repository may be associated with a server, where in response to a voice-based input from a user (e.g., at a voice-enabled device), a communications link may be established with the server. Information may be extracted from the voice-based input (e.g., words in the input, applications requested by the input, etc.), and the extracted information may be correlated with user profiles, advertisement parameters, or other information to determine which advertisements to select in relation to the voice-based input. The server may subsequently communicate the selected advertisements to the user, and the server may track the user's subsequent interaction with the selected advertisements.

Other objects and advantages of the invention will be apparent based on the following drawings and detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of an exemplary system for implementing a voice user interface according to various aspects of the invention.

FIG. 2 illustrates a block diagram of an exemplary advertising system according to various aspects of the invention.

FIG. 3 illustrates a flow diagram of an exemplary method for selecting and presenting advertisements based on voice-based inputs according to various aspects of the invention.

DETAILED DESCRIPTION

Referring to FIG. 1, an exemplary system 100 for implementing a voice user interface is illustrated according to various aspects of the invention. System 100 may enable 20 users to perform various tasks on a voice-enabled device. For example, users may control navigation devices, media devices, personal computers, personal digital assistants, or any other device supporting voice-based inputs. System 100 may enable users to request voice-enabled devices to retrieve 25 information or perform various tasks, among other things, using natural language voice-based inputs. For example, system 100 may interpret natural language voice-based inputs and generate responses using, among other things, techniques described in U.S. patent application Ser. No. 10/452,147, 30 entitled "Systems and Methods for Responding to Natural" Language Speech Utterance," filed Jun. 3, 2003, which issued as U.S. Pat. No. 7,398,209 on Jul. 8, 2008, and U.S. patent application Ser. No. 10/618,633, entitled "Mobile Systems" and Methods for Responding to Natural Language Speech 35 Utterance," filed Jun. 15, 2003, which issued as U.S. Pat. No. 7,693,720 on Apr. 6, 2010, both of which are hereby incorporated by reference in their entirety. For example, as described in U.S. patent application Ser. No. 10/452,147, the system 100 may include a speech recognition engine (e.g., an 40 Automatic Speech Recognizer 110) that may recognize words and phrases in an utterance using entries in one or more dictionary and phrase tables. In addition, as further described therein, fuzzy set possibilities or prior probabilities for the words in the dictionary and phrase tables may be dynamically 45 updated to maximize the probability of correct recognition at each stage of the dialog (e.g., the probabilities or possibilities may be dynamically updated based on application domains, questions or commands, contexts, user profiles and preferences, user dialog histories, recognizer dictionary and phrase 50 tables, word spellings, and/or other criteria).

According to various aspects of the invention, system 100 may receive a user input, including at least a voice-based user utterance, at an input device 105. Input device 105 may include any suitable device, or combination of devices, for 55 receiving a voice-based input (e.g., a microphone). In various implementations, input device 105 may include a multimodal input, such as a touch-screen interface, keypad, or other input. The received utterance may be processed by the Automatic Speech Recognizer 110. Automatic Speech Rec- 60 ognizer 110 may generate one or more preliminary interpretations of the utterance using various techniques. For example, Automatic Speech Recognizer 110 may interpret the utterance using techniques of phonetic dictation to recognize a stream of phonemes. Further, Automatic Speech Rec- 65 ognizer 110 may perform post-processing to enhance the preliminary interpretations. For example, Automatic Speech

4

Recognizer 110 may vary interpretations of an utterance, or components of an utterance, from one context to another. Other techniques for enhancing an interpretation of a user utterance may be used, such as those described in U.S. patent application Ser. No. 11/513,269, entitled "Dynamic Speech Sharpening," filed Aug. 31, 2006, which issued as U.S. Pat. No. 7,634,409 on Dec. 15, 2009, and which is hereby incorporated by reference in its entirety.

The one or more preliminary interpretations may be provided to a conversational language processor 120. Conversational language processor 120 may include a voice search engine 125, a context determination module 130, and one or more agents 135, among other things, to enable cooperative, conversational interaction between the user and system 100. Conversational language processor 120 may be communicatively coupled to one or more data repositories 140 and one or more applications 150. Conversational language processor 120 may generate a domain-specific conversational response, which may be returned to the user as an output 180. Output 180 may include a multi-modal output (e.g., by simultaneously returning a voice-based response and displaying information on a display device).

System 100 may further include an interaction with one or more applications 150 to service one or more requests in the utterance. For example, the utterance may include one or more requests for performing an action, retrieving information, or various combinations thereof. Output 180 may include a conversational response to advance a conversation to service requests by invoking one or more applications 150, as appropriate. For example, applications 150 may include a navigation application 155, an advertising application 160, a music application, an electronic commerce application 170, and/or other applications 175. Furthermore, Automatic Speech Recognizer 110, conversational language processor 120, data repositories 140, and/or applications 150 may reside locally (e.g., on a user device), remotely (e.g., on a server), and/or hybrid local/remote processing models may be used (e.g., lightweight applications may be processed locally while computationally intensive applications may be processed remotely).

Conversational language processor 120 may build longterm and/or short-term shared knowledge in one or more knowledge sources. For example, shared knowledge sources may include information about previous utterances, requests, and other user interactions to inform generating an appropriate response to a current utterance. The shared knowledge may include public/non-private (i.e., environmental) knowledge, as well as personal/private (i.e., historical) knowledge. For example, conversational language processor 120 may use context determination module 130 to establish a context for a current utterance by having domain agents 135 competitively generate a context-based interpretation of the utterance (e.g., by scoring possible interpretations and selecting a highest scoring interpretation). As such, agents 135 may model various domains (e.g., navigation, music, a specific user, global users, advertising, e-commerce, etc.), and conversational language processor 120 may interpret and/or respond to a voicebased input accordingly. For example, context-based interpretations and responses to a voice-based input may be generated using techniques described in U.S. patent application Ser. No. 11/197,504, entitled "Systems and Methods for Responding to Natural Language Speech Utterance," filed Aug. 5, 2005, which issued as U.S. Pat. No. 7,640,160 on Dec. 29, 2009, and U.S. patent application Ser. No. 11/212, 693, entitled "Mobile Systems and Methods of Supporting Natural Language Human-Machine Interactions," filed Aug.

29, 2005, which issued as U.S. Pat. No. 7,949,529 on May 24, 2011, both of which are hereby incorporated by reference in their entirety.

Furthermore, conversational language processor 120 may support adaptive misrecognition to reinterpret a current utterance and/or one or more previous utterances. For example, information contained in a current utterance may indicate that interpretations for one or more previous utterances were incorrect, and therefore, the previous utterances may be reinterpreted to improve subsequent interpretations. Accordingly, conversational language processor 120 may use the techniques described herein, along with various other techniques, to interpret and respond to conversational, natural language utterances. Conversational language processor 120 may use various other techniques as will be apparent, such as those described in U.S. patent application Ser. No. 11/200,164, entitled "System and Method of Supporting Adaptive Misrecognition in Conversational Speech," filed Aug. 10, 2005, which issued as U.S. Pat. No. 7,620,549 on Nov. 17, 2009, 20 and U.S. patent application Ser. No. 11/580,926, entitled "System and Method for a Cooperative Conversational Voice User Interface," filed Oct. 16, 2006, which issued as U.S. Pat. No. 8,073,681 on Dec. 6, 2011, both of which are hereby incorporated by reference in their entirety. For example, as 25 described in U.S. patent application Ser. No. 11/200,164, an environmental model may be accessed to determine user location, user activity, track user actions, and/or other environmental information to invoke context, domain knowledge, preferences, and/or other cognitive qualities to enhance the 30 interpretation of questions and/or commands. In addition, as further described therein, based on information received from a general cognitive model, the environmental model, and/or a personalized cognitive model, which provide statistical abstracts of user interaction patterns, the system 100 may 35 enhance responses to commands and questions by including a prediction of user behavior.

Referring to FIG. 2, an exemplary advertising system 200 is illustrated according to various aspects of the invention. System 200 may include a server 230 for receiving one or 40 more advertisements from an advertiser 220, wherein the advertisements may be stored in a data repository 260 associated with server 230. For example, advertisements may include sponsored messages or marketing communications, calls to action, purchase opportunities, trial downloads, cou- 45 pons, or any other suitable marketing, advertising, campaign, or other information, as would be apparent to those skilled in the art. A voice-enabled device 210 may receive a voice-based input and establish communications with advertising server 230. Subsequently, advertising server 230 may select one or 50 more advertisements from among the advertisements stored in data repository 260, and the selected advertisements may be provided to the voice-enabled device for presentation to a user.

Advertiser 220 may access advertising server 230 via an advertiser interface 245. Advertisers 220 may upload targeted advertisements to server 230 via advertiser interface 245, and server 230 may store the advertisements in data repository 260. The advertisements may include graphically-based advertisements that include banners, images, audio, video, or any suitable combination thereof. Furthermore, the advertisements may include interactive or embedded information, such as links, metadata, or computer-executable instructions, or any suitable combination thereof. Advertisers may specify criteria for a campaign or targeting information for an advertisement (e.g., a start date, an end date, budget information, geotargeting information, conceptual or contextual informa-

6

tion, or any other suitable criteria), which may be used to facilitate selecting an advertisement in relation to a particular voice-based input.

In addition to providing interface 245 for advertisers, server 230 may include a content/action identification module 235, a user profile module 240, an advertisement selection module 250, and a tracking module 255. Users may submit voice-based requests to voice-enabled device 210, and voice-enabled device 210 may communicate information about the voice-based input to server 230. Server 230 may invoke advertisement selection module 250 to extract relevant information from the voice-based input, where advertisement selection module 250 may select one or more advertisements relevant to the voice-based input based on information extracted using content/action identification module 235 and/or user profile module 240.

For example, content/action identification module 235 may identify content of the voice-based input (e.g., words in the input), requested information (e.g., search results, a web page, music, video, graphics, or other information), requested actions (e.g., calculating a navigation route, placing a telephone call, playing a song, etc.), a category or topic related to the input (e.g., music, business, stocks, sports, navigation, movies, etc.), or other criteria to use in selecting an advertisement. Further, user profile module **240** may identify characteristics of a specific user (e.g., demographics, personal preferences, location-based information, etc.), global user profiles (e.g., demographic profiles, click-through rates, etc.), or other criteria to use in selecting an advertisement. Moreover, advertisement selection module 250 may account for where a request originates from. For example, advertisements may be selected based on a default user location (e.g., identified from a user profile), current geolocation information (e.g., identified from a navigation device), whether an affiliate or partner of server 230 initiated the request, or other criteria.

For instance, a user may request airline reservations via voice-enabled device 210, and content/action identification module 235 may identify specific words used in the request, a category related to the request (e.g., travel, airlines, hotels, etc.), or other information. Furthermore, user profile module 240 may identify relevant characteristics of the user (e.g., user-specific demographics, location information, preferred airlines or hotels, etc.), as well as global user characteristics (e.g., most popular airlines). In various implementations, advertisements may be selected by assigning a score to each advertisement (e.g., based on click-through rates, relevance metrics, target audiences, etc.). As such, advertisement selection module 250 may correlate the information about the request to select advertisements stored in data repository 260, and server 230 may communicate the selected advertisements to voice-enabled device 210. Furthermore, selected advertisements may be presented according to a predetermined ordering or ranking (e.g., based on a ranking of relevance to an advertisement).

In various implementations, advertisement selection module **250** may retrieve a predetermined number of advertisements for any given request. Furthermore, the selected advertisements may depend upon a presentation format. For example, advertisements may be selected based on an amount of available space on a display of voice-enabled device **210** and/or a size/shape of the selected advertisements. In another example, voice-based advertisements may be selected and presented to the user audibly (e.g., a "hands-free" advertisement may be preferred when voice-enabled device **210** is a telematics device).

Furthermore, the user's subsequent interaction with an advertisement may be tracked using tracking module **255**. For

example, tracking module 255 may determine whether a conversion or click-through occurs for each advertisement presented to users. Further, tracking module 255 may maintain accounting and/or billing information associated with advertisers 220. For example, advertisers 220 may specify a maxi- 5 mum insertion cost, a cost-per-click-through, an average insertion cost, or other criteria specifying a budget constraint for an advertisement. As such, tracking module 255 may track which advertisements are selected and/or presented, which advertisements result in a conversion or click-through, whether a click-through or conversion results in a transaction or sale, associations between advertisements and users, requests, concepts, semantic indicators, and/or other criteria. For example, tracking user interaction with advertisements may be used to build user-specific and/or global statistical 15 profiles that map or cluster advertisements to topics, semantic indicators, contexts, concepts, etc. based on user behavior, demographics, targeting constraints, content of advertisements, content of requests, actions associated with requests, or other statistically relevant information. Accordingly, the 20 tracking information may be used to bill or invoice advertisers 220, as well as to improve subsequent performance and relevance of advertisements selected using advertisement selection module 250. Other techniques and features of selecting and presenting advertisements based on voice-based inputs 25 may suitably be employed, as would be apparent.

Referring to FIG. 3, an exemplary method for selecting and presenting advertisements based on a voice-based input is illustrated according to various aspects of the invention. The method may begin in an operation 305, where a voice-based 30 input, including at least a user utterance, may be received at a voice user interface. The voice user interface may include any suitable mechanism for receiving the utterance (e.g., a microphone), and may interface with any suitable voice-enabled device, as would be apparent, including personal navigation 35 devices, personal digital assistants, media devices, telematics devices, personal computers, mobile phones, or others.

Subsequently, one or more requests included in the voicebased input may be identified in an operation 310. For example, the requests may include requests to retrieve information, perform tasks, explore or gather information, or otherwise interact with a system or device. For example, a voicebased input to a navigation device may include a request to calculate a route or retrieve location-based information. In another example, a voice-based input to a mobile phone may 45 include a request to place a telephone call, purchase a ringtone, or record a voice-memo. Furthermore, in various implementations, voice-based inputs may include multiple requests, multi-modal requests, cross-device requests, crossapplication requests, or other types of requests. For example, 50 an utterance received in operation 305 may be: "Get me a route to Chang's Restaurant, and call them so I can make a reservation." The utterance may thus include multiple requests, including cross-device requests (e.g., calculate a route using a navigation device, and make a telephone call 55 using a mobile phone), as well as cross-application requests (e.g., search for an address and/or phone number using a voice search engine, and calculate a route using a navigation application).

The requests may be part of a conversational interaction 60 between a user and a system or device, whereby an interpretation of requests in a current utterance may be based upon previous utterances in a current conversation, utterances in previous conversations, context-based information, local and/or global user profiles, or other information. For 65 example, a previous request may be reinterpreted based on information included in subsequent requests, a current

8

request may be interpreted based on information included in previous requests, etc. Furthermore, the conversational interaction may take various forms, including query-based conversations, didactic conversations, exploratory conversations, or other types of conversations. For example, the conversational language processor may identify a type of conversation, and information may be extracted from the utterance accordingly to identify the one or more requests in operation 310. Moreover, the conversational language processor may determine whether any of the requests are incomplete or ambiguous, and action may be taken accordingly (e.g., a system response may prompt a user to clarify an incomplete and/or ambiguous request). The conversational language processor may therefore use various techniques to identify a conversation type, interpret utterances, identify requests, or perform other tasks, such as those described in the aforementioned U.S. Patent Applications and U.S. Patents, which are hereby incorporated by reference in their entirety.

Upon identifying the one or more requests, action may be taken based on the identified requests in an operation 315, while one or more advertisements may be selected in an operation 320 (described in greater detail below). For example, one or more context-appropriate applications may be invoked to service the requests in operation 315 (e.g., a voice search engine, a navigation application, an electronic commerce application, or other application may be invoked depending upon the request). Furthermore, in operation 320, information may be communicated to an advertising server to select one or more advertisements related to the request. Thus, as shown in FIG. 3, taking action in operation 315 and selecting advertisements in operation 320 may be related operations (e.g., advertisements may be selected to help in interpreting incomplete and/or ambiguous requests).

Upon taking action in operation 315 (e.g., to service the request) and selecting one or more advertisements in operation 320 (e.g., in relation to the request), an output may be presented to the user in operation 325. The output may indicate a result of the action associated with operation **315**. For example, the output may include requested information, an indication of whether a requested task was successfully completed, whether additional information is needed to service the request (e.g., including a prompt for the information), or other information relating to an action based on the request. Furthermore, the output may include advertisements, as selected in operation 320. For example, the output may include text-based, graphic-based, video-based, audio-based, or other types of advertisements, as would be apparent to those skilled in the art. Further, the output may include other types of advertisements, including calls to action (e.g., a location-based coupon or purchase opportunity, trial downloads, or other actionable advertising or marketing).

Advertisements may be selected in relation to a request based on various criteria. For example, an advertisement may be selected based on words or other content of the request, relevant words or content related to the words or content of the request, etc. In another example, the advertisement may be selected based on requested tasks/information (e.g., a request for movie showtimes may result in an advertisement being selected for a particular theater). In yet another example, the advertisement may be selected based on a topic or category associated with the requested tasks/information (e.g., a request to purchase airline tickets may result in an advertisement being selected for a hotel in a destination associated with a reserved flight). In still other examples, the advertisement may be selected based on location information, (e.g., advertisements may be selected based on a proximity to a user geolocation identified using a navigation device), user-

specific and/or global user profiles (e.g., advertisements may be selected based on user-specific and/or global preferences, advertiser campaign criteria, etc.).

Content of a voice-based input may be determined based on various criteria, including contextual or conceptual information (e.g., semantic indicators, qualifiers, or other information). For example, a given concept may include various semantically equivalent indicators having an identical meaning. Thus, for instance, a voice-based input may be "Play some tunes!" or "Play some music!" or other variants thereof, 10 each of which may be interpreted as relating to a specific idea (or concept) of "Music." Thus, concept or content information in a request may be used to select an advertisement. For example, a user may request to calculate a route in Seattle, Wash. (e.g., "How do I get to the Space Needle?"). Based on 15 a context of the requested task (e.g., "Navigation," "Seattle," etc.), a voice search engine may retrieve an address of the Space Needle and a navigation application may calculate the route. Furthermore, user profile information may indicate that the user is visiting Seattle from out-of-town (e.g., the profile 20 may indicate that the user's home is Sacramento), and therefore, an advertisement for popular points-of-interest in Seattle may be selected. In another example, the user may request information about a sporting event (e.g., "Get me the kickoff time for the Eagles game on Sunday"). Based on a 25 context of the requested information (e.g., "Search," "Sports," "Philadelphia," etc.), the requested information may be retrieved, while an advertisement for Eagles apparel or memorabilia may be selected.

In various instances, concepts, semantic indicators, qualifiers, or other information included in, or inferred from, a request may indicate an exploratory nature for the request. In other words, the exploratory request may identify a goal for a conversation, instead of a particular task to perform or information to retrieve. As such, in various implementations, an 35 advertisement may be selected in operation 320 in an effort to advance the conversation towards the goal. For example, an exploratory request may include a request for a navigation route (e.g., "I feel like going to a museum, find me something interesting"). Based on a context of the requested task (e.g., 40 "Navigation," "Points of Interest," etc.), the goal of the conversation may be identified, and the request may be serviced in operation 315 (e.g., a voice search engine may locate nearby points of interest based on user preferred topics). Further, the advertising application may select an appropriate 45 advertisement in operation 320, where the advertisement may be selected in an attempt to advance the conversation towards the goal. For example, statistical profiles (e.g., user profiles, global profiles, topic-based profiles, etc.) may reflect an affinity between an advertisement for a particular museum and 50 other users sharing similar demographics or other characteristics with the requesting user. Thus, in addition to retrieving information about museums in operation 315, an advertisement for a museum likely to be of interest to the user may be selected in operation 320.

In various instances, a request may include incomplete, ambiguous, unrecognized, or otherwise insufficient semantic indicators, context, qualifiers, or other information needed to identify the request. In other words, the request may include inadequate information to identify or infer a task to perform, 60 information to retrieve, or a goal for a conversation. Thus, as much information as possible may be extracted and/or inferred from the request based on shared knowledge such as context, user or global profile information, previous utterances, previous conversations, etc. As such, servicing the 65 request may include generating a response and/or communicating with an advertising application to advance a conversa-

10

tion toward a serviceable request. For example, servicing the request in operation 315 and selecting an advertisement in operation 320 may include generating a response and/or selecting an advertisement to frame a subsequent user input, thereby advancing the conversation.

For example, the request may include incomplete, ambiguous, or unrecognized information (e.g., "Do you know [mumbled words] Seattle?"). A context of the requested task may be identified (e.g., "Seattle"), yet the identified context may be insufficient to adequately take action to service the request. Additional information may be inferred based on previous utterances in the conversation, profile information, or other information. However, when the additional information fails to provide adequate information to infer a reasonable hypothesis, servicing the request in operation 315 may include generating a response to frame a subsequent user input and advance the conversation (e.g., information about various topics may be retrieved based on a user's preferred topics). Further, the advertising application may select an advertisement in operation 320 to advance the conversation (e.g., advertisements may be selected based on user and/or global profiles reflecting an affinity between certain advertisements associated with Seattle and user preferences, profiles, etc.). Thus, by selecting an advertisement, indicating dissatisfaction with an advertisement, or otherwise interacting with an advertisement, the interaction may be used to build context and shared knowledge for a subsequent course of the conversation. For example, a user may select an advertisement, and an interpretation of a subsequent voice-based input (e.g., "Call them," "What's the price range?" etc.) may be interpreted with shared knowledge of the advertisement that the voice-based input relates to. Thus, advertisements may be used in a way that enables advertisers to market to consumers, while also improving the consumers' interaction with a device. Other advantages will be apparent to those skilled in the art.

It will be apparent that operation 320 may use various techniques to select advertisements based on voice-based inputs and/or requests included therein. For example, an advertiser may specify a target audience, marketing criteria, campaign strategies, budget constraints, concepts, semantic indicators, related topics, categories, and/or any other suitable information to associate with an advertisement. For instance, advertisers may pay a premium to prioritize an advertisement in relation to similar advertisements (e.g., advertisements associated with competitors). In another example, various statistical profiles may define affinities between advertisements, topics, users, etc. (e.g., based on click-through or conversion rates, or other tracking information, as described in more detail below). Thus, advertisements may be selected in operation 320 using various techniques, including content of the request, an activity/action associated with the request, user profiles, user preferences, statistical metrics, advertiser-specified criteria, to advance a conversa-55 tion, to resolve ambiguous requests, or in various other ways, as will be apparent.

The output presented to the user in operation 325 may be provided to the user in various ways. For example, in various implementations, the output may include a voice-based or otherwise audible response. In another example, when an associated device includes a display mechanism, the output may be displayed on the display device. It will be apparent that many combinations or variants thereof may be used, such as augmenting a voice-based response with information on a display device. For example, a user may request information about restaurants, and an advertisement may be selected based on a user preference indicating a favorite type of res-

taurant (e.g., a Chinese restaurant may be selected based on a user profile indicating a preference for Chinese). Therefore, in one example, the output presented in operation 325 may display information about various restaurants matching the requested information, while a voice-based advertisement for 5 the Chinese restaurant may be played to the user (e.g., via a speaker or other suitable mechanism for playing voice back to the user). Many other variations will be apparent (e.g., a graphical advertisement may be displayed on a display device, while a corresponding or different voice-based advertisement may be played audibly).

Subsequent interaction between the user and the presented advertisements may be monitored in a decisional operation 330. For instance, when the user elects to interact with the advertisement, action may be taken based on the interaction 15 in an operation 335. The interaction may take various forms, including additional voice-based inputs or other suitable mechanisms for interacting with advertisements (e.g., clicking on an advertisement displayed on a personal digital assistant using an associated stylus). For example, a user may initially request information from a voice-enabled media device (e.g., a satellite radio player) about a song currently playing (e.g., "What is this song?"). In addition to outputting the requested information about the song (e.g., "This song is Double Barrel by Dave and Ansel Collins."), a selected adver- 25 tisement may enable the user to purchase a ringtone for a mobile phone that corresponds to the song. In this example, the interaction may include a request to purchase the ringtone (e.g., "Yeah, I'll buy that"), and action taken in operation 335 may include completing a transaction for the ringtone and/or 30 downloading the ringtone to the mobile phone. Furthermore, additional advertisements may be selected in an operation 340 based on the interaction, using similar techniques as described in connection with operation 320 (e.g., advertisements for additional ringtones, similar musicians, etc. may be 35 selected). Processing may subsequently return to operation 325 to present output resulting from the interaction.

User advertisement interaction may be tracked in an operation 345. For example, operation 345 may track historical data about users, conversations, topics, contexts, or other 40 criteria to associate information with the selected advertisement. The tracking information may therefore be used to build statistical profiles defining affinities, click-through or conversion rates, or other information about various advertisements, topics, or other criteria on a user-specific and/or a 45 global-user level. Thus, clusters or mappings may be created between advertisements, topics, concepts, demographics, or other criteria based on user behavior with the advertisements (e.g., whether a user interacts with the advertisement in operation 330).

For instance, certain advertisements may experience high click-through rates in relation to a first context and/or topic, but low click-through rates in relation to a second context and/or topic, and therefore, when requests relate to the first context and/or topic, the advertisement may be more likely to 55 be selected in subsequent operations 320/340. In another example, global statistical profiles may indicate that an advertisement experiences more click-throughs by users of a particular demographic, and therefore, the advertisement may be more likely to be selected for users falling within the demographic. Many different techniques for tracking and building statistical profiles will be apparent.

Implementations of the invention may be made in hard-ware, firmware, software, or any combination thereof. The invention may also be implemented as instructions stored on 65 a machine-readable medium, which may be read and executed by one or more processors. A machine-readable

12

medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computing device). For example, a machine-readable storage medium may include read only memory, random access memory, magnetic disk storage media, optical storage media, flash memory devices, and others, and a machine-readable transmission media may include forms of propagated signals, such as carrier waves, infrared signals, digital signals, and others. Further, firmware, software, routines, or instructions may be described in the above disclosure in terms of specific exemplary aspects and implementations of the invention, and performing certain actions. However, it will be apparent that such descriptions are merely for convenience and that such actions in fact result from computing devices, processors, controllers, or other devices executing the firmware, software, routines, or instructions.

Aspects and implementations may be described as including a particular feature, structure, or characteristic, but every aspect or implementation may not necessarily include the particular feature, structure, or characteristic. Further, when a particular feature, structure, or characteristic is described in connection with an aspect or implementation, it will be apparent to effect such feature, structure, or characteristic in connection with other aspects or implementations whether or not explicitly described. Thus, various changes and modifications may be made, without departing from the scope and spirit of the invention. The specification and drawings are to be regarded as exemplary only, and the scope of the invention is to be determined solely by the appended claims.

What is claimed is:

1. A computer-implemented method of providing promotional content related to one or more natural language utterances and/or responses, the method being implemented by a computer system that includes one or more physical processors executing one or more computer program instructions which, when executed, perform the method, the method comprising:

receiving, at the one or more physical processors, a first natural language utterance;

providing, by the one or more physical processors, a response to the first natural language utterance;

receiving, at the one or more physical processors, a second natural language utterance relating to the first natural language utterance;

performing, by the one or more physical processors, speech recognition to recognize one or more words of the second natural language utterance;

determining, by the one or more physical processors, domain information for the one or more recognized words based on the first natural language utterance;

processing, by the one or more physical processors, based on the domain information, the one or more recognized words to determine an interpretation of the second natural language utterance, wherein processing the one or more recognized words comprises:

providing the one or more recognized words to a first domain agent associated with a first domain and a second domain agent associated with a second domain;

obtaining a first interpretation of the second natural language utterance from the first domain agent;

obtaining a second interpretation of the second natural language utterance from the second domain agent; and

determining the interpretation based on one or more of the first interpretation or the second interpretation;

- determining, by the one or more physical processors, promotional content based on the interpretation; and presenting, by the one or more physical processors, the promotional content to a user.
- 2. The method of claim 1, wherein the first natural language 5 utterance and the second natural language utterance are received during an interactive session between the user and the computer system, the method further comprising:
 - determining, by the one or more physical processors, an activity relating to one or more of the first natural language utterance or the second natural language utterance,
 - wherein determining the promotional content comprises determining the promotional content based on the activity.
 - 3. The method of claim 1, further comprising:
 - determining, by the one or more physical processors, context information for the one or more recognized words based on the first natural language utterance,
 - wherein the interpretation is determined further based on 20 the context information.
- 4. The method of claim 1, wherein the first interpretation is determined by the first domain agent based on the first domain, and wherein the second interpretation is determined by the second domain agent based on the second domain.
 - 5. The method of claim 1, further comprising:
 - associating, by the one or more physical processors, the first interpretation with a first interpretation score; and associating, by the one or more physical processors, the second interpretation with a second interpretation score, 30
 - wherein determining the interpretation comprises determining the first interpretation as the interpretation based on the first interpretation score and the second interpretation score.
- 6. The method of claim 5, wherein the first interpretation is determined as the interpretation based on the first interpretation score being greater than the second interpretation score.
 - 7. The method of claim 1, further comprising:
 - receiving, at the one or more physical processors, a third natural language utterance relating to one or more of the 40 first natural language utterance or the second natural language utterance; and
 - determining, by the one or more physical processors, an interpretation of the third natural language utterance based on the promotional content.
- 8. The method of claim 7, wherein the first natural language utterance, the second natural language utterance, and the third natural language utterance are received during an interactive session between the user and the computer system.
- 9. The method of claim 8, wherein the third natural lan- 50 guage utterance is received after the second natural language utterance.
 - 10. The method of claim 7, further comprising:
 - performing, by the one or more physical processors, speech recognition to recognize one or more words of 55 the third natural language utterance, wherein the one or more recognized words of the third natural language utterance include one or more reference words;
 - determining, by the one or more physical processors, that the one or more reference words refer to an item asso- 60 ciated with the promotional content; and
 - initiating, by the one or more physical processors, a purchase transaction associated with the item based on the determination that the one or more reference words refer to the item.
- 11. The method of claim 10, wherein the item includes a purchasable good.

14

- 12. The method of claim 7, further comprising:
- initiating, by the one or more physical processors, based on the interpretation of the third natural language utterance, a purchase transaction associated with the promotional content.
- 13. The method of claim 1, wherein the first natural language utterance and the second natural language utterance are received during an interactive session between the user and the computer system, the method further comprising:
 - receiving, at the one or more physical processors, a third natural language utterance during the interactive session; and
 - processing, by the one or more physical processors, based on the third natural language utterance, the one or more recognized words to determine a reinterpretation of the second natural language utterance.
- 14. The method of claim 13, wherein determining the promotional content comprises determining the promotional content based on the reinterpretation.
- 15. The method of claim 13, wherein determining the promotional content comprises determining the promotional content based on the interpretation, the method further comprising:
 - determining, by the one or more physical processors, other promotional content based on the reinterpretation; and presenting, by the one or more physical processors, the other promotional content to the user.
 - 16. The method of claim 1, further comprising:
 - identifying, by the one or more physical processors, one or more requests associated with the second natural language utterance,
 - wherein determining the promotional content comprises obtaining the promotional content based on a determination that the promotional content relates to the one or more requests.
 - 17. The method of claim 16, further comprising:
 - determining, by the one or more physical processors, one or more activities in the one or more requests; and
 - performing, by the one or more physical processors, the one or more activities,
 - wherein determining the promotional content comprises determining the promotional content based on the one or more activities.
- 18. The method of claim 17, wherein determining the one or more activities comprises determining a call to be initiated for the user in response to the one or more requests, wherein performing the one or more activities comprises initiating the call for the user, and wherein determining the promotional content comprises determining the promotional content based on the call.
- 19. The method of claim 17, wherein determining the one or more activities comprises determining a navigation route to be calculated for the user in response to the one or more requests, wherein performing the one or more activities comprises calculating the navigation route for the user, and wherein determining the promotional content comprises determining the promotional content based on the navigation route.
- 20. The method of claim 17, wherein determining the one or more activities comprise determining a media item to be presented in response to the one or more requests, wherein performing the one or more activities comprises presenting the media item to the user, and wherein determining the promotional content comprises determining the promotional content based on the media item, the promotional content being different than the media item.

- 21. The method of claim 17, wherein determining the one or more activities comprises determining a reservation to be made on behalf of the user in response to the one or more requests, and wherein determining the promotional content comprises determining the promotional content based on 5 information relating to the reservation.
- 22. The method of claim 17, wherein determining the one or more activities comprises determining a first reservation to be made on behalf of the user in response to the one or more requests, and wherein determining the promotional content comprises determining the promotional content based on information relating to a second reservation that is an alternative to the first reservation.
 - 23. The method of claim 17, further comprising: receiving, at the one or more physical processors, a third natural language utterance relating to one or more of the first natural language utterance or the second natural language utterance;
 - determining, by the one or more physical processors, an 20 interpretation of the third natural language utterance based on the promotional content; and
 - initiating, by the one or more physical processors, based on the interpretation of the third natural language utterance, a purchase transaction associated with the promotional 25 content.
 - 24. The method of claim 16, further comprising:
 - determining, by the one or more physical processors, that at least one request of the one or more requests is incomplete or ambiguous;
 - monitoring, by the one or more physical processors, interaction of the user with the promotional content; and
 - interpreting, by the one or more physical processors, the at least one incomplete or ambiguous request based on the interaction.
- 25. The method of claim 16, wherein the one or more requests include a first request associated with a first application and a second request associated with a second application different than the first application, and wherein the promotional content relates to one or more of the first request 40 or the second request.
- 26. The method of claim 25, wherein a first application type of the first application includes one or more of a navigation application, a music application, a commerce application, or a calling application, and wherein the second application is of 45 an application type different than the first application type.
- 27. The method of claim 16, wherein the one or more requests include a first request to be processed by a first device associated with the user and a second request to be processed by a second device associated with the user, and 50 wherein the promotional content relates to one or more of the first request or the second request.
- 28. The method of claim 27, wherein a first device type of the first device includes one or more of a mobile phone, a navigation device, or a media player device, and wherein the 55 second device is of a device type different than the first device type.
- 29. The method of claim 27, wherein the first device and the second device are operably independent of one another.
 - 30. The method of claim 1, further comprising:
 - obtaining, by the one or more physical processors, user profile information associated with the user, wherein the user profile information specifies prior user interactions with items; and
 - identifying, by the one or more physical processors, categories of items based on the prior user interactions specified by the user profile information,

16

- wherein determining the promotional content comprises determining a promotional item associated with one of the categories.
- 31. The method of claim 1, further comprising:
- obtaining, by the one or more physical processors, user profile information associated with the user, wherein the user profile information specifies prior user interactions with items;
- identifying, by the one or more physical processors, one or more requests associated with the first natural language utterance or the second natural language utterance;
- determining, by the one or more physical processors, one or more applications for processing the one or more requests; and
- identifying, by the one or more physical processors, categories of items based on the prior user interactions specified by the user profile information, wherein the categories relate to the one or more applications,
- wherein determining the promotional content comprises determining a promotional item associated with one of the categories.
- 32. A system for providing promotional content related to one or more natural language utterances and/or responses, the system comprising:
 - one or more physical processors programmed to execute one or more computer program instructions which, when executed, cause the one or more physical processors to:

receive a first natural language utterance;

- provide a response to the first natural language utterance;
- receive a second natural language utterance relating to the first natural language utterance;
- perform speech recognition to recognize one or more words of the second natural language utterance;
- determine domain information for the one or more recognized words based on the first natural language utterance;
- process, based on the domain information, the one or more recognized words to determine an interpretation of the second natural language utterance, wherein processing the one or more recognized words comprises:
 - providing the one or more recognized words to a first domain agent associated with a first domain and a second domain agent associated with a second domain;
 - obtaining a first interpretation of the second natural language utterance from the first domain agent;
 - obtaining a second interpretation of the second natural language utterance from the second domain agent; and
 - determining the interpretation based on one or more of the first interpretation or the second interpretation;
- determine promotional content based on the interpretation; and

present the promotional content to a user.

33. A computer-implemented method of providing promotional content related to one or more natural language utterances and/or responses, the method being implemented by a computer system that includes one or more physical processors executing one or more computer program instructions which, when executed, perform the method, the method comprising:

- receiving, at the one or more physical processors, a first natural language utterance during an interactive session between a user and the computer system;
- providing, by the one or more physical processors, a response to the first natural language utterance;
- receiving, at the one or more physical processors, a second natural language utterance relating to the first natural language utterance during the interactive session;
- performing, by the one or more physical processors, speech recognition to recognize one or more words of 10 the second natural language utterance;
- processing, by the one or more physical processors, based on the first natural language utterance, the one or more recognized words to determine an interpretation of the second natural language utterance;
- receiving, at the one or more physical processors, a third natural language utterance during the interactive session;
- processing, by the one or more physical processors, based on the third natural language utterance, the one or more 20 recognized words to determine a reinterpretation of the second natural language utterance;
- determining, by the one or more physical processors, promotional content based on one or more of the interpretation or the reinterpretation; and
- presenting, by the one or more physical processors, the promotional content to the user.
- 34. The method of claim 33, wherein determining the promotional content comprises determining the promotional content based on the reinterpretation.
- 35. The method of claim 33, wherein determining the promotional content comprises determining the promotional content based on the interpretation, the method further comprising:
 - determining, by the one or more physical processors, other 35 promotional content based on the reinterpretation; and presenting, by the one or more physical processors, the other promotional content to the user.
- 36. A system for providing promotional content related to one or more natural language utterances and/or responses, the 40 system comprising:
 - one or more physical processors programmed to execute one or more computer program instructions which, when executed, cause the one or more physical processors to:
 - receive a first natural language utterance during an interactive session between a user and the system;
 - provide a response to the first natural language utterance;
 - receive a second natural language utterance relating to 50 the first natural language utterance during the interactive session;
 - perform speech recognition to recognize one or more words of the second natural language utterance;
 - process, based on the first natural language utterance, 55 the one or more recognized words to determine an interpretation of the second natural language utterance;
 - receive a third natural language utterance during the interactive session;
 - process, based on the third natural language utterance, the one or more recognized words to determine a reinterpretation of the second natural language utterance;
 - determine promotional content based on one or more of 65 the interpretation or the reinterpretation; and present the promotional content to the user.

18

- 37. A computer-implemented method of providing promotional content related to one or more natural language utterances and/or responses, the method being implemented by a computer system that includes one or more physical processors executing one or more computer program instructions which, when executed, perform the method, the method comprising:
 - receiving, at the one or more physical processors, a first natural language utterance;
 - providing, by the one or more physical processors, a response to the first natural language utterance;
 - receiving, at the one or more physical processors, a second natural language utterance relating to the first natural language utterance;
 - identifying, by the one or more physical processors, one or more requests associated with the second natural language utterance;
 - determining, by the one or more physical processors, that at least one request of the one or more requests is incomplete or ambiguous;
 - determining, by the one or more physical processors, promotional content that relates to the one or more requests; presenting, by the one or more physical processors, the promotional content to a user;
 - monitoring, by the one or more physical processors, interaction of the user with the promotional content; and
 - interpreting, by the one or more physical processors, the at least one incomplete or ambiguous request based on the interaction.
- 38. A system for providing promotional content related to one or more natural language utterances and/or responses, the system comprising:
 - one or more physical processors programmed to execute one or more computer program instructions which, when executed, cause the one or more physical processors to:
 - receive a first natural language utterance;
 - provide a response to the first natural language utterance;
 - receive a second natural language utterance relating to the first natural language utterance;
 - identify one or more requests associated with the second natural language utterance;
 - determine that at least one request of the one or more requests is incomplete or ambiguous;
 - determine promotional content that relates to the one or more requests;
 - present the promotional content to a user;
 - monitor interaction of the user with the promotional content; and
 - interpret the at least one incomplete or ambiguous request based on the interaction.
- 39. A computer-implemented method of providing promotional content related to one or more natural language utterances and/or responses, the method being implemented by a computer system that includes one or more physical processors executing one or more computer program instructions which, when executed, perform the method, the method com-60 prising:
 - receiving, at the one or more physical processors, a first natural language utterance;
 - providing, by the one or more physical processors, a response to the first natural language utterance;
 - receiving, at the one or more physical processors, a second natural language utterance relating to the first natural language utterance;

identifying, by the one or more physical processors, requests associated with the second natural language utterance, wherein the requests include a first request associated with a first application and a second request associated with a second application different than the 5 first application;

determining, by the one or more physical processors, promotional content that relates to one or more of the first request or the second request; and

presenting, by the one or more physical processors, the promotional content to a user.

40. The method of 39, wherein a first application type of the first application includes one or more of a navigation application, a music application, a commerce application, or a 15 calling application, and wherein the second application is of an application type different than the first application type.

41. The method of claim 39, further comprising:

receiving, at the one or more physical processors, a third natural language utterance relating to one or more of the 20 first natural language utterance or the second natural language utterance; and

determining, by the one or more physical processors, an interpretation of the third natural language utterance based on the promotional content.

42. The method of claim 41, further comprising:

initiating, by the one or more physical processors, based on the interpretation of the third natural language utterance, a purchase transaction associated with the promotional content.

43. A system for providing promotional content related to one or more natural language utterances and/or responses, the system comprising:

one or more physical processors programmed to execute one or more computer program instructions which, 35 when executed, cause the one or more physical processors to:

receive a first natural language utterance;

provide a response to the first natural language utterance;

receive a second natural language utterance relating to the first natural language utterance;

identify requests associated with the second natural language utterance, wherein the requests include a first request associated with a first application and a sec- 45 ond request associated with a second application different than the first application;

determine promotional content that relates to one or more of the first request or the second request; and present the promotional content to a user.

44. A computer-implemented method of providing promotional content related to one or more natural language utterances and/or responses, the method being implemented by a computer system that includes one or more physical processors executing one or more computer program instructions 55 which, when executed, perform the method, the method comprising:

receiving, at the one or more physical processors, a first natural language utterance;

providing, by the one or more physical processors, a 60 response to the first natural language utterance;

receiving, at the one or more physical processors, a second natural language utterance relating to the first natural language utterance;

identifying, by the one or more physical processors, 65 requests associated with the second natural language utterance, wherein the requests include a first request to

20

be processed by a first device associated with a user and a second request to be processed by a second device associated with the user;

determining, by the one or more physical processors, promotional content that relates to one or more of the first request or the second request; and

presenting, by the one or more physical processors, the promotional content to the user.

45. The method of claim 44, wherein a first device type of the first device includes one or more of a mobile phone, a navigation device, or a media player device, and wherein the second device is of a device type different than the first device type.

46. The method of claim 44, wherein the first device and the second device are operably independent of one another.

47. The method of claim **44**, further comprising:

receiving, at the one or more physical processors, a third natural language utterance relating to one or more of the first natural language utterance or the second natural language utterance; and

determining, by the one or more physical processors, an interpretation of the third natural language utterance based on the promotional content.

48. The method of claim 47, further comprising:

initiating, by the one or more physical processors, based on the interpretation of the third natural language utterance, a purchase transaction associated with the promotional content.

49. A system for providing promotional content related to one or more natural language utterances and/or responses, the system comprising:

one or more physical processors programmed to execute one or more computer program instructions which, when executed, cause the one or more physical processors to:

receive a first natural language utterance;

provide a response to the first natural language utterance;

receive a second natural language utterance relating to the first natural language utterance;

identify requests associated with the second natural language utterance, wherein the requests include a first request to be processed by a first device associated with a user and a second request to be processed by a second device associated with the user;

determine promotional content that relates to one or more of the first request or the second request; and present the promotional content to the user.

50. A computer-implemented method of providing promotional content related to one or more natural language utterances and/or responses, the method being implemented by a computer system that includes one or more physical processors executing one or more computer program instructions which, when executed, perform the method, the method comprising:

receiving, at the one or more physical processors, a first natural language utterance;

providing, by the one or more physical processors, a response to the first natural language utterance;

receiving, at the one or more physical processors, a second natural language utterance relating to the first natural language utterance;

obtaining, by the one or more physical processors, user profile information associated with a user, wherein the user profile information specifies prior user interactions with items;

identifying, by the one or more physical processors, categories of items based on the prior user interactions specified by the user profile information;

determining, by the one or more physical processors, based on the first natural language utterance and the second 5 natural language utterance, promotional content associated with one of the categories; and

presenting, by the one or more physical processors, the promotional content to the user.

51. The method of claim 50, further comprising:

receiving, at the one or more physical processors, a third natural language utterance relating to one or more of the first natural language utterance or the second natural language utterance; and

determining, by the one or more physical processors, an 15 interpretation of the third natural language utterance based on the promotional content.

52. The method of claim **51**, further comprising:

initiating, by the one or more physical processors, based on the interpretation of the third natural language utterance, 20 a purchase transaction associated with the promotional content.

53. A system for providing promotional content related to one or more natural language utterances and/or responses, the system comprising:

one or more physical processors programmed to execute one or more computer program instructions which, when executed, cause the one or more physical processors to:

receive a first natural language utterance;

provide a response to the first natural language utterance;

receive a second natural language utterance relating to the first natural language utterance;

obtain user profile information associated with a user, 35 wherein the user profile information specifies prior user interactions with items;

identify categories of items based on the prior user interactions specified by the user profile information;

determine, based on the first natural language utterance 40 and the second natural language utterance, promotional content associated with one of the categories; and

present the promotional content to the user.

54. A computer-implemented method of providing promotional content related to one or more natural language utterances and/or responses, the method being implemented by a computer system that includes one or more physical processors executing one or more computer program instructions which, when executed, perform the method, the method comprising:

receiving, at the one or more physical processors, a first natural language utterance;

providing, by the one or more physical processors, a response to the first natural language utterance;

22

receiving, at the one or more physical processors, a second natural language utterance relating to the first natural language utterance;

obtaining, by the one or more physical processors, user profile information associated with a user, wherein the user profile information specifies prior user interactions with items;

identifying, by the one or more physical processors, one or more requests associated with one or more of the first natural language utterance or the second natural language utterance;

determining, by the one or more physical processors, one or more applications for processing the one or more requests; and

identifying, by the one or more physical processors, categories of items based on the prior user interactions specified by the user profile information, wherein the categories relate to the one or more applications;

determining, by the one or more physical processors, based on the first natural language utterance and the second natural language utterance, promotional content associated with one of the categories; and

presenting, by the one or more physical processors, the promotional content to the user.

55. A system for providing promotional content related to one or more natural language utterances and/or responses, the system comprising:

one or more physical processors programmed to execute one or more computer program instructions which, when executed, cause the one or more physical processors to:

receive a first natural language utterance;

provide a response to the first natural language utterance;

receive a second natural language utterance relating to the first natural language utterance;

obtain user profile information associated with a user, wherein the user profile information specifies prior user interactions with items;

identify one or more requests associated with one or more of the first natural language utterance or the second natural language utterance;

determine one or more applications for processing the one or more requests; and

identify categories of items based on the prior user interactions specified by the user profile information, wherein the categories relate to the one or more applications;

determine, based on the first natural language utterance and the second natural language utterance, promotional content associated with one of the categories; and

present the promotional content to the user.

* * * * *