
(12) 

US006965968B1 

United States Patent 
Touboul 

(10) Patent N0.: 
(45) Date of Patent: 

US 6,965,968 B1 
NOV. 15,2005 

(54) 

(75) 

(73) 

(*) 

(21) 

(22) 

(51) 
(52) 
(58) 

(56) 

POLICY-BASED CACHING 

Inventor: Shl0m0 Touboul, Kefar-Haim (IL) 

Assignee: Finjan Software Ltd., Netanya (IL) 

Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 190 days. 

Appl. N0.: 10/376,215 

Filed: Feb. 27, 2003 

Int. Cl.7 ............................................. .. G06F 12/00 

US. Cl ...................... .. 711/118; 711/114; 709/229 

Field of Search .............................. .. 711/114, 118; 

5,956,481 A 9/1999 Walsh 6161. 
5,974,549 A 10/1999 Golan 
5,978,484 A 11/1999 Apperson et al. 
5,983,348 A * 11/1999 11 ............................. .. 713/200 

6,092,194 A 7/2000 Touboul 
6,154,844 A 11/2000 Touboul et al. 
6,167,520 A 12/2000 Touboul 
6,425,058 B1 7/2002 Arimilli et al. 
6,434,668 B1 8/2002 Arimilli et 211. 
6,434,669 B1 8/2002 Arimilli et 211. 
6,480,962 B1 11/2002 Touboul 
6,519,679 B2 2/2003 Devireddy et al. 
6,772,214 B1 * 8/2004 McClain et al. .......... .. 709/229 

OTHER PUBLICATIONS 

Jim K. Omura, “Novel Applications of Cryptography in 
Digital Communications”, IEEE Communications Maga 
Zine, May, 1990; pp. 21-29. 

709/229 Okamoto, E. et al., “ID-Based Authentication System For 
References Cited Computer Virus Detection”, IEEE/IEE Electronic Library 

onlme, Electromcs Letters, vol. 26, Issue 15, ISSN 15, ISSN 
U_S_ PATENT DOCUMENTS 0013-5194, Jul. 19, 1990, Abstract and pp. 1169-1170. 

URL:http://iel.ihs.com:80/cgi-bin/ielicgi?se... 
2 Ill/155351;; a1‘ 2ehts%26VieWTemplate%3ddocvieW%5fb%2ehts. 

5,361,359 A 11/1994 Tajalll et al. 
5,485,409 A 1/1996 Gupta et al. (Continued) 
5,485,575 A 1/1996 Chess et al. _ _ 
5,572,643 A 11/1996 Judson Primary Examtner—Mano Padmanabhan 
5,606,668 A 2/1997 Shwed Assistant Examiner—Duc T Doan 
5,623,600 A 4/1997 11 et a1, (74) Attorney, Agent, or Firm—Eitan LaW Group 
5,638,446 A 6/1997 Rubin 
5,692,047 A 11/1997 McManis (57) ABSTRACT 
5,692,124 A 11/1997 Holden et al. 
5,720,033 A 2/1998 D60 

5’724’425 A 3/1998 Chang et a1‘ Apolicy-based cache manager, including a memory storing 
5,740,248 A 4/1998 Fieres et al. . . . . . . 

5,761,421 A 6/1998 Van Hoff et a1‘ a cache of digital content, a plurality of policies, and a policy 
5,765,205 A 6/1998 Breslau et aL index to the cache contents, the policy index indicating 
5,784,459 A 7/1998 Devarakonda et a1_ alloWable cache content for each of a plurality of policies, a 
5,796,952 A 8/1998 Davis et a1, content scanner for scanning a digital content received, to 
5,805,829 A 9/1998 Cohen et al. derive a corresponding content pro?le, and a content evalu 
5,832,208 A 11/1998 Chen eta1~ ator for determining Whether a given digital content is 
57850559 A 12/1998 Angelo ct a1~ alloWable relative to a given policy, based on the content 
5’859’966 A 1/1999 Hayman et a1‘ pro?le. A method is also described and claimed. 
5,864,683 A 1/1999 Boebert et al. 
5,892,904 A 4/1999 Atkinson et al. 
5,951,698 A 9/1999 Chen et al. 38 Claims, 2 Drawing Sheets 

r-——— WEBCHEM —1~— cmuimmussn —~'~— CMYENYFILYER —1 

2m uszR DOES NDV 
nzmv: IKEWESYED 
CDMENY 

SEND Cmlfb" » 
mm um 16 R 

27 

nonnrSmuwNYE/wn w 
usEn 

aw 

min I! 
rimvrrzn UNDER 

NO Inucv m 



US 6,965,968 B1 
Page 2 

OTHER PUBLICATIONS 

IBM AntiVirus User’s Guide Version 2.4, International 
Business Machines Corporation, Nov. 15, 1995, p. 6-7. 
Norvin Leach et al, “IE 3.0 Applets Will Earn Certi?cation”, 
PC Week, vol. 13, No. 29, Jul. 22, 1996, 2 pages. 
“Finjan Software Releases Sur?nBoard, Industry’s First 
JAVA Security Product For the World Wide Web”, Article 
published on the Internet by Finj an SoftWare Ltd., Jul. 29, 
1996, 1 page. 
“Powerful PC Security for the NeW World of JavaTM and 
DoWnloadables, Sur?n ShieldTM” Article published on the 
Internet by Finjan SoftWare Ltd., 1996, 2 pages. 
Microsoft® Authenticode Technology, “Ensuring Account 
ability and Authenticity for Software Components on the 
Internet”, Microsoft Corporation, Oct. 1996, including 
Abstract, Contents, Introduction and pp. 1-10. 
“Finjan Announces a Personal JavaTM FireWall For Web 
BroWsers—the Sur?nShieldTM 1.6 (formerly known as 
Sur?nBoard)”, Press Release of Finjan Releases 
Sur?nShield 1.6, Oct. 21, 1996, 2 pages. 
Company Pro?le “Finjan—Safe Sur?ng, The Java Security 
Solutions Provider” Article published on the Internet by 
Finjan SoftWare Ltd., Oct. 31, 1996, 3 pages. 
“Finjan Announces Major PoWer Boost and NeW Features 
for Sur?nShieldTM 2.0” Las Vegas Convention Center/ 
Pavilion 5 P5551, Nov. 18, 1996, 3 pages. 

“Java Security: Issues & Solutions” Article published on the 
Internet by Finjan SoftWare Ltd., 1996, 8 pages. 
“Products” Article published on the Internet, 7 pages. 
Mark LaDue, “Online Business Consultant: Java Security: 
Whose Business is It?” Article published on the Internet, 
Home Page Press, Inc. 1996, 4 pages. 
Ron MoritZ, “Why We Shouldn’t Fear Java. ” Java Report, 
Feb., 1997, pp. 51-56. 
Web Page Article “Frequently Asked Questions About 
Authenticode”, Microsoft Corporation, last updated Feb. 17, 
1997, Printed Dec. 23, 1998. URL: http://WWW.rnicrosoft. 
corn/Workshop/security/authcode/signfaq.asp#9, pp. 1-13. 
Zhang, X.N., “Secure Code Distribution”, IEEE/IEE 
Electronic Library online, Cornputer, vol. 30, Issue 6, Jun., 
1997, pp.: 76-79. 
Khare, Rohit, “Microsoft Authenticode Analyzed”, Jul. 22, 
1996, 2 pages. URL: http://WWW.Xent.corn/FoRK-archive/ 
surnrner96/0338.htrnl. 
“Release Notes for the Microsoft ActiveX Development 
Kit”, Aug. 13, 1996, 11 pages. URL: http://activeX.adsp.or. 
jp/inetsdk/readrnetxt. 
“Microsoft ActiveXSoftWare Development Kit”, Aug. 12, 
1996, 6 pages. URL: http://activeX.adsp.or.jp/inetsdk/help/ 
overvieW.htrn. 

* cited by eXarniner 





U.S. Patent 

|‘_— WEB CLIENT —*'<— CACHE MANAGER ——>|¢¥ CONTENT FILTER —-1 

Nov. 15,2005 

IS CONTENT #1 
ALREADY AVAILABLE 
IN CACHE? 

Sheet 2 0f 2 

210 

F215 

REQUEST CONTENT #1 
FROM CONTENT FILTER 

S THERE AN ALLOWABILIT 
LINK FROM USER'S POLICY A 
TO CONTENT #1? 

280 

F250 

SET ALLOWABILITY POINTER 
FROM POLICY A TO CONTENT #1 

I P255 
SEND CONTENT #1 
FROM CACHE TO USER 

LINK FROM USER'S POLICY A 
TO CONTENT #1? 

F265 
SET NON ALLOW/\BILITY 
POINTER FROM POLICY A 
TO CONTENT #1 

G 
205 USER A REQUESTS 

coNTENT #1 

269 USER RECEIVES 
REQUESTED 
coNTENT 

26,9 USER DOES NOT 
RECEIVE REQUESTED 
CONTENT 

I f" 270 

DO NOT SEND CONTENT #1 TO 
USER 

F290 

ASK FILTER TO DETERMINE 
IF CONTENT #1 IS PERMITTED 
UNDER POLICY A? 

US 6,965,968 B1 

REQUEST CONTENT #1 
FROM WEB SERVER 

I 
RECEIVE CONTENT #1 
FROM WEB SERVER 

I 
MOVE CONTENT?l TO CACHE 

SCAN CONTENT #1 TO 
DETERMINE ITS PROFILE 

I 
COMPARE PROFILE WITH 
USER'S POLICY A 

FIG. 2 

IS CONTENT #1 
PERMITTED UNDER 
POLICY A? 

245 

225 

230 

240 



US 6,965,968 B1 
1 

POLICY-BASED CACHING 

FIELD OF THE INVENTION 

The present invention relates to cache management and 
content ?ltering. 

BACKGROUND OF THE INVENTION 

Conventional caching is used to avoid repeating the same 
computations or the same data transmission. Familiar Inter 
net broWsers cache Web pages so that these pages do not 
have to be re-transmitted When a user returns to vieW the 
same page a second time. The advantage of caching is 
readily noticed, as the ?rst time a user navigates to a Web 
page, it typically takes a feW seconds for his broWser to 
render the page, yet When a user returns to the same Web 
page, for example, by clicking on a “Back” button, the page 
is re-rendered immediately. This happens because the user’s 
Internet broWser typically caches the Web page after it is 
received from a Web server, so that the second time around 
the page is already available on the user’s computer for 
rendering. 

Caching is also used by proxy servers, Which are inter 
mediaries betWeen servers on the Internet and a local net 
Work of client computers. Proxy servers are often requested 
to deliver the same Web pages to multiple client computers, 
and thus proxy caching makes it possible to deliver Web 
pages quickly, the second time they are requested. 

Caching is also used by computational processors, to save 
intermediate results that Would otherWise need to be com 
puted repeatedly. For example, if a computational expres 
sion repeatedly includes a term sin(x), then such term can be 
cached so that it does not need to be calculated more than 
once. Many compilers are able to parse source code and 
determine ef?cient intermediate results to cache. 

Caching is also used in conjunction With content control, 
used to control What content is delivered to client computers. 
Content control typically operates by ?ltering incoming 
content according to a “policy” that includes one or more 
rules. For example, URL ?ltering is used to block “unde 
sirable” Web pages from being delivered. Often the deter 
mination of What is undesirable is set by a user or by a 
computer system administrator. In this regard, a policy is the 
set of rules that determine What URLs to alloW or not alloW 
to pass through the ?lter, and typically only alloWable URLs 
are cached. 

A shortcoming of conventional caching as used in con 
junction With content control is the inability to support more 
than one policy. That is, once content gets through a ?rst 
policy, it is cached, and then it is readily available to users 
governed by a second policy, even if the second policy 
Would not have alloWed the content to pass through the ?lter. 

Using conventional caching, Workarounds include dis 
abling the cache, Which defeats the advantages of caching, 
or using multiple caches, one cache per distinct policy, 
Which suffers from redundancy since the same content Will 
typically be stored in multiple caches. 

SUMMARY OF THE INVENTION 

The present invention provides a method and system for 
enabling a single cache to serve as multiple caches. With 
respect to content control, the present invention enables 
management of a single cache so as to control content 
relative to a plurality of policies. Using the present inven 

15 

25 

35 

40 

45 

55 

65 

2 
tion, a single cache appears transparently as multiple caches; 
e.g., a policyAcache, a policy B cache and a policy C cache. 

The present invention enhances conventional caching by 
including a policy-based index, Which is a data structure 
indicating alloWability of cached content relative to a plu 
rality of policies. Using the policy-based index of the present 
invention, a cache manager can check Whether cached 
content is alloWable for a different user than the original user 
Who requested it, and thus block cached content from being 
delivered to users for Whom it is not alloWed. 

The present invention has many diverse applications. In 
conjunction With content control systems, for example, the 
present invention is advantageous inter alia for URL ?lter 
ing, e-mail anti-spam ?ltering, anti-virus protection and 
malicious mobile code protection systems. In conjunction 
With document management systems, the present invention 
is advantageous inter alia for document protection, version 
control and data encryption. In conjunction With ?le man 
agement systems, the present invention is advantageous 
inter alia for ?le protection and ?le sharing. In conjunction 
With multimedia systems, the present invention is advanta 
geous inter alia for cable and satellite broadcasting, video on 
demand, streaming audio and video, and access to still 
imagery. 

It may thus be appreciated that the present invention 
provides breakthrough technology for cache management. 

There is thus provided in accordance With a preferred 
embodiment of the present invention a policy-based cache 
manager, including a memory storing a cache of digital 
content, a plurality of policies, and a policy index to the 
cache contents, the policy index indicating alloWable cache 
content for each of a plurality of policies, a content scanner 
for scanning a digital content received, to derive a corre 
sponding content pro?le, and a content evaluator for deter 
mining Whether a given digital content is alloWable relative 
to a given policy, based on the content pro?le. 

There is further provided in accordance With a preferred 
embodiment of the present invention a method for policy 
based caching, including receiving a user request for a 
digital content, the user having associated thereWith a policy 
from among a plurality of policies, determining based on a 
cache, Whether the requested digital content is already 
available, determining based on a policy index of the cache 
contents, Whether the requested digital content is alloWable 
for the user, if the determining based on a cache indicates 
that the data content is already available in the cache, and 
determining based on a pro?le of the requested data content, 
Whether the requested data content is alloWable for the 
user’s policy, if the determining based on the policy index is 
non-conclusive. 

There is yet further provided in accordance With a pre 
ferred embodiment of the present invention a computer 
readable storage medium storing program code for causing 
a computer to perform the steps of receiving a user request 
for a digital content, the user having associated thereWith a 
policy from among a plurality of policies, determining based 
on a cache, Whether the requested digital content is already 
available, determining based on a policy index of the cache 
contents, Whether the requested digital content is alloWable 
for the user, if the determining based on a cache indicates 
that the data content is already available in the cache, and 
determining based on a pro?le of the requested data content, 
Whether the requested data content is alloWable for the 
user’s policy, if the determining based on the policy index is 
non-conclusive. 



US 6,965,968 B1 
3 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention Will be more fully understood and 
appreciated from the following detailed description, taken in 
conjunction With the draWings in Which: 

FIG. 1 is a simpli?ed block diagram for a cache manager 
that provides policy-based caching, in accordance With a 
preferred embodiment of the present invention; and 

FIG. 2 is a simpli?ed ?oWchart for use of a policy-based 
cache, in accordance With a preferred embodiment of the 
present invention. 

DETAILED DESCRIPTION OF A PREFERRED 
EMBODIMENT 

The present invention provides a novel cache manage 
ment method and system, for enabling policy-based caching. 
Speci?cally, the cache manager of the present invention 
manages a single cache as if it Were multiple caches, each 
cache corresponding to a different policy. 

Reference is noW made to FIG. 1, Which is a simpli?ed 
block diagram for a cache manager that provides policy 
based caching, in accordance With a preferred embodiment 
of the present invention. ShoWn in FIG. 1 is a Web client 110, 
Which typically requests Web pages from the Internet, the 
Web pages having links to static content, such as GIF and 
J PEG images, and to active content, such as Java applets and 
ActiveX controls. The Web pages and the static and active 
content referenced therein are located on one or more Web 

servers 120. 

For many networks, a proxy server 130 acts as an inter 
mediary betWeen Web server 120 and Web client 110. Use of 
a proxy server provides for efficiency in delivery, and for 
control over alloWable content. An important component of 
proxy server 130 is a cache 140 of stored content, and a 
cache manager 150 for managing access to cache 140. Cache 
manager 150 stores content received from Web servers 120 
Within cache 140, so that such content is readily available for 
transmission When it is subsequently requested by Web client 
110 or by another Web client. 

Thus When proxy server 130 receives a request from Web 
client 110 for content, it preferably ?rst checks Whether the 
requested content is already stored in cache 140, and, if so, 
transmits the content directly from cache 140, obviating the 
need to ?rst request and receive the content from Web server 
120. 

In accordance With a preferred embodiment of the present 
invention, proxy server 130 generally includes a content 
?lter 160, used to block content from being transmitted to 
Web client 110. Content ?lter 160 may be, for example, a 
URL ?lter used to block URL’s that have undesirable 
content, or spam. Content ?lter 160 may also be, for 
example, an anti-virus ?lter that blocks content knoWn to 
contain a computer virus thereWithin. Content ?lter 160 may 
also be a pro-active security ?lter, such as described in 
applicant’s US. Pat. Nos. 6,092,194, 6,154,844, 6,167,520 
and 6,480,962, the contents of Which are hereby incorpo 
rated by reference. Such a security ?lter scans incoming 
mobile code to determine a security pro?le therefor, the 
security pro?le indicating suspicious operations performed 
by the mobile code. 

Generally speaking, content ?lter 160 is a module that 
includes a content scanner 170 for scanning incoming con 
tent, and a content evaluator 180 for determining Whether or 
not the content is alloWable, based on a policy. The policy 
may, for example, indicate Which URL’s are to be blocked, 
or Which computer viruses are knoWn and should thus be 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
blocked, or Which suspicious operations are permitted. Typi 
cally, content scanner 170 scans received content and deter 
mines a pro?le therefor, so that content evaluator 180 can 
determine alloWability of content by comparing the content 
pro?le to a policy. In general, content scanner 170 produces 
a content pro?le as output, from a digital content as input; 
and content evaluator 180 produces a Boolean yes/no result 
as output, from a pro?le and a policy as input. 

It may be appreciated by those skilled in the art that 
content evaluator may operate directly on a digital content as 
input, and not require use of a pro?le. This may happen in 
situations Where the alloWability of the content is readily 
determinable from the content itself. 

In accordance With a preferred embodiment of the present 
invention, different policies may apply to different users. 
Thus a policy A may apply to a ?rst group of users, a policy 
B may apply to a second group of users, and a policy C may 
apply to a third group of users. Conventional cache manag 
ers cannot enforce more than one policy. 

Consider, for example, a given content that is alloWable 
according to policy A but not alloWable according to policy 
B. If a ?rst user, governed by policy A, initially requests the 
content from Web server 120, then content ?lter 160 Would 
alloW the content, and proxy server 130 Would deliver it to 
the ?rst user and cache it. If a second user, governed by 
policy B, subsequently requests the same content, then cache 
manager 150 Would recogniZe that the content is already 
resident in cache 140 and send it to the second user, even 
though it is not alloWable for him. The alloWability test of 
content ?lter 160, based on policy B, Would be by-passed, 
since the content Would have previously passed the test, 
based on policy A, and Was cached at that time. 

To accommodate multiple policies, in accordance With a 
preferred embodiment of the present invention, cache man 
ager 150 is enhanced to include a policy-based cache index 
190. Policy-based cache index 190 is a data structure that 
indicates, for each policy, content Within cache 140 that is 
alloWable relative thereto. Preferably, as described herein 
beloW, policy-based cache 190 also indicates, for each 
policy, content Within cache 140 that is not alloWable 
relative thereto. 

Policy-based cache index 190 is preferably implemented 
as tWo sets of pointers associated With each policy. The ?rst 
set of pointers, referred to as “alloWability pointers,” indi 
cates content that is alloWable relative to a given policy, and 
the second set of pointers, referred to as “non-alloWability 
pointers,” indicates content that is not alloWable relative to 
the given policy. Although it may be appreciated that one set 
of pointers should suf?ce, it is explained hereinbeloW Why 
tWo sets of seemingly opposite pointers is a preferable 
implementation. ShoWn in FIG. 1, for example, is a set of 
alloWability pointers from policies A, B and C to cached 
contents nos. 1—12. 

Alternatively, instead of using pointers from each policy 
to the cache content, policy-based cache index 190 may be 
implemented by assigning a bit string to each cached con 
tent, the bits indicating those policies relative to Which such 
content is alloWable. Similar to the tWo sets of pointers 
described above, rather that use tWo states; namely, —“0” 
for alloWability and “1” for non-alloWability, a preferred 
embodiment of the present invention uses three states; 
namely, “0” for alloWability, “1” for non-alloWability, and 
“2” for non-conclusiveness. 

Thus it may be appreciated that With each cached content 
is associated a string of numbers “0,” “1” or “2,” one number 
per policy. Those skilled in the art Will appreciate that the 
information obtained from tWo sets of pointers from policies 



US 6,965,968 B1 
5 

to cached content, is equivalent to the information obtained 
from strings of numbers “0,” “1” or “2,” one such number 
per policy. For example, if content #1 is allowable relative 
to policy A, not alloWable relative to policy B and undeter 
mined relative to policy C, then its associated bit string is 
012. 

Referring to FIG. 1, policy-based cache index 190 indi 
cates that: 

content #2, 4, 6, 8 and 12 is alloWable relative to policy 

content #1, 6, 9 and 12 is alloWable relative to policy B; 
and 

content #3, 5, 6, 9 and 10 is alloWable relative to policy 
C. 

In accordance With a preferred embodiment of the present 
invention, When cache manager 150 checks to determine if 
content requested by a user is already available Within cache 
140, it also checks Whether the content is alloWable relative 
to the user’s policy. If the requested content is available 
Within cache 140 and if policy-based cache index 190 
indicates that the content is alloWable, then the content is 
delivered from cache to the user. Similarly, if policy-based 
cache index 190 indicates that the content is not alloWable, 
then the content is blocked. OtherWise, if policy-based cache 
index 190 is non-conclusive, as described hereinbeloW, then 
cache manager 150 queries content ?lter 160 as to Whether 
or not the cached content is alloWable relative to the user’s 
policy. If alloWable, the content is delivered from cache 140 
to the user; otherWise, it is blocked. In either case, policy 
based cache index 190 is updated accordingly. 

Thus, referring to the scenario above, When the second 
user requests the content, even though the content is resident 
in cache, policy-based index 190 is non-conclusive regard 
ing alloWability of the content relative to policy B. When 
cache manager 150 subsequently queries content ?lter 160, 
it discovers that the content is not alloWable relative to 
policy B, and the content is blocked from delivery to the 
second user. 

It may thus be appreciated that in accordance With a 
preferred embodiment of the present invention, tWo deter 
minations are used to decide Whether or not to transmit 
cached content to a user. First, a determination is made based 
on policy-based cache index 190. If such ?rst determination 
indicates that the content is alloWable for the user, then the 
content is delivered directly from cache to the user. If such 
?rst determination indicates that the content is not alloWable 
for the user, then the content is blocked. OtherWise, if such 
?rst determination is non-conclusive, then a second deter 
mination is made by content ?lter 160, by comparing a 
pro?le of the content to the user’s policy using content 
evaluator 180, as described hereinabove. 

The ?rst determination above may be af?rmative, nega 
tive or non-conclusive. The possibility of non-conclusive 
ness arises from the incompleteness of policy-based cache 
index 190. If policy-based cache index 190 Were required to 
include all alloWability links from policies A, B and C to 
alloWable content relative thereto, then a conclusive deter 
mination could alWays be made. That is, given a content in 
cache 140 and given a policy, policy-based cache index 190 
Would conclusively determine Whether or not the given 
content is alloWable relative to the given policy, simply by 
checking Whether or not an alloWability pointer exists from 
the given policy to the given content in cache 140. 

HoWever, in accordance With a preferred embodiment of 
the present invention, it is not necessary for policy-based 
cache index 190 to be complete. The present invention 
alloWs for policy-based cache index 190 to be updated 

10 

15 

25 

35 

40 

45 

55 

65 

6 
dynamically as user requests for cached and non-cached 
content arrive. This is an important advantage, since other 
Wise it Would require an exponential amount of computa 
tions to calculate a complete policy-based index cache 190, 
Which is typically unnecessary, as the siZe of the cache and 
the number of policies increase. 

Instead, policy-based index cache 190 is built up on-the 
?y, as content ?lter 160 analyZes speci?c content relative to 
speci?c policies. For example, listed beloW is a typical 
sequence of stages through Which policy-based cache index 
190 is successively built up, in accordance With a preferred 
embodiment of the present invention. Initially, policy-based 
cache index 190 is empty. The stages described beloW 
assume that policy-based cache index 190 is implemented as 
tWo sets of pointers, as described hereinabove. In this case, 
there are initially no pointers created; or alternatively all 
pointers are initially set to NULL. It may be appreciated that 
if policy-based index 190 is implemented alternatively using 
bit strings, as described hereinabove, then initially all bits 
strings are stuffed With 2’s, indicating that alloWability of 
content is undetermined relative to any policy. 
1. A ?rst user, governed by policy A, requests content #1. 
2. Cache manager 150 checks its cache 140 and indicates 

that content #1 is not resident therein. 
3. Content ?lter 160 requests content #1 from Web server 

120. 
4. Content scanner 170 scans content #1 to derive a pro?le 

thereof, and content evaluator 180 compares the content 
#1 pro?le With policy A, thereby determining that content 
#1 is alloWable relative to policy A. 

5. Cache manager 150 inserts content #1 in cache 140, and 
creates an alloWability link from policy A to content #1 
Within policy-based cache index 190. At this stage, 
policy-based cache index 190 has an entry indicating that 
content #1 is alloWable relative to policy A. 

6. Proxy server 1330 delivers content #1 to the ?rst user. 
7. A second user, governed by policy B, requests content #1. 
8. Cache manager 150 checks its cache 140 and indicates 

that content #1 is resident therein. 
9. Cache manager 150 checks policy-based cache index 190 

regarding alloWability of content #1 relative to policy B, 
and is non-conclusive. 

10. Cache manager 150 asks content ?lter 160 Whether or 
not content #1 is alloWable relative to policy B. 

11. Content evaluator 180 compares the content #1 pro?le 
With policy B, thereby determining that content #1 is not 
alloWable relative to policy B. 

12. Cache manager 150 creates a non-alloWability link from 
policy B to content #1 Within policy-based cache index 
190. At this stage, policy-based cache index 190 has an 
entry indicating that content #1 is not alloWable relative to 
policy B. 

13. Proxy server 130 does not deliver content #1 to the 
second user. 

14. A third user, governed by policy A, requests content #1. 
15. Cache manager 150 checks policy-based cache index 

190 regarding alloWability of content #1 relative to policy 
A, and concludes that content #1 is alloWable relative to 
policy A. There is no need to consult With content ?lter 
160. 

16. Proxy server 1330 delivers content #1 to the third user. 
17. Afourth user, governed by policy B, requests content #1. 
18. Cache manager 150 checks policy-based cache index 

190 regarding alloWability of content #1 relative to policy 
B, and concludes that content #1 is not alloWable relative 
to policy B. There is no need to consult With content ?lter 
160. 



US 6,965,968 B1 
7 

19. Proxy server 130 does not deliver content #1 to the 
fourth user. 

It may thus be appreciated that cache manager 150 makes 
cache 140 appear transparently as if it Were multiple caches; 
e.g., a policyAcache, a policy B cache and a policy C cache. 
Yet through the use of policy-based cache index 190 the 
multiple caches are implemented as a single cache, and there 
is no redundancy is storage. That is, content appearing to 
belong to more than one policy cache is in fact stored only 
once. 

In a preferred embodiment of the present invention, cache 
manager 150 is optimiZed for performance by designating 
content Within cache 140 that is alloWable relative to all 
policies. Such content can be immediately delivered to Web 
client 110, regardless of the user’s governing policy. The 
rationale for this optimiZation is that typically a large portion 
of content is “innocuous,” and knoWn to be above suspicion. 
For eXample, When content ?lter 160 is a pro-active security 
?lter, content such as GIF and JPEG images are alWays 
alloWed to pass through. By designating such content as 
innocuous, cache manager 150 can eliminate a great deal of 
unnecessary processing and time delay. 

To implement the above enhancement, in accordance With 
a preferred embodiment of the present invention, content 
?lter 160 generates a “strictest” policy corresponding to all 
of the individual user policies. For example, if the individual 
policies are URL ?lters for blocking undesirable content, 
then the strictest policy corresponds to ?ltering out all 
undesirable content. Similarly, if the individual policies are 
security policies for blocking mobile code that performs 
suspicious operations, then the strictest policy corresponds 
to blocking all suspicious operations. It is noted that the 
strictest policy may or may not coincide With one of the 
individual policies. 

Preferably, Whenever content ?lter 160 receives content 
from Web server 120, and uses content scanner 170 to derive 
a pro?le thereof, content evaluator 180 evaluates the content 
?rst With respect to the strictest policy. If the content is 
alloWable relative to the strictest policy, then cache manager 
150 adds the content to cache 140 and designates it as being 
innocuous. OtherWise, if the content is not alloWable relative 
to the strictest policy, then content evaluator 180 evaluates 
the content With respect to the speci?c policy governing the 
user requesting the content. The content is then preferably 
added to cache 140, and policy-based cache indeX 190 is 
updated to re?ect the content’s alloWability or non-al 
loWability relative to the user’s policy. 

It may thus be appreciated that content manager 150 
communicates With content ?lter 160 in tWo modes, as 
illustrated in FIG. 1. In the ?rst mode, referred to as a “Get 
Content” mode, content manager requests and receives 
content from content ?lter 160. In the second mode, referred 
to as a “Permitted?” mode, content manager requests a 
determination of alloWability of a speci?c content relative to 
a speci?c policy. 
As policies are changed and as cached content is updated, 

policy-based cache indeX 190 is preferably synchroniZed so 
as to maintain compatibility With current content and poli 
cies. Alternatively, but less ef?cient, updated content can be 
purged from cache 140, and cache manager 150 can reset 
policy-based cache 190 by setting the pointers from a 
changed policy to NULL. Equivalently, cache manager 150 
can modify the bit strings to have a “2” in the position 
corresponding to the changed policy. This ensures that 
cached content is not mistakenly delivered When it is not 
alloWed according to the changed policy. 

10 

15 

25 

35 

40 

45 

55 

65 

8 
When a neW policy is added, policy-based cache indeX 

190 is updated accordingly. A neW policy is added, With all 
of its pointers set to NULL. Equivalently, the bit strings are 
enlarged to include an addition “2” at their ends, or at 
another ?Xed position Within the strings. This ensures that 
cached content is not mistakenly delivered When it is not 
alloWed according to the neW policy. 

Reference is noW made to FIG. 2, Which is a simpli?ed 
?oWchart for use of a policy-based cache, in accordance 
With a preferred embodiment of the present invention. FIG. 
2 is divided into three columns. The leftmost column indi 
cates steps performed by a Web client, such as Web client 110 
(FIG. 1). The middle column indicates steps performed by a 
cache manager, such as cache manager 150. The rightmost 
column indicates steps performed by a content ?lter, such as 
content ?lter 160. 

As shoWn in FIG. 2, at step 205 a user requests content #1 
from a proXy server. At step 210 the cache manager checks 
Whether or not content #1 is already resident Within its 
cache. If not, then at step 215 the cache manager requests 
content #1 from the content ?lter, Which in turn requests 
content #1 from a Web server, such as Web server 120 (FIG. 
1) at step 220. Step 215 corresponds to the “Get Content” 
arroW indicated in FIG. 1. At step 225 the content ?lter 
receives content #1 from the Web server. At step 230 the 
content ?lters stores the content #1 Within the cache. At step 
235 the content ?lter scans content #1 to derive a pro?le 
thereof, using a content scanner such as content scanner 170. 
At step 240 the content ?lter evaluates content #1 by 
comparing its pro?le With the user’s governing policy, 
policy A, using a content evaluator such as content evaluator 
180. 
At step 245 the content ?lter checks Whether or not 

content #1 is alloWable relative to policy A. If content #1 is 
alloWable, then at step 250 an alloWability pointer is set from 
policy A to content #1, as described hereinabove With 
reference to policy-based cache indeX 190 (FIG. 1). There 
after, at step 255 the cache manager sends content #1 to the 
user, and ?nally at step 260 the user receives the content that 
he had requested at step 205. 

OtherWise, if step 245 determines that content #1 is not 
alloWable relative to policy A, then at step 265 a non 
alloWability pointer is set from policy A to content #1. At 
step 270 the cache manager blocks content #1 from being 
delivered to the user, and at step 275 the user does not 
receive the content that he had requested at step 205. 

If the cache manager determines at step 210 that content 
#1 is already available in its cache, then at step 280 a further 
check is made as to Whether or not there is an alloWability 
pointer from policy Ato content #1. If there is an alloWabil 
ity pointer, then at step 255 the cache manager sends content 
#1 to the user as above. In this case, the cache manager does 
not need to consult With the content ?lter in order to 
determine alloWability. 

If at step 280 an alloWability pointer from policy A to 
content #1 is not found, then at step 285 a further check is 
made as to Whether or not there is a non-alloWability pointer 
from policy A to content #1. If a non-alloWability pointer is 
found, then at step 270 the cache manager blocks content #1 
from being delivered to the user, as above. In this case as 
Well, the cache manager does not need to consult With the 
content ?lter in order to determine alloWability. 

If at step 285 a non-alloWability pointer from policy A to 
content #1 is not found, then at step 290 the content manager 
asks content ?lter to determine Whether or not content #1 is 
alloWable. Step 290 corresponds to the “Permission?” arroW 



US 6,965,968 B1 
9 

indicated in FIG. 1. At step 240, the content ?lter evaluates 
content #1 by comparing its pro?le to policy A. 

At step 245, the alloWability decision determined at step 
240 is checked. If content #1 is allowable, then the cache 
manager proceeds to step 250 as above. OtherWise, if the 
cache manager determines at step 245 that content #1 is not 
alloWable, then the cache manager proceeds to step 265 as 
above. 

It may be appreciated, as mentioned hereinabove, that the 
use of alloWability and non-alloWability pointers in FIG. 2 
may be replaced With the use of bit strings. 

It may further be appreciated that the division of steps in 
FIG. 2 betWeen the cache manager and the content ?lter is 
someWhat arbitrary, and some steps indicated as being 
performed by the cache manager or the content ?lter may 
instead be performed by the other. 

The cache manager of the present invention preferably 
operates in conjunction With standard caching operations, 
including inter alia cache updating, cache refresh, allocation 
of cache memory, virtual cache, and cache purging based on 
algorithms such as oldest vs. neWest, least-used vs. most 
used, and largest vs. smallest. 

The present invention has many diverse applications. In 
conjunction With content control systems, as described here 
inabove, the present invention is advantageous inter alia for 
URL ?ltering, e-mail anti-spam ?ltering, anti-virus protec 
tion and malicious mobile code protection systems. In 
conjunction With document management systems, the 
present invention is advantageous inter alia for document 
protection, version control and data encryption. In conjunc 
tion With ?le management systems, the present invention is 
advantageous inter alia for ?le protection and ?le sharing. In 
conjunction With multimedia systems, the present invention 
is advantageous inter alia for cable and satellite broadcast 
ing, video on demand, streaming audio and video, and 
access to still imagery. 

In the foregoing speci?cation, the invention has been 
described With reference to speci?c eXemplary embodiments 
thereof. It Will, hoWever, be evident that various modi?ca 
tions and changes may be made to the speci?c exemplary 
embodiments Without departing from the broader spirit and 
scope of the invention as set forth in the appended claims. 
Accordingly, the speci?cation and draWings are to be 
regarded in an illustrative rather than a restrictive sense. 

What is claimed is: 
1. A policy-based cache manager, comprising: 
a memory storing a cache of digital content, a plurality of 

policies, and a policy indeX to the cache contents, the 
policy indeX including entries that relate cache content 
and policies by indicating cache content that is knoWn 
to be alloWable relative to a given policy, for each of a 
plurality of policies; 

a content scanner, communicatively coupled With said 
memory, for scanning a digital content received, to 
derive a corresponding content pro?le; and 

a content evaluator, communicatively coupled With said 
memory, for determining Whether a given digital con 
tent is alloWable relative to a given policy, based on the 
content pro?le, the results of Which are saved as entries 
in the policy indeX. 

2. The policy-based cache manager of claim 1 Wherein the 
policy indeX includes pointers to the cache contents. 

3. The policy-based cache manager of claim 1 Wherein the 
policy indeX includes alloWability pointers and non-al 
loWability pointers. 

15 

25 

35 

40 

45 

55 

65 

10 
4. The policy-based cache manager of claim 1 Wherein the 

policy indeX includes bit strings associated With the cache 
contents. 

5. The policy-based cache manager of claim 1 Wherein the 
policy indeX includes strings of numbers “0,” “1” and “2,” 
one number per policy. 

6. The policy-based cache manager of claim 1 further 
comprising a transmitter for transmitting alloWable content 
from the cache to a client computer. 

7. The policy-based cache manager of claim 1 further 
comprising a receiver for receiving digital content from a 
Web server. 

8. The policy-based cache manager of claim 1 Wherein the 
policy indeX designates cache content that is alloWable 
relative to all of the plurality of policies. 

9. The policy-based cache manager of claim 1 Wherein the 
plurality of policies are used for URL ?ltering. 

10. The policy-based cache manager of claim 1 Wherein 
the plurality of policies are used for anti-virus protection. 

11. The policy-based cache manager of claim 1 Wherein 
the plurality of policies are used for security detection for 
malicious mobile code. 

12. The policy-based cache manager of claim 1 further 
comprising a cache reader for determining Whether a given 
digital content is available in cache, and, if so, Whether the 
policy indeX indicates that the given digital content is 
alloWable relative to a given policy. 

13. A method for policy-based caching, comprising: 
providing a memory storing a cache of digital content, a 

plurality of policies, and a policy indeX of the cache 
contents, the policy indeX including entries that relate 
cache content and policies by indicating cache content 
that is knoWn to be alloWable relative to a given policy, 
for each of a plurality of policies; 

receiving a user request for a digital content, the user 
having associated thereWith a policy from among the 
plurality of policies; 

determining based on the cache, Whether the requested 
digital content is already available; and 

if said determining based on a cache indicates that the data 
content is already available in the cache then 
further determining based on the policy indeX of the 

cache contents, Whether the requested digital content 
is alloWable for the user; 

else 
further determining based on a pro?le of the requested 

data content, Whether the requested data content is 
alloWable for the user’s policy; and 

storing an indication of the results of said further 
determining Whether the requested data is alloWable, 
Within the policy indeX. 

14. The method of claim 13, further comprising transmit 
ting the requested digital content from the cache to the user, 
if said determining based on a policy indeX or said deter 
mining based on a pro?le indicates that the requested digital 
content is alloWable. 

15. The method of claim 13 further comprising scanning 
received data content to derive a pro?le thereof. 

16. The method of claim 13 Wherein the policy indeX 
includes pointers to the cache contents. 

17. The method of claim 16 Wherein the policy indeX 
includes alloWability pointers and non-alloWability pointers. 

18. The method of claim 13 Wherein the policy indeX 
includes bit strings associated With the cache contents. 

19. The method of claim 18 Wherein the policy indeX 
includes strings of numbers “0,” “1” and “2,” one number 
per policy. 



US 6,965,968 B1 
11 

20. The method of claim 13 further comprising updating 
the policy index according to said determining based on a 
pro?le. 

21. The method of claim 13 further comprising identify 
ing cached content that is alloWable relative to all of the 
plurality of policies. 

22. The method of claim 13 further comprising resetting 
at least a portion of the policy indeX, When a policy is 
changed. 

23. Acomputer-readable storage medium storing program 
code for causing a computer to perform the steps of: 

providing a memory storing a cache of digital content, a 
plurality of policies, and a policy indeX of the cache 
contents, the policy indeX including entries that relate 
cache content and policies by indicating cache content 
that is knoWn to be alloWable relative to a given policy, 
for each of a plurality of policies; 

receiving a user request for a digital content, the user 
having associated thereWith a policy from among the 
plurality of policies; 

determining based on the cache, Whether the requested 
digital content is already available; and 

if said determining based on a cache indicates that the data 
content is already available in the change, then 
determining based on the policy indeX of the cache 

contents, Whether the requested digital content is 
alloWable for the user; 

else: 
determining based on a pro?le of the requested data 

content, Whether the requested data content is alloW 
able for the user’s policy; and 

storing an indication of the results of said further 
determining Whether the requested data is alloWable, 
Within the policy indeX. 

24. The policy-based cache manager of claim 1 Wherein 
the policy indeX is dynamically generated as results of said 
content evaluator are derived. 

25. The method of claim 13 further comprising dynami 
cally generating the policy indeX as said determining based 
on a pro?le of the requested data content is performed. 

26. A method for policy-based caching, comprising: 
providing a memory storing a cache of digital content, and 

a plurality of policies; and 
dynamically generating a policy indeX of the cached 

contents, the policy indeX including entries that relate 
cached content and policies, by indicating pieces of 
cached content knoWn to be alloWable relative to a 
given policy, for each of a plurality of policies, com 
prising: 
determining, based on a pro?le of a piece of digital 

content, Whether the piece of digital content is alloW 
able for a given policy; and 

storing an indication of the results of said determining 
Whether the piece of digital content is alloWable 
Within the policy indeX, comprising: 

if the piece of digital content is not already resident in 
the cache, then: 
adding the piece of digital content into the cache; and 
adding an entry in the policy indeX indicating the 

alloWability or the non-alloWability of the piece of 
digital content relative to the given user policy, 
based on the result of said determining; 

else if the piece of digital content is already resident in 
the cache, then modifying an already existing entry 
in the policy indeX indicating the alloWability or the 

10 

15 

25 

35 

40 

45 

55 

65 

12 
non-alloWability of the cached piece of digital con 
tent relative to the given policy, based on the result 
of said determining. 

27. The method of claim 25 Wherein entries of the policy 
indeX indicate, for each of a plurality of pieces of cached 
content, one of three states: knowledge of alloWability of 
a piece of cached content relative to a given policy, (ii) 
knoWledge of non-alloWability of a pieced of cache content 
relative to a given policy, or (iii) lack of knowledge regard 
ing alloWability of a piece of cached content relative to a 
given policy. 

28. The method of claim 27 Wherein entries of the policy 
indeX are represented as dynamically changing character 
strings, one character string per each of a plurality of pieces 
of cached content, and one character Within a string per 
policy, the strings indicating policies for Which the piece 
of cached content is currently knoWn to be alloWable, (ii) 
policies for Which the piece of cached content is currently 
knoWn to be non-alloWable, and (iii) policies for Which 
knoWledge is currently lacking as to the alloWability or 
non-alloWability of the piece of cached content relative 
thereto. 

29. The method of claim 27 Wherein entries of the policy 
indeX are represented as dynamically changing lists of 
currently alloWed pieces of cache content and lists of 
currently non-alloWed pieces of cache content, relative to a 
given policy, such lists for each of a plurality of policies. 

30. The method of claim 27 further comprising modifying 
entries in the policy indeX so as to indicate current lack of 
knoWledge of alloWability for at least one of the plurality of 
policies, When the at least one of the plurality of policies are 
changed. 

31. The method of claim 27 further comprising modifying 
entries in the policy indeX so as to indicate current lack of 
knoWledge of alloWability for a neW policy, When the neW 
policy is added to the plurality of policies. 

32. A computer-readable storage medium storing program 
code for causing a computer to perform the steps of: 

providing a memory storing a cache of digital content, and 
a plurality of policies; and 

dynamically generating a policy indeX of the cached 
contents, the policy indeX including entries that relate 
cached content and policies by indicating pieces of 
cached content knoWn to be alloWable relative to a 
given policy, for each of a plurality of policies, com 
prising: 
determining, based on a pro?le of a piece of digital 

content, Whether the piece of digital content is alloW 
able for a given user policy; and 

storing an indication of the results of said determining 
Whether the piece of digital content is alloWable 
Within the policy indeX, comprising: 

if the piece of digital content is not already resident in 
the cache, then: 
adding the piece of digital content into the cache; and 
adding an entry in the policy indeX indicating the 

alloWability or the non-alloWability of the piece of 
digital content relative to the given user policy, 
based on the result of said determining; 

else if the piece of digital content is already resident in 
the cache, then modifying an already eXisting entry 
in the policy indeX indicating the alloWability or the 
non-alloWability of the cached piece of digital con 
tent relative to the given user policy, based on the 
result of said determining. 



US 6,965,968 B1 
13 

33. A policy-based cache manager, comprising: 
a memory for storing a cache of digital content, and a 

plurality of policies; 
a policy index generator for dynamically generating a 

policy index to the cached contents, the policy indeX 
including entries that relate pieces of cached content 
and policies, by indicating pieces of cache content that 
are known to be allowable relative to a given policy, for 
each of a plurality of policies; and 

a content evaluator, communicatively coupled with said 
policy indeX generator, for determining whether a piece 
of digital content is allowable relative to a given policy, 
based on a pro?le of the piece of digital content, and for 
storing the results of the determining within entries of 
the policy indeX. 

34. The policy-based cache manager of claim 33 wherein 
entries of the policy indeX indicate, for each of a plurality of 
pieces of cached content, one of three states: knowledge 
of allowability of a piece of cached content relative to a 
given policy, (ii) knowledge of non-allowability of a pieced 
of cache content relative to a given policy, or (iii) lack of 
knowledge regarding allowability of a piece of cached 
content relative to a given policy. 

35. The policy-based cache manager of claim 34 entries of 
the policy indeX are represented as dynamically changing 
character strings, one character string per each of a plurality 

15 

25 

14 
of pieces of cached content, and one character within a string 
per policy, the strings indicating policies for which the 
piece of cached content is currently known to be allowable, 
(ii) policies for which the piece of cached content is cur 
rently known to be non-allowable, and (iii) policies for 
which knowledge is currently lacking as to the allowability 
or non-allowability of the piece of cached content relative 
thereto. 

36. The policy-based cache manager of claim 34 wherein 
entries of the policy indeX are represented as lists of cur 
rently allowed pieces of cache content and lists of currently 
non-allowed pieces of cache content, relative to a given 
policy, such lists for each of a plurality of policies. 

37. The policy-based cache manager of claim 34 wherein 
said policy indeX generator modi?es entries in the policy 
indeX so as to indicate current lack of knowledge of 
allowability for at least one of the plurality of policies, when 
the at least one of the plurality of policies are changed. 

38. The policy-based cache manager of claim 34 wherein 
said policy indeX generator modi?es entries in the policy 
indeX so as to indicate current lack of knowledge of 
allowability for a new policy, when the new policy is added 
to the plurality of policies. 


