
l|||||||||||||ll||l||||||||l|||||||||||||||||||||l||
US 20040210662A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0210662 A1

Lim et al. (43) Pub. Date: Oct. 21, 2004

(54) INTERNET-ENABLED SERVICE Related US. Application Data
MANAGEMENT AND AUTHORIZATION
SYSTEM AND METHOD (63) Continuation of application No. 10/179,171, ?led on

Jun. 26, 2002, noW Pat. No. 6,732,181, Which is a
(75) Inventors: Chang Lim, North Vancouver, CA continuation of application No. 09/069,566, ?led on

(US); Jimmy K. Hui, Vancouver (CA); Apr. 29, 1998, noW Pat. No. 6,434,619.
Wendy W. J. Wu, Vancouver (CA);
Timmy W, Lee, Burnaby (CA); Heng Publication Classi?cation
M. Look, Burnaby (CA)

(51) Int. Cl.7 G06F 15/16; G06F 17/00
Correspondence Address; (52) US. Cl. 709/229
George M. MacGregor
Marks & Clerk (57) ABSTRACT
PO. Box 957, Station B _
55 Metcalfe SL ’ Suite 1380 A system and method for the management of communica

tion services from a service provider by a customer of the
Ottawa, ON KlP 587 (CA) .

provider. The management system employs an Internet
(73) Assigneez AICATEL CANADA INC_ based architecture that provides access to user’s virtual

private netWorks via an end user broWser. The customer

(21) Appl_ No; 10/796,051 service management (CSM) system service director (SD)
maintains a relational database for storing user speci?c

22 Filed; Mar, 10 2004 information retrieved from the netWork mana er. () , g

' Enter)

Dashboard

Create a new Help browserwindow. Update
'opener' of help wlndowto pointto user's SD

applicatiorwindow

Get Help contextfrom SD
app?cationserver

'Get'soeen ld'tag

'4 oesparentwlndowhave
an ‘context’ framewith a Y '
helpformcontalnlnga es

‘screen ld'tag? Map ‘screen Id‘
‘ lagto HTML?Ie

name

No
I‘ V

D efautt - ?g“ Display HTML ?le

Patent Application Publication Oct. 21, 2004 Sheet 1 0f 10 US 2004/0210662 A1

Customer's View " H"
of their Senlloes Service Provider‘: Network

FIGURE _1

Patent Application Publication Oct. 21, 2004 Sheet 2 0f 10 US 2004/0210662 A1

' Process Management Event Logging

m
Orllccmx

Us: Event
nan-n; an

FIGURE

Patent Application Publication Oct. 21, 2004 Sheet 3 0f 10 US 2004/0210662 A1

noun: 4

Enter >

DashboardFrame

l
Userlogsout

ChangeUsersstatusto
‘Enabled'

V

Retum

FIGURE 6

Dashboard Content Frame
Frame

FIGURE 7

Patent Application Publication

No

mamumus
boon-ac:

@

Oct. 21, 2004 Sheet 4 0f 10 US 2004/0210662 A1

Pmmpt: humid and Password

Userenten Userkand Password

Verify UserldandPuswomagalna
userlisl

Access Users nah-la

"' 'Jserldls

‘ disabled

‘ . ChangeUae?lP _

Addmsm ChangeUseh
Uwlsloggedh 1 m’ ‘ ‘hmb- I. ‘_Y

Mama _

Yes

Access '
buruea U“

W
FIGURE 5

‘ Display requester
userblogoutme
umersasbn

Patent Application Publication Oct. 21, 2004 Sheet 5 0f 10 US 2004/0210662 A1

Polntstoapplieatlonwlndaw

Help Win w 80 Application Window

opener

Help content DashboardFrame Content Frame

Frame

FIGURE 8

‘Concord I [hum/liming [hum/[concur] [RightFrame i

E 1 1 1 J 1 . 1 Mame E

@ l 1 1 1 F 1 lwmm j

E I 1 1 J 1 1 WEN]

LEE 1 1 I 1 1 1 [Ri?ltFrme a

FIGURE 10

Applicationl
App1ication2 Content Frame
Application}!

‘FIGURE '11

Patent Application Publication Oct. 21, 2004 Sheet 6 0f 10 US 2004/0210662 A1

' Enter >

Dashboard

Create a new Help bmwserwindow. Update
‘opener of helpwindowto pointto user's SD

applicationuindow

1
GetHelpcontextfrom SD

applicationserver

Get'soeen Id“ tag

'4 oesparentwindowhave
an ‘context’ ?amewith a
helpformeontalnlnga

‘screenld‘tag? Map ‘screen Id“
tag to HTML ?le

name

Dlspalydefault .
“Image Display HTML ?le

FI GURE 9

Patent Application Publication Oct. 21, 2004 Sheet 7 0f 10 US 2004/0210662 A1

‘ _ Enter >

Requesttodisplaya'dashbqard“
page

F oreach ‘?zlrd PartyApplication
thathas status = "On", generate

HTML tags fo?hlrd Part
App?cationsassignedtouser

I l
Generate

Display OGIFonn
‘--—--——-—— containing

'Dashboardbage prede?emgs
andvalues

< Return I '

FIGURE 12

Patent Application Publication Oct. 21, 2004 Sheet 8 0f 10 US 2004/0210662 A1

Dashboard 1

Frame Customer Care Service Management

Current Customcc customer 15

Select I customer to switchto

L851 WIS! 01/22/98 103419

Help Desk Phone Numbd'. 421-2643

Note Pad:

FIGURE 13

Dashboard -

Flam‘? Customer Service Management for
MB 15

List Login was 01/21/98 11:49:19
Help Desk Phone Number: 421-2643

Note Pad:

i

Your Service Prov-id: Tdecom Service Provide

FIGURE 14

Patent Application Publication Oct. 21, 2004 Sheet 9 0f 10 US 2004/0210662 A1

Requesltodisplaya'weioome'
page

Is usertype

7

Display
Weloon'te'page

‘Internal’?

Yes

1
Generatel-HML
tagsforswitch

CustomerAcoount

1
Display"

"Weleoome'bage
wimswitch

Customeo?ocount

Return

HTMLtags

FIGURE 15

Patent Application Publication Oct. 21, 2004 Sheet 10 0f 10 US 2004/0210662 A1

SystemStarM

Updatebadwp?le

backup?le by
addingatime- N° - Shutdown

stamp I request?

Yes
1 .

ghwdk \notckvp ‘WM I
(damn ~\ ‘i0 ska-(“L Updatdaackup?le _>- w “av/Mn’)

FIGURE 16

US 2004/0210662 A1

INTERNET-ENABLED SERVICE MANAGEMENT
AND AUTHORIZATION SYSTEM AND METHOD

FIELD OF THE INVENTION

[0001] This invention relates to service management of
digital communications networks and, in particular, to the
management of communications services from a service
provider by a customer of the provider.

BACKGROUND OF THE INVENTION

[0002] A network management system (NMS) provides
operators with a full range of con?guration capabilities on
multi-technology communications networks, as represented
in FIG. 1. The NMS may be used to con?gure the network,
manage links and paths, monitor network operations and
resolve problems from a central location. For eXample,
traf?c and service parameters on Frame Relay, ATM, X25,
SONET/SDH and ISDN links and paths can be con?gured
at the NMS, typically through a point-and-click graphical
user interface (GUI). End-to-end connections through the
network can be established by simply clicking on endpoints
depicted on the GUI. Network reliability is ensured through
automatic rerouting and restoration functions of the NMS.

[0003] Conventional NMSs, such as the MainStreetXpress
(trademark) 46020 from Newbridge Networks Corporation,
include functionality to partition communications network
resources whereby a service provider can resell bandwidth
and services to customers, and effectively manage the
resources, customers and operations personnel. A network
can be partitioned, for eXample, to divide it by region or
department, or to provide Virtual Private Networks (VPNs)
for multiple customers. Two of the types of VPNs are a
virtual backbone network (VBN) or a virtual service net
work (VSN). For sophisticated partitioning applications, it is
possible to subdivide a customer’s VBN into multiple VSNs.

[0004] A VBN partition is a physical partition of network
resources. This form of a partition contains bandwidth
dedicated to that partition only, and is characteriZed on the
NMS by a physical view of the network equipment and
bandwidth. The resources in a single VBN may be shared,
permitting customers to interact with the network as if it
were their own private backbone network.

[0005] VSN partitioning provides a more service oriented
view of the network, characteriZed on the NMS by the
subscribed services and the access points in and out of the
network for a particular customer. This form of a partition
contains pathend equipment only. Bandwidth is drawn from
the ‘parent’ partition which may be a VBN or the ‘supply’
network (i.e., the service provider’s physical network).

[0006] From large corporate customers supporting mis
sion-critical business applications, to small business clients
selling products worldwide, service provider subscribers are
demanding increased visibility and control of their sub
scribed communications services. Whether they are looking
for end-to-end visibility across the corporate-wide network,
or service performance information, customers want to
ensure their network is cost-effective and responsive to
rapidly changing needs. For service providers, meeting this
requirement creates an opportunity for service differentia
tion and competitive advantage.

[0007] The demand for customer service management
(CSM) features is being driven in large part by the growth

Oct. 21, 2004

in outsourcing of bandwidth by enterprise managers, value
added communications resellers, and other telecommunica
tions subscribers. Most service providers are looking for
customer network management (CNM) solutions to meet
these needs—solutions that typically eXtend network status
and performance information to subscribers.

SUMMARY OF THE INVENTION

[0008] The CSM Service Director (SD), embodied by the
present invention, makes it possible for service providers to
offer their customers the ability to monitor and manage their
outsourced network resources in much the same way as they
manage their in-house resources, giving them control of
their VPNs.

[0009] The information provided by the CSM SD re?ects
the view the service provider wants to eXtend to its customer.
In most cases, this will mean that customers are given the
ability to view their network endpoints and the status of the
associated connections. Details of the network, in terms of
network equipment and the routing of the connections, are
transparent to the customer. Instead the customer sees access
points and connections between these access points.

[0010] The SD introduces a Web-based presentation envi
ronment and a number of valuable CSM applications that
can be accessed via the Web medium. The CSM Service
Director brings the ?exibility and manageability of Web
browser and Internet/Intranet technologies to the CSM ser
vices offered by traditional NMSs. It works with the industry
standard Web browsers, Netscape Navigator and Microsoft
Internet Explorer. The CSM Service Director eXtends the
CSM market beyond large corporate customers to include
medium and small business subscribers.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The invention will now be described in greater
detail with reference to the attached drawings wherein:

[0012] FIG. 1 is a high level diagram of a system for
providing CSM services via a multi-technology network;

[0013] FIG. 2 illustrates the CSM services system accord
ing to the present invention;

[0014] FIG. 3 is a diagram showing the make up of the
HTML-CGI based software architecture;

[0015] FIG. 4 depicts information How between client and
server in the multiple login process;

[0016] FIG. 5 is a How diagram illustrating the multiple
login process of FIG. 4;

[0017] FIG. 6 is a How diagram showing a log out
process;

[0018] FIG. 7 illustrates a dashboard frame in a CSM
Service Director application;

[0019] FIG. 8 shows a representation of an online conteXt
sensitive help frame;

[0020] FIG. 9 is a How diagram of an online conteXt
sensitive help process;

[0021] FIG. 10 illustrates a third party application con
?guration screen;

US 2004/0210662 A1

[0022] FIG. 11 represents third party application dual
screen on an end-user’s browser window;

[0023] FIG. 12 is a How diagram for a con?gurable third
party Internet application integration;

[0024] FIG. 13 illustrates an internal user’s welcome
context frame;

[0025] FIG. 14 illustrates an external user’s welcome
context frame;

[0026] FIG. 15 is a How diagram for context switching to
a customer’s account; and

[0027] FIG. 16 is a How diagram for the backup procedure
in a shared memory application.

DETAILED DESCRIPTION OF THE
INVENTION

[0028] As shown in FIG. 1 the system of the present
invention relates to a network whereby a service provider
offers a customer a variety of resources and services via a

virtual private network (VPN). A network management
system allows an operator to con?gure the network in
accordance with speci?c requirements.

[0029] FIG. 2 is a high level view of the system according
to the invention. The NMS is used to con?gure the network
as shown in FIG. 1. The customer service management
(CSM) system includes a service director (SD) and a CSM
agent. In the following discussion the term CSM Agent is
meant to include a Newbridge Networks product known as
CSM Agents. The CSM Agent server stores SNMP Com
munity String (which is equivalent to a CSM Service
Director Customer or a Newbridge 46020 VSN), network
con?guration and network statistical information in a data
repository which is implemented using a typical relational
database, such as an Informix database, on the CSM Agent.
The information maintained therein is received from the
NMS which communicates with the CSM Agent, for
example, through the well-known Simple Network Manage
ment Protocol (SNMP). The NMS may be any commercially
available product that supports SNMP and virtual network
partitioning for respective customers, an example of which
being the MainStreetXpress 46020 Network Manager by
Newbridge Networks Corporation.

[0030] The CSM Service Director (SD) server accesses
the database maintained by the CSM Agent using structured
query language (SQL) which is the standard method of
accessing relational databases. End-users employing
browser clients interact with the CSM Service Director (SD)
server via world wide web based communications,
whereby the SD server receives service management queries
from the clients, retrieves corresponding customer service
information from the CSM Agent’s database and generates
an appropriate graphical based response which is returned to
the clients for display by their browsers.

[0031] Within the data repository, the customer informa
tion identi?es each customer subscribing to the CSM service
and for each customer, there is associated network con?gu
ration and network statistical information. The network
con?guration information includes con?guration parameters
for access ports and virtual circuits, for example, as
described in the Frame Relay Service Management Infor
mation Base (MIB) (IETF Network Working Group, “De?

Oct. 21, 2004

nitions of Managed Objects for Frame Relay Service”,
RFC1604) and the ATM MIB (IETF Network Working
Group, “De?nitions of Managed Objects for ATM Manage
ment”, RFC1695). The network statistical information
includes the appropriate information to process statistics
requests for the supported MIBs. The CSM Agent receives
customer information and con?guration changes from the
NMS as needed. These changes are processed by the CSM
Agent as they are received. The CSM Agent receives sta
tistical samples from the NMS on a periodic basis, for
example, in 15 minute intervals. The 15 minute intervals are
saved for a 24 hour period (i.e., 96 intervals are saved) and
a rolling total of these last 96 intervals is maintained. In
addition, the repository stores hourly, daily and monthly
accumulations of the statistical intervals. Hourly accumula
tions begin and end on the hour (e.g., 3:00 to 4:00). The daily
accumulations begin and end at midnight. The monthly
accumulations begin at midnight of the ?rst day of the month
and end at midnight of the last day of the month. The current
hourly, daily and monthly accumulations are updated as each
sample is received making these totals as up to date as
possible. The historical statistics are available until the data
is purged.

[0032] Although the preferred embodiment of the CSM
system incorporates the exchange of network data with the
NMS using an SNMP interface to the CSM Agent server
whose data repository is in turn accessed by the SD server,
the SD server could support a direct interface to the NMS
and multi-vendor network management products to support
multi-vendor service management.

[0033] The CSM Service Director client interface is a
WWW browser capable of supporting HTML 3.0, Java
Script 1.1 and Java.1.0.2 (e.g. Netscape Navigator 3.01 or
Microsoft Internet Explorer 3.0). HTTP is stateless protocol
and thus each CSM Service Director screen needs to contain
suf?cient user data, via hidden ?eld values, to display
subsequent screens.

[0034] A request from the WWW browser is sent to the
CSM Service Director back end server via the Web Server.
The CSM Service Director back end server processes the
web client’s request and returns a composed page to the
client via the Web server.

[0035] Each HTML page contains HTML, Java Script,
and Java Applets. HTML is used to compose Web pages.
Java Script is used for local client side processing (e.g.
button actions, update time stamps, setting cookies.) Java
Applets are used to provide more demanding Web interac
tions (e.g. displaying maps).

[0036] The software structure of the SD server character
iZes an HTML-common gateway interface (CGI) based
architecture which consists of both server application pro
cessing and client UI screen page generation. FIG. 3 shows
the HTML-CGI based software architecture of the SD. As
previously described, the CSM Agent is an external process
that maintains the database of customer service information
which is retrieved by the SD via an SQL interface.

[0037] The CSM Service Director constitutes a software
application that is executed on a conventional server plat
form known as a hypertext transfer protocol deamon
(HTTPD) that runs on a UNIX based data processing unit.
The HTTPD facilitates communications over the WWW

US 2004/0210662 A1

between clients and the server, and an example of the
HTTPD is the Netscape Enterprise Server. The CSM Service
Director application consists of four major modules: Client
UI, Service Management, Process Management, and Event
Logging. The modules in general comprise autonomous
processes and/or application program interfaces (APIs)
Which de?ned callable routines to derive certain informa
tion.

[0038] The Client UI module provides functionality for
managing the requests from Web clients. Each action taken
by a service end-user triggers a lightWeight CGI process that
retrieves/?lters/sorts data through a Web API from the
Service Management module, Which data is stored in a RAM
Workspace labeled as Perf Data in FIG. 3. A corresponding
HTML page is then generated as the response.

[0039] As shoWn in FIG. 3 the client UI module includes
a CGI parser, a WEB services API and a WEB page
formatting API.

[0040] The CGI parser provides a lightWeight CGI pro
gram to parse incoming parameters and invoke the corre
sponding WEB Services API. It consists of a set of CGI
programs Wherein each corresponds to a user request action.
Each user request from either a service user or the system
administrator invokes a CGI program on the Web server.
Each CGI program does the folloWing:

[0041] parses the Web CGI parameters;

[0042] invokes a WEB Services API routine using the
parsed CGI parameters as arguments; and

[0043]
[0044] Each CGI program returns the neXt HTML screen
page of the user request.

[0045] The WEB Services API provides a user request
level interface to Service Management APIs. It consists of a
set of APIs betWeen the CGI program and UNI/PVC APIs
and System Management APIs. Each WEB Services API
corresponds to a CGI program. Each API is de?ned as a
dynamically linked library, such that multiple CGI programs
can share a single copy of that API. Each WEB services API
does the folloWing:

[0046] validates user id With IP address;

returns the result to the Web broWser.

[0047] validates user capabilities;

[0048] invokes some of the APIs in the Service Man
agement module;

[0049] if returned object is a collection then ?lters/sorts
the collection;

[0050] invokes a WEB Page Formatting API to com
pose a HTML screen page for the returned object as
necessary; and

[0051]
[0052] The WEB Page Formatting API provide a common
page formatting interface to WEB Services APIs.

[0053] This API is a set of class methods that WEB
Services APIs invoke to build HTML pages. Each WEB
Page Formatting API builds a generic HTML page or a
portion of a HTML page.

returns the composed HTML screen page.

Oct. 21, 2004

[0054] Each class method composes a HTML screen page
for a given object or a collection of objects. Each class
method returns the composed HTML screen page.

[0055] The Service Management module consists of tWo
parts: one having functions for service end-users, and the
other is for service provider administrators (or service
provider end-users). Service end-user actions are served by
a UNI, PVC, UNI List, PVC List, End Point, and Perfor
mance Collection API that encapsulates the representation
details of these services. Service provider administrator
actions are served by a system information user, and cus
tomer API that retrieves and updates customer and user
account data, service provider information, as Well as license
information. The system information cache constitutes
shared memory in RAM, in Which the customer and user
pro?le data together With the system data are stored.

[0056] As shoWn in FIG. 3 the Service Management
Module includes a number of APIs and a cache memory.

[0057] The Performance Collection API provides disk ?le
storage for user requested performance data.

[0058] The performance data can be stored on disk ?les in
an ASCII format readable by an application such as
Microsoft EXcel. As a Performance Report screen is being
generated, the data set is saved to a temporary ?le. A user
request to “Export RaW Data” causes this temporary ?le to
be renamed to a speci?c ?le name.

[0059] The PVC API provides a service level interface to
access object identi?cation (OIDs) associated With PVCs. It
is an API betWeen client UI and CSM Agent InformiX
database for con?guration and status data of PVCs. Perfor
mance statistics data are also taken directly from the CSM
Agent database via SQL queries. The API is de?ned as a
dynamically linked library, such that multiple CGI programs
can share a single copy of this API. Methods include:

[0060] for each PVC, read of any speci?ed OID; and

[0061] for each PVC, Write of alias;

[0062] The PVC API uses the CSM Agent database for
PVC data. SQL queries are used to get data.

[0063] The UNI API provides a service level interface to
access OIDs associated With UNIs. The UNI API is an API
betWeen client UI and CSM Agent InformiX database for
con?guration and status data of UNIs. Performance statistics
data are also taken directly from the CSM Agent database
via SQL queries. The API is de?ned as a dynamically linked
library, such that multiple CGI programs can share a single
copy of this API. Methods include:

[0064] for each UNI, read of any speci?ed OID; and

[0065] for each UNI, Write of alias

[0066] It uses CSM Agent database for UNI data. SQL
queries are used to get data.

[0067] The PVCList API provides a service level interface
to access managed object indices associated With PVCs for
a speci?ed community. PVCList should also provide APIs
for retrieving information of PVCs related to speci?ed
UNIs. It comprises an API betWeen client UI and CSM
Agent InformiX database for retrieving speci?ed information
on a speci?ed UNI. The API is de?ned as a dynamically
linked library, such that multiple CGI programs can share a

US 2004/0210662 A1

single copy of this API. It Uses the CSM Agent database for
PVC data. SQL queries are used to get data.

[0068] The UNIList API provides a service level interface
to access managed object indices associated With UNIs for
a speci?ed community. The UNIList API is betWeen client
UI and CSM Agent InformiX database for retrieving speci
?ed information on a speci?ed community. The API is
de?ned as a dynamically linked library, such that multiple
CGI programs can share a single copy of this API. It uses the
CSM Agent database for UNI data. SQL queries are used to
get data.

[0069] The End Point API provides a service level inter
face to access End Point managed objects. It consists of an
API betWeen client UI and CSM Agent InformiX database
for retrieving speci?ed information on speci?ed End Point.
The API is de?ned as a dynamically linked library, such that
multiple CGI programs can share a single copy of this API.
It uses the CSM Agent database for End Point related data.
SQL queries are used to get data.

[0070] The System API provides a service level interface
to access all system management information, related ser
vice provider information, start/stop system, report status of
the system, and license information.

[0071] The System API is betWeen client UI and System
related information. Each API is de?ned as a dynamically
linked library, such that multiple CGI programs can share a
single copy of that API.

[0072] UNIX scripts are used to start, maintain, stop and
report status of the process management daemon.

[0073] API betWeen client UI and system license infor
mation includes the folloWing methods:

[0074] convert to system license information from
application key;

[0075] upgrade system license based on the neW appli
cation key; and

[0076] report current license information and license
utiliZation data.

[0077] It uses shared memory segments to cache data.
Each update to the memory is Written back to the disk ?les.
RogueWave tools.h++ is used to support data persistency for
non-shareable data.

[0078] User account API uses license information to limit
the number of users supported by the system.

[0079] CGI programs use service provider information to
generate customiZed page.

[0080] The System Information Cache provides an inter
nal interface that is used by the components from the Service
Management block, for communicating With shared
memory. It comprises an API used for communication With
the shared memory segments. Its methods include:

[0081] attachment of the shared memory; and

[0082] detachment of the shared memory.

Oct. 21, 2004

[0083] Any interaction With shared memory needs to go
over this interface.

[0084] The Customer API provides a service level inter
face to access customer and service provider data. It is an
API betWeen client UI and customer information and pro
vides the folloWing:

[0085]
[0086] for each customer, read and Write of any speci

?ed ?eld;

[0087]
[0088] delete an eXisting customer.

a list of customers;

create neW customer; and

[0089] A usage counter is maintained for each customer
both in cache and on disk ?les. The counter increments each
time a user of that customer logs in. Any Write operation to
the memory system information also Writes to corresponding
customer and service provider data disk ?les.

[0090] The User API provides a service level interface to
access user account data. It is an API betWeen client UI and
user account information and provides:

[0091]
[0092] for each user account, read and Write of any

speci?ed ?eld;

a list of user accounts;

[0093] create neW user account; and

[0094] delete an existing user account.

[0095] Internal data per user account includes:

[0096] last login date and time;

[0097] service user phone number;

[0098] service user note pad;

[0099] service user con?rmation enabled;

[0100] number of consecutive service user login fail
ures;

[0101] UNI ?lter criteria;

[0102] UNI sort ?eld;

[0103] UNI sort ordering;

[0104] PVC ?lter criteria;

[0105] PVC sort ?eld; and

[0106] PVC sort ordering.

[0107] Any Write operation to memory system informa
tion also Writes to a corresponding user account ?les. It uses
customer and service provider data API to get a list of
available customers. Netscape Enterprise server is used to
store user account and passWord, and to enable/disable user
accounts.

[0108] Memory System Information provides an
in-memory cache for system information ?les. It consists of
C++ data structures residing in shared memory, used to store
system information read from disk ?les. Data cached are:

[0109] system mode;

[0110] CSM Agent status; and

[0111] system information.

US 2004/0210662 A1

[0112] RogueWave tools.h++is used for the following
data:

[0113]
[0114]
[0115] user account data.

customer data;

service provider information; and

[0116] APIs are used to access the above information.

[0117] The Database Utility API provides tools for access
ing Informix database. Database Utility API Will also pro
vide functions for opening and closing database. ADatabase
Utility API Will be used by the other API modules for
accessing Informix database.

[0118] The Process Management module is responsible
for process running and monitoring. It starts the respective
processes and ensures each is still running; processes are
restarted if necessary. Also, Process Management kills other
processes for a graceful shutdoWn.

[0119] As shoWn in FIG. 3 the Process Management
Module Includes a SD_Daemon Which provides process
startup, creation of shared memory segments, and control of
the running processes. It makes use of CSM Agent code for
management of processes. Its functionality includes:

[0120] running processes;

[0121] checking if the processes are running; and

[0122] creation of the shared memory segment.

[0123] The Event Logging module is used by client UI,
service management and process management modules to
report any softWare log or user event. Events are ?rst logged
to a shared memory segment. ELS collector then copies the
event logs to disk ?les. A user event daemon is used to
further ?lter and convert user events from the disk ?les into
readable ASCII user event ?les.

[0124] The Event Logging Module shoWn in FIG. 3
includes an ELS API, an ELS Collector, an ELS Log, a User
Event Daemon, and User Events.

[0125] The ELS API provides a common logging service
that is used by client UI, service management and process
management to log user events and softWare problems. This
API is taken directly from the NetWork Managers (46020,
for example) SW_Error and ELS APIs. NeW event descrip
tors are introduced for each required source code ?le. Each
neW source code ?le is required to declare and use its oWn
event descriptors to uniquely identify potential softWare
problems Within that ?le. Data are logged to shared memory
by applications. Event descriptor parsing needs to be called
in each build.

[0126] The ELS Collector collects logs from various
applications. A C process is built based on 46020’s ELS
collector. Data are read from shared memory and then
logged to hard disks.

[0127] The ELS Logs provide persistent logs Which are
kept in a format identical to 46020’s ELS and can be
examined via 46020’s logtool.

[0128] The User Event Daemon generates user events
based on the logic in 46020 ELS “log” process to generate
user events. It also manages the available disk ?les for user
events. The daemon retrieves and ?lters out user event

Oct. 21, 2004

associated logs from the disk log ?les generated by ELS
collector, and dumps the user events to a list of user event
?les in the format de?ned by the user event descriptors.

[0129] User Events provide persistent user events Which
are kept for further processing, like billing and can be
examined via any text editor.

[0130] To make CGI processes lightWeight, a dynamic
linking library Whereby executable routines are loaded into
memory is used, and shared memory is used for inter
process communications. User, customer, service provider,
and system information are stored in a shared memory
segment, speci?cally the System Information Cache, acces
sible from the dynamically linked libraries. Each CGI pro
cess handles the request on its oWn, With the assistance of
dynamically linked libraries, to access the shared memory.
The shared memory is described in greater detail later.

[0131] Moreover, any persistent data that is Service Direc
tor speci?c and is not available in the CSM Agents Informix
database are stored in the shared memory.

[0132] The information related to the customer, user,
service provider, and system in general Will also be backed
up on the hard drive. The cron job Will trigger the backup
process periodically. The default interval is 15 minutes.

[0133] Netscape Enterprise server 2.0 spaWns a CGI pro
cess for each user action taken by a Web user. This CGI
process then executes the corresponding CGI program.
Binary executables are bundled together With Netscape
Enterprise server for managing user accounts and pass
Words. PassWords are not maintained in standard UNIX
?le/etc/passWd.

[0134] Essentially, every navigation action taken by the
user Will trigger a CGI process that determines the next page
to present. For each CGI process, user access is validated
quietly in the background. There isn’t really a user session
for each login to Service Director.

[0135] Netscape server plug-in API is a set of ANSI C
functions that enables users in tailoring Netscape Enterprise
servers behavior. Server’s plug-in functions may be created
or altered by this API. For example, functions can be created
for access control of the Service Director.

[0136] User access authoriZation is achieved via user
account ID and IP address. User Ids and IP address are
transferred Within HTTP protocol request and response
header for each request and response. Both user Ids and IP
address are used for subsequent access authoriZation of CGI
programs.

[0137] There is a Web-based ?le transfer function embed
ded in Service Director. It can be triggered by pressing the
corresponding button on the navigation frame. Directories
are created for each customer. Users Within each customer
share the same directory.

[0138] All user accounts of a particular customer share a
common directory. Upon creation of a customer account, a
directory for the customer is created With the correct read/
Write permission. User Ids and IP address are used for
directory access authoriZation. An individual user can access
only his assigned customer directory. The user cannot dis
cover the existence of other customers.

US 2004/0210662 A1

[0139] An internal user is created by con?guring the user
as “internal” from the user account management page. An
internal user account type has the same look and feel as a
regular customer user except for a slightly modi?ed Wel
come page. There is a drop box selection menu that alloWs
the user to sWitch to another customer portfolio and act as a
user from that customer. By sWitching it is meant that no
login procedure is needed. This internal user (or super user)
is intended for the service provider only.

[0140] Direct Informix queries to the CSM Agent database
are chosen as the mechanism for retrieving con?guration
and historic performance statistics data because one SQL
query can retrieve multiple intervals of statistics or con?gu
ration data for multiple netWork objects. Other vital, invis
ible data items, such as time stamps of statistics intervals,
can be retrieved and used for performance reporting.

[0141] This approach does not cache any con?guration
and historic performance statistics data. Each con?guration
and/or performance report triggers database queries to the
CSM Agent database.

[0142] In the Service Director Server/Application there
are a number of high level interactions betWeen softWare
modules in response to common, representative external and
internal events. The folloWing gives an overvieW of the
functional division of the Service Director.

[0143] With the User Login a user logs in as either an
internal/external service user, or an administrator (i.e.,
admin account). Login may succeed or fail. Failure reasons
are invalid passWord, disabled account, non-existent
account, multiple logins, server status locked, or unavailable
service.

[0144] Upon user login, a login CGI program is ?red up.
The Login CGI uses the system shared memory’s simple
user database for user access authoriZation. If login is
successful, the CGI program calls Web API, Which again
calls System API, to construct the users Welcome screen.
System then changes the status of the user account to active.

[0145] If the system service is not available, or the user
account is disabled, or the user is already logged in, as
reported by System API, an error noti?cation screen is
constructed to notify the user of the speci?c reason. If login
failure is reported by the Login CGI process, an error
noti?cation screen is constructed With a speci?c reason, i.e.,
non-existent account, invalid passWord.

[0146] Each login attempt is logged as a user event,
regardless of Whether the attempt succeeds or not.

[0147] Details respecting the log in mechanism folloWs.

[0148] The Inactive User Auto Logout automatically logs
out an inactive user, regardless of Whether it is an internal/
external service user, or an administrator.

[0149] The auto logout cron job is used to automatically
log out inactive users. Once an active user is logged out, any
further action taken by the user leads to an error noti?cation
screen. The user is required to log in again. The cron job is
started every 10 minutes to clean up inactive users. The cron
job calls the System Management API for inactive auto
logout period. For each active user, it calculates Whether the
inactive period is greater than or equal to the system
parameter. If so, that user is automatically logged out,

Oct. 21, 2004

System Management API is then used to delete the active
user, and a user event is generated.

[0150] The side effect of the approach is that an inactive
user may be logged out 10 minutes later than What the
system parameter speci?es, due to the cron job scheduling
period.
[0151] Service User Actions include Get and Set Opera
tion; Sorting and Filtering; Export Performance Report
Data; and Server Start, Stop and Status.

[0152] The Get and Set Operation gets data for related
managed object, and sets data directly to the CSM Agent.
Upon user login, data associated With the customer are
polled by the system on request.

[0153] Get data: UNI/PVC API or System Mgmt API
CSM Agent database for the item. In normal operation, data
are returned. If the response is expired, a response HTML
page is constructed to notify the user to Wait. If the response
is unde?ned, UNI/PVC API informs the user that informa
tion is not available. In any case, Web API is used to form
the neW HTML page. The number of gets performed for the
user action is logged to User Events by UNI/PVC API.

[0154] Set data: UNI/PVC API calls CSM Agent database
to set. The response is used by Web API to form a neW
HTML page. The number of sets performed for the user
action is logged to User Events by UNI/PVC API.

[0155] The Sorting and Filtering operation handles sort
and ?lter con?gurations and performs sorting and ?ltering of
data. Sorting/?ltering ?elds and ordering are maintained
internally per user by the system. Upon recon?guration or
user action, the system’s internal shared memory is accessed
and updated for the sorting and ?ltering criteria as folloWs:

[0156] Sorting: This action Will be done on the user side
in the Java applet.

[0157] Filtering: Upon click of ?ltering ?eld, a CGI
program is started to retrieve the current ?ltering cri
teria CSM Agent database via User API and format
them via Web API. Upon applying ?lter preference, a
?lter preference CGI program is started to save the
?ltering criteria to In-memory System Info via User
API. The CGI then retrieves all the data, again via
UNI/PVC API and re-sorts/re-?lters the results and
forms the ?rst page UNI or PVC list via Web API.

[0158] The Export Performance Report Data operation
saves current vieWed Performance Report data to a disk ?le.
Data set of the current display graph is exported to a ?le on
a pre-de?ned user-speci?c directory on the Web server. As
a Performance Report screen is being generated, the data set
is saved to a temporary ?le (e.g. perf1.tmp), and the tem
porary ?le name is a hidden ?eld in a generated HTML page.
Auser request to “Export RaW Data” causes this temporary
?le name to be passed back to the Web server and renamed
to a speci?c ?le name (eg perf1.rpt) in the pre-de?ned
user-speci?c directory. The current date and time are used to
make the ?le name unique. The name given to the permanent
?le may be speci?ed by the user. The data can be accessed
via a ?le transfer protocol from the user-speci?c directory.
All hanging temporary ?les are deleted upon “User Logout”
or “Inactive User Auto Logout”.

[0159] The Export RaW Data function alloWs a user, While
vieWing performance reporting screens, the capability of

US 2004/0210662 A1

saving data points of the performance graph to the user’s
Web directory as provided by the Service Provider. The data
points may be saved using Excel. The system allows a user
to retrieve ?les, generated via the Export RaW Data function
from the user’s Web directory to the user’s local personal
computer or Workstation. This alloWs the user to vieW and
manipulate his local copy of the data set using an application
such as Excel.

[0160] Server Start, Stop and Status are basic system
maintenance functions. Start, Stop puts the system into
maintenance mode, monitors and reports server daemon
process status. Upon click of Server Mgmt from dashboard,
a server mgmt CGI is started, Which accesses System API to
examine the current system mode and server process status,
and forms an HTML page via Web API. Upon click of Start
Server, Stop Server or Maintain Server, a corresponding
CGI program is started to handle the basic system mainte
nance function. Each CGI is simply a UNIX script.

[0161] The process for each of the maintenance functions
folloWs:

[0162] 1. Start Server: Start up any server daemon
process that is not already up. Set system mode to up.
Typical system startup sequence is as folloWs:

[0163]
mon;

a. Start Netscape Enterprise server 2.0 dae

[0164] b. Load all system management information
into System Info Cache shared memory;

[0165] c. Create shared memory segment for ELS
collector and start ELS collector process;

[0166] d. Start User Event Daemon process;

[0167] e. Schedule auto logout cron job and server
status monitor cron job;

[0168] f. Load all dynamically linked libraries, i.e.,
UNI API, System API, Web API; and

[0169] g. Set system mode to up.

[0170] 2. Stop Server: Gracefully stop and then force
fully kill all server daemon processes. Shared memory
segments are not removed. Set system mode to doWn.

[0171] 3. Maintain Server: Set system mode to mainte
nance.

[0172] Automatically log out all active service users by
using System API to delete active users.

[0173] The User Event Logging function logs a service
user’s get operations per user action.

[0174] The number of get operations on the service man
agement level is recorded per user action. A get operation
presents the equivalent of a user action. Service user’s set
operations are logged similarly. The UNI inventory list
action from dashboard is used to illustrate the user interac
tion.

[0175] Upon click of UNI Services from dashboard, a UNI
service CGI program is started up, Which accesses UNIList
API to retrieve a list of UNIs for the service user. All
corresponding ?elds are retrieved per UNI using UNI API.
Web API then generates the response to the user action and
also uses ELS API to log made action. ELS Collector

Oct. 21, 2004

process periodically polls the ELS shared memory log and
Writes them to Logs. The daemon process User Event
Daemon consistently receives updates to the Logs, ?lters out
user events and Writes to User Events disk ?le.

[0176] As previously discussed the present invention
relates to an Internet-enabled service management system
and method that enables the customers of a service provider
With Web-based access to manage the services they receive
from a service provider. The management capabilities of the
system include the ability to perform performance and
con?guration management on netWork services provided by
the service provider.

[0177] One of these SD applications performs user vali
dation and prevents multiple logon of identical user Ids
through the Internet. According to this aspect a user’s
session is timed out after a period of inactivity betWeen the
user’s broWser and the server application.

[0178] In the past, a user logs on to an Internet application
by providing a User Id and User PassWord. The user remains
logged on to the system until either the user logs out of the
application or the user’s session is timed out by the server
application. Due to the statelessness of the HTTP protocol,
this mechanism does not alloW multiple logon of identical
user Ids. It presents a problem if the user’s Internet broWser
crashes and the user Wishes to re-logon to the system; the
user Would have to Wait until his previous session is timed
out by the server application before he can re-logon to the
application. This logon mechanism also disalloWs a user
from sWitching to another Workstation to logon to the
application Whilst having a current active session on another
Workstation; the user either needs to log out from the
application from his original Workstation or Wait until his
current session is timed out by the server application before
he can logon from another Workstation. To solve this prob
lem, a neW logon system is created. This neW logon authen
tication system prevents multiple logon of the same logon Id
and the ability to accommodate subsequent logon When a
user’s Web broWser has crashed or the user is operating from
another Workstation.

[0179] The SD application logon authentication aspect
prevents multiple logon of identical logon Id With the ability
to accommodate subsequent logon When a user’s Web
broWser has crashed With the ability to logon from another
Workstation Whilst having a current active session on
another Workstation.

[0180] In accordance With this aspect the application
maintains a list of users. For each user the application stores
a user Id, a user passWord, status, and an IP address. When
a user requests access to the SD application, the application
requires the user to enter a user Id and a user passWord. The
application validates the information provided against the
list of users stored in the application. If the user name and
passWord matches, the application checks the user’s status in
the application. If the user’s status is “enabled” then the user
is logged onto the system and the user’s status is changed to
“active”. The IP address of the user’s Workstation is
retrieved through the environment variable
“REMOTE_ADDR” by the server application. This IP
address is saved in the user’s IP address ?eld. If the user’s
status is “disabled” then the user is rejected. If the user’s
status is “active”, then the application determines if the IP
address of the current request matches With the stored user’s

US 2004/0210662 A1

IP address. If the IP addresses match, the user is logged on
to the application. However, if the IP addresses do match
(i.e. multiple logon of a user With the same user Id has been
detected), a log out form Will be displayed to inform the
incoming user that a user With the same user Id is already in
the system. The application Will prompt the user to log off
the other session.

[0181] To enforce the user logon, functions de?ned using
Netscape Server API are to be created. Since Netscape
Server Will respond to every incoming request from clients,
functions can be used to authenticate users before the server
starts to service the request.

[0182] Four functions are de?ned using Netscape Server
API. The ?rst function services the logon process. It checks
the user Id and passWord against the list stored in the
application. It sends out a JavaScript cookie to the client
after the user Id and passWord are validated. The second
function services the log out process.

[0183] The third function services the log out form. For
example, When a user tries to log into the system With a user
Id Which belongs to someone Who has already logged onto
the system (i.e. multiple logon has been detected), a log out
form Will be displayed to inform the incoming user that a
user With the same user Id is already in the system, and
prompt him to log off the other session.

[0184] The fourth function Will verify the J avaScript
cookie to see if the server Will go on to service the request
at all.

[0185] FIG. 4 illustrates the How of information betWeen
the client and server. The client sends a TCP/IP message
containing user Id and passWord to the server. The IP address
of the client is included in the TCP/IP message. If the client
is authoriZed the server returns a Welcome page together
With a J avaScript cookie, Which contains the user Id, to the
client. The client broWser matches the URL destination
(domain) address to that of the cookie. It then sends the
cookie together With the query to the server.

[0186] The JavaScript cookie expires at the end of the
session i.e. logout or broWser terminated.

[0187] FIG. 5 is a How diagram illustrating the multiple
logon mechanism. FIG. 6 is a How diagram illustrating the
logout process.

[0188] Although the foregoing description is based on the
CSM SD application it is to be understood that the basic
functionality Which prevents multiple logon is not limited to
this system and can be implemented in other client-server
applications.

[0189] Another aspect of the present invention relates to
online context sensitive help Wherein the SD application
provides a user friendly explanation of the current content in
its content frame WindoW.

[0190] In the past, a user using an Internet based applica
tion Would invoke context sensitive help information by
clicking on a link on the content page. Due to the nature of
Web broWsers, the broWser display area is usually smaller
than the display HTML page; thus a user Would need to
scroll the entire frame to vieW all of the page context. It
creates a problem that a user might have to scroll the page
to ?nd the context sensitive help link for invoking the help

Oct. 21, 2004

feature. Furthermore, if the help link Was not implemented
on the display page, a user Would be unable to get any help
information.

[0191] This aspect of the present invention solves the
aforementioned problem by creating a neW context sensitive
help mechanism. This neW mechanism provides a consistent
context sensitive help button on the “dashboard” frame as
shoWn in FIG. 7. A user is able to click on the Help button
on the dashboard and be presented With information relating
to the current right frame screen. The Help information is
presented as a neW Web broWser. The help screen is updated
as the user navigates to different screens and selects the help
button.

[0192] The navigation frame (i.e. the left frame) of the
help WindoW alloWs a user to navigate through the help
documents. The content frame (i.e. the right frame) of the
help WindoW contains the selected help content. The navi
gation frame contains a CSM SD application like dashboard
and additional help topics. A click on the dashboard or on a
help topic, or through context sensitive help from the
application updates the content frame With the correspond
ing help text.

[0193] The SD application’s context sensitive help inven
tion provides the user With a consistent place to invoked
context sensitive help. Context sensitive help is invoked
from a link in the “dashboard” frame WindoW. This mecha
nism alloWs the creation of a help WindoW from the appli
cation screen With or Without special HTML tag encoding in
the content frame’s HTML page. The content sensitive help
frame can also be invoked as a stand-alone application. If the
context sensitive help WindoW is invoked from the SD
application With special HTML tag encoding in its context
HTML page, context sensitive information Will be pre
sented, otherWise, a default help information page Will be
presented.

[0194] The application, in addition to generating HTML
contents for presentation, generates the folloWing HTML
tags:

[0195] In each Content Frame page:

<Form Name=“helpForm”>
<Input Type=“hidden” Name=“screenID” value=“(a screen
identi?er)”>

[0196] The Dashboard frame contains J avaScript code to
create a neW broWser Help WindoW.

[0197] The Help WindoW frame requests more HTML
help contents from the SD application server. The resulting
request contains J avaScript code to look into it’s opener (i.e.
parent) WindoW to check if it has a Content Frame With a
“screen Id” tag. This “screen Id” tag is mapped to a
corresponding help URL by the Help WindoW for displaying
help information in the Help Content Frame that corre
sponds to the “screen Id” tag. If “screen Id” is not present,
then a default help page Will be presented.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description/Claims
	Page 24 - Claims

