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METHOD AND APPARATUS FOR
ELECTRONICALLY EVALUATING THE
INTERNAL TEMPERATURE OF AN
ELECTROCHEMICAL CELL OR BATTERY

BACKGROUND OF THE INVENTION

The present invention relates to testing of storage batter-
ies. More specifically, the invention relates to measuring
temperature of an electrochemical cell or battery.

When testing or evaluating the performance of cells and
batteries, it is desirable to accurately know battery tempera-
ture in order to apply appropriate temperature corrections to
the measured results. For example Champlin, in U.S. Pat.
No. 3,909,708, describes setting a dial on the tester to the
battery’s temperature in order to cause the measured
dynamic conductance to comport with that of a battery at
room temperature. However, exactly how this battery tem-
perature information is to be obtained is not discussed.
Others employ a very rough correction by instructing the
user to push a button when the ambient temperature is, e.g.,
“below 0° C.”. Marino et al., in U.S. Pat. No. 4,423,378 refer
to a battery temperature “probe” whose output is inputted to
a microprocessor for the purpose of correcting load-test
results. Similar temperature probes are described by Alber et
al. in U.S. Pat. No. 4,707,795. Other workers have attached
thermistors to test clips so that they would be in thermal
contact with a battery terminal, or have placed them in
thermal contact with the battery’s case. Even infrared tech-
niques have been used to determine battery case tempera-
ture.

All of these prior art techniques have measured either the
battery’s ambient temperature or its external case tempera-
ture. Unfortunately however, these quantities can be very
different from the actual internal temperature of the
battery—the truly desired quantity. These temperature dif-
ferences come about from localized internal heating caused
by currents flowing through the battery, from the large
thermal mass of the battery, and from the poor thermal
contact between the battery and its environment. For
example, an automobile engine compartment will warm up
rapidly with the engine running. If the battery is cold,
however, its internal temperature will remain low for a very
long period of time.

SUMMARY OF THE INVENTION

A testing device applies time-varying electrical excitation
to a cell or battery and senses the resulting time-varying
electrical response. Computation circuitry within the device
uses voltage and current signals derived from the excitation
and response signals as inputs and computes values of
elements of an equivalent circuit representation of the cell or
battery. The internal temperature of the cell or battery is
calculated from the value of the time constant of a particular
parallel G-C subcircuit of the equivalent circuit. In various
aspects, the battery’s internal temperature is then displayed
to the user, used to apply appropriate temperature correc-
tions to other computed quantities, used to detect thermal
runaway, and/or used to control an external process such as
charging of the battery.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a device for measuring the
internal temperature of an electrochemical cell or battery
according to the present invention.

FIG. 2 depicts a six-element small signal equivalent
circuit representation of a particular automotive storage
battery.
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2

FIG. 3 is a plot of the variation of the three subcircuit
time-constants defined in FIG. 2 as functions of the charge
removed from the battery.

FIG. 4 is a plot of measured and theoretical values of time
constant T, defined in FIG. 2 as functions of the internal
temperature of the battery.

FIG. 5 is a plot of the inverse of the relationship plotted
in FIG. 4.

FIG. 6 is a circuit representation of the parallel G3-C3
subcircuit showing its admittance Y3.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Clearly, a method and apparatus for electronically deter-
mining the true internal temperature of a cell/battery would
be of great value. The present invention addresses this need.

A very important application of the method taught herein
is in the detection of “thermal runaway” —a phenomenon in
which the internal temperature of a battery undergoing
charging rises catastrophically (see, e¢.g., McShane et al.,
U.S. Pat. No. 5,574,355). Using the technique disclosed
below, a runaway condition can be quickly detected by a
precipitous internal temperature rise, which, in turn could be
used to shut off the charger or reduce its charging voltage.

FIG. 1 discloses a block diagram of apparatus for evalu-
ating a battery’s internal temperature according to the
present invention. Apparatus of this type is fully disclosed in
pending U.S. patent application Ser. No. 09/152,219, filed
Sep. 11, 1998 and entitled “METHOD AND APPARATUS
FOR MEASURING COMPLEX IMPEDANCE OF CELLS
AND BATTERIES” and pending U.S. patent application
Ser. No. 09/151,324, filed Sep. 11, 1998, entitled
“METHOD AND APPARATUS FOR DETERMINING
BATTERY PROPERTIES FROM COMPLEX IMPED-
ANCE ADMITTANCE” which are incorporated herein by
reference. Measuring circuitry 10 electrically couples to
cell/battery 20 by means of current-carrying contacts A and
B and voltage-sensing contacts C and D. Measuring cir-
cuitry 10 passes a periodic time-varying current i(t) through
contacts A and B and senses a periodic time-varying voltage
v(t) across contacts C and D. By appropriately processing
and combining i(t) and v(t), measuring circuitry 10 deter-
mines real and imaginary parts of a complex parameter,
either impedance Z or admittance Y, at a measuring fre-
quency f,; where f, is a discrete frequency contained in the
periodic waveforms of both i(t) and v(t).

Control circuitry 30 couples to measuring circuitry 10 via
command path 40 and commands measuring circuitry 10 to
determine the complex parameter of cell/battery 20 at each
one of n discrete measuring frequencies, where n is an
integer number. This action defines 3n experimental quan-
tities: the values of the n measuring frequencies and the
values of the n imaginary parts and n real parts of the
complex parameter at the n measuring frequencies.

Computation circuitry 50 couples to measuring circuitry
10 and to control circuitry 30 via data paths 60 and 70,
respectively, and accepts the 2n experimental values from
measuring circuitry 10 and the values of the n measuring
frequencies from control circuitry 30. Upon a “Begin Com-
putation” command from control circuitry 30 via command
path 80, computation circuitry 50 uses algorithms disclosed
in U.S. patent application Ser. No. 09/151,324 to combine
these 3n quantities numerically to evaluate 2n elements of an
equivalent circuit representation of the cell/battery. Compu-
tation circuitry 50 then calculates the internal temperature of
the cell/battery from values of particular elements of this
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circuit representation. Finally, computation circuitry 50 out-
puts the computed result to the user on display 90 and/or
uses the result to activate an alarm 100 or to control a
process 110 such as a battery charger.

In practice, a microprocessor or microcontroller running
an appropriate software program can perform the functions
of both control circuitry 30 and computation circuitry 50.

FIG. 2 discloses a six-element equivalent circuit repre-
sentation of a typical automotive storage battery. This circuit
representation was evaluated using apparatus of the type
disclosed in FIG. 1 with n=3 by employing algorithms
disclosed in U.S. patent application Ser. No. 09/151,324.
The three measurement frequencies were 5 Hz, 70 Hz, and
1000 Hz. One notes that the n=3 equivalent circuit com-
prises three subcircuits:

A series G1-L1 subcircuit.

A parallel G2-C2 subcircuit.

A parallel G3-C3 subcircuit.

One notes further that the three subcircuits are character-
ized by having very different time constants. The shortest
time constant, T;=L1-G1=93.5 uS, belongs to the series
G1-L1 subcircuit. The next longest time constant, t,=C2/
(G2=2.22 mS, belongs to the parallel G2-C2 subcircuit; and
the longest time-constant, T;=C3/G3=41.6 mS, belongs to
the parallel G3-C3 subcircuit. Accordingly, the three sub-
circuits represent quite different physical processes and can
be differentiated from one another by their time constants.

FIG. 3 is a logarithmic plot of the three time constants
defined above as functions of charge (ampere-hours)
removed from the battery. One notes that the three time
constants remain widely separated as charge is removed, and
that the longest of the three, T5, is nearly independent of
state-of-charge. This result is important to the present inven-
tion.

FIG. 4 discloses the observed variation of time constant
1,=C3/G3 with internal battery temperature. One sees that T
varies inversely with temperature. This variation is consis-
tent with a theoretical model that associates the G3-C3
subcircuit with a linearized, small-signal, representation of
the nonlinear electrochemical reaction occurring at the nega-
tive plates. For such a model, the RC product ©,=C3/G3
represents the reaction time for the process and therefore
varies inversely with temperature. By impirically establish-
ing this relationship between t; and T, one can actually
utilize measurements of T, to determine the battery’s inter-
nal temperature, T.

FIG. 4 shows experimental points compared with a theo-
retical T4(T,) relationship. Note that the steepest slope, and
hence the most accurate temperature determination, occurs
in the most interesting region between —20° C. and +20° C.
The theoretical curve disclosed in FIG. 4 is a plot of the
following equation:

1 (L
1 1
[l
Ky KiexplgVo /K(T. +2737)}

73(T) =Kz +

where T; is the time constant measured in milliseconds and
T, is the internal temperature measured in degrees Celsius.
Physical parameters introduced in this equation are:
k=1.38x10">> Joules/* K (Boltzman’s Constant)
q=1.6x10""° Coulombs (electronic charge)
V=0.85 eV (activation energy)
The three constants K, K,, and K; were empirically deter-
mined to be
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K,=2.0x10""*

K,=67.0 mS

K;=37.0 mS

One notes excellent agreement between theory and
experiment. Measurements show that T, is virtually inde-
pendent of battery size and state-of-charge (see FIG. 3).
Thus, this empirical ©4(T,) relationship plotted in FIG. 4
appears to be quite universal.

In order to determine internal temperature from time
constant measurements, one must mathematically invert the
above t4(T,) relationship to obtain a T (t5) relationship. The
result is:

T.(s)= (gVo k) o7y )
o (Kz/Kl)(Ts—Ks)}
(Ky + K3 —13)

where the parameters and constants,q, V. .k, K, K, K, are
the same as those introduced in the t4(T,) relationship.

The inverse theoretical T (T;) curve is plotted in FIG. 5.
By employing this relationship, one can readily determine
the battery’s true internal temperature from measurements of
T5. This important temperature information can then be used
to apply accurate temperature corrections to other measured
quantities, such as CCA, state-of-charge, and amp-hour
capacity. It can also be used to detect a thermal runaway
condition, and to control an external process such as a
battery charger.

This completes the disclosure of my invention. FIGS. 6,
however, will place the true nature of the invention in greater
perspective. FIG. 6 illustrates the G3-C3 subcircuit and
shows that the complex admittance of this parallel
subcircuit, Y3=G3+jwC3, explicitly contains the two
quantities, G3 and C3, necessary to determine the battery’s
internal temperature. Thus, my discussion above actually
discloses a relationship existing between the real and imagi-
nary parts of Y3 and the internal temperature of the battery.
Although it is true that complex Z and complex Y are
reciprocals of one another, no simple relationship exists
between the real and imaginary parts of impedance Z3 and
time constant t;. Accordingly, the results of any ac mea-
surement must be expressed in complex admittance form—
not complex impedance form—in order to observe the
important relationship that I have disclosed herein. How this
complex admittance is obtained, however, is relatively
unimportant.

Although my disclosure has relied upon particular appa-
ratus and algorithms previously disclosed in U.S. patent
applications Ser. No. 09/152,219 and Ser. No. 09/151,324,
other methods will be apparent to one skilled in the arts. For
example, one can employ bridges or other types of apparatus
to measure complex admittance (or its reciprocal, complex
impedance). Furthermore, if accuracy is not a strict
requirement, one can take advantage of the fact that the
various time constants are widely separated from one
another and simply assume that the subcircuits are not
coupled. Within this approximation, C2 and C3 are treated
as short circuits at frequencies near f,;=1/2mt,, L1 and C3
are treated as short circuits at frequencies near fy,=1/27t,,
and at frequencies near f ;=1/2rt,, L1 is treated as a short
circuit while C2 is treated as an open circuit. Thus, with
some batteries, it is possible to obtain satisfactory results
from a very simple analysis of measurements at two or three
frequencies. With certain batteries, it is even possible to
obtain useful approximations to Y3 from measurements of
complex Y or Z=1/Y obtained at a single, appropriately
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chosen, frequency. Workers skilled in the art will recognize
that these and other variations may be made in form and
detail without departing from the true spirit and scope of my
invention.

What is claimed is:

1. Apparatus for determining the internal temperature of
an electrochemical cell or battery comprising:

electrical excitation circuitry adapted to apply time-
varying electrical excitation to said cell or battery;

response sensing circuitry configured to sense time-
varying electrical response of said cell or battery gen-
erated as a result of said time-varying electrical exci-
tation; and

computation circuitry responsive to said time-varying
excitation and to said time-varying response and
adapted to calculate the time constant of a particular
parallel G-C subcircuit comprising part of an electrical
circuit representation of said cell or battery, said time
constant characterized by varying inversely with inter-
nal temperature, said computation circuitry further
adapted to evaluate said internal temperature from the
computed value of said time constant.

2. The apparatus of claim 1 including a display device
coupled to said computation circuitry and wherein the
computation circuitry provides a temperature output on the
display.

3. The apparatus of claim 1 wherein said computation
circuitry couples to an external process device and said
external process device is controlled by said computation
circuitry in accordance with the computed value of said
internal temperature.

4. The apparatus of claim 1 wherein said electrical circuit
representation comprises at least three subcircuits having
differing time constants and the time constant of said par-
ticular parallel subcircuit is longer than the time constants of
at least two other subcircuits.
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5. The apparatus of claim 1 wherein said electrical circuit
representation comprises at least two subcircuits having
different time constants and the time constant of said par-
ticular parallel subcircuit is longer than the time constant of
at least one other subcircuit.

6. The apparatus of claim 1 including an output indicative
of detect a thermal runaway condition, said condition char-
acterized by a rapid rise in internal temperature while
charging of the battery.

7. The apparatus of claim 6 including an alarm coupled to
said computation circuitry and wherein the computation
circuitry provides an alarm output in response to said
thermal runaway condition.

8. The apparatus of claim 3 wherein said external process
device is a battery charger.

9. A method for electronically evaluating the internal
temperature an electrochemical cell or battery comprising:

applying time-varying electrical excitation to said cell or

battery;

sensing time-varying electrical response to said electrical

excitation;
evaluating the time constant of a particular parallel G-C
subcircuit of an equivalent circuit representation of said
cell or battery from said time-varying electrical exci-
tation and said time-varying electrical response; and

evaluating said internal temperature from the value of said
time constant.

10. The method of claim 9 including the displaying said
internal temperature to a user.

11. The method of claim 9 including the controlling an
external process device in accordance with said internal
temperature.
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