(19) United States

12y Reissued Patent
Pechanek et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE40883E

US RE40,883 E
Aug. 25, 2009

(54) METHODS AND APPARATUS FOR DYNAMIC
INSTRUCTION CONTROLLED
RECONFIGURABLE REGISTER FILE WITH
EXTENDED PRECISION

(75) Inventors: Gerald George Pechanek, Cary, NC
(US); Edwin Franklin Barry, Vilas, NC
(US)

(73) Assignee: Altera Corporation, San Jose, CA (US)

(21) Appl. No.: 10/827,697

(22) Filed: Apr. 19, 2004
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 6,430,677
Issued: Aug. 6, 2002
Appl. No.: 09/796,037
Filed: Feb. 28, 2001

U.S. Applications:

(62) Division of application No. 09/169,255, filed on Oct. 9,
1998, now Pat. No. 6,343,356.

(60) Provisional application No. 60/092,148, filed on Jul. 9,

1998.
(51) Int. CL

GO6F 15/00 (2006.01)
(52) US.CL ..., 712/210; 711/170; 708/496
(58) Field of Classification Search 712/210,

712/24, 229, 218; 711/173, 170, 129; 708/503,
708/620, 496
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,302,818 A 11/1981 Niemann 364/736
4,713,749 A * 12/1987 Magaretal. 712/241
4,774,688 A * 9/1988 Kobayashietal. 708/207
5,072,418 A * 12/1991 Boutaud etal. 708/207
5,644,780 A 7/1997 Luick .oovvvvvniiiniinnnnnnnn, 395/800
5,903,919 A 5/1999 MYeErs ...ccoevvvvenenennnnnnn. 711/220
0,044,448 A 3/2000 Agrawal etal. 712/9
6,078941 A * 6/2000 Jangetal. 708/625
0,134,648 A 10/2000 Peterson et al. 712/41
0,223,255 Bl * 4/2001 Argadeccovvnvnnennn. 711/129

* cited by examiner

Primary Examiner—Henry W. H. Tsai
(74) Attorney, Agent, or Firm—Priest & Goldstein, PLLC

(57) ABSTRACT

A reconfigurable register file integrated 1n an instruction set
architecture capable of extended precision operations, and
also capable of parallel operation on lower precision data 1s
described. A register file 1s composed of two separate files
with each half containing half as many registers as the origi-
nal. The halves are designated even or odd by virtue of the
register addresses which they contain. Single width and
double width operands are optimally supported without
increasing the register file size and without increasing the
number of register file ports. Separate extended registers are
also employed to provide extended precision for operations
such as multiply-accumulate operations.

23 Claims, 11 Drawing Sheets

TW0 x/2 EXTENDED PRECISION REGISTERS

500
N H RO
{
A3 A2
R R4
x | .
Rin-1) R{n-2)
MU
555
- He 551 393~ XHT (x/2) LTS | [FHO (x/2) BITS
J 554 552
f INSTHUCTION 53| '
Ate FIELD (1sb)
A 554 "
55 0 WY
EXTENDED ACCUNULATOR 523
550 B

566

U.S. Patent Aug. 25, 2009 Sheet 1 of 11 US RE40.883 E

FIG. 1A
(PRIOR ART)

Rt1.w[|Rt0.w = Ax1.w*Rx0.w + Rx3.w||Rx2.w

126
124

Ri1 R10

U.S. Patent Aug. 25, 2009 Sheet 2 of 11 US RE40.883 E

FIG. 1B
(PRIOR ART)

Rte. 2w = Rx1.w Rx0.w + Rx2. 2w

224

Rtu

| ACCUMULATOR 223
|

US RE40,883 E

Sheet 3 0f 11

Aug. 25, 2009

U.S. Patent

bt

03t

JII0]

TYNOLLYNIEWOD

14 034

|
. EeF HOLYINKNI DY

3114 H3LSI9H I1BVHNITINOI M
JI 9Id

U.S. Patent Aug. 25, 2009 Sheet 4 of 11 US RE40.883 E

FIG. 1D1

EXEMPLARY ADD INSTRUCTION FOR USE
WITH RECONFIGURABLE REGISTER FILE

ADD-Add

ENCODING

3113028 128 {271 26]25{24]23{22{21] 20} 13] 18] 17] 36} 15] 14] B3] 2] 3] o967 {5 [4[3[2]1]0°

woplyel gy | A [B[K [R [FoT
Wipoode [™"Bie o] Me o] B [0

Description

The sum of source registers Ax and Ry is stored in target register Rt

U.S. Patent Aug. 25, 2009 Sheet 5 of 11 US RE40.883 E

SynlaxlOperat 10N FIG. 102

Instruction jOperands JOpeation =~ T AF
Doubleword

o] [Rte =— e foe + Ayl [y None 110

mm o operatlon only if T/F condition is satistied in FO None |

MO0 ST W AL R By R =P | Thone

[TF].ADD.SIAM] 4w [Rt. Rx, Ry | Do operation only condition s satisfied in FO| Nope

Dual words

—
o i
Rte -=—— Rxe + Rye
1F].ADD.S{AM].2W | Rte. Rxe, Rye] Do operation enly if T/F condition is satisfied in FO] None
Dual Halfwords

ADD . ST AM]. 2H T, R, Ay | AL.AT~—Rx.HL + Ry A1 None |~ 431
Rt .H) <—Rx.HO + HyH
| None_

[TF) ADD.S[AM].2H] Rt, Rx, Ry | Do operation only if T/F condition is satisfied in FO

OJuad Halfwords
Rto.H1-— Rxo.H] + Ryo.H1

At0.HD —— Rxo.H0 + Ryo.HO
Rie.H! «— Rxe.H1 + Rye.H1
Ate H) ~— Rxe.H0 + Rye HO

IF condition 15 satisfilec

44¢

1n 0] None
Quad Bytes

Rt.B3 ~— Ax.63 + Ay.B]
Rt.B2 —=— Rx .82 + Hy B 437

Rt.61 -=—fAx.B1 + Ry.B1
Rt .00 ~—Hx.60 + Ry.B0

| TF) .ADD.SIAM). 48 [Rt, Rx, Hy | Do operation only i} T/F condition Is satisfied in FOf None
—— Uctal Bytes
ADD. SLAN] .88 , Rxe, Ryel Rto.B3 =— Rx0.63 + Ryo.83

Rto.B2 ~— Rx0.B2 + Ryo B¢ 443
' Rto.B1 ~— Rxo.B! + Ryo.B1

Rto.B0 == Rx0.80 + Ryo.B0
Rte.83 —=— Rxe.B3 + Aye.B3
Rie.B2 —— Rxe.B2 + Rye.B2
Rte B! ~— Rxe.B1 + Rye.B1
ﬂte.BD-—-R:e.BO + Rye.B0

TF] .ADD.S{AM] .88 e| Do operation on [t condition is satisfied in FO} None

Arlthmetlc Scalar Flags Affected {on least 31gnlfxcant operationl

= MSB of result
Z | if result is zero, 0 otherwise

V.= 1 1f an overflow occurs, 0 otherwise (This bit is meaningful for signed operations)
C = 11f acarry occurs, 0 otherwise (This bit is meaningful for unsigned operatlons)

Cycles: 1

US RE40,883 E

Sheet 6 of 11

Aug. 25, 2009

U.S. Patent

Iiilllil -
M
2EXqT 2EXq]
AT B B G
5 Qv c v H3LSIOH
NIAD vy Il* —— | Q¥ 000

’,m"#.-W"m--h‘._t-h-v-_o-_ccmovw-.__..M..—y.m-—

US RE40,883 E

Sheet 7 o0f 11

Aug. 25, 2009

U.S. Patent

58

punippppEr— v g TN R 4 PRSP W OV IS S & w el - w

ONY
. GST) 01314 3y
o _NOTLINHLSNT

SLIQ-(2/X) OHX|[SLI8- (/%) THX N peg P95

(¢-U)H
e I N

£
ct
Ob

4
558
X X
. m;.m —

SH31SII3H NOISIOdHd Q3ONJLX3 ¢/* OML

vE 9Id

US RE40,883 E

Sheet 8 of 11

Aug. 25, 2009

U.S. Patent

43151939 13941
3114 43151334 000 01

W 94 0Fg
| 2 H31SI934 1394¥1 0O '
HOLYTNWNA2Y C3ANILX3 4

. AdW 9FX9T w
| £¢9 ST N oy 3eS |
| H31SI93H 1394v1
3714 H3LST93H NIAT OL
| - H31SI93Y 1394YL NIAI oM _“
| HOLY KNIV (3ON3LX3
| cpg--7 AW IXIE - “
| fommdvemoos @S1) 01314 A4y
“ a9 . NOILINHLSNI
| 1 159
_ ¢cd b /X
_ |
m cs 08X 18X 28X £ax e “
| |
R e N

SHILSIOM NOISIOIHA GION3LXI #/X HNOA ,,f,,.cow

g€ 914

U.S. Patent Aug. 25, 2009 Sheet 9 of 11 US RE40.883 E

FIG. 3C1

MPYXA - Multiply with Extended Accumulate
Encoding

31130{23128]27]26125] 2423 [22{ 21120119] 18117 {16 {15] 14 1312144 [10fS 8 7 6]5[413[2[1] 0
Mg | Me (0] & | B | @[W

FI6. 20A
Discription

the product of source re?:sters Rx and Ry is added to an extended precision target
register Rt. The word multiply form of the instruction multiples two 32-bit values
producing a b64-bit result which is then added to the B0-bit extended precision target
register. The dual halfword form of the instruction multiples two pairs of 16-bit values
produglng 3 J¢-bit resull which is then added to the 40-bit extended precision target
register

The extended precision Dits aré provided by the Extended Precision Register (XPR). See

the d1agrams below for the location of the extended bits for the 40-bit and 80-bit resulis

Syntax/Operation
Instryction | Operands [~ Operation [ACF'
Word
HPYXA.[SPIN. 1 SUIW Do operation below but do not affect ACFs None |701

APIXAL NV @K “3‘” Rte. Rx. Ry PR Ha| |Rto| |Rte —— XPR_Ha| |Rto| [Rte + (Ri*Ry

FI MPYXA.[SPIM. 11 SU]W y | Do operation only if T/F condition is satisfied in ACFs|None

HPYXA.SH. 1] SUJW y [¥PR.Ha| [Rto| |Rte =— XPR.Ha| [Rio]|Rte + (Rx*Ry None
| TF) MPYXA.SM. I SUIW '|||||Hillﬂﬂ|{ o operation only if T/F condition is satisfied in FO [None

Dual Haltwords

HPYXA.(SPIN.2 SUIH Do operation below but do not affect ACFs None |70
HPYXA[CNVZ].ISPIH.?[SUI dte A R XPH.BnI Rto-—- xm.am Hto+ (Rx.H1* Ry H1 F!
H - R xPﬂ.Bno Hte-—- xPﬂ.Bno ﬂte + (Rx.HO * Ry.Ho) Fo
| TF] .MPYXA.[SP]M.2[SUJH|Rte, Rx. Ry (Do operation only if T/F condition is satisfied in ACFs
ate. Rx Ry | PR.Bn1| [Rto ~— ¥PR.Bn1||Rto + {Rx.H1"Ry.HY m
YA 512 Ul XPR.Bn0||Rte =— XPR.Bn0||Rte + (Rx_HO * Ry HO)
{TF) . MPYXA.SM.2[SUIH |Rte. Rx, Ry [Do operation only if T/F condition is satisfied in FO W

XPR-Extended Precision Register

31]30]29]28] 271 26] 25 mmmmnmﬂnn
% [x 1 X XB0
XHO

The XPA register may be used in two ways:
» Sub-registers (XBO and XB1) or (XB2 and XB3] are used during 40-bit
accumulation

« Jub-registers {XK0 and XHI) are used during 80-bit accumulation

U.S. Patent Aug. 25, 2009 Sheet 10 of 11 US RE40.883 E

FIG. 3C2

The specific sub-registers used in an extended precision operation depend on the size of the

accumylation fdual 40-bit or single 80-bit! and on the target CRF register pair specified in the
Instruction.

Single B0-bit Multiply-Accusulate Extended

Quring the B0-bit accuaulation, the odd-even re?ister pair is extended using either XH0 or XHi of

the APR depending on the target reqister. If a target register is designated Rte and a sub-register of
XPR 1s designated XHn, then te and m are related as follows:

o - (te mod 41/2, for te - (0, 2, 4, ... 30)

Dual 40-bit Multiply-Accusulate Extended

During the dual 40-bit accumulation, the even target register is extended using X80 or XB2 of the
APR, and the odd target register is extended using XB1 or XBI of the XPR. If a target register is

desi?naled Ate and the sub-registers of XPA are designated XBn0 AND XBni, then te, n0 and nt are
related as follows:

0 « te mod 4, for te = {0, 2, 4, ... 30)
M=n0+1

Aritheetic Scalar Flags Affected (on least significant eperation)

N-MSB of result
(=1 if result is zero, 0 otherwise

Y=1 1f an overflow occurs on the addition, 0 otherwise
C=1 it a carry occurs on the addition, 0 otherwise

Lycles: 1§

‘li.'ll'!l'I"i’.I'.I“t.'l"ibflI"lll'[ll.i"}"i'lt”I"F"

US RE40,883 E

_
_ mop«;pzzuu<ouozwhxw
_ ;AW 9TX9]

Lo a0 G51) (1314 91y
NOILINHLSNI

_
|
|
pxy |
|
|
|

Sheet 11 of 11

Aug. 25, 2009

|E
/ 00/

U.S. Patent

US RE40,883 E

1

METHODS AND APPARATUS FOR DYNAMIC
INSTRUCTION CONTROLLED
RECONFIGURABLE REGISTER FILE WITH
EXTENDED PRECISION

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

This application 1s a D1v. of Ser. No. 09/169,255 filed Oct.
9, 1998, now U.S. Pat. No. 6,343,356, and claims benefit of
Provisional Application No. 60/092,148 filed Jul. 9, 1998.

FIELD OF THE INVENTION

The present invention relates generally to improvements
to processing, and more particularly to advantageous tech-
niques for providing a scalable building block register file
which 1n a first application of the register file provides a low
cost lower capacity register file, while 1in a second
application, a higher capacity register file with dynamic
reconfiguration support for flexible data type operations 1s
provided. The present invention also relates to advantageous
techniques for providing a dynamically reconfigurable regis-
ter file of variable size width for different levels of data
precision operations when executing algorithms demanding
variable data types of variable precision requirements and
for conducting multiple parallel operations on lower preci-
sion data 1n 32 bit and 64 bit forms.

BACKGROUND OF THE INVENTION

When executing algorithms 1t 1s desirable to have a regis-
ter file that can be organized to more advantageously support
processing of the varying data types and formats that
dynamically occur in a programming application. For
example, a register file of large width for high precision
operations can be required 1 one part of an application
while single and multiple parallel operations on lower preci-
sion data can be required 1n a different part of the same
application. This desire 1s offset by the hardware cost to
implement a wider register file or the hardware cost to
implement additional read and write ports. The problem 1s
how to achieve a dynamically configurable register file with
extended precision at a reduced hardware cost without
alfecting general capabilities including performance.

SUMMARY OF THE INVENTION

The present invention advantageously addresses these
problems while achieving a variety of advantages as
addressed 1n further detail below. In one aspect of the present
invention, to achieve the effect of a doublewide register file,
two single wide register files, each with the same number of
registers, are used 1n combination to provide a single register
model that uses less read and write ports individually than a
single register file of twice the capacity would require. Due
to the reduced size of the register files and reduced number
of read and write ports, higher performance implementations
can be achieved as compared to a single register file of
equivalent combined capacity of data width and read and
write ports. The architecture designates one reduced register
file to contain even register addresses and the other to con-
tain odd register addresses. In a second aspect of this
invention, the architecture designates one register file con-
figured as two banks of registers wherein the even and odd
registers are selectable by means of the read/write port
address lines. In a third aspect of this invention, an additional

10

15

20

25

30

35

40

45

50

55

60

65

2

register set of at least one register can be dynamically asso-
ciated with any register in the register file to flexibly provide
extended precision data width to any selected file register.

By appropriate multiplexing and control logic, single
width, double width, and extended precision accessing are
made available. By architecture definition, double width
accesses are constrained to only work on even-odd register
pairs thereby treating the two separate register files as a
single addressable file of twice the width of an 1ndividual
register. By convention and as dictated by the architecture,
either the even or odd register file 1s designated as containing
the upper half of the bits 1n a double width access. Double
width accesses may occur on the read, write operations, or
both depending on the operation to be performed. In this
way, the access width of the register file 1s doubled without
the addition of costly read/write ports or more bits per each
register and the number of required read and write ports per
half 1s reduced. The double width register file achieved by
this invention provides the single width accesses for a sim-
pler programming model when dealing with data types of
single width. Additionally, since the same number of read
and write ports exist on both halves, single width accesses
across the full even plus odd register address space are pos-

sible.

These and other features, aspects and advantages of the
invention will be apparent to those skilled in the art from the
following detailed description taken together with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1llustrates a first prior art register file arrange-
ment,

FIG. 1B illustrates a second prior art register file arrange-
ment,

FIG. 1C 1illustrates a first reconfigurable register file in
accordance with the present invention;

FIGS. 1D1 and 1D2 illustrates an exemplary add instruc-
tion for use in conjunction with a reconfigurable register file;

FIG. 2 illustrates a ManArray indirect very long instruc-
tion word (1IVLIW) processor in conjunction with a reconfig-
urable register file 1n accordance with the present invention;

FIG. 3A illustrates two x/2 extended precision registers
used with the reconfigurable register file for extended preci-
s10n;

FIG. 3B illustrates four x/4 extended precision registers
used with the reconfigurable register file for extended preci-
s101;

FIGS. 3C1 and 3C2 illustrates an exemplary MPXYA
instruction for use with a reconfigurable register file; and

FIG. 4 illustrates two x/4 extended [prevision] precision
registers used with a building block register file that 1s a
subset of the reconfigurable register file.

DETAILED DESCRIPTION

Further details of a presently preferred ManArray archi-
tecture are found 1n U.S. patent application Ser. No. 08/885,
310 now U.S. Pat. No. 6,023,753 and Ser. No. 08/949,122
now U.S. Pat. No. 6,167,502 filed Jun. 30, 1997 and Oct. 10,
1997, respectively, Provisional Application Ser. No. 60/064,
619 entitled Methods and Apparatus for Efficient Synchro-
nous MIMD VLIW Communication” filed Nov. 7, 1997,
Provisional Application Ser. No. 60/067,511 entitled
“Method and Apparatus for Dynamically Modifying Instruc-
tions 1 a Very Long Instruction Word Processor” filed Dec.

US RE40,883 E

3

4, 1997, Provisional Application Ser. No. 60/068,021
entitled “Methods and Apparatus for Scalable Instruction Set

Architecture” filed Dec. 18, 1997, Provisional Application
Ser. No. 60/071,248 entitled “Methods and Apparatus to

Dynamically Expand the Instruction Pipeline of a Very Long
Instruction Word Processor” filed Jan. 12, 1998, Provisional

Application Ser. No. 60/072,915 entitled “Methods and
Apparatus to Support Conditional Execution in a VLIW-
Based Array Processor with Subword Execution” filed Jan.
28, 1988, Provisional Application Ser. No. 60/088,148
entitled “Methods and Apparatus for ManArray PE-PE
Switch Control” filed on Jun. 5, 1998, Provisional Applica-
tion Ser. No. 60/092,148 “Methods and Apparatus for
Dynamic Instruction Controlled Reconfigurable Register
File with Extended Precision” filed Jul. 9, 1998, and Provi-
sional Application Ser. No. 60/092,130 entitled “Methods
and Apparatus for Instruction Addressing in Indirect VLIW
Processors™ filed Jul. 9, 1998, all of which are assigned to
the assignee of the present invention and incorporated herein
by reference 1n their entirety.

FIG. 1A depicts a first prior art register file arrangement
100 (Prior Art) 1 consisting of “n” registers R0 . . . R(n-1)
110 with four read data output ports, Rx0 112, Rx1 114, Rx2
116, and Rx3 118, each of x-bits width. In addition, there are
two write ports, Rt0 124 and Rt1 126, each of x-bits.width. A
total of six x-bit width ports are required to provide double
width accesses. The data bit width “x” 1s typically 8-bit,
16-bi1t, 32-bit, 64-bit and other sizes such as 9-bit, 18-bit etc.
The register file read data output ports connect to an execu-
tion unit, for example a Multiply Accumulate Unit 120 con-
sisting of a multiplier 121 and an accumulator 123. The
equation of operation for the MAU 120 shown in FIG. 1A 1s
Rt1.w|[Rt0.w=Rx1.w*Rx0.w+Rx3.w|[Rx2.w where the nota-
tion Ra#.w has a=x for an input source operand and a=t for a
target result operand, the # indicative of the register number
from the register file 110, and the .w indicates the data type
which in this case is a single width x-bit word size. The “||”
symbol indicates a concatenation of input or output bus
widths due to the granularity of the read and write ports of
the register file 110. Other execution unit types include
Arithmetic Logic Units, specialized functional units, etc. as
dictated by a particular processor architecture.

FIG. 1B depicts a second prior art register file arrange-
ment 200 (Prior Art 2) consisting of “n” registers RO . . .
R(n-1) 210 with three 2x-bit wide read ports, Rx0 212, Rx1
214, and Rx2 216. In addition, there 1s a single 2x-bit wide
write port Rt 224. A total of three 2x-bit width ports are
required to provide double width accesses. The data bit
width “2x” 1s typically 16-bit, 32-bit, 64-bit, 128-bit and
other sizes such as 18-bit, 36-bit, etc. The register file read
data output ports typically connect to an execution unit, for
example a Multiply Accumulate Unit 220 consisting of a
multiplier 221 and an accumulator 223. The equation of
operation for the MAU 220 shown 1n FIG. 1B 1s Rt#.2w=
Rx1.w*Rx0.w+Rx2.2w where the notation Rx#.w has a=x
for an 1put source operand and a=t for a target result
operand, the # indicative of the register number from the
register file 110, the 0.2w indicates the data type which in
this case 1s a double width 2x-bit word size, and the single
width “.w” word size uses only half of the read ports Rx0
212 and Rx1 214. In the example indicated, the other halves
of the Rx0 and Rx1 data ports are unused. Other execution
unit types include Arithmetic Logic Units, specialized func-
tional units, and the like as dictated by a particular processor
architecture.

There are problems associated with each of these prior art
designs which are solved by the present invention. In the

10

15

20

25

30

35

40

45

50

55

60

65

4

Prior Art 1 approach of FIG. 1A, a large number of read and
write single width ports are required to achieve the input
data width granularity of operand accesses and 2x-bit result
storage requirements of the indicated execution unit. In a
VLIW machine supporting multiple execution units, the
number of ports grows for each supported execution unit.
The number of read and write ports limits the width of the
VLIW and affects the performance that can be achieved
potentially to an unacceptable level. Increasing the width of
the VLIW can be counterproductive, since adding ports to a
single “n” register file increases the critical path slowing
read and write access.

In FIG. 1B the Prior Art 2 approach, double width ports
are used reducing the number of ports but at the expense of
granularity of operand accesses and results storage. This
means that 1t a single x-bit width operation 1s required, the
additional x-bits accessed 1n a 2x-bit read access could be
wasted causing a loss of storage, potentially increased
power, quite possibly additional programmer overhead to
conserve register usage depending upon the whether an
execution unit has a single width x-bit write execute action,
and potentially slower performance due to programming
overhead to conserve register storage space. In addition, 1f

the same number of “n” registers 1s to be maintained as

compared to the Prior Art 1 approach, the “N” registers must
be of 2x width doubling the size of the register file which, in
general, does not necessarily provide a significant perfor-
mance advantage that would justity the added expense.

FIG. 1C depicts a reconfigurable file and execution unit
300 1n accordance with the present invention. The reconfig-
urable register file consists of a first portion or file 330 and a
second portion or file 340, each containing three single x-bit
width read access ports, and a single x-bit write port. File
330 consists of read ports Ryo 332, Rxo 334, Rso 336, and
write port Rto 326. File 340 consists of read ports Rye 342,
Rxe 344, Rse 346 and write port Rte 324. Multiplexers 301
and 302 allow single width accesses 352 and 354,
respectively, from either half of the composite register file.
The MAU execution unit 320, consists of a multiplier 321
and an accumulator 323. In FIG. 1C each register file portion
330 and 340 1s required to have only three x-bit read ports
and a single x-bit write port. In the present invention, a small
number of ports for each register file portion are utilized to
achieve x-bit width granularity of storage. Consequently,
this design more readily supports a VLIW architecture con-
taining multiple execution units. In addition, by reducing the
register size 1n each portion of the composite register file of
“n/2” registers along with a minimum number of ports, the
critical path 1n the register file 1s reduced thereby improving
its read and write access performance. It 1s noted that an n/4
register arrangement 1s also a feasible approach for low cost
applications.

In addition, the present invention does not sacrifice granu-
larity of accesses, single width and double width accesses
are optimally supported without increasing the register file
size. This 1s important since all applications contain a con-
trol portion that typically has sequential execution with little
or no parallelism and an algorithm execution portion that
typically contains operations that can be executed 1n parallel.
The parallel code portion can be operated upon by packed
data operations and VLIW operations while the sequential
control section usually requires single width data type opera-
tion support. It 1s consequently of great importance to effi-
ciently support the sequential code data types as well as the
parallel code data types. A reconfigurable register file pro-
vides this support.

A presently preferred add instruction 1s shown in FIG.
1D/ showing support for single x=32 bit width operations

US RE40,883 E

S

430, 431, and 432 as well as double x=64 bit width opera-
tions 440, 441, 442, and 443. With this novel register file
design integrated into the instruction set architecture, single
width and double width 1nstructions can be mixed on a cycle
by cycle basis. For example with x=32-bits, the present
invention allows the reconfigurable register file to be treated
as a 32x32-bit register file 1n one cycle and a 16x64-bit
register file 1n the very next cycle.
ManArray Reconfigurable Register File

In a ManArray indirect Very Long Instruction Word
(1VLIW) processor’s execution units 250 as shown in FIG.
2, there are 8 read ports and 4 write ports for each half of the
reconfigurable register file 200. These ports support single
width 32-bit and in combination double width 64-bait
accesses for any of the 5 execution units. Address and con-
trol logic are not shown 1n FIG. 2 to improve the clarity of
illustration. It will be recognized that registers having num-
bers of bits (p), and different numbers of read ports (q) and
write ports (r) may be employed.

An exemplary instruction that takes advantage of this con-
figuration of the register file 1s the 32-bit multiply-
accumulate. The operation performed by this instruction 1s:

Rto|Rte<—(Rx*Ry)+Rto|Rte

where Rx and Ry are 32-bit quantities and Rto||[Rte is a
64-bit quantity. In a traditional non-split 32-bit wide register
file implementation, 1t would take 1(Rx)+1(Ry)+2
(Rto||[Rte)=4 32-bit read ports and 2(Rto|[Rte<—) 32-bit write
ports to accommodate this instruction. However, using the
two register file blocks described above, this same function
can be implemented with 3 read ports and 1 write port per
block by using even/odd pairs for the 64-bit quantities.

For operations that do not need 64-bit quantities, the mux
on the 1nput to the functional unit 1s controlled to select the
proper register file. As an example, consider the add instruc-
tion executing on the ALU that performs the function:

Rt<—Rx+Ry

where Rx, Ry, and Rt are 32-bit quantities. If Rx 1s R1, Ry 1s
R3, and Rt 1s RS then the mux on the lower 32-bit mputs
selects the odd register file for both mputs. Since the ALU
has two read ports on the odd register file this operation 1s
accomplished without any problems. The 32-bit write to RS
1s also easily accomplished by only enabling the write for the
odd register file. Any combination of even or odd registers
can be selected without restrictions.
Extended Precision

An approach to increasing the width of the register file at a
reduced hardware cost comes from taking into consideration
where the extra precision gained from a wider register file 1s
really needed. For example, in multiply-accumulate
operations, extra precision 1s needed for the accumulation in
some applications to increase the number of times accumu-
lation can occur without overtlow. In addition, even though
providing extended precision support to all register files 1s a
general case, 1n specific applications this 1s usually not
required and would be considered unnecessarily expensive
to implement. It 1s also not desirable to explicitly specily
which registers are specially enabled, to support extended
precision operations. Further, 1t 1s not desirable to have addi-
tional architecturally defined extended precision accumula-
tor registers 1n addition to an existing register file.
Consequently, for low cost implementations, as well as, for a
flexible programming model for extended precision support,

10

15

20

25

30

35

40

45

50

55

60

65

6

the present reconfigurable register file with extended preci-
sion mvention advantageously addresses such concerns.

To accommodate such specific needs without increasing
the number of ports or the width of the entire register file, the
reconfigurable register file concept 1s extended by adding, in
the simplest case, a single additional register known as the
extended precision register. FIG. 3A illustrates a system 500
employing two (x/2)-bit registers 553 and 555 labeled XH1
and XHO0 which are used to extend the precision of the accu-
mulation operation that occurs 1n the Extended accumulator

unit 523. The Multiply with Extended Accumulate operation
is defined in [FIG. 3C] FIGS. 3CI and 3C2 which defines

the MPYXA 1instruction. The apparatus of FIG. 3A 1s
adapted for an 80-bit extended accumulate operation where
a 32x32-bit multiply 1s carried out by multiplier 521 which
produces a 64-bit result that 1s extended to 80-bits 1n the
accumulate operation of extended accumulator 523. This can

be seen 1n FIG. 3A where depending upon the least signifi-
cant bit (LSB) of the target register field in the MPYXA

instruction, bit 17 of FIG. [3C]3CI, one of two extended
precision registers XH1 553 or XHO 555 1s selected via mul-
tiplexer 563. The least significant bit of the Register Target
field allows the extended precision register to be arbitrarily
used with any pair of registers 1n the register file. This pow-
erful but simple feature allows a programmer to utilize any
pair of registers for an extended precision operation without
any mode control or specialized accumulator hardware
added to the architecture. The inputs of multiplexer 563 are
the (x/2)-bit length extended precision input operands XHO
552 and XH1 554. The multiplexer 563 selects XHO0 552
when its 1nput control line 556 1s a “0”. The multiplexer 563
selects XH1 554 when its input control line 556 1sa “1”. The
output of multiplexer 563 1s signal line 564 which 1s (x/2)-
bits and 1s an 1nput to the extended accumulator 523. The
extended output 566 1s a partial sum of product value that 1s
stored 1n the extended precision registers 1n preparation for

the next multiply accumulate operation. The output 566 1s
written to either XH1 553 or XHO 5355 under control of a

Write (Wr) signal 562. The pipeline stored LSB of the Rte
field 551 1s used to control the Wr signal via logical AND
type function where the Wr 562 1s passed onto the register
depending on the state of the LSB. The AND gates 557 and
559 control this function, where the LSB 1nput to AND 559
1s an 1nverted version 561 of whatever bit appears on line
556. The output of the AND gates 558 and 560 control the
writing of the output extended precision data 566 to their
extended precision registers. The extended precision regis-
ters XH1 553 and XHO0 555 are part of the special purpose or
miscellaneous registers that are used in the processor and
consequently are load-able and read-able by the program-
mer. The read and write buses that accomplish this task for
the programmer are not shown in FIG. 3A for reasons of
clarty.

FIG. 3B depicts a quad extended precision apparatus 600
supporting the MPY XA multiply with extended accumulate
instruction of FIG. [3C]3C! which shows dual 40 bit accu-
mulation 702 and double width 80 bit accumulation [703]
701. In FIG. 3B, four (x/4)-bit registers are provided as par-
titions of two (x/2)-bit registers 653 and 655 labeled XB3
and XB2 1n register 653 and XB1 and XB0 1n register 655.
The four (x/4)-bit registers are used to extend the precision
of the accumulation operation that occurs in the Extended
accumulator units 621 and 625. The Multiply with Extended
Accumulate operation is defined in FIG. [3C]3CI which
defines the MPYXA 1nstruction for dual 40-bit extended
accumulates 702. The apparatus of FIG. 3B supports the
dual 40-bit extended accumulate operation where two

US RE40,883 E

7

16x16-bit multiplies 619 and 623 each produce a 32-bit
result that are each extended to 40-bits in the accumulate
operations performed by accumulators 621 and 6235, respec-
tively. This operation can be seen in FIG. 3B where depend-
ing upon the least significant bit (LSB) of the target register
field in the MPY XA instruction, bit 17 of FIG. [3C]3CI, one
of two extended precision registers XB3 and XB2 653 or
XB1 and XB0 655 are selected via multiplexers 663 and
665. The least significant bit of the Register Target field
allows the extended precision register to be arbitrarily used
with any pair of registers in the register file. This powertul
but simple feature allows a programmer to utilize any pair of
registers for an extended precision operation without any
mode control or specialized accumulator hardware added to
the architecture. The input of multiplexers 663 and 665 are
the (x/[2]4)-bit length extended precision input operands
XB0 622 and XB2 626 for multiplexer 663, and XB1 624
and XB3 628 for multiplexer 665. The multiplexer 663
selects XB0 622 when 1ts input control line 630 1s a “0”. The
multiplexer 665 selects XB1 624 when 1ts input control line
630 1s a “0”. The multiplexer 663 selects XB2 626 when its
input control line 630 1s a “1”. The multiplexer 665 selects
XB3 628 when 1ts input control line 630 1s a “1”. The output
670 of multiplexer 663 1s (x/4)-bits and serves an input to the
extended accumulator 621. The extended output 636 1s a
partial sum of product value that 1s stored in the extended
precision registers in preparation for the next multiply accu-
mulate operation. The output 672 of multiplexer 665 1s (x/4)-
bits and serves as an 1nput to the extended accumulator 625.
The extended output 638 i1s a partial sum of product value
that 1s stored in the extended precision registers 1n prepara-
tion for the next multiply accumulate operation. The output
636 1s written to either XB2 or XB0 and the output 638 1s
written to either XB3 or XB1 all under control of a Write
(Wr) signal 648. The pipeline stored LSB of the Rte field
651 1s used to control the Wr signal via a logical AND type

function where the Wr 648 1s passed onto the register
depending on the state of the LSB. The AND gates 657 and

659 control this function, where the LSB mnput to AND 659
1s an mverted 661 version of 630. The output of the AND
gates 632 and 634 control the writing of the output extended
precision data 636 and 638 to their extended precision regis-
ters. The partitioned extended precision registers 653 and
655 are part of the special purpose or miscellaneous registers
that are used 1n the processor and consequently are load-able
and read-able by the programmer. The read and write buses
that accomplish this task for the programmer are not shown
in FIG. 3B for reasons of clarity.

In a typical application, x 1s 32-bits, with (x/2)=16-bits
and (x/4)=8-bits though different extended precision bit
widths are not precluded. The present approach allows dual
accumulations of 40-bits of precision for dual 16x16
multiply-accumulates, as specified in the MPY XA 1nstruc-
tion FIG. 3C and for the exemplary apparatus shown in FIG.
3B. For 32x32 multiply-accumulate operations, 80-bits of
precision are available for the accumulation. The extended
precision concept can be further extended to support quad 20
bit accumulations where X 1s 16-bits and there are 4 extended
precision bits. The concept can be further generalized by
using more than one x-bit extended precision register and
basing the selection of the register extended precision por-
tions on more than the single LSB of the Instruction Rte
field. Since a single 32-bit extended precision register pro-
vides support for up to two 80-bit extended accumulate
operations and up to four 40-bit extended accumulate
operations, further extensions, even though feasible, for
practical reasons presently appear to be of limited use.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

Due to the nature of many applications, a processor can be
designed utilizing a subset of the ManArray architecture that
1s based upon a single 16x32 register file, 1.e. one of the
building blocks for a reconfigurable register file. Dual 8x32
register files can be also used to create a reconfigurable
16x32 register file. An 1important aspect 1s that a low cost
register file design point can be reached by subsetting the
ManArray architecture that allows future growth into higher
performance processors that remain code compatible with
the lower cost subset design. An exemplary apparatus 700
implementing this use of the extended precision concept
with a single register file design 1s shown 1n FIG. 4.

While the present invention has been described in the con-
text of a number of presently preferred embodiments, 1t will
be recognized that the teachings of the present invention
may be advantageously applied to a variety ol processing
arrays and variously adopted consistent with the claims
which follow.

We claim:

1. A processing apparatus for performing a multiply accu-
mulate operation comprising:

a reconfigurable register file including an odd register file
portion and an even register file portion;

a first multiplexer to select the odd register file portion or
the even register file portion to provide a first value;

a second multiplexer to select the odd register file portion
or the even register file portion to provide a second
value;

a multiplier for performing a multiply operation on the
first value and the second value to produce a third
value; and

an accumulator for accumulating the third value with a
fourth value to produce a result value, wherein the
fourth value comprises a concatenated even and odd
pair of values read from the reconfigurable register file.

2. The processing apparatus of claim 1 wherein the accu-
mulator 1s further for writing the result value to the reconfig-
urable register file.

3. The processing apparatus of claim 1 wherein the accu-
mulator 1s further for writing the result value to the reconfig-
urable register file as an even and odd patir.

4. The processing apparatus of claim 1 wherein the first
multiplexer allows for single width accesses to the odd reg-
ister file portion or the even register file portion.

5. The processing apparatus of claim 4 wherein the second
multiplexer allows for single width accesses to the odd reg-
ister file portion or the even register file portion.

6. A processing apparatus for performing an extended pre-
cision multiply accumulate operation comprising:

a reconfigurable register file including an odd register file
portion and an even register file portion;

a first multiplexer to select the odd register file portion or
the [second] ever register file portion to provide a first
value;

a second multiplexer to select the odd register file portion
or the [second] ever register file portion to provide a
second value;

an extended precision register containing an extended
value;

a multiplier for performing a multiply operation on the
first value and the second value to produce a third
value; and

an extended accumulator for accumulating the third value
with the extended value concatenated with a fourth
value to produce a result value, wherein the fourth

US RE40,883 E

9

value comprises an even and odd pair read from the
reconfigurable register file.

7. The processing apparatus of claim 6 wherein the accu-
mulator 1s further for writing a first portion of the result
value to the reconfigurable register file and a second portion
of the result value to the extended precision register.

8. The processing apparatus of claim 6 wherein the accu-
mulator 1s further for writing a first portion of the result
value to the reconfigurable register file as an even and odd
pair, and writing a second portion of the result value to the
extended precision register.

9. A processing method for a processing apparatus com-
prising a reconfigurable register file including an odd regis-
ter file portion and an even register file portion comprising
the steps of:

selecting the odd register file portion or the even register
file portion to provide a first value;

selecting the odd register file portion or the even register
file portion to provide a second value;

multiplying the first value and the second value to produce
a third value;

reading a fourth and a fifth value from the reconfigurable
register file;

concatenating the fourth value with the fifth value to pro-
duce a concatenated value;

accumulating the third value with the concatenated value

to produce a final result value.
10. The method of claim 9 wherein the third value and the

fourth value comprise an even and odd pair read from the
reconfigurable register file.
11. The method of claim 9 further comprising the step of:

storing the final result value to the reconfigurable register
file.

12. The method of claim 11 wherein the final result
includes an odd portion stored 1n the odd register file portion
and an even portion stored in the even file portion.

13. A processing method for a processing apparatus coms-
prising a reconfigurable register file including an odd regis-
ter file portion and an even register file portion comprising
the steps of:

selecting the odd register file portion or the even register
file portion to provide a first value;

selecting the odd register file portion or the even register
file portion to provide a second value;

multiplying the first value and the second value to produce
a third value;

reading a fourth and a fifth value from the reconfigurable
register file;

concatenating an extended value[,] and the fourth value
with the fifth value to produce a concatenated value;
and

accumulating the third value with the concatenated value
to produce a final result value.

10

15

20

25

30

10

14. The processing method of claim 13 further comprising
the, before the step of concatenating, the step of:

reading the extended value from an extended precision
register.
15. The method of claim 13 further comprising the step of:

storing a portion of the final result value to the reconfig-

urable register file.
16. The method of claim 13 further comprising the step of:

storing a portion of the final result value to an extended
precision register.
17. An apparatus for performing an operation with
extended precision, the apparatus comprising:

at least two extended precision vegisters containing an
extended value;

a register file containing a plurality of vegisters, the regis-
ter file having at least two read ports;

an execution unit reading a first and a second value
through the at least two read ports and connecting said
execution unit’s output to the at least two extended pre-
cision registers,

a multiplexer, in vesponse to a portion of a field in an
instruction, selecting one of the at least two extended
precision registers to provide a third value to the execu-
tion unit, said field in the instruction specifying one of
at the least two extended precision registers to be writ-
ten by the execution unit when the execution unit
executes the instruction utilizing the first value, second
value, and thivd value as inputs thereby increasing the
precision of the operation.

18. The apparatus of claim 17 whervein the at least two
extended precision vegisters having a first and second preci-
sion register, wherein the instruction further controlling
whether to write the output of the execution unit to either the

3> first or second precision register

40

45

50

19. The apparatus of claim 17 wherein the at least two
extended precision rvegisters are loadable and readable by an
application program.

20. The apparatus of claim 17 whevrein the selection of one
of the at least two extended precision registers as additional
input to the execution unit is determined by a bit carried in
the instruction.

21. The apparatus of claim 17 further comprising combi-
national logic receiving a bit from the instruction as input to
determine whether to write output from the execution unit to
the at least two extended precision registers.

22. The apparatus of claim 17 wherein the execution unit
reads single width data types when reading the at least two
read ports.

23. The apparatus of claim 17 wherein the execution unit
reads double width data types when reading the at least two
read ports.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description/Claims
	Page 17 - Claims

