a2 United States Patent
Ritchie et al.

US006961737B2

US 6,961,737 B2
Nov. 1, 2005

(10) Patent No.:
5) Date of Patent:

(54) SERVING SIGNALS

(75) Inventors: Andrew M. Ritchie,
Sunbury-on-Thames (GB); Jonathan
M. Bradshaw, Bracknell (GB)

(73) Assignee: Ablaise Limited, Leicester (GB)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 274 days.
(21) Appl. No.: 09/920,803
(22) Filed: Aug. 3, 2001
(65) Prior Publication Data
US 2002/0052865 Al May 2, 2002

Related U.S. Application Data

(63) Continuation of application No. 08/647,769, filed on May
15, 1996, now Pat. No. 6,295,530.

(30) Foreign Application Priority Data
May 15, 1995 (GB) oovvveeeeeeeeeeeeeeeeeee e 9509828
(51) Int. CL7 oo GO6F 17/30
(52) US.CL ..o 707/201; 715/573; 709/217
(58) Field of Searchc........... 707/201; 709/217,
709/206; 715/513
(56) References Cited
U.S. PATENT DOCUMENTS
5,530,852 A * 6/1996 Meske et al. 709/206
5,583,978 A 12/1996 Collins et al.
5,732,219 A 3/1998 Blumer et al.
57427762 A 4/1998 Scholl et al.
5,742,880 A 4/1998 Tazelaar et al.
5,745360 A * 4/1998 Leone et al. 715/513
5,745,899 A 4/1998 Burrows
5,761,673 A 6/1998 Bookman et al.
5,781,714 A 7/1998 Collins et al.

STRING LIST STORE

5,809,502 A 9/1998 Burrows
5844227 A 12/1998 Schmidt et al.
5848410 A 12/1998 Walls et al.
5,848,413 A * 12/1998 Wolffccccvvvvveneeeeen. 707/10
5,864,863 A 1/1999 Burrows
5,894,554 A 4/1999 Lowery et al.
5,903,880 A 5/1999 Huerga et al.
5,905,248 A * 5/1999 Russell et al. 235/462.15
5,930,474 A * 7/1999 Dunworth et al. 709/217
5,974,441 A 10/1999 Rogers et al.
6,068,188 A 5/2000 Knowles
6,154,738 A 11/2000 Call
OTHER PUBLICATIONS
Agosti et al, “Automatic Authoriing . . . ”, Multimedia

Systems, vol. 3, No. 1, pp. 15-24 (Feb. 1995).

Handley et al, “The World—Wide Web . . . ”, Connexions,
vol. 9, No. 2, pp. 12-24 (Feb. 1995).

Vetter et al, “Mosaic and the World—Wide Web”, Computer,
vol. 27, No. 10, pp. 49-57 (Oct. 1994).

Francis Heylighen, “World—Wide Web . . . ”, Proceedings of
Share Europe Spring Conference, pp. 355-368 (Spring
1994).

(Continued)

Primary Examiner—Charles Rones
(74) Antorney, Agent, or Firm—Nixon & Vanderhye P.C.

(7) ABSTRACT

Output signals are served from a serving device to a plurality
of browsing devices connected to a network. The output
signals represent commands executable by each browsable
device so as to display viewable data in accordance with
specified page formatting. Requests from browsing clients
are identified which contain information relating to the data
itself and the display format for the data. The data is read and
processed so as to combine a representation of the viewable
data with executable instructions. The signals are then
supplied to requesting browsing devices, after effectively
being assembled as a real time on-line process.

22 Claims, 14 Drawing Sheets

TEXT DATABASE 1108

1109
= 1107 O 1104
103 — = M = o
1106 A = — —
= === 1105~ - EI/L_/nﬁ
(1101 -[
v o — | O
INPUT GRAPHICS
HTTPD » URL . ON-LINE DATABASE
(403) BUFFER PROCESSOR j
T U 301
HTMIL BURE
INSTRUCTION FER
DAL'I!ESESE MEMORY L(sos) .
405
quoo Croz

US 6,961,737 B2
Page 2

OTHER PUBLICATIONS

Gee et al, “Novel Approaches to Automating . . . ”, Pro-
ceedings of 187 Int’l Online Information Meeting, pp.l
501-511 (1994).

“AMedium in the Making”, Exe: The Software Developers’
Magazine, vol. 9, Issue 12 (May 1995).

“In the Stores, In the Online Stores”, Personal Computer
Magazine, p. 44 (Jul. 1994).

Shklar et al, “Putting Legacy Data on the Web: a Repository
Definition Language”, Computer Networks and ISDN Sys-
tems 27, (1995) 939-951.

* cited by examiner

U.S. Patent Nov. 1, 2005 Sheet 1 of 14 US 6,961,737 B2

103 103 \
103 0
g EiS
102 102
\CH 102
101
INTERNET
103
103 108
- 102 102 :
104
(08 108
108 108

107
107

Figure 1

U.S. Patent Nov. 1, 2005 Sheet 2 of 14 US 6,961,737 B2

(207 208 209 210
i 1
HOST Hosgl ,§ (
HOST) |HOST
206
o
211
202 ETHERNET |(~203
TOKEN ROUTER
RING
ROUTER
201
FDD |
BACKBONE
<205
INTERNETr(204 -
ROUTER 1 RSE¥%R
(215
LINE
DRIVER I /gzm\ (213
ATM™ ATM

~Figure 2

U.S. Patent Nov. 1, 2005 Sheet 3 of 14 US 6,961,737 B2

303
(
y USER PERIPHERALS
RAM

) N
301\/\PROSEISTSING) .| /0 304
J: 305
b , (

302 NETWORK

CONTROL

TO ATM NETWORK

Figure 3

U.S. Patent Nov. 1, 2005 Sheet 4 of 14 US 6,961,737 B2

405

401
ON-LINE
HTTP PROCESSING
DAEMON

406

DATABASE

FILE
STRUCTURE
SOURCE

PROCESSING
ENVIRONMENT

PRE-DEFINED
HTML FILES

EXECUTABLE
CGI-BIN PROGRAMS

404

Figure 4

U.S. Patent

Nov. 1, 2005

Sheet 5 of 14

US 6,961,737 B2

501

™=

INITIALIZE SYSTEM

4

502.__

WAIT

A

503

P~

INTERROGATE PORT

504 \.é

v
URL WAITING ?

}NO

| YES

505

N

PROCESS URL

506+

\
~ . VALIDATE DECODED URQ

:

NO
—— PREDEFINED FILE ?

507
s

{ YES 508
Y SUPPLY FILE —
! 508
N ~5NUINE PROCESSING ?6”/
IS |
v r 510
PREPARE FILE ON-LINE
511

NO ‘
————<_CGL.BINTO EXECUTE ? 55~

Y

lYES ci)\
EXECUTE CGI.BIN —

L ,

Y 514

RETURN ERROR MESSAGE

Figure 5

.
»-

U.S. Patent Nov. 1, 2005 Sheet 6 of 14 US 6,961,737 B2

/\107
109

601

f602

11

]

J1
Figure 6

} 1

603

T\
. //%

US 6,961,737 B2

Sheet 7 of 14

Nov. 1, 2005

U.S. Patent

/ 24npi4

901

14074

c0l

c09

004

auny101)

SUDIPINY)

N~

/\

JUOLII2) T

Sy

28 S1ua1u07)

suuapino

stammduior) D \

sprodg %@ /j

Jaddoyg 3:&#\\

US 6,961,737 B2

Sheet 8 of 14

Nov. 1, 2005

U.S. Patent

Q 2INbi

<AQO4g/~

<d>

<|=97ZIS 1>

<y/>Buiyioln<g=aoedsy a|ppiw=ubije y6yyo/uy,=2is buwi>
<,666/€2 1/S001/9SPE2 1PN/ 1808:1S0Yeo0)//: ANy, =4 3HH V>
<y/>Buuspien<g=eordsy sjppiw=ubye jib-prebuiy,=21s buwi>
<,666/€21/£001/9SYE2 1/IPA/1808:1S0U[RI0)//:dNU,=4THH V>
<d>

<y/>sualipliyp<g=voedsy atppiw=ubie JiI6 puyosuly,=ois D>
<,B666/EZ 1/€00L/9GPEZ LAPA/L808:1S0Y|RO0I/: AU, =4IHH V>
<y/>siandwog<g=asedsy ejppiu=ubye j16-0aj9/wi/,=04s Buir>
<,666/€21/2001/9SHEZ L/IPA/LB08:ISOYIeD0//:dNY,=4THH v>
<d>

<y/>|eol08)3<G=a%edsy ajppiw=ubye ji6-osja/wi/,=01s Bwi>
<,666/€21/L001/9SPEE L/IPA/1808:IS0Y[RI0)//: AN, =43HH V>
<y/>spodg<g=ooedsy ejppiw=ubije ji6-uodsuy,=o1s Bui>
<,666/€2 1/000 1/95VEE H/IPA/1808:1S0U[RI0|//:dNU,=43HH V>
<} H/><8bed sjusiuoD<H>

<|=982IS Jy>

<AQOg>

<gy3aH/><37LI>18ddoys dwoH <31 LIL><AvaH>

19SM0IQ B 0] UOISSIWSURI) ||DSY

QO
— N N

M~ @
bl o

w0 W
- r—

Or—NM<
~—_r -

T NOTNONDOD

U.S. Patent Nov. 1, 2005 Sheet 9 of 14 US 6,961,737 B2

POWER UP SYSTEM 4901

\d

INITIALIZE OPERATING SYSTEM 902

v

INITIALIZE HTTP DAEMON ~4— 903

_—em e e e e = ems mm e ma e me o e e e e o e e me m ee e e e

NO X q04
——< ANOTHER FUNCTION STRING ? y

YES
\4

IDENTIFY FUNCTIONS THAT 905
WILL CREATE THE STRING

v

LIST FUNCTIONS FOR SEQUENTIAL] 906
PROCESSING WITH DATA

-
4

h 4

APPEND FUNCTION STRING TO 907
STRING LIST

y

IDENTIFY INDEX REFERENCE 908
WITHIN LIST OF STRINGS

4

INITIALIZE DATABASES 909

502

Figure 9

U.S. Patent Nov. 1, 2005 Sheet 10 of 14 US 6,961,737 B2

510

¥
BUFFER INCOMING URL }~1001 I5“

4
MO cHECKSUM VALID 2 S 1002 1000

| vES jﬁj
LO< USERIDVALID? 5 + 2%

YES
v
-2 DATA IDENTIFIER VALID 7 351004
ves
A
O CFORMAT IDENTIFIER VALID 73 1005
USER
| vEs DATABASE

GENERATE HTML PAGES 1006

v

SUPPLY PAGES TO NETWORK J 1907

!

UPDATE USER LOG y-1oes |

1009’\ h 4
[‘ RETURN ERROR MESSAGE

<

502

Figure 10

US 6,961,737 B2

Sheet 11 of 14

Nov. 1, 2005

U.S. Patent

(€ov)
AdLLH

|1 2Inbi4
000}
201 =
(Sov)
~
€0g \f\ AHOWIW mwwmw%\o
H344NG TINLH NOILONYLSNI
1Nd1NO .
L0E *
HOSS300Hd [, 930G |
ISVAvYIYA ANITNO LNdNI
SOIHJVHD
] | — A 0k 7 _ﬂ
= LOH
::\J(TD _|Tsou Y
— = ook
- = |—-] =
vOLL ll%,\/ 20117 — [¢——¢t0lLt

go11/ 3SVavLva 1X3L

6011

JHOLS 1SIT ONIHLS

U.S. Patent Nov. 1, 2005 Sheet 12 of 14 US 6,961,737 B2

1005

<&
o

A4

1201 _L. |DENTIFY DATA STRING INDEX

hd

—~ READ DATA STRING

1202,

h 4
1203 _l.. IDENTIFY FUNCTION STRING l

INDEX
i A
1204 READ FUNCTION STRING I
i
1205\~ EXECUTE FUNCTION STRING

1206 YES
\~<i ANOTHERFUNCTKNQSTRwKS;i>r————

NO N

1007 <1006

~igure 12

U.S. Patent Nov. 1, 2005 Sheet 13 of 14 US 6,961,737 B2

1204 |

Y

READ NEXT FUNCTION FROM 11301
FUNCTION STRING

.

7 §

L 4 _
EXECUTE FUNCTION STEP 41302

h 4

4 WRITE HTML TO OUTPUT 11303 4
BUFFER
YES
- <jANOTHERFUNCTKMdSTEP?

NG 1304
YES ‘ 1305
———<i ANOTHER FUNCTION 72 ?j?’

NO ~

v

1206 | <1205
Figure 13

U.S. Patent Nov. 1, 2005 Sheet 14 of 14 US 6,961,737 B2

ERESE

¥

<HEAD> <TITLE>

WRITE HOME SHOPPER 1402

I

WRITE | </TITLE > </HEAD > 1403

Figure 14

US 6,961,737 B2

1
SERVING SIGNALS

RELATED APPLICATIONS

This is a continuation of our commonly assigned appli-
cation 08/647,769 filed May 15, 1996 (not U.S. Pat. No.
6295,530) and is also related to a division thereof 10/223,
467 filed Aug. 20, 2002.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to serving signals to brows-
ing clients, wherein said signals represent commands
executable by said browsing clients for generating structured
pages of human viewable data.

2. Related Art

The serving of human viewable data in response to client
requests has been known for some years in the field of cable
television systems. Star types systems in particular allow
viewers to make selections resulting in remote switching
being performed so as to route a selected signal from a
distribution head to the requesting viewer. Cable television
systems are usually based on standard broadcast television
signals and, as a result, a substantial transmission bandwidth
is required in order to provide each viewable page of data.
Recently, attempts have been made to compress video data,
by implementing recommendations using standards such as
MPEG, so as to facilitate the distribution of video signals
over channels of substantially less bandwidth. Thus, it is
now possible to transmit low quality video signals over
conventional telephone lines using temporal and spatial
compression techniques.

It has also been possible to distribute human viewable
data in the form of encoded text for a number of years. The
transmission of text, often using ASCII coding, requires
substantially less bandwidth than the transmission of video
signals and for a number of years data of this type has been
transmitted over conventional telephone cables.

A problem with transmitting conventional data text, com-
pared to image related video signals, is that the quality of
presentation and overall graphical format is significantly
impaired. For this reason, traditionally, the transmission of
data, as distinct from video, has tended to develop only in
specialist fields where presentation was not considered par-
ticularly important. Very often, for example, the data being
received would be considered as being quite valuable and
very often it would be possible to justify the re-typing of
information as and when required.

A further problem with the dissemination of data is that
many standards and conventions have developed over the
years. Therefore, traditionally, users have needed to develop
techniques for accessing different data sources, which in
itself has tended to become a specialist activity.

In parallel with the tendency towards bandwidth reduction
in the transmission of video signals, there has also been a
tendency towards improving the graphical format, structure
and presentation of what would normally be considered as
textural data. Thus, although data may be transmitted within
a text-based environment, such as within the internationally
accessible network known as the “Internet”, there has been
a tendency towards including formatting structures such that
a substantially data-driven source could be viewed by a user
on equipment which would present the data in a form
substantially similar to that of a video image. Thus, the two
arts of video signal processing and image data processing
are coming closer together and reaching towards a common

10

15

40

45

50

55

60

65

2

aim of providing what appears to be a high resolution, high
bandwidth, high quality image by transmitting data over low
bandwidth transmission media.

For a number of years, cable television systems have been
used to provide in-home shopping facilities and, given their
two-way capabilities, it is possible to install a level of
interactivity within such systems. On-line systems facilitate
a higher level of interactivity and, in addition to making
particular selections in response to images being broadcast,
it is also possible to select particular image pages by
browsing through catalogues and tree structure etc. Thus,
given an ability to display high quality images, similar to
those available through video based systems, on-line sys-
tems present environments with substantially more interac-
tive capabilities. However, it is appreciated that in many of
these environments the quality of images must be signifi-
cantly enhanced in order to attain a broad customer base.

A known way of improving the quality of images derived
from text-based systems is to add formatting commands or
instructions to data strings. These instructions control opera-
tions of a receiver, such that the signals are processed in such
a receiver, to ensure that the transmitted signals are pro-
cessed in such a way as to generate a high quality video
image that is capable of being displayed at a requesting
client’s terminal.

In addition to improving the quality of displayed images,
such an approach also facilitates an improvement in system
compatibility. Thus, the incoming control signals are
executed by a receiver’s terminal in a way that is compatible
with the receiving system. Thus, the output signals may be
considered as executable instructions that cause operations
to be performed upon the viewable data in accordance with
the local constraints.

Thus, the use of systems of this type must be distin-
guished from simple local database systems in which all
operations of the system are locally controlled and no
account whatsoever needs to be taken of remote facilities
and characteristics. Such systems are significantly different
in that database systems only transfer data that is subse-
quently manipulated by controlling programs. In mark-up
languages the formatting commands are embedded in the
form of executable commands, executable at the receiving
station, so as to perform operations upon the viewable data
supported by the local platform and peripherals.

Mark-up languages of this type may also include other
capabilities previously not found in simple data distribution
systems. In particular, a highly viewed additional feature is
the ability to automatically receive additional files from
anywhere within the overall network. Such a procedure is
possible because, as previously stated, the mark-up language
is effectively executed by the local platform and these
executable procedures may include procedures for making
external calls to files held anywhere within the accessible
network.

From a user’s point of view, such links may be considered
as providing a level of multi-dimensionality within a view-
able document in that particular word or phrase may be
selected, whereafter an expansion is provided or related
documents are identified. In order to distinguish such docu-
ments from ordinary self-contained documents, test of this
type is commonly referred to as “hypertext”. Similarly, such
links may be also be made to full motion video sequences or
audio sequences etc. and such an environment may be
referred to as “hypermedia”.

An example of a particular recommendation under which
signals include commands executable by browsing clients is

US 6,961,737 B2

3

the “hypertext mark-up language” (HTML) developed at
CERN during the late 1980s and early 1990s, which has
recently become a part of the Internet through a service
known as the “World Wide Web”. An (HTML) file is
essentially an ASCII document interspersed with tags for
formatting text and displaying images. The tags graphically
represent instructions which are acted upon by a receivers
browser, configured to render text or graphics. The browser
has full control of how the page is displayed, therefore it is
possible to generate a wide range of page layouts from a
modest set of (HTML) tags.

The Internet is an extreme example of a network in which
many different types of platforms, having various protocols
and processing capabilities, may be interconnected using
highly distributed control instruction sets. As previously
suggested, systems of this type often provide an environ-
ment in which a user may “browse” through many files and
structures. Consequently environments to facilitate the
reception and conversion of HTML files are commonly
known as “browsers”. Thus, a browser is an application
capable of interpreting and displaying documents received
in HTML in such a way that the information is displayed to
the user in a form compatible with the user’s available
equipment. Thus, using sophisticated terminal equipment,
provided with an appropriate browser, it is possible to
display text-based data at a quality that is perceived as being
substantially similar to that of full bandwidth video, while
significantly reducing the level of bandwidth required in
order to distribute the information. Thus, as previously
stated, the purpose of the browser is to substantially improve
the quality of the displayed image such that a client user is
presented with a high quality video image, if suitable
equipment is available. In addition, the browser ensures that
compatibility is achieved between the local system facilities
and the transmitted data. Furthermore, hypertext links may
be defined within the document that are executed by the
browser so as to make additional documents available in
response to user driven selections.

Clearly, it is only possible for client users to make use of
these sophisticated languages it networks include accessible
data sources. HTML files may be stored in file structures that
are substantially similar to conventional data formats.
Requests are made, via client browsers to applications
maintained at a distribution node, commonly referred to as
“servers”.

Both browsers and servers represent applications which
must be made available when requested although, during
substantially quest periods of operation they are not actually
required as such. Procedures of this type, embedded within
systems and substantially transparent to operates, have
become known, collectively, as “daemons”. Thus, in
operation, server daemons intermittenly interrogate selected
ports for incoming signal requests. In response to these
requests, servers may make appropriate housekeeping and
security operations, whereafter, if possible, the selected file
is identified and supplied to the requesting browser.

In earlier simple ASCII based text systems, the generation
of text in a form suitable for transmission over networks
involved relatively easy operations. Generally, documents
could be accessed from text files or databases and transmit-
ted directly across the network. At the receiver, the input
data would often be buffered, but thereafter it could be
supplied directly to line printers, or similar devices, thereby
producing a listing or print out of the transmitted ASCII text.

As previously stated, HTML allows sophisticated format-
ting structures to be added to the viewable data so as to

10

15

20

25

30

35

40

45

50

55

60

65

4

present a substantially more appealing image to client users.
However, a major disadvantage of using such systems is that
it is necessary to convert source data into HTML form
before it may be transmitted over the network. In practice,
such a procedure is presently performed manually and a
significant number of man hours may be required in order to
convert originating text into an appropriate HTML version
suitable for distribution throughout the network.

In some environments, such as rescarch environments
etc., data may be required for significant periods of time and
under such circumstances it is possible to justify the time
and effort required in order to mark up the text for distri-
bution throughout a network in an appropriate form.
However, as is well known in the magazine and newspaper
arts, some forms of data, although initially highly valuable,
may have very short “shelf livers” and, even the next day,
they may become virtually worthless. Thus, many forms of
existing paper publications may be withheld from electronic
publishing of the amount of time and effect required to
covert the text-based information into a form suitable for
distribution throughout networks is significantly large.
Furthermore, in many situations, the extent to which the
time scale for performing an exercise may be reduced by
increasing manpower, may be restricted, given that it is only
possible for one person to work on one page at any one
instant.

Traditional marking-up is a laborious task, given that, by
its very nature, the actual transmitted data looks very dif-
ferent from the viewed image. In most situations, it is
necessary for a level of marking-up to be performed, where-
after the data is transferred to a locally situated browser, so
that the resulting viewable image may be considered, before
further operations are performed. Once created, files are
loaded on appropriate storage devices and thereafter made
available to requesting customers.

Systems are available which facilitate the creation of
(HTML) documents. For example, it is possible to process
documents generated under word processing systems, such
as “World for Windows”, whereby, in response to manual
operations, (HTML) tags are added to human viewable text.
Systems of this type are sold under the Trade Marks “Web-
Author” and “Internet Assistant”.

It is well known that traditional newspapers tend to
change slightly over a day, as various editions are modified
so as to take account of recent news items. Thus, very often,
a late edition of a newspaper will carry a different main story
to that of earlier editions. Within electronic environments,
there is an expectation for an even higher level of updating
and interactivity.

Presently, in order to satisfy this expectation, it would be
necessary to continually update pages manually.

Systems have been proposed in which clients are given
the impression that a magazine has been tailored to their
particular needs. Thus, systems are known in which particu-
lar selections may be made thereby tuning documents to
customers requirements. A problem with known approaches
of this type is that each page viewed by a client must be
pre-created, thereby doubling the number of pages required
each time a decision point occurs. Such an approach may
have applications in particular environments but it can be
appreciated that as the number of notional pages increases,
the number of actual pages required within the system
becomes extremely large and the task of creating and
maintaining each of these pages manually would be highly
laborious and very often make the system uneconomic. This
is particularly the case when dealing with publications

US 6,961,737 B2

5

which, in their conventional paper form, are perceived as
having relatively low value or often no intrinsic value at all.
Such a situation would apply to free newspapers and adver-
tising catalogues etc.

SUMMARY OF THE INVENTION

According to a first aspect of the present invention, there
is provided apparatus for serving output signals from a
serving device to a plurality of browsing devices connected
to a network, wherein said output signals represent com-
mands executable by each browsing device so as to display
viewable data in accordance with the specified page format,
comprising: means for identifying requests from browsing
clients that define a request for specified viewable data with
commands for displaying said data in a specified format;
means for reading data representing said viewable data;
means for processing said read data so as to combine a
representation of said viewable data with executable instruc-
tions; and means for supplying output signals to the request-
ing browsing device derived from said processed data.

In accordance with the said invention, it is not necessary
to store all output files as predefined HTML files. HTML
output instructions are generated “on-the-fly” in response to
requests made by users.

The apparatus may be used within many network con-
figurations. In a preferred embodiment, the network is the
Internet. Preferably, requests are made by browsing clients
in the form of URLSs and output signals are supplied back to
browsing devices in the form of hypertext mark-up language
commands.

The apparatus may be used for supplying any type of data
to users, particularly text data and graphical data.

Preferably, viewable data is read from conventional data-
bases in response to a URL being received, whereafter this
data is processed so as to configure it into HTML com-
mands.

In a preferred embodiment, data is identified within
databases by means of an index, such that the relationship
between indices and the access data may be adjusted. This
facilitates the updating of data without needing to generate
new HTML code.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic representation of part of the
international data distribution network known as the
Internet, having a plurality of service providers and a
plurality of service users; implemented using a plurality of
network topologies.

FIG. 2 shows an example of a typical service provider
network of the type shown in FIG. 1; including a local area
network and a serving host;

FIG. 3 details the serving host identified in FIG. 2,
including a processing unit and a random access memory for
storing instructions executable by said processing unit;

FIG. 4 represents a processing environment specified by
the processing unit and its associated instructions created by
the processing unit and its associated memory shown in FIG.
3, including a hypertext transport protocol daemon and
on-line processing procedures in accordance with the
present invention;

FIG. 5 illustrates the operation of the hypertext transport
protocol daemon identified in FIG. 4 in response to receiving
an input URL request and including an identification of
initialisation procedures and procedures for performing
on-line processing.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 6 shows a requesting user devices, including a
processing device and a visual display unit;

FIG. 7 illustrates a typical display shown on the visual
display unit identified in FIG. 6, in response to instructions
being supplied to the user from a server;

FIG. 8 shows an example of instructions in the form
supplied to the browser, in order to generate the display
shown in FIG. 7,

FIG. 9 details the initialisation procedures identified in
FIG. 5,

FIG. 10 details the on-line procedures identified in FIG. 5,
including an indication of procedures for generating HTML
pages;

FIG. 11 illustrates the relationship between serving com-
ponents when configured to supply HTML pages to a
requesting device;

FIG. 12 details procedures for generating HTML pages
identified in FIG. 10, including a step for executing a
function string;

FIG. 13 details procedures for executing a function string,
including a function execute step; and

FIG. 14 details function execution steps used to generate
lines of output commands of the type identified in FIG. 8.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A diagrammatic representation of part of the Internet is
shown in FIG. 1. An international data communication
network is provided, represented diagrammatically by
region 101. Access to this network is provided over data
channels 102, that are in turn connected to service nodes
103. Service nodes 103 allow users to gain access to the
Internet with varying levels of transmission bandwidth.

In the example, a local area network 105 is provided with
a high bandwidth link 104 to an Internet service provider
103. The network 105 includes servers, that supply data to
the Internet in response to requests made by users. Presently,
users are given access to the Internet over channels provid-
ing traffic capacities from 14.4K bits per second (telephone
dial up) to 100 M bits per second and beyond, when
implemented using optical techniques.

A low bandwidth user 106 communicates with a service
provider 103 via co-operating modems 107, 108 connected
via a transmission cable 109. Many users of this type may
access information from a server, such as server 105.

Network 105 is detailed in FIG. 2. The network comprises
a fibre distributed data interface (FDDI) backbone ring 201
having four routers 202, 203, 204 and 205 connected thereto.
Router 202 is a token ring outer which routes data between
a token ring network 206 and the FDDI backbone 201. In the
example shown in FIG. 2, a first host processing system 207
and second host processing system 208 are connected to the
token ring 206, thereby facilitating communication between
said hosts 207 and 208, along with communication between
said hosts and the backbone ring 201, via token ring router
202.

A host processing system 209, and a host processing
system 210 communicate via an ethernet network 211. The
ethernet network 211 also allows communication between
hosts 209 and 210 and the backbone ring 201 via ethernet
router 203.

The backbone ring also communicates with an asynchro-
nous transfer mode (ATM) network, including a first ATM
host 212 and a second ATM host 213. Information for

US 6,961,737 B2

7

distribution to the Internet is generated by “serving opera-
tions” executed by host 212. This host communicates with
the backbone ring 201 via the ATM router 205, which in turn
facilitates communication to the Internet itself via Internet
router 204 and an Internet line driver 215. This facilitates the
transfer of data to an Internet service provider, as shown in
FIG. 1.

The present embodiment is directed towards providing
HTML encoded data, in accordance with the HTML recom-
mendations implemented over the Internet as a service
known as “World Wide Web”. However, the invention as a
whole has broader application, particularly when it is nec-
essary to process human viewable data in combination with
signals representing a selected display structure, such that
commands are executable by remote browsing clients.

Serving station 212, as shown in FIG. 2, serves files,
processed in accordance with the established hypertext
mark-up language (HTML) to browsing clients via the
Internet. A browsing client makes a request for the infor-
mation to be supplied and this request is identified by a
serving station, such as station 212, which responds to said
request by returning the information via the Internet con-
nection to the browsing client device. Once a request has
been received, first signals are processed by the serving
station which represent the human viewable data. Second
signals are received which represent a selected display
structure. These two signals are processed in order to
produce an HTML output. However, this processing step
only takes place after the client request has been received
such that the first signals and the second signals are pro-
cessed to produce output signals in the form of client
executable instructions which are then served as output
signals suitable for execution by the requesting browser. In
this way, many pages of HTML encoded data may be
produced automatically without requiring manual effort for
each individual page. Furthermore, pages may be tailored
for specific user requirements and, in some circumstances, it
may be possible to adjust the extent to which this customi-
zation takes place in response to the clients own history of
use, such that topics of interest are identified automatically
and this identification is used in order to direct information
of interest to the calling client.

The hardware of serving network 105 is shown in FIG. 2.
Arequest from a browsing client would be received from the
Internet provider via data link 104, thereby allowing the
Internet router to direct the packet of information onto the
backbone network 201. This packet would include an
address so as to identify the processing environment
arranged to serve the requested information.

ATM host 212 is detailed in FIG. 3. A central processing
unit 301 provides a general purpose multi-tasking process-
ing environment, possibly running under the UNIX operat-
ing system. The processing unit includes internal buses to
facilitate communication with a mass storage device, such as
a hard disk drive 302, and a random access memory 303.

Communication with external devices is facilitated
through an input/output (I/O) interface 304 which is in turn
connected to typical user peripherals such as a keyboard, a
monitor and a mouse etc. In addition, the I/O device 304 is
connected to ATM router 205 via a network control circuit
305.

A routine is executed continually by the processing unit
301 to identify requests made to a particular I/O port
established by the I/O circuit 304. Thus, a packet received by
the backbone 201 includes an address that enables the
network control interface 305 such that said controller may

10

15

20

35

50

55

60

65

8

direct the packet to the I/O interface 304. Thus, the packet
identified by the network controller 305 will be supplied to
a particular port of the I/O device 304. The processing unit
301 will identify the fact that data has been supplied to the
relevant port and establish a connection, effectively placing
the system into an active mode. Once placed in its active
mode, the packet of data passes through the I/O device 304
to become a packet of information which is then held under
the control of the operating system of the processing unit
301.

In response to receiving this information, the processing
unit 301 is arranged to perform the steps identified above,
that is, it is arranged to process first and second signals to
produce output signals in the form of client executable
instructions. After this processing has taken place, the result-
ing output signal is returned for transmission to the Internet
via line driver 215, Internet router 204, ATM router 205,
network controller 305 and the I/O device 304.

The processing environment provided by the processing
unit 301 is illustrated in FIG. 4. An HTTP daemon 401 is
executed by the processing environment 402 in order to
detect requests received by the input/output device 304. In
response to detected requests, the processing environment
402 is arranged to supply predetermined HTML files 403 to
the I/O device 304. In addition, it is also possible for the
HTTP daemon 401 to identify common gateway interface
binary programs (CGL.BIN programs) which are executable
instructions within the processing environment 402 and
results in identified files being supplied to the I/O device
304. The CGI.BIN files are capable of operating in response
to variables, including information identifying the type of
browser, the host name of the system and details of the client
requesting information etc. Facilities of this type are avail-
able within existing HTTP servers. However, in addition, it
is possible for the daemon to respond to requests where the
output HTML file will be produced “on the fly” in response
to instructions identified as “on-line processing”. When
requested, the on-line processing will receive human view-
able data from a database 406 in combination with file
structures from a file structure source 407. Thereafter, in
response to instructions from the on-line processing system
405, the processing environment 402 will process human
viewable data in combination with file structure data to
produce HTML output files for the I/O device 304.

The HTTP daemon procedures identified at 401 in FIG. 4
are detailed in FIG. §. Initialization procedures are imple-
mented at step 501 on start up, whereafter the appropriate
port is interrogated at step 503 after waiting for a predeter-
mined period at step 502. The procedures shown in FIG. §
are executed within a multi-tasking environment, therefore
the wait period at step 502 refers to a single task and other
tasks will execute without being affected. At step 504 a
question is asked as to whether a user request, in the form
of a uniform resource location (URL) is waiting at the
interrogated port. If the question asked at step 504 is
answered in the negative, control is returned to step 502 and
the process repeated. Thus, as previously stated, the system
operates within a multi-tasking environment, such as that
provided by the UNIX operating system. Thus, while the
particular tasks shown in FIG. 5 repeatedly loop until a URL
is received, the system is arranged to perform other tasks.

If the question asked at step 504 is answered in the
affirmative, to the effect that a URL has been detected, the
URL is processed at step 505, whereafter validation proce-
dures are executed at step 506. Validation procedures firstly
determine whether the URI satisfies an acceptable structure
and thereafter, security provisions may be executed in order

US 6,961,737 B2

9

to establish whether the server is permitted to serve the
requesting client. Assuming a valid URL has been supplied
to the server, a question is asked at step 507 as to whether
the client has requested a predetermined HTML file. If the
question is answered in the affirmative, the requested file is
supplied to the requesting client at step 508 and control is
then returned to step 502. Alternatively, if the question asked
at step 507 is answered in the negative, control is directed to
step 509.

At step 509 a question is asked as to whether the on-line
processing procedures have been requested. If this question
is answered in the affirmative, the requested file is prepared
on-line and supplied to the browser at step 510.
Alternatively, if the question asked at step 509 is answered
in the negative, control is directed to step 511.

At step 511 a question is asked as to whether an instruc-
tion has been supplied to the effect that CGL.BIN programs
are to be executed. If this question is answered in the
affirmative, control is directed to step 512, resulting in the
execution of the identified CGI.BIN instructions.
Alternatively, if the question asked at step 511 is answered
in the negative, all possibilities will have been considered
and an error message is returned at step 514.

Referring to FIG. 1, server network 105 has been
described with reference to FIGS. 2 and 3 and the operations
executed within said server 212 could be described with
reference to FIGS. 4 and 5. Information from the server 212
is supplied to requesting clients over the Internet and files
are served to browsers in response to requests made by
browsers. As previously stated, a browsing client 106 issues
requests, in the form of URLs via a modem 107. A browsing
station 106 is detailed in FIG. 6 connected to a modem 107,
which is in turn connected to the Internet via communication
cable 109. The browsing client hardware consists of a
programmable device such as an IBM personal computer
configured to operate as a browser in response to instruc-
tions installed from local permanent storage medium, usu-
ally a hard disk drive. The system includes a keyboard 601
and a visual display unit 602. An operator issues commands
via the keyboard 601 or the mouse 603, causing the browser
to issue a URL to the server. The browsing instructions
executed by the terminal shown in FIG. 6 are configured in
a form to be compatible with the serving instructions gen-
erated by the server 212. Thus, particularly instructions
would be installed on the server 105 and in order for users
to gain access to these instructions it would be necessary to
install an appropriate browser for execution on the user’s
terminal. Thus, in response to a user issuing commands via
the keyboard 601 or mouse 603, the browser converts these
instructions into a URL which is in turn processed by the
remote server. This in turn results in HTML instructions
being supplied to the browser from the network such that the
browser effectively executes these instructions in order to
generate a displayable video signal. The video signal is
supplied to the monitor 602, resulting in the human viewable
information being displayed on the monitor in a form
derived from the HTML instructions supplied to the browser
as executed by the browser itself.

Monitor 602 is detailed in FIG. 7 , showing a typical
application of the system. In this example, on-line genera-
tion of HTML instructions are being used to present a home
“shopping on-line” catalogue to users, so that said users may
inspect available products and place orders for said products.
Thus, the interactive environment ensures that uses are kept
up to date with available products and prices while at the
same time allowing orders to be placed within a common
facility.

10

15

20

25

30

35

40

45

50

55

60

65

10

The page shown in FIG. 7 represents an initial contents
page for a service identifying itself as a “Home Shopper”,
(this is a fictitious publication made for the purposes of this
description and any similarities to existing publications is
not intended). The contents page allows a user to quickly
select areas of interest in a structured way. Thus, from the
initial page, selections may be made for sports goods,
electrical goods, computer goods, children’s games and toys
etc., gardening products or clothing. The user’s terminal
(shown in FIG. 6) includes a mouse 603 and operation of this
mouse results in a cursor being moved over the viewed
image. The image includes a graphical icon for each of the
available categories. Thus, an icon 701 in the form of a
tennis racquet identifies a region arranged to effect a call to
the products relating to sports. Thus, the mouse may be
manually adjusted so as to position the cursor over this icon.
Thereafter, a mouse button may be operated resulting in
execution of a hyperlink to another HIML page. Thus, the
identification of the sports icon by the user will automati-
cally result in a new URL being generated which is in turn
supplied to the server via the network, resulting in a second
page being supplied to the requesting user. Similarly, a
graphical icon 702 of an electrical drill is provided for the
electrical selection. Placing the cursor over this icon and
operating a mouse button will result in a new page being
supplied from the server containing electrical goods. This
page may take the form of a second level contents page
allowing further selections to be made. Thus, the next page
may identify particular types of electrical goods, electrical
DIY goods, white goods or hi-fi goods etc. Similarly, a
button may be selected at this second level resulting in new
icons and products being displayed. Thus, electrical DIY
goods may again be sub-divided down into drills, sanding
machines, electric screwdrivers etc.

A third icon 703 shows a graphical image of a computer
and, similarly, selecting this icon will result in a second level
contents page being supplied identifying types of computer
equipment. A fourth icon 704 shows a silhouette of children
at play and operation of a mouse button with the cursor
placed over this icon will result in a call being made to the
server and a new page being generated identifying children’s
games and toys.

A fifth icon 705 shows a pair of sacks and represents
gardening supplies and products, while a sixth icon 706
shows a smartly dressed young lady as a means of identi-
fying a reference to clothing. Thus, in a similar way, icon
705 or icon 706 may be selected, resulting in a call being
made to the server for an appropriate page to be supplied to
the browsing client.

The icons 701 to 706 are high definition graphical images
and are stored as. GIF files, although other types of graphical
format may be employed. The information used to construct
the page is derived from a database and all of the informa-
tion within the database may be modified, possibly in
response to changes in availability and price etc. using
conventional database techniques. Previously, all HTML
pages were constructed and stored as such, thereby making
them available when requests were issued by clients. Such
an arrangement is similar to that identified at step 508 in
FIG. 5, where a predetermined file is supplied to a requesting
user. In some situations such as approach provides a per-
fectly adequate solution. For example, technical papers and
reference books tend not to change once they have been
published and thereafter reference may be made to these
documents for a considerable period of time. However,
shopping catalogues tend to change at least seasonally and
retailers would clearly prefer to make special deals available

US 6,961,737 B2

11

to customers as and when they themselves can make
arrangements with their supplies. Clearly, an inability to
respond to market changes in this way would place the
on-line retailer at a disadvantage when compared to tradi-
tional retailing activities. In other situations the shelf-life of
data may be even lower. Thus, magazines are monthly or
weekly, while most newspapers are only valid for the
particular day of issue. Reducing the time scale still further,
is common practice for newspapers to change during
production, as new news items are received and develop-
ments take place. Thus, it is advantageous for editors to be
in a position to make updates to the distributed news as and
when changes occur. Clearly, when news items are broadcast
using conventional radio techniques, the news bulletins are
continually updated, thereby placing traditional news pub-
lications at a comparative disadvantage.

In the present embodiment the viewable data is retained
on a database and signals are read from the database,
representing said data, for processing in combination with
second signals representing the way in which the informa-
tion is to be formatted on the viewed page. In a possible
configuration, HTML code could be held as a template with
gaps therein for the actual viewable data, such that, in
response to a request being made, the viewable data could be
identified and interlaced with the formatting HTML instruc-
tions. However, in the preferred embodiment, a plurality of
executable functions are provided at the server such that, in
response to a particular request being made, a string of
functions are executed resulting in calls being made to
appropriate databases in order to obtain viewable informa-
tion. This viewable information is then processed so as to
combine it with HTML tags, to produce output signals for
transmission to browsing clients.

HTML instructions for generating the viewable image
displayed on monitor 602 are detailed in FIG. 8. Line 1
includes the viewable text (home shopper) and this has been
embedded within tags to identify this word as being at the
head of the document and as being a title for the whole page.
At line 2 the tag identifies the start of the body of the
document and within the body of the document a sub-
heading “contents Page™ is displayed surrounded by format-
ting tags Hl. Line 3 consists of an HTML instruction to
create a horizontal line 700. The instructions from line 5§
onwards create the icons 701 to 706, along with the hyper-
links associated with said icons required in order to allow
subsequent pages to be requested by a user.

Each icon is described by two lines, thus icon 701 is
defined by lines 5 and 6, icon 702 is defined by lines 7 and
8, icon 703 is defined by lines 10 and 11, icon 704 is defined
by lines 12 and 13, icon 705 is defined by lines 15 and 16
and icon 706 is defined by lines 17 and 18. The viewable
image is effectively constructed on a line-by-line basis,
therefore the instructions effectively originate from left to
right, and then from top to bottom. After the sports icon, the
word “sports”, the electrical icon and the wording “electri-
cal” have been processed, it is necessary to create a new line
and paragraph breaks of this type are generated by the p tag,
as present at lines 9, 14 and 20. As previously stated, each
selectable icon is generated from two lines, the first of
which, for example line 5, defines the hyperlink to another
page, by means of a URL to the server. The URL defined at
line 5 would be recognized as a request for an on-line
processing by the server. Subsequent parameters increment
from 1000, to 1001, to 1002, to 1003, to 1004 and to 1005,
so as to uniquely identify the requested page.

The second line for each entry, for example line 6,
specifies the location of the graphical icon, thus the sports

10

15

20

25

30

35

40

45

50

55

60

65

12

icon has been stored in a file identified as “sport.gif”, while
the electrical icon, defined at line 8, has been stored as
“elec.gif”, the computer equipment icon has been stored as
“cop.gif”, the children icon has been stored as “child.gif”,
the gardening icon has been stored as “gard.gif” and the
clothing icon has been stored as “clth.gif”. The subsequent
coding specifies the location of the icon within the page so
as to complete the overall formatting requirements.

From a user’s point of view, the image displayed on
monitor 602 appears like a high-quality high-definition
video image, so as to ensure that a user is not alienated by
the system. However, from a transmission point of view, the
image displayed on monitor 602 is generated by the instruc-
tions shown in FIG. 8. This requires a sophisticated level of
processing to be performed by the transmitting server and by
the receiving browser but the level of bandwidth required in
order to perform the transmission of information is substan-
tially reduced. The transmitted output signal consists of
eight data bits for each of the ASCII characters represented
in FIG. 8.

Although the bandwidth requirement for transmitting an
HTML file of the type shown in FIG. 8 is significantly
reduced, when compared to video transmissions, it can be
appreciated that the manual generation of a file of the type
shown in FIG. 8 would be extremely time consuming,
resulting in economic difficulties for anyone wishing to use
the technology for distributing information having a short
shelf-life, having relatively low value or having both a short
life and a low value. In accordance with the present system,
it is possible for the information to be derived from con-
ventional databases and for the HTML instructions to be
generated on-the-fly, as requests are made by browsing
clients. Thus, the generation of instructions of the type
shown in FIG. 8 becomes an automated technical process
performed in response to strings of code generated functions
stored at the server.

HTML output pages are created by assembling portions of
HTML instructions, so as to create a page suitable for
generating output signals, of the type shown in FIG. 8.

Each portion of output HTML instructions is created by
executing a particular function. This function is arranged to
process data from a database or databases in the form of
viewable data. This viewable data is then processed under
the control of the selected function in order to generate a
portion of output HIML. A format function of this type may
be considered as the smallest unit of instructions for pro-
ducing a portion of HTML code.

The system as a whole includes a universal family set of
all the available functions which may be used in order to
generate portions of HTML code. As the system develops,
new functions may be added to the family set and it is
expected that the HTML standard will be enhanced, thereby
requiring additional functions to be created. For any par-
ticularly application, it is likely that not all of the possible
functions will be required, therefore functions may be
selected from the universal sets of all available functions.
Selected functions are known to both the browser and the
server. The browser issues URLs to the server that are
understood by the server, resulting in the required HTML
page being transmitted back to the browser.

It is possible that a particular server may be configured to
run a plurality of applications and that said applications may
require a different sub-set of formatting functions derived
from a universal set of available functions. In order to
accommodate this situation, an initialisation process is per-
formed by the on-line processing routines in order to

US 6,961,737 B2

13

assemble the required forming functions in a way which
enhances on-line processing speeds.

The formatting functions are arranged to generate small
portions of HTML code, such that the universal set of
formatting functions is minimised and so that any required
output page may be generated by stringing formatting func-
tions together. The pre-processing initialisation procedures
consist of identifying strings of formatting functions
required to generate particular lines of HIML code. Thus, a
particular line of HTML code is produced by sequentially
executing a string of formatting functions and the pre-
processing step consists of arranging such function strings
such that a particular function string, arranged to generate a
HTML page, may be quickly sought and executed during
on-line operation.

One function string will generate a particular line of
HTML code. In most applications, not all lines will take up
the same format, therefore it is necessary to generate of a
plurality of function strings. These function strings are
arranged in a string list, with an indexing pointer being
provided so as to enable a particular function string to be
quickly identified from the list and thereafter executed in
order to generate the output HTML instructions.

Initialisation step 501 is detailed in FIG. 9. At step 901 the
system is effectively activated, which may consists of apply-
ing power to the system resulting in an automatic “boot-up”
or may consist of a selection being made to perform the
particular task, in preference to a previous unrelated task.

At step 902 the operating system is initialised and the
system configured so as to facilitate connections to the
Internet. This initialisation also includes all standard pro-
cesses to load peripheral drivers etc., thereby placing the
system in an operational condition.

At step 903 conventional procedures are executed in order
to initialise the HTTP daemon, whereafter procedures are
performed to initialize the on-line processing procedures
associated with the present embodiment.

At step 904 a question is asked as to whether another
function string is to be generated which, on the first iteration,
should be answered in the affirmative. At step 905 the
functions required to create the particular string, drawn from
the universal set of available functions, are identified and at
step 906 the string itself is assembled by listing the functions
for sequential processing with data derived from the data-
base or databases. Thus, at step 906 a complete function
string is created.

At step 907 the function string generated at step 906 is
appended to the string list created for that particular appli-
cation and at step 908 an indexing reference is identified
within the list of strings. Thus, when a particular call is made
for formatting signals, in the form of an executable string of
functions, the particular call identifies the index reference
within the list of strings, resulting in the selected index being
selected from the list and thereafter executed in combination
with the referenced data.

Thereafter, control is returned to step 904 thereby allow-
ing the next function string to be processed. Eventually, all
of the function strings will have been created, appended to
the string list and appropriately indexed, resulting in the
question asked at step 904 being answered in the negative
and control being directed to step 909. At step 909 proce-
dures are implemented to initialise databases, so that data
may be accessed from said databases in accordance with
conventional techniques.

The on-line file preparation steps, identified in FIG. §, are
detailed in FIG. 10. At step 1001 the incoming URL,

10

15

20

25

30

35

40

45

50

55

60

65

14

previously processed by the HTTP daemon as illustrated in
FIG. 5 is buffered within a data structure defined by the
on-line processing routines. The URL will include an ele-
ment identifying the data required, an element identifying
the type of formatting required, information relating to the
user and a check sum, so as to reject URLSs corrupted during
transmission.

At step 1002 a question is asked as to whether the check
sum is valid and if this question is answered in the negative,
to the effect that the check sum is invalid, control is directed
to step 1009 resulting in an error message being returned to
the browsing client device.

Similarly, a question is asked at step 1003 as to whether
the user identification is valid. In order for this question to
be answered, it is necessary for a call to be made to a user
database which will return an indication as to whether the
user can be identified from the database. If it is found that
the user ID is not presently available from the database,
routines may be called which enable a user to be treated as
a new user and open an appropriate account while remaining
on-line. Thus, for example, these routines may request the
user to supply credit card details etc. so that an account may
be established immediately.

In addition, the analysis of the use ID at step 1003 allows
additional information to be drawn from the user database
relating to that specific user. If a user ID has become invalid,
the question asked at step 1003 may be answered in the
negative, again resulting in control being directed to step
1009 and an error message being directed to the browsing
client.

After the check sum has been validated and the user ID
has been validated, a question is asked at step 1004 as to
whether the data identifier is valid. Identifiers for data are
placed within established formats, thus if the server is unable
to identify the data being requested, an error message will be
generated at step 1009. Similarly, an identifier for the
formatting requested is validated at step 1005, which may
again result in an error message being generated at step
1009.

After the data identifier and the format identifier have
been validated at their respective steps, the HTML page or
pages are generated at step 1006 with reference to the data
identifier and the format identifier. Thereafter, with reference
to the user ID, the pages are supplied back to the requesting
browser via the network.

After pages have been supplied back to the browsing
client, the system is aware of this fact and therefore has
information as to what was actually supplied to a user at a
particular time. In some systems, this information may be
considered as having no value and therefore no further
action is taken. However, in alternative systems, particularly
when products are being sold, marketing information may
be considered as highly valuable, therefore provision is
made for this information (i.e. an indication of what pages
were viewed at what particular time) to be written back to
the user database at step 1008. Thus, over time, information
will become available relating to user preferences which,
under some circumstances, may be used to modify the
operation of the system.

It will be appreciated that, during normal operation of the
system, various portions of the data will be used on more
than one occasion. Thus, in accordance with conventional
techniques, data read from a database may be cached such
that, on a second iteration, the data may be more readily
available, thereby making it unnecessary to make an addi-
tional call to the user database 1000. The system may be

US 6,961,737 B2

15

configured such that data is held in cache for a predeter-
mined period, say thirty minutes. Thus, if no use is made of
the data within thirty minutes, the cache may be flushed such
that, at any time, data held in the cache represents a snapshot
of users who are actually making use of the system.

A diagrammatic representation of processing unit 301
along with its associated RAM 303, when configured to
execute the on-line processing instructions 405 is shown in
FIG. 11. The hypertext transport protocol daecmon 403 is
shown diagrammatically on the left of FIG. 11 and is
arranged to supply URLs to an input URL buffer 1101 and
to receive output HTML data from an output HTML buffer
1102. The on-line processor 310 (processor 301 of FIG. 3
arranged to execute the on-line processing procedures 405 of
FIG. 4) communicates with the user database 1000 as shown
in FIG. 10. In addition, the processor 301 is arranged to
access strings from a string list store 1103, to access view-
able text from a text database 1104 and to access viewable
graphics from a graphics database 1105. Each of the data-
bases and the string list store is relational, in that an index,
known to the processor 301 relates to a particular database
entry. Thus, in response to the processor 301 pointing to an
index, the related data is returned back to the processor 301.
Thus, the string list store 1103 includes a string index
portion 1106 and the actual string list portion 1107. Function
strings are added to the string list portion 1107 at step 907
of FIG. 9 with their related index reference being added to
portion 1106 at step 908. The processor 301 makes a request
in terms of identifying a particular index reference, stored in
portion 1106. This index is related to a particular string held
in portion 1107. Thus, it is possible to adjust the relationship
between indexes and strings, thereby adjusting the way in
which the data is actually formatted in response to a par-
ticular request.

Similarly, text data in a text database 1104 consists of the
text data itself in portion 1108 and related text data indexes
in portion 1109. Thus, data is selected from database 1104 by
the on-line processor 301 issuing a particular index to
portion 1109, resulting in the related data, from portion
1108, being returned on the on-line processor 301. Thus, it
is the indices that are known to the on-line processor 301 and
the relationship between indices and their related text data
may be adjusted, so as to change the actual data that is
returned in response to a particular request being made.

The graphics database 1105 is also divided into relation
portions, consisting of an index portion 1110 and a data
portion 1111. Thus, in response to the on-line processor 301
identifying a particular reference within portion 1110,
graphical data is read from portion 1111.

As previously stated, a string read from portion 1107
consists of a string of executable functions. Thus, these
functions are supplied to the on-line processor 301 for
execution on said processor. Execution of a function read
from the string list may result in HTML tags being written
directly to the output HTML buffer 1102. Alternatively,
execution of these functions may result in a call being made
to the text database 1104 or to the graphics database 1111. In
either event, the call identifies an index, in portion 1109 or
portion 1110, which in turn results in the related text data or
graphics data being supplied directly to the output HTML
buffer 1102.

Thus, the input URL will identify particular types of
formatting and particular types of data. The formatting
information for the URL will result in particular function
strings being read from the string list store 1103. Thereafter,
these functions are executed, with reference to the data

10

15

20

25

30

35

45

50

55

60

65

16

identifiers, resulting in text data and graphics data being read
from the respective databases 1104 and 1105. As the func-
tions are executed, output HTML is written to the output
HTML buffer 1102 and after an identified set of functions
have been executed, the HTML stored in output 1102 is read,
so as to supply the output HITML signals to the HTTP
daecmon 403.

In addition to use the user database to confirm user
validity and to record actions made by the user (possibly for
billing purposes) the on-line processor 301 may also make
use of information read from the user database in order to
adjust the relationship between indexes (1106, 1109, 1110)
and their associated function strings and data (1107, 1108,
1111). Thus, it is possible for the processor to respond to a
URL in one of three ways. Firstly, in a standard mode of
operation, the particular output HTNL produced in response
to a particular input URL will remain constant. The user
database is merely used to check user validity and to record
user usage of the system. Thus, output data is not dependent
upon user type and all users are supplied with the same data.
However, adjustments may be made to the relationship
within databases over time, such that updates or upgrades
may be made to take account of the circumstances.

Thus, for an in-home shopping situation, the availability
of goods and changes in prices may be reflected in database
relationships. Similarly, in on-line journals and newspapers,
the data relationship may be adjusted in response to editorial
control, usually driven by news events. Thus, in a news
environment, it is not necessary for editors to create new
HTML documents if they wish to supply new documents in
this format to users. All the formatting required to produce
a page in a particular form is provided within the formatting
functions. Thus, in order to update a news item, an editor is
merely required to update information contained in the
database (usually database 1104) in accordance with con-
ventional database techniques.

As stated above, it is possible for the processor to respond
to the URL in one of three possible ways. In a second
enhanced mode of operation, it is possible for the user to
identify information to the system as a means of expressing
user preferences. Thus, in a home shopping environment for
example, it is possible for a user to specify the particular
goods of interest. Thus, for example, one user may only use
the on-line shopping facility when shopping for gardening
supplies. The user may relay this information to the system,
such that the system will concentrate on gardening products.
Thus, on initiating the system, the first URL will result in a
reference to gardening supplies, thereby avoiding the first
screen shown in FIG. 7, where the client has little interest.
The client will still be able to access all of the available
functions. For example, the second screen, containing pre-
dominantly gardening products, would include a link for
“other areas” and on executing this button the user would be
effectively supplied with the higher level page, thereby
allowing his selections to branch out into the other areas of
the on-line catalogue. In a more sophisticated system, the
user may only be interested in electrical equipment and
sports equipment, such that a first screen would display the
sports icon followed by particular types of sport, in combi-
nation with the electrical icon followed by particular elec-
trical products. Thus, it is possible for the user to specify
preferences such that the system becomes more tailor-made
and specific to that particular user.

Such an approach may also be used in news publications.
For example, some users may be interested predominantly in
financial news while others may be interested in sports news.
Thus, with this information programmed into the user

US 6,961,737 B2

17

database, the order in which pages are supplied to a user may
be adjusted in accordance with preferences specified by the
user. It will also be possible for users to specify whether the
material is being read by children or by adults and for
appropriate page selections to be made. Pages designed for
children could be written using limited vocabularies and
include a higher concentration of hyperlinks, allowing chil-
dren to rapidly access related information. In many
situations, some pages would be appropriate for both types
of users and editors would have control as to what is made
available at what levels. Similarly, higher charges could be
made for particular types of information and, given infor-
mation derived from the user database, low priced pages or
high priced pages could be supplied as a appropriate.

In a third mode of operation, identified as a recursive
mode of operation, it is not necessary for a user to identify
their own preferences in order for adjustments to be made to
the actual nature of pages returned to users. The system
records a history of usage and thereafter analyses this
information in order to determine the relationship between
selections made by a browser and the actual data returned
back to the customer. Thus, after a number of uses, it may
become apparent that a user is only interested in clothing and
has shown very little interest in other products available
from the catalogue. On detecting this interest, it will be
possible for the system to present the clothing page as the
first page sent to the user on initiation. Moving on form this,
it may be possible to identify particular types of clothing that
are of interest to a user. Thus, for example, a user may be
only interested in designer labels and having identified this
information, it would be possible for the system to give a
higher priority to special offers available in this area. Thus,
information may be supplied to the system to the effect that
a new limited edition has been produced which may be of
particular interest to a minority of users of the system. A
region may be provided within an initial page to provide
special information or advertisements. A particularly type of
information or advertisement supplied to this region will
depend upon customer history. Thus, if information has been
supplied to the effect that a limited edition has become
available, the system will automatically known which users
are interested in obtaining items of this type. Thus, when this
particular sub-set of users log on to the system, the relevant
information will be supplied back to them automatically.
Similarly, an advertisement for a designer jacket, for
example, will not be sent to a user who has previously only
shown an interest in computer equipment.

The system will be capable of identifying situations in
which particular products have been browsed for significant
periods of time by users. The system could be programmed
to identify this fact and make an appropriate modification
when the user next logs on to the system. For example,
having detected that a particular user has shown an interest
in a particular product, it may be assumed that a customer is
interested in buying this product but, as yet, has not made a
final decision. The system may use this information in an
attempt to persuade the client to make the purchase. Thus,
the system may be programmed to offer discounts to clients
such that, on the next use of the system, an advertisement
appears to the effect that the product of interest has been
reduced by a certain amount. Thus, it is possible that users
would perceive this as an offer being made to all clients, with
the fact that they have a particular interest in that product
being seen as a coincidence. Clearly this is not a coincidence
and each user would be offered something which the system
had detected as being to their liking.

It can be appreciated that the possibilities are endless.
This is all provided by the fact that the actual HTML pages

10

15

20

25

30

35

40

45

50

55

60

65

18

supplied back to users are generated “on-the-fly” by index-
ing locations within databases. The relationship between an
index and an item may be adjusted so that the same
instructions may be used to access different data with
on-going changes. Similarly, the system may identify the
particular user concerned and, in response to this
information, select an index which differs from the normal
index selected. Alternatively, a particular index identified by
a user may be treated by the system as a “wild card”, with
an actual selection of an index being made in response to
information stored about the particular user.

Operations performed by processor 301, as illustrated in
FIG. 11, are detailed in FIG. 12. At step 1201 a data string
index is identified enabling the processor 301 to make a call
to an appropriate database, At step 1202 a call to the
database is made, by issuing the string indexed to the
appropriate database, resulting in the data string itself being
returned from the database to the processor 301. Thus, as
shown in FIG. 11, the read operation performed a step 1202
would result in an index command being issued from the
processor 301 to the indexed portion 1109 of database 1104,
whereafter the appropriate data, from portion 1108, is
returned back to the processor 301.

At step 1203 a function string index is identified, from the
formatting information present in the URL and a step 1204
the indexed function string is read from the string list store
1103.

At step 1205 the function string read from the string list
store 1103 is executed, resulting in HITML code being
written to the output HIML buffer 1102, whereafter, at step
1206, a question is asked as to whether another function
string has been identified. If this question is answered in the
affirmative, control is returned to step 1201 and the proce-
dures identified above are repeated. Eventually, the question
asked at step 1206 will be answered in the negative, result-
ing in the completion of procedures within step 1006.

Step 1205, for the execution of a string function, is
expanded in FIG. 13. A string of functions has been read
from the string list store and this string of functions is
executed, sequentially function by function, at step 1205.

At step 1301 the next function, i.e. the first function on the
first iteration, is read from the function string. At step 1302
this particular function is executed, resulting in a unit of
HTML code being written to the output HTML buffer 1102
at step 1303. At step 1304 a question is asked as to whether
a function includes a further functional step and if answered
in the affirmative, control is returned to step 1302 for the
next function step to be executed. Thus, a functional step
may be considered as the smallest portion of a function that
results in a write to the HTML buffer.

After all the executable steps of the function have been
completed, the question asked at step 1304 will be answered
in the negative, resulting in a question being asked at step
1305 as to whether another function is present in the string.
If another function is present in the string, the question asked
at step 1305 will be answered in the affirmative, thereby
returning control to step 1301. Thus, steps 1301, 1302, 1303
and 1304 are repeated in order to execute the next executable
function within the string read from the string list store.

Eventually, all of the functions making up the string will
have been executed, resulting in the question asked at step
1305 being answered in the negative so as to complete
procedures within step 1205.

The functions executed over steps 1302 to 1304 will have
been created so as to generate the particular HTML code
required. An example of a function is shown in FIG. 14 and

US 6,961,737 B2

19

it should be appreciated that similar techniques are
employed in order to generate all of the available types of
HTML code. The function shown in FIG. 14, that may be
considered as being executed at step 1303 of FIG. 13, is used
to generate the first line of the example HTML code shown
in FIG. 8.

Afirst functional step, shown as step 1401, writes the tags
“<HEAD><TITLE>" as the start of line 1. These tags are
written to the output HTML buffer at step 1303 and there-
after the question asked at step 1304 would be answered in
the affirmative, resulting in the next functional step being
executed at step 1302. In the example shown in FIG. 14, this
would consists of the execution of step 1402, consisting of
a write to the output HTML buffer of the viewable data
“Home Shopper”. This particular portion of the code is
derived by making a call to the text database. Thus, the write
instruction consists of a database index. Database 1104 is
identified, along with index position 001. Thus, it is known
that at index position 001 in the text database 1104 the title
of the first page has been stored. Thus, as apart of an editing
procedure it may be decided that the title should be changed
to “Shopping at Home™ for example. When a change of this
type is required, it is only necessary for an editor to make a
change to the database entry stored at index position 001 in
database 1104. This can be achieved using conventional
database techniques, without any specialist knowledge
required of the HTML language used to transmit the infor-
mation over the Internet. The operation of the system is
unaffected by this change of title and the procedure shown
at step 1402 will execute as required, irrespective of the
nature of the actual title text contained within the database.

Thus, at step 1402 database 1104 is identified, an address
to that database is made in the form of identifying index 001
and text is returned to the processor 301. This text is then
supplied to the next location of the output HTML buffer
1102 at step 1303 and control is directed to step 1304, where
the question is again asked as to whether another functional
step is present. Again, this question will be answered in the
affirmative, resulting in control being returned to step 1302
so that the next functional step may be executed. As shown
in FIG. 14, the next executable step consists of step 1403
which will result in “</TITLE<>/HEAD>" being written to
the output HTML buffer 1102 at step 1303. Again, the
question will be asked at step 1304 as to whether another
functional step is present and on this occasion the question
will be answered in the negative, resulting in control being
directed to step 1305.

Thus, it can be seen that a particular function has resulted
in three writing operations to the output HTML buffer in the
form of a tag, viewable text obtained from a database,
followed by another HTML tag. This process is repeated for
each of the functions contained within the function string
until the full page of HTML code has been generated and
written to the HTML buffer 1102. Signals from the HTML
buffer 1102 are then supplied to the HTTPD 403 which in
turn supplies the signals to the browsing client via the
Internet.

The databases for storing text and graphics are of con-
ventional types, having mechanisms for requests to be made
for information to be supplied. In particular, requests to
databases are made using the structural query language
(SQL) and data is obtained from the databases by generating
an SQL enquiry.

We claim:

1. A method for serving pages of viewable data to
browsing devices connected to a network, wherein a page of
said viewable data comprises content data defining text

10

15

20

25

30

35

40

45

50

55

60

65

20

and/or graphics and formatting data which specifies loca-
tions of said text and/or graphics within a page, and said
viewable data is displayed at a browsing device such that
locations of said text and/or graphics depend on said for-
matting data, said method comprising:

identifying requests from browsing devices that define a

request for specified content data;

storing content data;

storing executable functions;

maintaining a user database comprising information relat-

ing to user preferences; and

in response to identifying a request for specified content

data and a user identifier;

(a) reading user preference information from said user
database in response to a received user identifier;

(b) selecting stored content data in dependence upon
the content data specified in a received request;

(c) receiving format identifiers identifying the type of
formatting required,;

(d) selecting a set of stored functions in dependence
upon a received format identifier and said read user
information; and

(e) executing said set of functions to generate viewable
data comprising said selected content data and for-
matting data.

2. A method as in claim 1 wherein said format identifier
is received with said request for specified content data,
whereby viewable data is served to a browser for display
with a format that depends upon the particular format
identifier received from said browser.

3. A method as in claim 1 wherein said viewable data is
HTML (hypertext markup language) data, and said format-
ting data comprise of HTML tags.

4. A serving device for serving pages of viewable data to
browsing devices connected to a network, wherein a page of
said viewable data comprises content data defining text
and/or graphics and formatting data which specifies loca-
tions of said text and/or graphics within a page, and said
viewable data is displayed at a browsing device such that
locations of said text and/or graphics depend on said for-
matting data, said serving device comprising:

identifying means for identifying requests from browsing

devices that define a request for specified content data;

data storage means storing content data;

function storage means storing executable functions;

a user database comprising information relating to user

preferences; and

processing means configured such that, in response to said

identifying means identifying a request for specified

content data and a user identifier, said processing
means;

(a) reads user preference information from said user
database in response to a received user identifier,

(b) selects content data from said data storage means in
dependence upon the content data specified in a
request received by said identifying means;

(c) receives format identifiers identifying the type of
formatting required,;

(d) selects a set of functions from said function storage
means in dependence upon a received format iden-
tifier and said read user information; and

(e) executes said set of functions to generate viewable
data comprising said selected content data and for-
matting data.

5. A serving device as in claim 4 wherein said format
identifier is received via said identifying means with said

US 6,961,737 B2

21

request for specified content data, whereby viewable data is
served to a browser for display with a format which depends
upon the particular format identifier received from said
browser.

6. A serving device as in claim 4 wherein said viewable
data is HTML (hypertext markup language) data, and said
formatting data comprise of HTML tags.

7. A method for serving pages of viewable data to
browsing devices connected to a network, wherein a page of
said viewable data comprises content data defining text
and/or graphics and formatting data which specifies loca-
tions of said text and/or graphics within a page, and said
viewable data is displayed at a browsing device, said method
comprising:

identifying requests from browsing devices that define a

request for specified content data;

storing content data;

maintaining a user database comprising information relat-
ing to user preferences;

maintaining a function database containing a plurality of
sets of functions and an index,

in response to identifying a request for specified content
data;

(a) reading specified user preference information from
said user database in response to a received user
identifier;

(b) adjusting the relationship between said index and
said sets of functions within said function data base
in response to said specific user preference informa-
tion;

(c) selecting stored content data in dependence of the
content data specified in a received request;

(d) receiving format identifiers identifying the type of
formatting required,

(e) executing a first set of functions to generate view-
able data comprising said selected content data and
first formatting data when a first format identifier is
received; and

(f) executing a second set of functions to generate
viewable data comprising said selected content data
and second formatting data when a second format
identifier is received,

such that viewable data is served to a browser for display
with locations of said text and/or graphics that depend
upon the particular received format identifier and upon
said specific user information.

8. A method for serving pages of viewable data to
browsing devices connected to a network, wherein a page of
said viewable data comprises content data defining text
and/or graphics and formatting data which specifies loca-
tions of said text and/or graphics within a page, and said
viewable data is displayed at a browsing device, said method
comprising:

identifying requests from browsing devices that define a

request for specified content data;

storing content data;

maintaining a function database comprising a plurality of

sets of functions including a first set of functions and a
second set of functions;

maintaining a user database comprising information relat-

ing to user preferences, and

in response to identifying a request for specified content

data:
(2) reading user preference information from said user
database in response to received user identifier;

10

15

20

25

30

35

40

45

50

55

60

65

22

(b) selecting stored content data in dependence of the
content data specified in a received request,

(c) receiving format identifiers identifying the type of
formatting required,

(d) selecting a set of functions from said function
database in dependence upon said received format
identifier and said read user preference information,

(e) executing a first set of functions to generate view-
able data comprising said selected content data and
first formatting data when a first format identifier is
received; and

(f) executing a second set of functions to generate
viewable data comprising said selected content data
and second formatting data when a second format
identifier is received;

such that viewable data is served to a browser for display

with locations of said text and/or graphics that depend

upon the particular received format identifier.

9. A method for serving pages of viewable data to
browsing devices connected to a network, wherein a page of
said viewable data comprises content data defining text
and/or graphics and formatting data which specifies loca-
tions of said text and/or graphics within a page, and said
viewable data is displayed at a browsing device, said method
comprising:

maintaining a user database comprising data relating to

user preferences determined from a history of usage by

users;

identifying requests from browsing devices tat defines a

request for specified content data and a user identifier;

storing content data; and

in response to identifying a request for specified content

data:

(a) reading specified user data from said user database,
such that said specified user data corresponds to a
received user identifier;

(b) selecting content data in dependence of the content
data specified in a received request and said specified
user data read from said database;

(c) receiving format identifiers identifying the type of
formatting required,;

(d) executing a first set of functions to generate view-
able data comprising said selected content data and
first formatting data when a first format identifier is
received; and

(e) executing a second set of functions to generate
viewable data comprising said selected content data
and second formatting data when a second format
identifier is received,

such that viewable data is served to a browser for display
with locations of said text and/or graphics that depend
upon the particular received format identifier.

10. Amethod as in claim 9 wherein said format identifiers
are received from browsing devices with said requests for
specified content data, such that viewable data is served to
a browsing device for display with a first format when a first
format identifier is received from said browsing device, and
a second format when a second format identifier is received
from said browsing device.

11. Amethod as in claim 9 further comprising maintaining
a text database which has an index and adjusting the index
of said text database after reading specified under data but
before selecting content data such that said selected content
data is dependent upon a received user identifier.

12. Amethod as in claim 9 further comprising maintaining
graphics database which has an index and adjusting the

US 6,961,737 B2

23

index of said graphics database after reading specified user
data but before selecting content data such that said selected
content data is dependent upon a received user identifier.

13. A method as in claim 9 wherein said stored content
data is a content database and a separate function database
is maintained comprising a plurality of sets of functions
including said first set of functions and said second set of
functions, whereby said content database may be edited
before combining said content data with formatting data.

14. A method as in claim 9 wherein said viewable data is
HTML (hypertext markup language) data, and said first and
second formatting data comprise of HTML tags.

15. A serving device for serving pages of viewable data to
browsing devices connected to a network, wherein a page of
said viewable data comprises content data defining text
and/or graphics and formatting data which specifies loca-
tions of said text and/or graphics within a page, and said
viewable data is displayed at a browsing device, said serving
device comprising:

a user database comprising data relating to user prefer-

ences determined from a history of usage by users;

identifying means for identifying requests from browsing
devices that define a request for specified content data
and a user identifier;

data storage means storing content data; and

processing means configured such that, in response to said
identifying means identifying a request for specified
content data, said processing means:

(a) reads specified user data from said user database,
such that said specified user data corresponds to a
received user identifier;

(b) selects content data from said storage means in
dependence of the content data specified in a request
received by said identifying means and said specified
user data read from said database;

(c) receives format identifiers identifying the type of
formatting required,;

(d) executes a first set of functions to generate viewable
data comprising said selected content data and first
formatting data when a first format identifier is
received; and

(e) executes a second set of functions to generate
viewable data comprising said selected content data
and second formatting data when a second format
identifier is received,

such that viewable data is served to a browser for display
with locations of said text and/or graphics that depend
upon the particular format identifier received by the
processing means.

16. A serving device as in claim 15 wherein said format
identifiers are received from browsing devices with said
requests for specified content data, such that viewable data
is served to a browsing device for display with a first format
when a first format identifier is received from said browsing
device, and a second format when a second format identifier
is received from said browsing device.

17. A serving device as in claim 15 further comprising a
text database which has an index and said processing means
is further configured to adjust the index of said text database
after reading specified user data but before selecting content
data such that said selected content data is dependent upon
a received user identifier.

18. A serving device as in claim 15, further comprising a
graphics database which has an index and said processing
means is further configured to adjust the index of said
graphics database after reading specified user data but before

10

15

20

25

30

35

40

45

55

60

65

24

selecting content data such that said selected content data is
dependent upon a received user identifier.

19. A serving device as in claim 15 wherein said data
storage means storing content data is a content database and
said serving device further comprises a separate function
database comprising a plurality of sets of functions includ-
ing said first set of functions and said second set of
functions, whereby said content database may be edited
before said processing means combines said content data
with formatting data.

20. A serving device as in claim 15 wherein said viewable
data is HTML (hypertext markup language) data, and said
first and second formatting data comprise of HTML tags.

21. Aserving device for serving pages of viewable data to
browsing devices connected to a network, wherein a page of
said viewable data comprises content data defining text
and/or graphics and formatting data which specifies loca-
tions of said text and/or graphics within a page, and said
viewable data is displayed at a browsing device said serving
device comprising:

identifying means for identifying requests from browsing
devices that define a request for specified content data;

data storage means storing content data;

a function database comprising a plurality of sets of
functions including a first set of functions and a second
set of functions;

a user database comprising information relating to user
preferences; and

processing means configured such that, in response to said
identifying means identifying a request for specified
content data, said processing means:

(a) read user preference information from said user
database in response to received user identifier;

(b) selects content data from said storage means in
dependence of the content data specified in a request
received by said identifying means,

(c) receives format identifies identifying the type of
formatting required,

(d) selects a set of functions from said function data-
base in dependence upon said received format iden-
tifier and said read user preference information:

(e) executes a first set of functions to generate viewable
data comprising said selected content data and first
formatting data when a first format identifier is
received, and

(f) executes a second set of functions to generate
viewable data comprising said selected content data
and second formatting data when a second format
identifier is received,

such that viewable data is served to a browser for display
with locations of said text and/or graphics that depend
upon the particular format identifier received by the
processing means.

22. Aserving device for serving pages of viewable data to
browsing devices connected to a network, wherein a page of
said viewable data comprises content data defining text
and/or graphics and formatting data which specifies loca-
tions of said text and/or graphics within a page, and said
viewable data is displayed at a browsing device, said serving
device comprising:

identifying means for identifying requests from browsing
devices that define a request for specified content data;

data storage means storing content data,

a user database comprising information relating to user
preferences;

a function database containing a plurality of sets of
functions and an index,

US 6,961,737 B2

25

processing means configured such that, in response to said
identifying means identifying a request for specified
content data, said processing means:

(a) reads specific user preference information from said
user database in response to a received user identi-
fier;

(b) adjusts the relationship between said index and said
sets of functions within said function database in
response to said specific user preference informa-
tion;

(c) selects content data from said storage means in
dependence of the content data specified in a request
received by said identifying means,

(d) receives format identifiers identifying the type of
formatting required,

10

26

(e) executes a first set of functions to generate viewable
data comprising said selected content data and first
formatting data when a first format identifier is
received; and

(f) executes a second set of functions to generate
viewable data comprising said selected content data
and second formatting data when a second format
identifier is received,

such that viewable data is served to a browser for display
with locations of said text and/or graphics that depend
upon the particular format identifier received by the
processing means and upon said specific user informa-
tion.

US006961737C1

12y EX PARTE REEXAMINATION CERTIFICATE (8683rd)

United States Patent (10) Number: US 6,961,737 C1
Ritchie et al. 45) Certificate Issued: Nov. 22,2011
(54) SERVING SIGNALS (58) Field of Classification Search None

(75) Inventors: Andrew M. Ritchie,
Sunbury-on-Thames (GB); Jonathan M.
Bradshaw, Bracknell (GB)

(73) Assignee: Ablaise Limited, Stoney Stanton,
Leicestershire (GB)

Reexamination Request:
No. 90/010,311, Oct. 9, 2008

Reexamination Certificate for:

Patent No.: 6,961,737
Issued: Nov. 1, 2005
Appl. No.: 09/920,803
Filed: Aug. 3,2001

Related U.S. Application Data

(63) Continuation of application No. 08/647,769, filed on May
15, 1996, now Pat. No. 6,295,530.

See application file for complete search history.

(56) References Cited

To view the complete listing of prior art documents cited
during the proceeding for Reexamination Control Number
90/010,311, please refer to the USPTO’s public Patent
Application Information Retrieval (PAIR) system under the
Display References tab.

Primary Examiner—William H. Wood
57 ABSTRACT

Output signals are served from a serving device to a plurality
of browsing devices connected to a network. The output sig-
nals represent commands executable by each browsable
device so as to display viewable data in accordance with
specified page formatting. Requests from browsing clients

(51) Int.ClL are identified which contain information relating to the data
GOG6F 17/30 (2006.01) itself and the display format for the data. The data is read and
HO4L 29/06 (2006.01) processed so as to combine a representation of the viewable

data with executable instructions. The signals are then sup-

(52) US.CL .o 715/201; 707/999.201; plied to requesting browsing devices, after effectively being

707/E17.117,709/217; 715/255 assembled as a real time on-line process.
1108
STRING LIST STORE 1109 TEXT DATABAS’EL/
— 1107 e — 1104
1103 —— — = e
1106~ = —
. 05— | DAL\./””
L - OH
1101
/f r 1o~ | Ll
GRAPHICS
INPUT ON-LINE DATABASE
HTTPD g *| PROCESSOR
(403) BUFFER | L\/ l
301 —*
F 3
L 4 OUTPUT
HTML BUFFER
sere | [
DATABASE (405) S
) (1102
L 1000

US 6,961,737 C1

1 2
EX PARTE AS A RESULT OF REEXAMINATION, IT HAS BEEN
REEXAMINATION CERTIFICATE DETERMINED THAT:
ISSUED UNDER 35 U.S.C. 307 Claims 16 are cancelled.

5 Claims 7-22 were not reexamined.
THE PATENT IS HEREBY AMENDED AS
INDICATED BELOW. % % % % %

