
US 20060026591A1

(12) Patent Application Publication (10) Pub. N0.: US 2006/0026591 A1
(19) United States

Backhouse et al. (43) Pub. Date: Feb. 2, 2006

METHOD AND APPARATUS FOR
PROVIDING A PLUGGABLE AND
EXTENDABLE J2EE ARCHITECTURE

(54)

(75) Inventors: Richard Andrew Backhouse, Apex,
NC (US); David N. Brauneis J R.,
Raleigh, NC (US); Brent Hames
Daniel, Morrisville, NC (US);
Christopher Creighton Mitchell,
Raleigh, NC (US); Ramya
Ramakrishnan, Gaithersburg, MD (US)

Correspondence Address:
DUKE W. YEE
YEE & ASSOCIATES, P.C.
P.O. BOX 802333
DALLAS, TX 75380 (US)

(73) Assignee: International Business Machines Cor
poration, Armonk, NY (US)

(21)

(22)

Appl. No.: 10/909,861

Filed: Aug. 2, 2004

Publication Classi?cation

(51) Int. Cl.
G06F 9/445 (2006.01)

(52) US. Cl.717/177

(57) ABSTRACT

A method and apparatus for providing a pluggable and
extendable J2EE architecture are provided. The method and
apparatus provide mechanisms for de?ning extension points
Within modules of the J2EE application and mechanisms for
de?ning plug-in or extension modules that may be integrated
into the J2EE application via these extension points. In
addition, a mechanism for merging the plug-in or extension
modules into the J 2EE application at deployment is provided
such that all of the information necessary for generating
instantiations of the plug-in or extension modules is inte
grated into the J2EE application con?guration ?les. As a
result, an integrated J2EE application is made possible from
a modulariZed and extendable development of the J2EE
application.

Receive Application and
Plug-in Modules

910

l
Provide Plug-in Manifest File
to Plug-in Registry Service via

Plug-in Registry API
9_2Q

l

Generate Plug-in Registry Object
Identifying All Plug-ins

for Enterprise Application
E

l

Store Plug-in Registry Object
for Access by Enterprise
Application via Plug-in

Registry API
£12

End

Patent Application Publication Feb. 2, 2006 Sheet 1 0f 8

FIG. 1

US 2006/0026591 A1

/10a

Client

208

Processor Processor 200
202 204

i System Bus ‘ /20g>
I I

Memory 210
Controller/ l/O Bridge
Cache

1 b /216 PCI Bus
/‘- PCI Bus Bridge >

Local Memory \1. 214 l \ TT
_209 212

\ Modem Network
\ Adapter

l/O Bus 226218 \220
Graphics Adapter

230 /1- PCI Bus Bridge / PCI BUS Q>
\" 222

228
Hard Disk C PCI Bus Bridge / PCI Bus >
232 224

Patent Application Publication Feb. 2, 2006 Sheet 2 0f 8

Processor

302

Host/PC!
Cache/Bridge

1&2

U

FIG. 3
3.0.42

<3 Main Memory
1%.

US 2006/0026591 A1

Audio
Adapter
1L5.

U
8085
Host
Bus

Adapter
3.1.2

1 Disk
3_2_6

Tape
2E

CD
ROM

U
{7 “If” u u >
LAN Expansion Graphics AudioNideo

Adapter Bus Interface Adapter Adapter
310 111 318 11g

Kzyaoard Modem Memory
an ouse
Adapter 22-2 ‘3-21

3E

Patent Application Publication Feb. 2, 2006 Sheet 3 0f 8 US 2006/0026591 A1

FIG. 4

Plug-in Module
4_1_Q

Plugin Classes
4_4_0

Plugin Deployment Descriptors
430

Plugin Manifest File
429

Plug-in Module /
4_62

6
495

Plugin Manifest File -—

4J_Q

Plugin Deployment Descriptors
£8_0

Plugin Classes
4.92

Patent Application Publication Feb. 2, 2006 Sheet 4 0f 8 US 2006/0026591 A1

FIG. 5
Plug-in A Plug-in B Plug-in C Plug-in D Plug-in E . . .

5.02 SE M 52$ 512

Application Module 1 529 Application Module 2 5_3_Q

Plug-in 1E Plug-in 2B Plug-in 2c P'gg‘“ Plug-in 1A Plug-in 1C Plug-in 1D

%
Merge Tool iIQ

Plug-in Module Con?ict Detection Plug-in Manifest ‘me ration
Processing and Resolution Transformation E9 .

. . . ngme

Englne Englne Engine
£2 §4_4 5% 548

Integrated Application File
550

Patent Application Publication Feb. 2, 2006 Sheet 5 0f 8 US 2006/0026591 A1

Plug-in A Plug-in B Plug-in C Plug-in D Plug-in E . . .

5.02 i0_4 5.02 5_0_Q L'Q

Application Module 1 Application Module 2

Q QQ

\ % Plug-in Registry Service
540

Plug-in Registry API
650

Merge Tool
619

Application File l:> Plug-in Registry Object
.i'iQ

Patent Application Publication Feb. 2, 2006 Sheet 6 0f 8 US 2006/0026591 A1

FIG. 7 I
700

<?xml encoding="US-ASCII" ?>

<!ELEMENT plugin (requiresi’, extension-point", extension*) >
< 1 ATTLI s'r plug in

710 name CDATA #REQUIRED
—— id CDATA # REQUIRED

version CDATA #REQUIRED
vendor-name CDATA #IMPLIED
embedded (true I false) "false"
context-root CDATA #IMPLIED

>

<EELEMEN'I‘ requires (import+)>
<1ELEMENT import EMPTY>
<!ATTLIST import

720 plugil'l CDATA #REQUIRED
version CDATA #IMPLIED
match (exact I compatible | greaterOrEqual) #IMPLIED
>

<!ELEMENT extension-point EMPTY>
<!ATTLIST extension-point

name CDATA #REQUIRED
730 id CDATA #REQUIRED

schema CDATA #IMPLIED
>

<!ELEMENT extension ANY>
<1A'I‘TLIST extension
point CDATA #REQUIRED

?ll id CDATA #IMPLIED
name CDATA #IMPLIED

>

Patent Application Publication Feb. 2, 2006 Sheet 7 0f 8

FIG. 8

(Start)

i

Receive Application and
Plug-in Modules

810

Parse Modules to Identify
Extension Points and Schema

820

Parse Plug-in Manifest File to
Compare Extensions to

Schema for Corresponding
Extension Points

532

Generate Error
Noti?cation

850

Extensions
Correctly Implement

Schema?
840

Convert Manifest File Into
Con?guration File lnforrnation

for Enterprise Application

I
Integrate Con?guration File
lnfonnation, Plug-in Module
Classes and Deployment
Descriptors into Enterprise

Application File
5A2
~

End

US 2006/0026591 A1

Patent Application Publication Feb. 2, 2006 Sheet 8 0f 8 US 2006/0026591 A1

FIG. 9

Receive Application and
Plug-in Modules

910

l
Provide Plug-in Manifest File
to Plug-in Registry Service via

Plug-in Registry API
.ELZQ

l
Generate Plug-in Registry Object

Identifying All Plug-ins
for Enterprise Application

Q?

l
Store Plug-in Registry Object

for Access by Enterprise
Application via Plug-in

Registry API
9A9

US 2006/0026591 A1

METHOD AND APPARATUS FOR PROVIDING A
PLUGGABLE AND EXTENDABLE J2EE

ARCHITECTURE

BACKGROUND OF THE INVENTION

[0001] 1. Technical Field

[0002] The present invention is generally directed to a
method and apparatus for providing a modular J2EE archi
tecture. More speci?cally, the present invention is directed
to a method and apparatus for providing a plug-in based
eXtendable J2EE architecture.

[0003] 2. Description of Related Art

[0004] Large softWare projects often utiliZe componen
tiZed development so that the project is broken into smaller
pieces that can be completed by individual development
teams. This reduces the compleXity of the development
process by isolating each development team from the affects
of changes in other parts of the project. One architecture that
has been developed to aid in this componentiZed develop
ment process is the Java 2 Platform Enterprise Edition
(J2EE), available from Sun Microsystems. J2EE is a plat
form for building distributed enterprise applications that
operate in a middle tier betWeen the user’s machine and the
enterprise databases and legacy information systems. The
J2EE architecture is composed of Enterprise J avaBeans
(EJBs), J avaServer Pages (JSPs), Java servlets, and a variety
of interfaces for linking to the information resources in the
enterprise. The J2EE interfaces include Java DataBase Con
nectivity (JDBC) for database, Java Naming and Directory
Interface (J NDI) for directories, Java Transaction API (JTA)
for transactions, Java Messaging Service (JMS) for messag
ing, and J avaMail for e-mail systems.

[0005] The J2EE applications are typically componentiZed
into a presentation tier, a business tier, and a data tier. The
presentation tier deals With the components that represent
the manner by Which information is presented to a user. The
business tier includes the business logic regarding hoW the
J2EE application is to operate on requests from users via the
presentation tier and on the data in the data tier. The data tier
is the raW enterprise data or information, and the mecha
nisms for accessing this data/information, that is used as a
basis for performing the operations de?ned by the business
tier.

[0006] While J2EE Was designed to promote the compo
nentiZed development of applications, the J2EE model in
may respects hinders the division of these tiers into multiple
development components. For eXample, the presentation tier
and the business tier are combined into a single archive ?le
(WAR ?le) and are not maintained separately. While these
tiers could be packaged into multiple WAR ?les, each WAR
?le Would have its oWn con?guration data and Would not be
able to share resources, such as a conteXt-root or a session,
With the other WAR ?les. Thus, there are negative conse
quences to forcing this separation or componentiZation in
the J2EE model.

[0007] Another componentiZed architecture is the Eclipse
architecture available from Bolour Computing. Eclipse is an
extensible platform for building Integrated Development
Environments (IDEs). Eclipse provides a core of services for
controlling a set of tools Working together to support pro
gramming tasks. Tool builders contribute to the Eclipse

Feb. 2, 2006

platform by Wrapping their tools in pluggable components,
called Eclipse plug-ins, Which conform to Eclipse’s plug-in
contract. The basic mechanism of extensibility in Eclipse is
that neW plug-ins can add neW processing elements to
eXisting plug-ins and Eclipse provides a set of core plug-ins
to bootstrap this process.

[0008] Even though the Eclipse platform is specialiZed for
building IDEs, the core of its concepts and facilities supports
a general model for composing an application from con
stituent parts developed by multiple vendors. A plug-in in
Eclipse is a component that provides a certain type of service
Within the conteXt of the Eclipse Workbench. By a “com
ponent” What is meant is an object that may be con?gured
into a system at system deployment time. The Eclipse
runtime provides an infrastructure to support the activation
and operation of a set of plug-ins Working together to
provide a seamless environment for development activities.

[0009] Within a running Eclipse instance, a plug-in is
embodied in an instance of a plug-in runtime class, or
plug-in class for short. The plug-in class provides con?gu
ration and management support for the plug-in instance. A
plug-in class in Eclipse must eXtend org.eclipse.core.runt
ime.Plugin, Which is an abstract class that provides generic
facilities for managing plug-ins.

[0010] An Eclipse installation includes a plugins folder
Where individual plug-ins are deployed. Each plug-in is
installed in its oWn folder under the plugins folder. Aplug-in
is described in an XML manifest ?le, called plugin.Xml,
residing in the plug-in’s folder. The manifest ?le tells the
Eclipse runtime What it needs to knoW to activate the
plug-in.

[0011] The parsed contents of plug-in manifest ?les are
made available programmatically through a plug-in registry
API and parsed plug-in speci?cations are cached in an
in-memory repository called the plug-in registry. The
Eclipse runtime instantiates an instance of each plug-in by
using the plug-in registry API. The plug-in registry API is
also used by provider-supplied plug-in code to obtain infor
mation about plug-ins.

[0012] The Eclipse Platform Plug-in Manifest Speci?ca
tion documents the XML elements and attributes used in
de?ning plug-ins. In the plug-in manifest ?le, each plug-in
has a unique identi?er (XML attribute id) that is used to refer
to a plug-in Within the manifest ?les of other, related,
plug-ins. The unique identi?er may also be used Within
provider-supplied plug-in code to access the plug-in’s run
ning instance.

[0013] Plug-in instances are managed by the Eclipse runt
ime, and are accessed by using the Eclipse platform. Plug-in
instances are not constructed by application programs.

[0014] Deploying a plug-in in an Eclipse installation
involves copying the resources that constitute the plug-in
(the manifest ?le, jar ?les, and other resources) into an
individual folder for the plug-in, under the installation’s
plugins directory. Such a plug-in can then be activated by the
Eclipse runtime When it is required to perform some func
tion. Activating a plug-in means loading its runtime class
and instantiating and initialiZing its instance.

[0015] The main function of a plug-in class is to do special
processing during plug-in activation and deactivation, e.g.,

US 2006/0026591 A1

to allocate and release resources. For simple plug-ins, no
speci?c activation or deactivation processing is required and
therefore, no speci?c plug-in class needs to be provided by
the plug-in designer. In that case, the Eclipse runtime
automatically provides a default plug-in class for the plug-in
instance. When the plug-in needs to do something speci?c to
activate or deactivate itself, the plug-in designer provides
overrides for the activation and deactivation methods of the
class, respectively called startup and shutdoWn, and includes
the fully-quali?ed name of this speci?c plug-in subclass as
the value of the attribute class in the corresponding plug-in
manifest ?le.

[0016] Eclipse includes a plug-in management kernel,
knoWn as the Eclipse platform, or the Eclipse runtime, and
certain core plug-ins that are present in every Eclipse
deployment. The identities of these core plug-ins are hard
coded into the Eclipse platform, and the platform knoWs to
activate these plug-ins in each running instance of Eclipse.
Non-core plug-ins, on the other hand, are activated When
required by other plug-ins.

[0017] In the Eclipse model, a plug-in may be related to
another plug-in by one of tWo relationships: dependency and
an extension. With a dependency relationship, the roles in
this relationship are dependent plug-in and prerequisite
plug-in. A prerequisite plug-in supports the functions of a
dependent plug-in. In an extension relationship, the roles in
this relationship are host plug-in and extender plug-in. An
extender plug-in extends the functions of a host plug-in.
These relationships are speci?ed declaratively in plug-in
manifest ?les through the XML elements required and
extension.

[0018] A non-core plug-in that has been deployed in an
Eclipse installation may be activated in a running instance of
Eclipse if it is transitively related to a core Eclipse plug-in
by the union of the dependency and the extension relations.
Such a plug-in Will be activated When its functions are
required to support or to extend the functions of another
plug-in. Aplug-in that is deployed but unreachable from any
core plug-in via the dependency and extension relations
might as Well not be deployed from the point of vieW of
plug-in activation. Even a reachable plug-in may remain
unactivated in a running instance for some time (or for the
lifetime of the instance) if no user action or other triggering
event elicits its use.

[0019] An extension is de?ned by an extender plug-in and
causes a host plug-in to modify its behavior. Typically, this
modi?cation of behavior includes the addition of processing
elements to the host plug-in, and the customiZation of the
behavior of these additional elements by services provided
by the extender plug-in.

[0020] In simple cases, a single act of extension adds a
single callback object to the environment, through Which the
host and extender plug-ins communicate, hoWever, it could
add more than one callback object to the environment. The
callback object is different from the host and extender
plug-in objects and, unlike these objects, Which are compo
nents that are automatically instantiated and managed by the
Eclipse platform, a callback object is a “plain old Java
object” that is instantiated and managed speci?cally by
provider-supplied code.

[0021] While Eclipse provides an extendible architecture
in Which components may be provided as plugins to a core

Feb. 2, 2006

set of services for creating IDEs, the plug-in based archi
tecture has not, and cannot, be applied to the development of
J2EE applications using knoWn mechanisms. This is prima
rily because J2EE applications must be integrated into a
single WAR ?le for deployment so that each component may
have a single set of con?guration data and be able to share
resources. With the Eclipse architecture, the components are
maintained as separate ?les.

[0022] Thus, it Would be bene?cial to have a method and
apparatus that permits the extensibility of a plug-in based
architecture, such as the Eclipse architecture, to be used With
the development of J2EE applications. Moreover, it Would
be bene?cial to have a method and apparatus for generating
a single logical J2EE application from several individual
components that act as a single, integrated application at
runtime.

BRIEF SUMMARY OF THE INVENTION

[0023] The present invention provides a mechanism for
providing a pluggable J2EE application development envi
ronment in Which extensions of a J2EE application may be
integrated into the J2EE application via extension points.
The present invention provides mechanisms for de?ning
extension points Within modules of the J2EE application and
mechanisms for de?ning plug-in or extension modules that
may be integrated into the J2EE application via these
extension points.

[0024] In addition, the present invention provides a
mechanism for merging the plug-in or extension modules
into the J2EE application at deployment so that all of the
information necessary for generating instantiations of the
plug-in or extension modules is integrated into the J2EE
application con?guration ?les. As a result, an integrated
J2EE application is made possible from a modulariZed and
extendable development of the J2EE application.

[0025] These and other features and advantages of the
present invention Will be described in, or Will become
apparent to those of ordinary skill in the art in vieW of, the
folloWing detailed description of the preferred embodi
ments.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0026] The novel features believed characteristic of the
invention are set forth in the appended claims. The invention
itself, hoWever, as Well as a preferred mode of use, further
objectives and advantages thereof, Will best be understood
by reference to the folloWing detailed description of an
illustrative embodiment When read in conjunction With the
accompanying draWings, Wherein:

[0027] FIG. 1 is an exemplary diagram of a distributed
data processing system in Which the present invention may
be implemented;

[0028] FIG. 2 is an exemplary diagram of a client com
puting device Which may be used to send transactions to
elements of the present invention;

[0029] FIG. 3 is an exemplary diagram of a server com
puting device upon Which elements of the present invention
may be implemented;

US 2006/0026591 A1

[0030] FIG. 4 is an exemplary diagram of a plug-in
module in accordance With one exemplary embodiment of
the present invention;

[0031] FIG. 5 is an exemplary diagram illustrating a
process of generating an integrated application ?le in accor
dance With the present invention;

[0032] FIG. 6 is an exemplary diagram of the primary
operational components of a dynamic plug-in registration
embodiment of the present invention;

[0033] FIG. 7 is an exemplary diagram illustrating a
manifest ?le;

[0034] FIGS. 8 and 9 are exemplary diagrams of ?oW
charts that illustrate operations for integrating plug-in mod
ules into an enterprise application in accordance With exem
plary aspects of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

[0035] The present invention provides a mechanism for
generating Java 2 Enterprise Edition (J2EE) applications
using an extensible plug-in architecture. Since the present
invention permits componentiZed development of J2EE
applications, these components may be developed by vari
ous development groups that may be centrally located or
distributed over a plurality of locations. Thus, the compo
nents that may be combined using the present invention into
a J2EE application may be obtained from various computing
systems Within a distributed data processing system or from
the same computing system in Which the components are
combined to form a J2EE application. Furthermore, since
the present invention is directed to development of J2EE
applications in a componentiZed or plug-in based manner,
the resulting J2EE application is likely to be deployed in a
distributed data processing system. Accordingly, the folloW
ing FIGS. 1-3 are intended to provide a background descrip
tion of one exemplary computing environment in Which
aspects of the present invention may be implemented.

[0036] With reference noW to the ?gures, FIG. 1 depicts
a pictorial representation of a netWork of data processing
systems in Which the present invention may be imple
mented. NetWork data processing system 100 is a netWork of
computers in Which the present invention may be imple
mented. NetWork data processing system 100 contains a
netWork 102, Which is the medium used to provide commu
nications links betWeen various devices and computers
connected together Within netWork data processing system
100. NetWork 102 may include connections, such as Wire,
Wireless communication links, or ?ber optic cables.

[0037] In the depicted example, server 104 is connected to
netWork 102 along With storage unit 106. In addition, clients
108, 110, and 112 are connected to netWork 102. These
clients 108, 110, and 112 may be, for example, personal
computers or netWork computers. In the depicted example,
server 104 provides data, such as boot ?les, operating
system images, and applications to clients 108-112. Clients
108, 110, and 112 are clients to server 104. NetWork data
processing system 100 may include additional servers, cli
ents, and other devices not shoWn. In the depicted example,
netWork data processing system 100 is the Internet With
netWork 102 representing a WorldWide collection of net
Works and gateWays that use the Transmission Control

Feb. 2, 2006

Protocol/Internet Protocol (TCP/IP) suite of protocols to
communicate With one another. At the heart of the Internet
is a backbone of high-speed data communication lines
betWeen major nodes or host computers, consisting of thou
sands of commercial, government, educational and other
computer systems that route data and messages. Of course,
netWork data processing system 100 also may be imple
mented as a number of different types of netWorks, such as
for example, an intranet, a local area netWork (LAN), or a
Wide area netWork FIG. 1 is intended as an
example, and not as an architectural limitation for the
present invention.

[0038] Referring to FIG. 2, a block diagram of a data
processing system that may be implemented as a server, such
as server 104 in FIG. 1, is depicted in accordance With a
preferred embodiment of the present invention. Data pro
cessing system 200 may be a symmetric multiprocessor
(SMP) system including a plurality of processors 202 and
204 connected to system bus 206. Alternatively, a single
processor system may be employed. Also connected to
system bus 206 is memory controller/cache 208, Which
provides an interface to local memory 209. I/O bus bridge
210 is connected to system bus 206 and provides an interface
to I/O bus 212. Memory controller/cache 208 and I/O bus
bridge 210 may be integrated as depicted.

[0039] Peripheral component interconnect (PCI) bus
bridge 214 connected to I/ O bus 212 provides an interface to
PCI local bus 216. A number of modems may be connected
to PCI local bus 216. Typical PCI bus implementations Will
support four PCI expansion slots or add-in connectors.
Communications links to clients 108-112 in FIG. 1 may be
provided through modem 218 and netWork adapter 220
connected to PCI local bus 216 through add-in connectors.

[0040] Additional PCI bus bridges 222 and 224 provide
interfaces for additional PCI local buses 226 and 228, from
Which additional modems or netWork adapters may be
supported. In this manner, data processing system 200
alloWs connections to multiple netWork computers. A
memory-mapped graphics adapter 230 and hard disk 232
may also be connected to I/O bus 212 as depicted, either
directly or indirectly.

[0041] Those of ordinary skill in the art Will appreciate
that the hardWare depicted in FIG. 2 may vary. For example,
other peripheral devices, such as optical disk drives and the
like, also may be used in addition to or in place of the
hardWare depicted. The depicted example is not meant to
imply architectural limitations With respect to the present
invention.

[0042] The data processing system depicted in FIG. 2 may
be, for example, an IBM eServer pSeries system, a product
of International Business Machines Corporation in Armonk,

NY, running the Advanced Interactive Executive operating system or LINUX operating system.

[0043] With reference noW to FIG. 3, a block diagram
illustrating a data processing system is depicted in Which the
present invention may be implemented. Data processing
system 300 is an example of a client computer. Data
processing system 300 employs a peripheral component
interconnect (PCI) local bus architecture. Although the
depicted example employs a PCI bus, other bus architectures
such as Accelerated Graphics Port (AGP) and Industry

US 2006/0026591 A1

Standard Architecture (ISA) may be used. Processor 302 and
main memory 304 are connected to PCI local bus 306
through PCI bridge 308. PCI bridge 308 also may include an
integrated memory controller and cache memory for pro
cessor 302. Additional connections to PCI local bus 306 may
be made through direct component interconnection or
through add-in boards. In the depicted example, local area
netWork adapter 310, SCSI host bus adapter 312, and
expansion bus interface 314 are connected to PCI local bus
306 by direct component connection. In contrast, audio
adapter 316, graphics adapter 318, and audio/video adapter
319 are connected to PCI local bus 306 by add-in boards
inserted into expansion slots. Expansion bus interface 314
provides a connection for a keyboard and mouse adapter
320, modem 322, and additional memory 324. Small com
puter system interface (SCSI) host bus adapter 312 provides
a connection for hard disk drive 326, tape drive 328, and
CD-ROM drive 330. Typical PCI local bus implementations
Will support three or four PCI expansion slots or add-in
connectors.

[0044] An operating system runs on processor 302 and is
used to coordinate and provide control of various compo
nents Within data processing system 300 in FIG. 3. The
operating system may be a commercially available operating
system, such as WindoWs XP, Which is available from
Microsoft Corporation. An object oriented programming
system such as Java may run in conjunction With the
operating system and provide calls to the operating system
from Java programs or applications executing on data pro
cessing system 300. “Java” is a trademark of Sun Micro
systems, Inc. Instructions for the operating system, the
object-oriented programming system, and applications or
programs are located on storage devices, such as hard disk
drive 326, and may be loaded into main memory 304 for
execution by processor 302.

[0045] Those of ordinary skill in the art Will appreciate
that the hardWare in FIG. 3 may vary depending on the
implementation. Other internal hardWare or peripheral
devices, such as ?ash read-only memory (ROM), equivalent
nonvolatile memory, or optical disk drives and the like, may
be used in addition to or in place of the hardWare depicted
in FIG. 3. Also, the processes of the present invention may
be applied to a multiprocessor data processing system.

[0046] As another example, data processing system 300
may be a stand-alone system con?gured to be bootable
Without relying on some type of netWork communication
interfaces As a further example, data processing system 300
may be a personal digital assistant (PDA) device, Which is
con?gured With ROM and/or ?ash ROM in order to provide
non-volatile memory for storing operating system ?les and/
or user-generated data.

[0047] The depicted example in FIG. 3 and above-de
scribed examples are not meant to imply architectural limi
tations. For example, data processing system 300 also may
be a notebook computer or hand held computer in addition
to taking the form of a PDA. Data processing system 300
also may be a kiosk or a Web appliance.

[0048] The present invention permits components of a
Java 2 Enterprise Edition (J2EE) application to be developed
in a componentiZed or modular manner such that various
components of the J2EE application may be developed
independently from other components and then combined

Feb. 2, 2006

together into an integrated single J2EE application. The
present invention further permits an established J2EE appli
cation to have its functionality extended by incorporation of
neWly developed components after an initial deployment of
the J2EE application. The components of the J2EE applica
tion may be independently developed in a distributed man
ner such that components may be present on various com
puting devices, such as server 104 and clients 108, 110 and
112. The present invention permits components to be iden
ti?ed by Uniform Resource Identi?er (URI) so that compo
nents stored on various computing devices may be inte
grated into a single J2EE application in a pluggable manner.
These components on the various computing devices may

then be combined into a single J2EE Web Archive ?le so that an integrated J2EE application is generated for

deployment and use at application runtime.

[0049] The extensible J2EE architecture of the present
invention folloWs a modular design Which alloWs it to be
extended With neW functionality, especially those outside of
the core functionality. Each of these modules is de?ned as a
pluggable unit, or plug-in, that is deployed into (or removed
from) a J2EE enterprise application. A plug-in module
describes hoW it provides its capabilities and uses other
plug-in modules’ capabilities through a manifest ?le asso
ciated With the plug-in. A plug-in’s deployment package is
a J2EE Web module, eg a plug-in module WAR ?le,
containing necessary classes, deployment descriptors, and
the plug-in manifest ?le.

[0050] The extensibility architecture of the present inven
tion is structured around the concept of extension points.
Extension points, similar to that of the Eclipse architecture,
are Well-de?ned places in the J2EE application Where plug
ins can contribute functionality. For example, in the presen
tation tier of a J2EE application, adding task menus, form
elements such as buttons and links to existing panels, can be
potentially deployed as extension points. Plug-ins can de?ne
their oWn extension points so that other plug-ins can inte
grate With them or simply add extensions to the extension
points of other plug-ins.
[0051] FIG. 4 is an exemplary diagram of a plug-in
module in accordance With one exemplary embodiment of
the present invention. As shoWn in FIG. 4, the plug-in
module 400 includes a plug-in manifest ?le 410, deployment
descriptors 420 for the plug-in 400, and various classes 430
for the plug-in 400.
[0052] The plug-in manifest ?le 410 is a ?le that describes
the Way in Which the plug-in module 400 provides its
functionality and uses the functionality of other plug-in
modules. The manifest ?le 410 may be formatted in any
knoWn manner. In a preferred embodiment, the manifest ?le
410 is formatted as an Extensible Markup Language (XML)
?le that is parsed during deployment of the plug-in module
400 to generate con?guration information for integration
into a con?guration ?le of the resulting J2EE application
WAR ?le.

[0053] The deployment descriptors 420, as is generally
knoWn in the art, identi?es the manner by Which the corre
sponding plug-in module 400 Will be deployed in the J2EE
application. The deployment descriptors may be, for
example, XML ?les used to con?gure runtime properties of
the J2EE application.
[0054] The classes 430 provide the actual class de?nitions
for the plug-in module 440 de?ning the methods imple

US 2006/0026591 A1

mented by the plug-in module 440. These classes 430 are
instantiated as objects When the J2EE application is
deployed in the runtime environment. The instantiation of
these classes 430 provides the actual objects used by the
runtime environment When executing the J2EE application.

[0055] As shoWn in FIG. 4, the plug-in manifest ?le 420
may de?ne an extension point 450 through Which the
functionality of the plug-in module 410 may be extended
using the functionality of one or more other plug-in mod
ules, such as plug-in module 460. The extension point 450
is de?ned in the plug-in manifest ?le 420 by Way of an
extension point declaration. The extension point declaration
includes the speci?cation of a schema to Which users of the
extension point, ie extensions, must conform. That is, the
extensions are required to contribute data to the extension
point by providing fragments containing data in a format
that conforms to the schema de?ned in the extension point.
Both the schema of the extension point and the fragments
provided by the extensions may be in XML, for example.
Thus, the schema acts as a “protocol” by Which data may be
provided to a component, e.g., plug-in module 410, that
implements the extension point 450.

[0056] As shoWn in FIG. 4, in addition to de?ning exten
sion points in the plug-in manifest ?le 420, the plug-in
manifest ?le 470 may de?ne one or more extensions 495 for
extending the functionality of other plug-in modules. In the
depicted example, the plug-in manifest ?le 470 de?nes three
extensions 495 of the extension point 450 in plug-in module
410. For example, these extensions may be three different
drop doWn menus of a tool de?ned by plug-in module 410.
All three of these menus may conform to the schema de?ned
by the extension point 450. As a result, the functionality of
the plug-in module 410 is extended by the functionality of
plug-in module 460 through the use of extension point
declarations and extensions set forth in the repsective plug
in manifest ?les 420 and 470 of plug-in modules 410 and
460.

[0057] It should be appreciated that While FIG. 4 illus
trates the ability to extend the functionality of a plug-in
module With the functionality of another plug-in module, the
same methodology and mechanisms may be used to extend
the functionality of the core J2EE application components.
That is, for example, a J2EE application component may
de?ne an extension point With a plug-in manifest ?le for a
corresponding plug-in module de?ning an extension of that
extension point. As a result, the core components of the
J2EE application may be extended using plug-in modules
and the plug-in modules themselves may be extended With
other plug-in modules.

[0058] The present invention, When deploying the J2EE
application merges the plug-in module’s manifest ?le,
deployment descriptors and classes into an application ?le
for the application. In this Way, although the plug-in mod
ules may have been developed in a modular fashion, they are
combined into a single application ?le and thus, can share
resources. This merging of the plug-in module’s components
includes the copying over of the classes and deployment
descriptors and the integration of the manifest ?le into a
con?guration ?le of the application. The merging of plug-ins
to a J2EE application is referred to herein as registering the
plug-ins With the J2EE application.

[0059] There are tWo preferred implementations provided
to support registration of plug-ins With a J2EE application:

Feb. 2, 2006

one that is static and one that is dynamic. In the static
methodology, the contents of the plugin manifest ?le are
transformed into a format expected in the contents of the
con?guration ?les used to render the extensions of a parit
cular extension point. For example, XSL transformation
(XSLT) may be used to convert the manifest ?le into content
for a con?guraiton ?le of the J2EE application.

[0060] Each extension point in the J2EE application is
associated With a processor Which is responsible for per
forming the transformation of the manifest as Well as
inserting the transformed content into the con?guration ?les
required to render the extensions of that extension point. The
“processor” associated With the extension point is a conver
sion mechanism that parses corresponding code, generates
elements of the code, and then converts these elements to a
different format using a conversion schema. For example,
the extension points may be associated With an “XSLT
processor,” Which transforms the input plug-in manifest ?le
based on XSLT and XSL codes in the manifest ?le. The
XSLT processor may use an “XML parser” to separate the
XML elements in the manifest ?le into a tree structure
before it manipulates them to generate con?guration ?le
information.

[0061] Since this registration mechanism essentially
merges con?guration content at plug-in deployment, at
application runtime, all information that Was contained in
the plug-in manifest ?les is available to the J2EE application
as static content from its oWn con?guration ?les.

[0062] As a result, in order to remove a plug-in from the
application, the transformed content that Was inserted into
the con?guration ?les must also be identi?ed and removed.
Thus, for removal of a plug-in from a J2EE application, the
manifest ?le for the plug-in may be converted to a con?gu
ration ?le format and a search of the con?guration ?le for
corresponding entries may be made. Matching con?guration
?le entries may then be removed from the con?guration ?le
and the plug-in’s classes and deployment descriptors may
also be removed from the J2EE application ?le.

[0063] With the dynamic plug-in registration methodol
ogy, a plug-in registry service may be provided and used to
store and retrieve the contents of plug-in manifests. With
such an embodiment, the content of the manifests need not
be transformed and merged With the static content of the
J2EE application. To the contrary, the plug-in registry ser
vice may be provided as a Java object bound by Java
Naming and Directory Interface (JNDI) that contains all
content de?ned in the plug-in manifests of all plug-ins of the
J2EE application. The plug-in registry object may be the
root object in the plug-in registry application program
interface (API) that is provied to query information about
plug-ins. The plug-in registry API may provide core support
for plug-ins and the plug-in registry.

[0064] In general, the registry models each of the primary
elements of the plug-in manifest, providing methods to
access the attributes and any parent/child relationships
developers Will need to lookup for extension points and
estensions dynamically at runtime. An important feature of
the plug-in registry API is that its usage is not dependent
upon any speci?c external technologies, such as Java Server
Pages (JSPs), servlets, etc. The methods in the API can be
used identically regardless of the type of technology that is

US 2006/0026591 A1

using it. Using this mechanism, removal of a plug-in from an
application involves simply removing the plug-in’s entry in
the plug-in registry.

[0065] As previously mentioned, the plug-in modules may
be located in distributed computing systems and thus, may
be stored in remotely located computing devices. The
present invention permits the use of Uniform Resource
Identi?ers (URIs) to identify these plug-in modules for
integration into the J2EE application.

[0066] FIG. 5 illustrates a process of generating an inte
grated application ?le in accordance With one exemplary
embodiment of the present invention. The example shoWn in
FIG. 5 makes use of the static registration mechanism for
plug-ins discussed above.

[0067] As shoWn in FIG. 5, a plurality of plug-in modules
502-510 are provided for use in an exemplary J2EE devel
opment project. The project may be divided into modules
that are to be developed independently by different devel
opment teams. TWo such modules 520 and 530 are illus
trated.

[0068] As shoWn, the development team of the ?rst mod
ule 520 has developed the module 520 such that it makes use
of a ?rst set of the plug-in modules 502-510 While the
development team of the second module 530 has developed
the module 530 to make use of a second set of the plug-in
modules 502-510. For example, in application module 520,
the developers have generated the core module application
With extension points identifying schema adopted by plug-in
1A, plug-in 1C and plug-in 1E. In addition, plug-in 1C has
an extension point Whose schema is adopted by plug-in 1D.
Plug-in modules 1A, 1C, 1D and 1E are copies of plug-in
modules 502, 506, 508 and 510, respectively.

[0069] Similarly, application module 530 has copies of
plug-in modules 504, 506 and 508 referred to as plug-ins 2B,
2C and 2D, respectively. Plug-in module 2C has an exten
sion point Whose schema is adopted by plug-in 2D.

[0070] The module data for modules 520 and 530 are
provided to a merge tool 540 Which merges the plug-in
modules With the core application modules 520 and 530 and
then merges the application modules 520 and 530 into an
integrated application ?le 550. The merge tool 540 includes
a plurality of engines for facilitating this merging of plug-ins
and modules including a plug-in module processing engine
542, a con?ict detection and resolution engine 544, a plug-in
manifest transformation engine 545, and an integration
engine 548.

[0071] The plug-in module processing engine 542 parses
the modules 520 and 530 to identify extension points and
their schema. The plug-in module processing engine 542
also parses the manifest ?les of the plug-in modules to
identify the extension points to Which extensions de?ned by
the manifest ?le refer. The plug-in module processing engine
542 then veri?es that extensions de?ned in the manifest ?les
of the plug-in modules correctly implement the schema
de?ned by the extension point to Which it refers. As
described above, the extension points may be in the core
application module or may be in plug-in modules associated
With the core application module.

[0072] If a plug-in module de?nes an extension of an
extension point and the plug-in module fails to properly

Feb. 2, 2006

implement the schema de?ned by the extension point, an
error noti?cation may be generated by the plug-in module
processing engine 542 and either added to an error log or
sent to a user to inform them of the problem so that it can
be recti?ed.

[0073] The plug-in manifest transformation engine 546
converts the manifest ?le associated With the plug-in mod
ules of the application modules 520 and 530 into corre
sponding con?guration ?le information for inclusion in one
or more con?guration ?les of the integrated application ?le
550. The particular conversion is implementation depen
dent. That is, the conversion Will be different depending
upon the particular format selected for generating the mani
fest ?le and the con?guration ?le format to Which it is being
converted. In an exemplary embodiment, an Extensible
Stylesheet Language Transformation (XSLT) mechanism
may be used to convert manifest ?les that are created using
XML into a J2EE WAR con?guration ?le format. XSLT is
generally knoWn in the art and thus, a detailed description of
its operation is not included herein.

[0074] The actual merging of the plug-in modules With the
application modules 520 and 530 and the merging of the
application modules 520 and 530 are performed using the
con?ict detection and resolution engine 544 and the inte
gration engine 548. These engines operate in a similar
manner to the mechanism described in commonly assigned
and co-pending U.S. patent application Ser. No. 10/721,818
(Attorney Docket No. RSW920030280US1) entitled “Web
Application Development Tool,” ?led on Nov. 24, 2003, and
hereby incorporated by reference.

[0075] As described in co-pending US. patent application
Ser. No. 10/721,818 (Attorney Docket No.
RSW920030280US1), the integration engine 548 may
receive the data for the plug-in modules and the application
modules 520-530 and determine Which modules are inde
pendent and do not correspond to any other resource in a
different module. The independent modules are processed by
the integration engine 548 and packaged into the integrated
application ?le 550. The remaining modules are determined
to be dependent, ie are each related to another module.
Thus, for example, plug-ins 1A, 1E and 2B are all indepen
dent modules, i.e. modules that are self contained and are not
dependent upon core modules or other plug-in modules.
Thus, the manifest ?les of these plug-ins are processed by
the plug-in module processing engine 542 and the plug-in
manifest transformation engine 546 and the plug-in module
classes, deployment descriptors, and con?guration informa
tion are added to the integrated application ?le 550.

[0076] Plug-ins 1C, 1D, 2C and 2D are all dependent
plug-in modules, i.e. modules Whose functionality depends
from core modules or other plug-in modules such that an
order of processing the plug-in modules is determined based
on their dependency. Thus, a con?ict check betWeen these
plug-in modules is performed prior to integrating them into
the integrated application ?le 550. That is, the con?ict
detection and resolution engine 544 compares the plug-in
modules to their related plug-in modules to make sure that
there are no con?icts betWeen the plug-in modules. If no
con?icts are present, then the plug-in modules are processed
by engines 542 and 546 so that their classes, deployment
descriptors, and con?guration information are added to the
integrated application ?le 550.

US 2006/0026591 A1

[0077] If a con?ict is encountered during this con?ict
check, the con?ict detection and resolution engine 544
determines if the con?ict is a major con?ict or a minor
con?ict. The determination of Whether a con?ict is a major
con?ict or a minor con?ict is dependent upon the particular
implementation. One example of a minor con?ict may be
duplicate messages in Java property bundles (since this Will
not cause a problem at runtime, the ?rst entry found in the
?le is used, this con?ict is designated a minor con?ict). An
example of a major con?ict may be a circular dependency,
e.g., module Adepends on/requires module B and module B
depends on/requires module A (because the order to process
these plug-ins cannot be resolved, this is determined to be a
major con?ict).
[0078] If the con?ict is a minor one, an error log may be
generated and/or a noti?cation may be sent to a user so that
the problem may be recti?ed. The noti?cation may permit
the user to select a Way in Which to rectify the error, such as
selecting Which information to use so that the con?icting
information is disregarded.

[0079] If the con?ict is irreconcilable, i.e. is a major
con?ict, the user may be noti?ed With an error message
alloWing the user to decided hoW to proceed. Alternatively,
the merging process may be aborted, giving the development
teams an opportunity to resolve the con?ict by revising one
or both of the con?icting modules.

[0080] After con?icts have been resolve, the modules may
be merged and packaged into the integrated application ?le
550. The integrated application ?le 550, Which in a preferred
embodiment is a J2EE application WAR ?le, may then be
installed into an application server as a deployed applica
tion, such as a J2EE application server as a J2EE application.

[0081] As described above, much of the processing of the
present invention is centered around the plug-in manifest ?le
that describes the manner by Which the plug-in provides its
functionality and uses the functionality of other plug-in
modules. FIG. 6 is an example of such a manifest ?le that
may be used in conjunction With the present invention.

[0082] FIG. 6 shoWs the primary operational components
of a dynamic plug-in registration embodiment of the present
invention. The primary difference betWeen FIG. 5 and FIG.
6 is that the merge tool 610 is used simply to merge modules
620 and 630 and does not contain facilities for merging the
plug-in modules. That is, the merge tool 610 operates in the
manner described in the co-pending US. patent application
Ser. No. 10/721,818 (Attorney Docket No.
RSW920030280US1).
[0083] In order to handle the plug-ins of the present
invention, an additional plug-in registry service 640 and
plug-in registry API 650 are provided. The plug-in registry
service 640 stores and retrieves the contents of the plug-in
module manifest ?les. The content of the manifest ?les is not
transformed and merged With the static content of the
application. To the contrary, the plug-in registry service 640
generates a plug-in registry object 660 that contains all the
content de?ned in the plug-in manifest ?les of the applica
tion. The plug-in registry object is the root object in the
plug-in registry API 650. The plug-in registry API 650
contains methods for querying information about the plug
ins represented by the plug-in registry object 660.
[0084] The plug-in registry API 650 provides core support
for plug-ins and the plug-in registry service 640. The plug-in

Feb. 2, 2006

registry service 640 models each of the primary elements of
the plug-in manifest ?les providing methods to access the
attributes and any parent/child relationships developers Will
need to lookup for extension points and extensions dynami
cally at runtime. The plug-in registry API 650 is independent
of the speci?c external technologies used to access it. At
application initialiZation during the startup of the applica
tion, the application accesses this runtime plug-in registry
service 640 via JNDI to determine What content can be
displayed in the presentation layer by querying the registry
for the lists of extension points and extenders of those
extension points.

[0085] As shoWn in FIG. 7, the manifest ?le 700 includes
a ?rst portion 710 that de?nes the plug-in and many of its
attributes. For example, the ?rst portion 710 may de?ne the
name of the plug-in, an identi?er of the plug-in, such as a
URI or other type of identi?er, version information, vendor
name information, Whether the plug-in is embedded or not,
i.e. Whether or not the plug-in module uses an extension
point that is dependent upon core module components
(non-embedded plug-in modules use extension points but
are not dependent on the core module functionality), and the
context root of the plug-in (this is used to pre?x the ?les
from an embedded plug-in module so they can be identi?ed
and so there are no name collisions betWeen ?les provided

by different plug-in modules).
[0086] A second portion 720 of the manifest ?le 700
includes a designation of an extension point to Which this
plug-in is an extension. As shoWn, the second portion 720
identi?es the plug-in and version information associated
With a plug-in extension point to Which this plug-in may be
an extension. In addition, the degree of matching betWeen
the plug-in and the attributes of an extension point is
necessary for this plug-in to be an extension of the extension
point.
[0087] A third portion 730 describes any extension points
that are being provided by this module. As shoWn, the third
portion 730 de?nes the type of extension, i.e. a plug-in
extension, having a particular version, and the degree to
Which the plug-in must match the designated plug-in ver
sion. In addition, the third portion 730 identi?es the name of
the extension point, an identi?er of the extension point, and
an associated schema. Thus, the third portion 730 describes
What, if any, dependencies there are betWeen this and any
other extension modules.

[0088] A fourth portion 740 of the manifest ?le 700
de?nes the extension associated With an extension point to
Which this manifest ?le 700 points. That is, the fourth
portion 740 indicates that the plug-in associated With the
manifest ?le 700 de?nes an extension of an extension point
in another manifest ?le. This other extension point is iden
ti?ed in the fourth portion 740 of the manifest ?le 700 by
point, id and name identi?ers. The point may be the fully
quali?ed ID of the extension point that is being extended.
The id is an optional ID to use for this usage of the extension
point. The name is an optional name to use for this usage of
the extension point.

[0089] A plug-in manifest ?le such as that illustrated in
FIG. 7 may be parsed by the merge tool in order to
determine that extensions de?ned in a plug-in correspond to
an associated extension point schema, to determine and
resolve con?icts, and the generate con?guration information

US 2006/0026591 A1

to be merged into an integrated application ?le’s con?gu
ration ?les, as described previously. Alternatively, the mani
fest ?les such as that illustrated in FIG. 7 may be used by
a plug-in registry service to model the plug-in elements for
dynamic integration With an application.

[0090] FIGS. 8 and 9 are ?oWcharts that illustrate opera
tions for integrating plug-in modules into an enterprise
application, such as a J2EE application, in accordance With
exemplary aspects of the present invention. It Will be under
stood that each block of the ?oWchart illustrations, and
combinations of blocks in the ?oWchart illustrations, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor
or other programmable data processing apparatus to produce
a machine, such that the instructions Which execute on the
processor or other programmable data processing apparatus
create means for implementing the functions speci?ed in the
?oWchart block or blocks. These computer program instruc
tions may also be stored in a computer-readable memory or
storage medium that can direct a processor or other pro
grammable data processing apparatus to function in a par
ticular manner, such that the instructions stored in the
computer-readable memory or storage medium produce an
article of manufacture including instruction means Which
implement the functions speci?ed in the ?oWchart block or
blocks.

[0091] Accordingly, blocks of the ?oWchart illustrations
support combinations of means for performing the speci?ed
functions, combinations of steps for performing the speci
?ed functions and program instruction means for performing
the speci?ed functions. It Will also be understood that each
block of the ?oWchart illustrations, and combinations of
blocks in the ?oWchart illustrations, can be implemented by
special purpose hardWare-based computer systems Which
perform the speci?ed functions or steps, or by combinations
of special purpose hardWare and computer instructions.

[0092] FIG. 8 is a ?oWchart outlining an exemplary
operation for statically merging a plug-in module into an
enterprise application in accordance With one exemplary
embodiment of the present invention. As shoWn in FIG. 8,
the operation starts by receiving the application modules and
the plug-in module (step 810). The application modules and
plug-in module are parsed to identify the extension points
and their corresponding schema (step 820). The manifest ?le
associated With the plug-in module is then processed to
determine if any extensions in the plug-in module correctly
implement the schema of their corresponding extension
points (step 830). If an extension does not correctly imple
ment a corresponding extension point schema (step 840),
then an error noti?cation is generated (step 850).

[0093] If the extension point schemas are properly imple
mented for all of the extensions in the plug-in module, then
a con?ict check is made to determine if the plug-in module
con?icts With any other modules in the application (step
860). If so, an error noti?cation may be generated (step 850).
OtherWise, the manifest ?le of the plug-in module is con
verted to con?guration ?le information (step 870). The
con?guration ?le information, classes of the plug-in module,
and the deployment descriptors for the plug-in module are
then integrated into the application ?le (step 880) and the
operation terminates. This process may be repeated or
performed in parallel for each plug-in module of the enter
prise application.

Feb. 2, 2006

[0094] FIG. 9 is a ?oWchart outlining an exemplary
operation for dynamically integrating plug-in modules into
an enterprise application in accordance With one exemplary
embodiment of the present invention. As shoWn in FIG. 9,
the operation starts by receiving the application modules and
the plug-in module (step 910). The plug-in module manifest
?le is provided to a plug-in registry service via a plug-in
registry API (step 920). The plug-in registry service gener
ates a plug-in registry object that identi?es all of the plug-ins
for the enterprise application (step 930). The plug-in registry
object is then stored for accessing by the enterprise appli
cation via the plug-in registry API (step 940). The operation
then terminates.

[0095] Thus, the present invention provides a mechanism
for extending the functionality of enterprise applications,
such as J2EE applications, in a pluggable manner. The
present invention provides an architecture that facilitates the
componentiZed or modulariZed development of enterprise
applications in such a manner that the components or
modules may be integrated into a single enterprise applica
tion at deployment time. In this Way, While the components
or modules are developed independently, at runtime, they
Will function in an integrated manner and may share
resources as if they Were all developed in a single location
by a single development team.

[0096] It is important to note that While the present inven
tion has been described in the context of a fully functioning
data processing system, those of ordinary skill in the art Will
appreciate that the processes of the present invention are
capable of being distributed in the form of a computer
readable medium of instructions and a variety of forms and
that the present invention applies equally regardless of the
particular type of signal bearing media actually used to carry
out the distribution. Examples of computer readable media
include recordable-type media, such as a ?oppy disk, a hard
disk drive, a RAM, CD-ROMs, DVD-ROMs, and transmis
sion-type media, such as digital and analog communications
links, Wired or Wireless communications links using trans
mission forms, such as, for example, radio frequency and
light Wave transmissions. The computer readable media may
take the form of coded formats that are decoded for actual
use in a particular data processing system.

[0097] The description of the present invention has been
presented for purposes of illustration and description, and is
not intended to be exhaustive or limited to the invention in
the form disclosed. Many modi?cations and variations Will
be apparent to those of ordinary skill in the art. The
embodiment Was chosen and described in order to best
explain the principles of the invention, the practical appli
cation, and to enable others of ordinary skill in the art to
understand the invention for various embodiments With
various modi?cations as are suited to the particular use
contemplated.

What is claimed is:
1. Amethod, in a data processing system, for deploying an

enterprise application into a runtime environment, compris
ing:

identifying one or more extension points in a module of
the enterprise application;

identifying one or more plug-in modules de?ning exten
sions of the extension point; and

US 2006/0026591 A1

integrating the one or more plug-in modules into the
enterprise application based on con?guration informa
tion associated With the one or more plug-in modules
and the one or more extension points.

2. The method of claim 1, Wherein integrating the one or
more plug-in modules into the enterprise application
includes:

processing one or more manifest ?les associated With the
one or more plug-in modules to thereby generate con
?guration information for the one or more plug-in
modules; and

merging the con?guration information for the one or more
plug-in modules into one or more con?guration ?les of
the enterprise application.

3. The method of claim 1, Wherein the one or more plug-in
modules provide extended functionality to the enterprise
application thereby permitting the enterprise application to
perform functions that it could not prior to integration of the
one or more plug-n modules.

4. The method of claim 1, Wherein integrating the one or
more plug-in modules into the enterprise application
includes packaging the one or more plug-in modules into a
Web archive ?le associated With the enterprise application.

5. The method of claim 1, Wherein the enterprise appli
cation is a Java 2 Enterprise Edition (J2EE) application.

6. The method of claim 1, Wherein the one or more plug-in
modules are identi?ed in the con?guration information
based on a Uniform Resource Identi?er (URI) associated
With the one or more plug-in modules.

7. The method of claim 2, Wherein the manifest ?le is an
extensible markup language (XML) ?le that identi?es the
functionality of the plug-in module and identi?es an exten
sion point through Which the plug-in module may be
extended.

8. The method of claim 1, Wherein a schema is associated
With each extension point of the one or more extension
points, and Wherein a plug-in module must conform to the
schema of an extension point in order to extend the func
tionality of the enterprise application using that extension
point.

9. The method of claim 1, Wherein the one or more plug-in
modules includes a plurality of plug-in modules, and
Wherein at least one of the plurality of plug-in modules is an
extension of another one of the plurality of plug-in modules.

10. A computer program product in a computer readable
medium for deploying an enterprise application into a runt
ime environment, comprising:

?rst instructions for identifying one or more extension
points in a module of the enterprise application;

second instructions for identifying one or more plug-in
modules de?ning extensions of the extension point; and

third instructions for integrating the one or more plug-in
modules into the enterprise application based on con
?guration information associated With the one or more
plug-in modules and the one or more extension points.

11. The computer program product of claim 10, Wherein
the third instructions for integrating the one or more plug-in
modules into the enterprise application include:

instructions for processing one or more manifest ?les
associated With the one or more plug-in modules to

Feb. 2, 2006

thereby generate con?guration information for the one
or more plug-in modules; and

instructions for merging the con?guration information for
the one or more plug-in modules into one or more

con?guration ?les of the enterprise application.
12. The computer program product of claim 10, Wherein

the one or more plug-in modules provide extended func
tionality to the enterprise application thereby permitting the
enterprise application to perform functions that it could not
prior to integration of the one or more plug-n modules.

13. The computer program product of claim 10, Wherein
the third instructions for integrating the one or more plug-in
modules into the enterprise application include instructions
for packaging the one or more plug-in modules into a Web
archive ?le associated With the enterprise application.

14. The computer program product of claim 10, Wherein
the enterprise application is a Java 2 Enterprise Edition
(J2EE) application.

15. The computer program product of claim 10, Wherein
the one or more plug-in modules are identi?ed in the
con?guration information based on a Uniform Resource
Identi?er (URI) associated With the one or more plug-in
modules.

16. The computer program product of claim 11, Wherein
the manifest ?le is an extensible markup language (XML)
?le that identi?es the functionality of the plug-in module and
identi?es an extension point through Which the plug-in
module may be extended.

17. The computer program product of claim 10, Wherein
a schema is associated With each extension point of the one
or more extension points, and Wherein a plug-in module
must conform to the schema of an extension point in order
to extend the functionality of the enterprise application using
that extension point.

18. The computer program product of claim 10, Wherein
the one or more plug-in modules includes a plurality of
plug-in modules, and Wherein at least one of the plurality of
plug-in modules is an extension of another one of the
plurality of plug-in modules.

19. An apparatus for deploying an enterprise application
into a runtime environment, comprising:

means for identifying one or more extension points in a
module of the enterprise application;

means for identifying one or more plug-in modules de?n
ing extensions of the extension point; and

means for integrating the one or more plug-in modules
into the enterprise application based on con?guration
information associated With the one or more plug-in
modules and the one or more extension points.

20. The apparatus of claim 10, Wherein the means for
integrating the one or more plug-in modules into the enter
prise application include:

means for processing one or more manifest ?les associ
ated With the one or more plug-in modules to thereby
generate con?guration information for the one or more
plug-in modules; and

means for merging the con?guration information for the
one or more plug-in modules into one or more con

?guration ?les of the enterprise application.

* * * * *

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Description
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description/Claims
	Page 18 - Claims

