
United States Patent [191 
Ackerman et al. 

USOO5649131A 

5,649,131 
Jul. 15, 1997 

[11] Patent Number: 

[45] Date of Patent: 

[54] 

[75] 

[73] 

[21] 

[22] 

[5 1] 
[52] 

[58] 

[56] 

COMMUNICATIONS PROTOCOL 

Inventors: Chaim M. Ackerman, Lakewood; Alan 
L. Glasser, Manalapan; Reuben Klein, 
East Brunswick, all of NJ. 

Assignee: Lucent Technologies Inc., Murray Hill, 
NJ. 

Appl. No.: 257,215 

Filed: Dec. 30, 1992 

Int. Cl.6 .................................................... .. G06F 13/00 

US. Cl. ........................ .. 395/335; 395/285; 395/242; 
395/788 

Field of Search ................................... .. 395/325, 650, 

395/200, 275, 700, 200.01, 200.05, 200.02, 
280, 290, 285, 221, 242, 326, 329, 335, 

339, 615, 788; 364/408, 407; 379/27, 28, 
29, 93,96, 122, 136 

References Cited 

U.S. PATENT DOCUMENTS 

8/1989 
4/1992 
12/1992 
1/1993 
4/1993 
4/1994 

.. 379/88 4,853,952 
5,107,419 
5,173,854 
5,181,162 
5,201,049 
5,303,042 

5,303,379 4/1994 Khoyi et a1. .......................... .. 395/700 
5,345,553 9/1994 Busboom et al. 395/161 
5,347,632 9/1994 Filepp et a1. 395/200 
5,361,350 11/1994 Conner et al. ........................ .. 395/600 

OTHER PUBLICATIONS 

Electrical Communication Laboratories Technical Journal, 
“Screen Control Program for an Advanced Data Terminal 
System”, (original and English Translation) vol. 34, No. 1, 
1985, Y. Ieyoshi et al, pp. 165-179. 

Primary Examiner-Glenn A. Auve 
Attomey, Agent, or Firm-Frederick B. Luludis 

[57] ABSTRACT 

The invention is directed to a communications protocol 
which facilitates the exchange of interface information 
between a host processor and a terminal, such as a 
workstation, smart phone, portable computer, etc., by asso 
ciating an object that is to be displayed on the terminal 
display with a particular identi?er, and by associating input 
information entered in response to a user manipulating a 
displayed object with the associated object identi?er, rather 
than the location of the displayed object. Accordingly, a host 
processor may specify relative rather than speci?c attributes 
for an object that is to be displayed on a terminal display, 
thereby leaving it up to the terminal to display an object in 
accord with its own capabilities. 

10 Claims, 13 Drawing Sheets 

‘9° 150-1 2})0 3P0 
I ‘ ' 310 

TELEPHONE I TRANSACTION [ HOST 
NETWORK - PROCESSOR DATABASE 

‘T’ 
150-11 



US. Patent Jul. 15, 1997 Sheet 1 0f 13 5,649,131 

DATABASE 

310 
[ HOST TRANSACTION 

PROCESSOR 
TELEPHONE 
NETWORK 

FIG. 2 

COMMAND MESSAGE FORMAT 

m 0 ...rl. 

am W .mm m WP .n 0m 0 rp 1.» p... S 
we m 

PW .U, 
NW1 0 

Rm?w HY m OocEM-AOQ Il-EK FE gVRE MC TGIILTR I A ANETSAEWAD EAVCETE.CRL ££M¢¢$NWMM uwmum.mv.m..uwo<?o D E K AEMW. .ADOnM OrLMun MANENTAE$MD MEAVTSTISAIL ORHOCEAOERO CCCMAHUDVSFH 



US. Patent Jul. 15, 1997 Sheet 2 0f 13 5,649,131 

F I G. 3 PROPERTIES 
/ A \ 

id:CREATEzgid:CHOICE:<uttrib>:<|ubel>z<dutum> 
idzCREATEzgid:ENTRY:<uttrib>:<Iube|>:<prompt>z<|en>z<dotum> 
id:CREATE:gid:TEXT:<uttrib>:<sturtbyte>:<dutum> 
id:CREATE:gid:BITMAPz<ottrib>:<bit/row>:<dutum>:<bitstrecm> 
id:CREATE:gid:SCRIPT:<uttrib>z<|ubel>:<dutum>:<script> 
idrCREATE1gId:REGION:<uttrib>:<dotum> 

FIG. 4 

OBJECT ATTRIBUTES 

TYPE ATTRIBUTES 
<uny object> HIDE 
<uny group> RADIO 
CHOICE DEFAULT,NOTOUCH,COMMAND,POPUP 
ENTRY STRINGJILPHA,NUIIBER,TELNO,MONEY,DATEJIHE,RAW,SECURE,NOTOUCH 
TEXT WORDWRAP,MORE,PROMPT 
BITMAP GROWABLLSHRINKABLE,PROPORTIONAL,RUNLENGTH 
REGION HORIZONTAL,0UTER,UP 
SCRIPT ACTIVE 



US. Patent Jul.15, 1997 Sheet 3 0f 13 5,649,131 

FIG. 6' 

LPROTECTED ] [ REPERTORY ] m m 

[ A4 ][ P3 ][cNTRL1][ A5 1 

[ P‘ JLPZ ] [USER )[cumz] 



US. Patent Jul. 15,1997 Sheet 4 0f 13 5,649,131 

FIG. '7 

REPERTORY DIAL CONTROLS 
PARAMETER FUNCTION 

WAIT FOR 30 SECONDS 
PAUSE FOR TWO SECONDS 
HANG-UP 
WAIT FOR DIAL TONE(UP TO 15 SECONDS) 
WAIT FOR ANSWER(REMOTE OFF—HOOK)(UP TO 15 SECONDS) 
FLASH 

<DIGIT,*,#> DIAL DIGIT,’*’,OR ’#’ 
A,B,C,D DIAL DTMF TONE A,B,C,OR D 
5 WAIT FOR CARRIER,AND TRY TO ESTABLISH SESSION 

_ ‘ _ NO-OP(PLACE HOLDER) 

n:INPUT:s SEND INPUT EVENT WITH id ’n’ AND INFO ’s’ 

'*1* +1135 

FIG. 5 

EVENT MESSAGE FORMAT 
idzINPUTzfridzTnfo 
id:ERROR:info 
idzREPLYzinfo 
id:CONNECTED:info 
idzHANGUPzinfo 
02H0LD 



US. Patent Jul. 15, 1997 Sheet 5 of 13 5,649,131 

FIG. 8 
COMMAND 

APPLICATION REGION REGION 

/ . P \/ \ 
P1“ {image} 07/15/92 10:12AM. 

I 

CNTRL 1‘: _____ __LW91E‘FIQ“.E°5JE¥E@§E‘QE 
TOUCH HERE To SEE CURRENT 

_____ __ED_A_"_D_@5N_E¥E5_____________ 

USERR BANK AT HOME PAY A BILL 

STOCKS/BONDS sToP ORDER TRAVEL CHECKS 

SERVICES 

TOUCH HERE To TALK To 
CNTRL RA YOUR HOME BANKER 

FIG. 18 

FORMULA FUNCTIONS 
FUNCTION RETURN 

HANGUP(sec) TERMINATE THE SESSION IN sec SECONDS 
BEEP(tone) tone=0 — coNETRNATToN TONE; mm - ACKNOWLEDGEMENT TONE; 

tone=2 — ERROR TONE 

FlNDilobel) RETURN ID OE OBJECT WITH ‘LABEL luble 
EVAL id) EVALUATE DATUM FORMULA OF OBJECT id 





US. Patent 

FIG. 10 

Jul. 15, 1997 

FROM FIG. 9 

NO COMMAND=HOLD 
YES 

PLACE SESSION ON HOLD: 
FORMAT HOLDACK COMMAND 

925 
GM 

Sheet 7 of 13 5,649,131 

924 

START TIMER FOR UP 
(HOLD TIME-OUT VALUE>SEC.; 

PRESERVE SERIAL NO. ON 
LOSS OF CARRIER 

926 

l 
i 

TIMER EXPIRED AND 

DISCARD MESSAGE 

CARRIER NOT RECEIVED ?>YE5 

“929 

PERFORM APPLICATION 
TERMINATION PROCEDURES; 

TERMINATE SESSION; HANG UP 

930-1 
#927 I 

TERMINATE SESSION, 
HANG UP 

WAIT FOR 
CONNECTED MESSAGE 

1 
930-2 

930-3 

DISCARD MESSAGE ~93“ 

TO FIG.1I 



US. Patent Jul. 15, 1997 Sheet 8 0f 13 5,649,131 

FIG. 11 

FROM F|G.10 

ERR0R=9GENERAL YES 
NO 

938 
931 WAIT FOR NEXT MESSAGE ’' 

932 ERRORzUNKNOWN YES RE-CREATE GROUP AND H939 
GROUP ID ? ALL MEMBERS 

N0 

#940 
RE-CREATE OBJECT 

933 ERROR=UNKNOWN YES 
OBJECT? 

N0 

934 ERROR=N0 YES 
MEMORY? 

N0 

ERROR=DAMAGED YES 
GROUP ? 

NO 

ERROR=INVALID YES 
DEVICE ID 

NO 

WAIT FOR NEXT MESSAGE '' 

DESTROY OBJECTS NOT ~94‘ 
NEEDED,HANGUP, OR IGNORE 

935 DESTROY GROUP; RE-CREATE 
GROUP; ACTIVATE GROUP #942 

943 
956 TERMINATE SESSION " 

937 



US. Patent Jul. 15, 1997 

FIG. 12 

1001 

APPLICATION 
PROGRAM 

Sheet 9 0f 13 

1011 
1 - FORMAT CREATE COMMAND 

' FORMAT MOVE COMMAND 

' FORMAT CHANGE COMMAND 

'FORMAT DESTROY COMMAND 

"FORMAT ACTIVATE COMMAND 

' FORMAT FRAME COMMAND 

H1008 

J00!’ 1017 
'FORMAT DATAREQ COMMAND —> 

' FORMAT VOICE COMMAND 

1010 1013 

5,649,131 





US. Patent Jul. 15, 1997 Sheet 11 of 13 5,649,131 

3530 3&5 QENEQEIQ 3&5 5E 22 $5215 530 2: 

momwm 

E zzbzxzz 
Wag \ 

dzocgc??m 2281 026: 20:53 

\ on: 
Q: 

12% @526 $323 
\ 

m. SEE “50% 

m5: w: 

oz 

Q: 

$2 

mm: 

m5._<> @5252 Sigma M6236 Hugo Q2: 

51x25 9 505% 

22 P830 Jazz 

8: 

mm: 

12% %o% £05231? 

h5g6 828mm 2 E05: E “.5325 .w?msmz w: E2 .9830 oz: \ mm: 

E _ 

2.0: 22: 





U.S. Patent Jul. 15, 1997 Sheet 13 of 13 5,649,131 

1300 

FIG. 16 @ 
1200 DETERMINE NEXT 

QED 130'“ START BYTE 
' l 

FORMAT INPUT EVENT #1201 

SEND FORMATTED MESSAGE #1202 

HANG UP/ 140L‘ READ DEvICE MFG. HOLD 
CODE AND SERIAL NO. 

1501 . T 
\ 

FORNAT AND THEN TRANSNIT MESSAGE 

CARRIER 
DETECT HANGUP HOLD 

TSO2 153s ' 1524 
SEND CONNECTED MESSAGE WAIT 10 SECONDS WAIT FOR 
EVERY 3 SECONDS UNTIL AND THEN HOLDACK COMMAND 

SESSION CONNAND IS RECEIVED TERNINATE CALL 



5,649,131 
1 

COMMUNICATIONS PROTOCOL 

FIELD OF THE INVENTION 

The invention relates to communications protocols and 
more particularly relates to a protocol for exchanging mes 
sages between a transaction processor and a computer 
tenninal. 

BACKGROUND OF THE INVENTION 

A host computer (processor) that communicates with 
di?‘erent types of computer terminals usually customizes a 
command so that the command is in a form expected by the 
terminal that is currently communicating with the host. If a 
command is not so customized, then the terminal might 
possibly execute a process in a way not intended by the host 
For example, if the command pertains to displaying a 
particular pattern, then the terminal might possibly display 
some variation of that pattern. 
To deal with that possibility, the host initially requests the 

identity (model) of a computer terminal as a way of iden 
tifying the characteristics de?ning the display associated 
with the computer terminal. Such characteristics include, 
e.g., the size, shape, aspect ratio and resolution of the 
terminal display. Once it knows such characteristics, the host 
may then properly format a display command so that it suits 
the computer terminal. One such command includes the 
location at which a pattern, or symbol. is to be displayed on 
the terminal display. The host speci?es such a location so 
that it may maintain in its internal memory a map of the 
locations at which symbols are to be displayed on the 
terminal display. 

For example, one display pattern that a host computer 
typically transmits to a terminal is a so-called menu de?ning 
a list of selectable items (e.g., services). Auser operating the 
terminal may select one of the displayed menu items using 
any one of a number of di?erent input devices. One such 
input device is a conventional computer keyboard associated 
with a displayed screen cursor. To select a desired menu 
item, the user moves the screen cursor in a conventional 
manner to the displayed item and then operates an appro 
priate keyboard button, e.g., the Enter key. However, the 
movement of the displayed cursor is typically under the 
control of the host computer. That is, if the user moves the 
screen cursor in a particular direction (up, down, left or 
right). then the associated computer terminal sends a mes 
sage indicative of that fact to the host computer. The host 
computer, in response thereto, returns a message directing 
the terminal to move the screen cursor a number of units in 
the identi?ed direction. The host computer also tracks the 
new display location of the screen cursor in its associated 
memory map. 
Once the screen cursor is positioned on the desired menu 

item, the user may then operate the Enter key. The user’s 
terminal in response thereto noti?es the host computer that 
the user operated the Enter key. The host computer, in turn, 
correlates the operation of the Enter key with the position of 
the screen cursor using its stored map of the display, and 
therefore determines that the screen cursor is positioned on 
a menu item. Accordingly, the host computer interprets the 
message as a request to invoke the selected menu item. A 
terminal device and host computer may reduce the level of 
communications that they exchange during a transaction 
session by using what is commonly referred to as a “block 
mode”. In the block mode, the terminal accumulates the 
user’s input until the user operates a transmit key. At that 
point, the terminal device transmits the user’s accumulated 

20 

25 

35 

45 

50 

55 

65 

2 
input to the host processor. However, in either case, the host 
needs to maintain precise knowledge of the terminal display, 
especially the size of the display, in order to properly format 
the presentation of information to a user. 

SUMMARY OF THE INVENTION 

Based on the foregoing, we have recognized that there is 
a need for a communications protocol that is independent of 
the host transaction processor as well as the operating 
characteristics of di?erent types of terminals, workstations 
and/or so-called smart phones that the host might commu 
nicate with. Thus, an advancement in the an is achieved by 
providing a communications protocol for exchanging appli 
cation interface information between a host computer and 
user terminal, workstation or smart phone, in which the host, 
in accord with an aspect of the invention, associates different 
types of objects with respective identi?ers and then trans 
mits an object type and its associated identi?er to the 
terminal device. The terminal device, in turn and in accord 
with an aspect of the invention, displays the object in a form 
determined solely by the terminal device but in accordance 
with respective prede?ned policies. If a user manipulates a 
displayed object type then, in accord with an aspect of the 
invention, data representative of such manipulation is gen 
erated and transmitted with the associated object identi?er to 
the host processor. 

BRIEF DESCRIPTION OF THE DRAWING 

In the FIGS: 
FIG. 1 is a broad block diagram of a system in which the 

principles of the invention may be practiced; 
FIG. 2 illustrates the format of various commands that 

may be exchanged between the transaction processor and 
one of the terminals of FIG. 1; 

FIG. 3 shows the format of the Create command of FIG. 
2 in more detail; 

FIG. 4 lists in table form the attributes associated with the 
Create command of FIG. 3; 

FIG. 5 illustrates the formats of a number of di?’erent 
types of event, or input, messages that a terminal may 
transmit to the transaction processor of FIG. 1; 

FIG. 6 is an illustrative example of one way in which the 
display of a terminal may be partitioned into hierarchical 
regions, in accord with the principles of the invention; 

FIG. 7 illustrates so-called repertory telephone functions 
that are included in the inventive communications protocol; 

FIG. 8 is an example of the way in which a particular 
pattern of objects, or symbols, may be partitioned in accord 
with FIG. 5; 

FIGS. 9-12 illustrate in ?ow chart form the program 
which implements the principles of the invention in the 
transaction processor of FIG. 1; 

FIGS. 13-17 illustrate in ?ow chart form the program 
which implements the principles of the invention in a 
computer type terminal or similar device, such as one of the 
terminals of FIG. 1; and 

FIG. 18 illustrates the format of so-called formula func 
tions that may be included in the inventive protocol. 

DETAlLED DESCRIPTION 

The following discussion of an illustrative embodiment of 
the invention is given in the context of a so-called smart 
phone, two of which are shown in FIG. 1, namely station sets 
10 and 20. As is well-known, a smart phone may be used as 



5,649,131 
3 

a conventional telephone station set or as a data terminal. As 
illustrated speci?cally for station set 10, the smart phone 
includes telephone handset 11, a display 12 integrated with 
a touch-sensitive screen and telephone circuitry. It also 
includes a conventional data modem (not shown). The 
display and touch screen, more particularly, provide a 
mechanism for a user to input instructions to the smart 
phone. Such instructions may relate to establishing a simple 
telephone call. They may also relate to a complex data 
transaction involving transaction processor 200, during the 
course of which a smart phone, e.g., station set 10, and 
processor 200 communicate with one another in accord with 
the inventive communications protocol. 
More particularly, processor 200 is a multiuser computer 

that is programmed to implement the principles of the 
invention and to implement a particular transaction service, 
for example, a banking service associated with host database 
300. Users operating respective data terminals that have 
been programmed in accord with the invention may also 
“dial up” processor 200 and communicate therewith in order 
to invoke and interface with the particular transaction ser 
vice. Assume that one such user is the user associated with 
station set 10 who places a call to processor 200 in a 
conventional manner. The user dials such a number by ?rst 
touching display 12, which causes a processor (not shown) 
within station set 10 to display on display 12 a representation 
of a telephone keypad 13 and a plurality of command 
buttons 14. The user may then enter the processor 200 
telephone number by touching the appropriate digits of 
displayed keypad 13. Station set 10, in response to such 
touching, transmits over line 50 a conventional dual 
frequency (Touch-Tone) signal representing the telephone 
number thus entered. 

Telephone network 100, in response thereto, establishes a 
communications connection to an idle line, e.g., line 150-1, 
connecting to processor 200. A modern contained in the 
processor 200 input port connected to line 150-1 responds to 
the incoming call in a conventional manner, i.e., by exchang 
ing messages with the modem contained in station set 10 in 
order to negotiate a mutually acceptable operating mode 
including the transmission rate that they will use for the 
transmission of data (messages). 
Once the operating mode is established, station set 10 

transmits what we call a “Connected” message identifying 
station set 10, in which the identifying information may 
include, for example, a unique serial number assigned to 
station set 10. Such identifying information may include 
information identifying other aspects of station set 10, such 
as, for example, terminal type and/or model number. Pro 
cessor 200, in turn, acknowledges receipt of the connected 
message by returning a “Session” message containing the 
identifying information that it received from station set 10. 
Processor 200 then begins transmitting (“downloading”) a 
series of objects. These objects are interpreted by station set 
10 in accordance with a set of prede?ned speci?cations, or 
policies, relating to the way diiferent types of objects (or 
symbols) should be presented to a user, i.e., displayed on 
display 12. It is noted that another terminal, e.g., station set 
20, may utilize another somewhat diiferent set of policies in 
presenting the objects to a user. In accord with an aspect of 
the invention, each such object type has a unique identity (or 
name). Station set 10, in turn, stores each such object and its 
associated identity in memory (not shown) internal to station 
set 10. 

At any point in time during the transaction session, 
processor 200 may direct station set 10 to activate a set, or 
group, of one or more objects. Such activation causes station 

10 

20 

25 

35 

45 

50 

55 

65 

4 
set 10 to de?ne an object type in accord with the associated 
policy and to display the de?ned object on display 12. 
Certain ones of the displayed objects may generate particu 
lar inputs when touched by the user, as will be explained 
below in detail. Station set 10, in response to such touching, 
forms an event, or input, message containing the particular 
input, and, in accord with an aspect of the invention, the 
identity of the active object touched by the user. Station set 
10 then transmits the message to processor 200. 

In accord with an aspect of the invention, a particular 
object type may be associated with a respective group of 
objects, the group being identi?ed by a respective group 
identi?er. An object type is thus identi?ed, in accord with the 
invention, by its unique identity for the purpose of gener 
ating an input when the object is active and by an associated 
group identity for the purpose of activating the group. 
Accordingly, processor 200 may activate a group of objects 
by merely transmitting to station set 10 a single activation 
message containing the group identity of the particular 
group. Station set 10, in response to the message, activates 
(e.g., displays) each object associated with the particular 
group identity. 
The format of a processor 200 command that speci?es an 

object type, as well as other commands, is shown in FIG. 2. 
Each command has at least two ?elds, the second of which 
is an action ?eld which speci?es the command itself. Two of 
those commands, ACTIVATE and DESTROY, each have 
one other ?eld, which is an identity ?eld Speci?cally, the 
ACI'IVAI'E command activates those object types whose 
group identi?er (gid) is contained in the identity ?eld (gid) 
of that command The DESTROY command causes station 
10 to erase from its internal memory those objects whose 
group identi?er is contained in the associated identity ?eld. 
(It is noted that, due to memory limitations, a station set, 
e.g., station set 10, may, on its own initiative, erase a group 
of objects from its internal memory in order “free up” 
memory space for the creation of a new group of objects. 
Thereafter, if station set 10 receives a processor 200 com 
mand identifying the erased group of objects, then station set 
10, in response to that cormnand, may request a retransmis 
sion of the processor 200 commands that created the erased 
group of objects.) 

In certain applications, a station set 10 user who is 
communicating with the processor 200 application program 
may require the assistance of a live attendant associated with 
the service that the application program implements. For 
example, if the application implements a banking service, 
then the application program may transmit a command 
indicative of a symbol labeled “Attendant” or “Teller” to 
station set 10. If the user touches that symbol when it is 
displayed, then station set 10 sends a message indicative of 
that action to processor 200. The processor 200 application 
program, in response to receipt of the message, sends a 
VOICE command to station set 10. In accord with an aspect 
of the invention, the VOICE command directs station set 10 
to drop its carrier signal as a means of changing the data 
connection between station set 10 and processor 200 to a 
voice connection. When station set 10 terminates its carrier 
signal, the application program, in a conventional manner, 
bridges an attendant onto the connection. Thereafter, when 
the attendant and station set 10 user end their 
communications, processor 200 may cause the voice con 
nection to be changed back to a data connection by trans 
mitting a carrier signal. Upon receipt of the carrier signal, 
station set 10 transruits a session command message to 
processor 200. 

In certain situations, transaction processor 200 may have 
a need to obtain certain information associated with a 



5,649,131 
5 

particular object from a station set that is communicating 
with processor 200. Processor 200 may obtain such infor 
mation by inserting the identity of that object in the id ?eld 
of a DATAREQ command and sending the command to the 
station set. Transaction processor 200 may also move a 
particular object from one group to another group of objects. 
To do so, transaction processor 200 respectively inserts the 
identities of the particular object and other group in the id 
and gid ?elds of a MOVE command and sends the command 
to the station set. (It is noted that the FRAME and HOLD 
ACK commands are discussed below in connection with 
FIGS. 15 and 9, respectively.) 

It is seen from FIG. 2, that the CREATE and CHANGE 
commands include additional ?elds relating to the type as 
well as the properties of an object that is created or changed. 
An expanded version of the format of the CREATE com 
mand is shown in FIG. 3. It is noted that the following 
discussion relating to the type and property ?elds of the 
CREATE command pertains to the CHANGE command. 

Speci?cally, a CREATE command may refer to one of a 
number of diiferent types of objects, e.g., six objects each 
associated with a particular function. Such types of objects 
include: CHOICE, which may be selected by a user when 
displayed; ENTRY, which solicits input from a user when 
displayed; TEXT. which provides information to a user 
when displayed; BlTMAP, which requests the display of a 
particular bit-map pattern, for example, a logo; REGION, 
which associates the display of objects with a particular 
display region and SCRIPT, which is software that processor 
200 may download to a station set, e.g., station 10. Of the 
various types of objects, REGION and SCRIPT are not 
displayed. 

It is seen from FIG. 3 that each such object type is 
associated with a set of properties that is used to determine 
how the associated object type is to be displayed. As such, ' 
a terminal device interprets a set of properties, as well as 
associated attributes (discussed below), in accord with its 
own capabilities to create an object, or graphical symbol, 
characterizing the type of object speci?ed in the associated 
CREATE command, as discussed below. It is also seen from 
the FIG. that a set of properties includes at least an attributes 
?eld and one or more other ?elds respectively pertaining to, 
for example, a label, data, prompt, etc. 
More speci?cally, the attributes ?eld associated with an 

object is a set of boolean values arranged in a bit-map ?eld 
that control the presentation characteristics of an associated 
object. The attribute HIDE shown in FIG. 4, in particular, 
may be used to control the display of an object (i.e., its 
visibility on the display). The attribute RADIO may be used 
to provide a user with the option of changing a selection in 
the instance where the user may select only one object of a 
group of displayed objects. The remaining attributes shown 
in FIG. 4 are associated with respective object types. 

Referring now to FIGS. 3 and 4, the properties segment of 
a command specifying a CHOICE object also includes label 
and datum ?elds. The label ?eld may include either text or 
a so-called formula. The datum ?eld of a CHOICE object 
typically includes a value which is inserted in a so-called 
Event message (discussed below) that is generated and sent 
to transaction processor 200 (FIG. 1) if the associated 
displayed CHOICE object is selected by a user. 
The attributes ?eld of a CHOICE object may specify one 

of four different attributes, namely, DEFAULT, NOTOUCH, 
COMMAND or POPUP. A DEFAULT attribute causes the 
associated displayed CHOICE object, to be redisplayed in a 
distinctive manner, e.g., highlighted, in the event that a user 

10 

20 

25 

30 

50 

55 

65 

6 
selects that object. If the selected DEFAULT object is a 
member of a RADIO group, and if ?ie user selects another 
CHOICE object of the same group, then the previously 
selected CHOICE object is redisplayed without such 
distinction, e.g., without being highlighted. The NOTOUCH 
attribute may be used to indicate that the associated 
CHOICE object when displayed is not selectable by the user. 
The COMMAND attribute may be used to cause the asso 
ciated CHOICE object to exhibit a momentary action when 
the object is displayed and selected by a user. For example, 
the displayed object should function as a pushbutton. The 
POPUP attribute may be used to distinguish a displayed 
object from other such objects. For example, a so-called 
“drop shadow” may be added to a displayed object to 
provide such distinction. 
The ENTRY object and ?elds comprising its associated 

properties is one mechanism which transaction processor 
200 (FIG. 1) may use to solicit information from a user. For 
example, a user prompt, such as, for example, “Enter your 
account number”, may be inserted in the prompt ?eld. The 
user’s response (input) to the prompt is then inserted in the 
datum ?eld of the displayed ENTRY object and is also 
inserted in a so-called input (Event) message identi?ed by 
the id associated with that object. The input message is then 
forwarded to transaction processor 200. 

If a station set, e.g., station set 10 (FIG. 1), that is 
communicating with processor 200 does not have a key 
board and/or a display of su?icient size to accommodate a 
number of displayed entry prompts, then each associated 
ENTRY object may be displayed as a button with an 
abbreviated “label” identifying its functionality. For 
example, the label may specify “a/c No.”. If the user selects 
that button, then the terminal displays the full prompt, e.g., 
“Enter your account number” and/or a qwerty type of 
keyboard for the entering of the called for information. The 
acceptable length of such an entry may be controlled by 
inserting a particular value in the “len” (length) property 
?eld of the associated ENTRY object. If the “len” ?eld 
contains a zero, then the acceptable input may be of an 
arbitrary length. 
As seen from FIG. 4, the display attributes of an ENTRY 

object include (a) “String”, which de?nes a string of alpha 
numeric characters including spaces, punctuations and sym 
bols; (b) “alpha”, which de?nes a string of alpha-numeric 
characters including apostrophes, commas, and dashes but 
not spaces; (c) “Number”, which de?nes a simple calculator 
that is “operable” by a user to generate input; (d) “'TelNo”, 
which de?nes a telephone keypad that is operable by a user 
to enter a telephone number (the TelNo attribute may also 
include information for displaying telephone control 
buttons, such as, for example, “Flash”, “Wait”, etc.; (e) 
“Money”, “Date”, and “Time”, which respectively de?ne a 
money, date and time keyboard which is displayed when the 
associated object is selected by the user; and (t) “Raw”, 
which indicates that input entered by a user in response to 
the associated displayed Entry prompt is to be forwarded 
immediately via an input event message to transaction 
processor 200. 
A station set, such as station set 10 (FIG. 1) may have one 

or more limitations, namely, the size of its associated display 
and internal memory. In accord with the principles of the 
invention, a terminal that is communicating with transaction 
processor 2200 manages its associated display itself, and 
manages its internal memory with the assistance of proces 
sor 200. In particular, during the exchange of session and 
connected messages, station set 10 sends a value de?ning a 
“chunksize” to processor 200, in which the “chunksize” 



5,649,131 
7 

value is indicative of the number of characters that can be 
displayed at one time on the station set 10 display. 
Thereafter, if processor 200 sends text via a TEXT command 
to station set 10 then the number of bytes forming such text 
is at most equal to the station set 10 chunksize, in which such 
text is contained in the datum ?eld of the associated TEXT 
command. Processor 200 identi?es the start of such text 
using a startbyte whose value is de?ned in the “startbyte” 
?eld of the associated TEXT command. For example, a 
startbyte associated with a ?rst chunk of text has a value of 
zero. If the chunk size happens to be 1024, then the next 
startbyte is 1024, and so on. 

Accordingly, a station set need only store one chunk size 
of displayed text in its internal memory. If a user happens to 
enter a request to scroll to either a previous page or next page 
of displayed text, then the station set may send an event 
message identifying the startbyte of the desired page 
(chunksize) to processor 200. Upon receiving the desired 
text in an associated TEXT command, the station set dis 
plays the text and stores it in its internal memory, thereby 
overwriting the chunksize of text that had been previously 
stored therein. 

Processor 200 may exercise some control over the way 
that a station set displays text contained in a TEXT com 
mand. In particular, the MORE attribute of the TEXT 
command may be used to indicate that an associated chunk 
of text that is to be displayed is not the last chunk and that 
the terminal may request additional chunks of text as the 
user requests them. The WORDWRAP attribute, on the 
other hand, may be used to indicate that a displayed line 
should end on a full Word and not a broken word and the 
PROMPT attribute may be used to indicate that text may be 
truncated and not to be scrolled. 

The BTTMAP object of a CREATE command, more 
particularly, may be used by processor 200 to display an 
image, e.g., a logo, on station 10 in which the image is 
de?ned in the associated “bitstream ?eld”. If the associated 
attributes are not “turned on” then the station set may display 
the image without adjusting the display size of the image, 
but centering it within an associated prede?ned region on the 
display. In displaying a bitmap image, the terminal may use 
the contents of the associated “bits/row” ?eld to interpret the 
contents of the “bitstream” ?eld as a two-dimensional array 
of picture elements (“pixels”) that begins at the upper 
left-hand corner of an associated display region and pro 
ceeds in a conventional manner, i.e., from left to right and 
top to bottom. 
The BITMAP object includes a number of attributes as 

de?ned in FIG. 4. In particular, the Growable attribute is 
used to indicate that if the associated display region contains 
extra space, then the associated image should be scaled up 
accordingly. The Shrinkable attribute is used to specify the 
opposite case. That is if the entire image de?ned in the 
associated bitstream ?eld cannot be displayed in the asso 
ciated display region, then the image should be scaled down, 
rather then clipped. The Runlength attribute is used to 
indicate that the information contained in the associated 
bitstream ?eld has been compressed using a particular data 
compression scheme, for example, the well-known run 
length encoding scheme. 
The SCRIPT object, in particular, may be used by an 

application program to download a software program con 
tained in the associated script ?eld to a terminal, e.g., station 
10, in which the program is identi?ed in the associated label 
?eld. The associated datum ?eld may contain a so-called 
formula (discussed below), which may or may not be used 

20 

25 

30 

35 

45 

50 

65 

8 
by the program. It is seen from FIG. 4 that the SCRIPT 
object is associated with one attribute, Active, which may be 
used to indicate that script is to be displayed at the time it is 
downloaded to the station set, or device. 

An application program running on transaction processor 
200 may use the REGION object to organize its access to the 
display and memory associated with the computer terminal 
that is communicating with processor 200. That is, the 
REGION object is the means by which the application 
program partitions a display into regions for the displaying 
of particular information or images pertinent to the particu 
lar application that is running on processor 200. For 
example, a plurality of user selectable buttons may be 
displayed in one such region, and one or more control 
buttons may be displayed in another region, and so on. It is 
to be understood, however, that the way in which a display 
is actually partitioned into such regions is under the control 
of the station set or computer terminal, e.g., station 10. 

In particular, a group region may contain either a number 
of subordinate regions, e.g., two regions or a number of 
nonregion objects (e.g., CHOICE object), but not both. In 
addition, a group region is associated with what we call a 
“primary direction”. The primary direction speci?es the 
layout of the members of a group region and the direction 
may be horizontal or vertical, with vertical being the default 
direction. For example, for horizontal direction, the ?rst and 
second subordinate regions (or ?rst and second nonregion 
objects) are respectively displayed at the left-hand and 
right-hand sides of the group region. For vertical direction, 
the ?rst and second subordinate regions (or ?rst and second 
nonregion objects) are respectively displayed at the top and 
bottom of the group region. 
As shown in FIG. 4, the REGION object is associated 

with a number of attributes, namely, Horizontal, Outer and 
Up. The Horizontal attribute may be used to override the 
Vertical default direction. Ifthe number of nonregion objects 
that are linked to a group region is more than the number that 
can be displayed in the primary direction, then the station 
set, e.g., station 10, may resort to using a secondary direction 
to display the additional nonregion objects. A default sec 
ondary direction may be used to display the nonregion 
objects in a new row for Horizontal direction or a new 
column for Vertical direction. We call the secondary default 
direction Inner. The attribute Outer may be used to override 
the default secondary direction and speci?es an opposite 
direction. For example, the secondary direction for two such 
regions, namely, a command and application region, is 
typically Inner, the default direction. When nonregion 
objects are added to the application region, then they are 
displayed as a new column of objects at the right-hand side 
of that region. Whereas, when nonregion objects are added 
to the command region, then they are displayed as a new 
column of objects on the left-side of that region. 

Further, when a new column is created, then in accord 
with a default mode nonregion objects are displayed starting 
at the top of the column. The attribute Up is used to reverse 
the latter direction such that nonregion objects are displayed 
starting at the bottom of a column. 

Turning now to FIG. 5, there is shown the format of the 
various Event messages that a terminal device, such as 
station set 10, may use to transmit input information 
(message) to the transaction processor. ‘Typically, an Event 
message, such as INPUT, is generated responsive to the user 
manipulating a displayed object. It is seen from the FIG. that 
the INPUT message contains the id of the manipulated 
displayed object as well as the id (?id) of the associated 



5,649,131 
9 

display frame (discussed below). An input message may also 
be an ERROR message (discussed below) or a REPLY 
message. in which the particular error or reply is contained 
in the associated “info” ?eld. An input message may also be 
a Connected message (mentioned above), HANGUP mes 
sage (relating to the user “hanging up” the associated 
terminal device). or HOLD message (relating to the user 
placing the associated terminal device in a “hold” state, as 
is done with a conventional telephone station set). (It is 
noted that the term “manipulating” and variants of that term 
as used herein is meant to include other terms that are 
understood by the art and which de?ne similar functions. For 
example. it includes “touching” a displayed object as one 
would touch screen 12 of station set 10 to select a displayed 
object, moving a screen cursor to the location of a displayed 
object or text and operating, for example, an enter key, or 
even as identifying a particular displayed object or text or a 
menu of entries using terminal buttons, for example, com 
puter keyboard buttons.) 

FIG. 6 is an illustrative example of one way in which a 
display, for example, the display of either a station set, e.g., 
station set 10, or a computer terminal, may be partitioned, in 
accord with an aspect of the invention. into a hierarchy of 
regions. More particularly, at the top of the hierarchy is a 
predefined Root region, which has an id of zero and which 
is associated with the total area of the display. The Root 
region, which cannot be destroyed. branches out into a 
treelike structure to two other regions, System and Session, 
which may be addressed as a group region object as a way 
of globally addressing objects associated with regions that 
descend from the Root region. For example, the “0zDestroy” 
cormnand (FIG. 2) erases all regions that descend from the 
right-hand branch of the Root region. In essence, transaction 
processor 200 may clear the display of a station set that it is 
communicating with by transmitting the above command. 
As another example. transaction processor 200 may solicit 
information describing the capabilities of a station set by 
transmitting a “0zDatareq” command to the station set. The 
station set, in turn, responds to that command by transmit 
ting a “0:Reply:text” message, in which the text ?eld of the 
message contains the station set capabilities. 
As seen from the FIG., the System region, or left-hand 

branch of the root region, relates to the memory of a station 
set, rather than the station set display. That is, a station set 
reserves a protected region and a repertory region in its 
internal memory. The session region, or right-hand branch of 
the root region, on the other hand, relates to the station set 
display, as will be discussed below. 
The Protected region, in particular, is used for storing 

information and data, such as, for example, credit card 
numbers, social security numbers, addresses, etc., that is 
personal to the user and, therefore, is not displayed on the 
station set display. A transaction running on processor 200 
may access the protected region only with the approval of 
the terminal user. The Protected region may also be used for 
the storage of predefined objects and/or objects speci?ed by 
the user if the terminal provides that capability. A processor 
200 application program may indirectly reference such 
protected information using a formula contained in a 
CHOICE or ENTRY object that is created during a current 
transaction session and that is stored in either the Applica 
tion or Command region. When the application program 
activates such an object, the protected data is displayed on 
the station set display before it is transmitted to processor 
200. In this way, the station set user may cancel or change 
the data before it is sent to the transaction program that is 
running on processor 200. A typical example of the forego 
ing command may be formatted as follows: 

10 

20 

25 

30 

35 

45 

55 

65 

10 
50zCreatez30zEntryzEnter your full name:20:@Eval(Find 

(“User_Name)) where “@” indicates that the command 
includes a formula, namely Eval and Find. An expanded, 
self-explanatory Table of formula functions is shown in FIG. 
18. When the transaction program activates object 50, the 
station set, in response thereto, displays the prompt “Enter 
your full Name”. In addition, the station set application 
program responds to the formula “Find” by searching its 
protected memory to see if the user’s full name has been 
stored therein. If it has, then the station set displays that 
information in response to the prompt. At that point, the user 
may prevent such information from being transmitted to the 
processor 200 application program by causing the displayed 
information to be erased from the display. Alternatively, the 
user may change the information and then cause it to be 
transmitted to the processor 200 application program. 
As a further aspect of the protected region (or memory), 

the processor 200 application program may use a CHANGE 
command during a current transaction to change data stored 
in the Protected region or store data therein. Such a 
command. or object, is treated similar to so-called repertory 
“telephone dial” buttons (discussed below) except that such 
buttons cannot be accessed by the terminal user. 
The terminal Repertory region, in particular, has a region 

id of “R: and is used for storing symbols representing 
repertory telephone buttons for invoking respective tele 
phone functions. For example, such buttons may represent 
respective telephone numbers, and/or sequences of com 
mands inputted by the terminal user. However, an applica 
tion program running on processor 200 may not access the 
repertory region since that region is considered to be per 
sonal to the terminal user. Nevertheless, a capability is 
provided to allow an application program running on trans 
action processor 200 to add an object to the Repertory 
region. Speci?cally, during a transaction session the appli 
cation program may send a CREATE command de?ning a 
repertory button and referencing the Repertory region in the 
associated group id ?eld to station set 10. Station set 10, in 
response to receipt of the command, stores it in the repertory 
region of its associated internal memory. However, the 
application program cannot address that button or any other 
object stored in the terminal’s Repertory region, as men 
tioned above. 

Objects stored in the Repertory region are typically cre 
ated by the user and accessed when the user’s terminal is 
off-line, i.e., is not communicating with an application 
program running on transaction processor 2200. One such 
object may be, for example, a repertory button whose 
associated datum ?eld contains a particular telephone num 
ber. If the user selects that button, then the station set causes 
its associated telephone station set, e.g., station set 10 (FIG. 
1), to go off-hook. The station set then outpulses (dials) the 
telephone number that is associated with the selected button. 
The datum ?eld of an object stored in the Repertory 

region may contain two sub?elds, namely, an off-line 
sub?eld, which is always present, and an on-line sub?eld, 
which may or may not be present. The on-line datum 
sub?eld is present when its associated object de?nes a 
repertory dial button that is used to establish a data com 
munications connection, for example, a connection to trans 
action processor 2/00. More speci?cally, if an on-line datum 
sub?eld is present, then that sub?eld is preceded by a special 
control character (e.g., S) which directs the associated 
station set to wait for carrier tone. Thereafter, when the data 
connection is established then the associated object may 
cause the station set to transmit that object as an event 
message to processor 200. At that point, the station set goes 



5,649,131 
11 

on line, sends a Connected message (discussed above) to 
processor 200, erases the Repertory region from its associ 
ated display and activates its associated Application region. 
(An expanded, self-explanatory table of repertory dial con 
trol characters, including the above-mentioned S character is 
shown in FIG. 7.) 
The Application and Command regions, which are respec 

tively identi?ed by identi?ers (id) 1 and 2, may be used to 
partition the display of a station set communicating with a 
processor 200 transaction program The Command region, 
in particular, contains a prede?ned suite of objects de?ning 
respective command buttons. Such command buttons, when 
displayed in accord with their respective policies, provide 
conventional functionalities across diiferent types of trans 
actions (applications) that may communicate with the asso 
ciated station set. 

For example, the application region may be ?rst parti 
tioned into a Message region and a region identi?ed as A1. 
The A1 region is then further partitioned into a number of 
smaller regions, A2. A3, A4. P3, CNTRLI, etc., de?ning the 
layout of a particular screen pattern that is to be displayed. 
In the present illustrative example, regions A1, A2, A3 and 
A5 are used to specify a hierarchy of group identi?ers and, 
in a sense, are dummy regions. Regions CNTRLI, P1, P2, 
USER and CNTRLZ, on the other hand, de?ne the way in 
which a screen, or display, is to be partitioned for the display 
of objects, or symbols, in those regions. An illustrative 
example of such an application layout is shown FIG. 8. 

It is noted that the dotted lines shown in FIG. 8 are not 
displayed and are used for the purpose of illustrating the way 
in which a particular station set has elected to partition its 
display into the latter regions in response to receiving 
instructions to do so from the transaction processor. It is seen 
from FIG. 8, which illustrates a particular banking 
application, that the station set has displayed ditferent 
objects in the speci?ed regions. in which the objects are 
de?ned by respective CREATE commands issued by the 
transaction processor. (The various instructions for directing 
a terminal to display the screen of FIG. 8 are shown in 
appendix A.) 
We turn now to a discussion of the programs which 

implement the invention in a transaction program, e.g., 
processor 200, and a computer type terminal, e.g., station set 
10. 

Speci?cally, FIGS. 9-11, show in flow chart form the 
program which implements the invention in transaction 
processor 200 (FIG. 1). The program may run under any one 
of a number of diiferent types of user provided transaction 
programs that operates independent of the processor 200 
program. Accordingly, the particular transaction program 
itself is not shown in the FIG. 

The processor 200 program (hereinafter “program”), 
more particularly, is entered at block 900 in response to 
receipt of a message, presumably from a station set that is in 
communications with the processor. The program then pro 
ceeds to block 901 where it starts a series of determinations 
to identify the received message. If the received message is 
not a connected message, then the program proceeds to 
block 902. Otherwise, the program proceeds to block 908 
where it checks to see if the station set’s serial number 
contained in the message is associated with the communi 
cations port circuit that received the message. If that is not 
the case, then the program proceeds to block 912 where it 
discards the message and then proceeds to block 913 where 
it transmits a session message to the station set as a way of 
attempting to establish communications with the station set. 

15 

20 

25 

35 

45 

55 

65 

12 
If the program ?nds that there is an association between the 
station set serial number and port, then it proceeds to block 
909 where it compares the serial number in the message with 
a serial number that it stored in memory for the current 
session and that is associated with the aforementioned port 
circuit. If the serial numbers compare, indicating that the 
message is a retransmission of the connected message, then 
the program proceeds via block 910 to block 911 where it 
transmits a session message to the station set as a way of 
acknowledging receipt of a received connected message. If 
the serial numbers do not compare, then the program pro 
ceeds via block 910 to block 914 where it terminates the call. 
At block 902, the program checks to see if a transaction 

session is in progress and proceeds to block 903 if that is the 
case. Otherwise, the program proceeds to block 915 where 
it discards the message. At block 903, the program deter 
mines if the newly received message is an event message 
indicative of input from the station set and proceeds to block 
916 if that is case. Otherwise, the program proceeds to block 
904. 
At block 916, the program determines if the message 

contains a valid frame identity (id) (discussed below), and 
proceeds to block block 917 if that is the case. Otherwise, 
the program proceeds to block 920 where it discards the 
message. At block 917, the program proceeds to block 918 
if the message contains a valid object id. Otherwise, it 
proceeds to block 920. At block 918, the program proceeds 
to block 919 to process a request for a chunk of text or block 
921 if the message contains text or data, respectively. At 
block 919, the program forms a Create command, in which 
the text ?eld contains a chunk of text the size of which 
conforms with the chunksize associated with the device 
communicating with the transaction processor and in which 
the beginning of the chunk of text corresponds with the 
value of the startbyte contained in the received message. The 
program (block 922) then transmits the Create command 
containing the requested text. At block 921, the program 
processes the data contained in the message and then deter 
mines the next action it should take based on the type of 
application (transaction) that is communicating with the 
sending station set. 
At block 904, the program proceeds to block 923 if the 

message is a reply to a query generated by the application 
program. Otherwise, the program proceeds to block 905. At 
block 923, the program processes the reply data contained in 
the message and then determines the next action it should 
take based on that data and the particular application that is 
communicating with the sending station set At block 905, 
the program proceeds to block 924 if the received message 
is a “Hold” command requesting that the current session be 
placed on hold as is done with a conventional telephone call. 
Otherwise, the program proceeds to block 906. 
At block 924, the program places the session on hold and 

then proceeds to block 925 where it transmits an acknowl 
edgment (HOLDACK) that has been placed on hold. At 
block 926, the program starts a software timer geared to time 
for a predetermined period of time, e.g., 10 minutes, at the 
end of which the program (blocks 927 and 930) terminates 
the call if it does not receive a carrier signal and a connected 
message from the station set. This action is invoked to 
prevent an inde?nite hold time which would occur if the user 
does not re-establish the session. More particularly, at the 
end of the aforementioned period of time. as represented by 
the dashed line leaving block 926. the program is re-entered 
at block 927 where it proceeds to block 928 to determine if 
a carrier signal is indeed being received, or block 930-1 if 
that is not the case. At block 929, the program terminates the 










	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description/Claims
	Page 24 - Claims

