
(12) United States Patent
US006401202B1

(10) Patent N0.: US 6,401,202 B1
Abgrall (45) Date of Patent: Jun. 4, 2002

(54) MULTITASKING DURING BIOS BOOT-UP 5,594,903 A 1/1997 Bunnell et al.
5,604,890 A 2/1997 Miller

(75) Inventor: Jean-Paul Abgrall, San Jose, CA (US) 5,652,868 A 7/1997 Williams
5,652,886 A 7/1997 Tulpule et al.

(73) Assignee: Phoenix Technologies Ltd., San Jose, 576647194 A 9/1997 Paulsen
C A (Us) 5,680,547 A 10/1997 Chang

5,692,190 A 11/1997 Williams
. 5,694,583 A 12/1997 Williams et al.

(*) Notice: Sub]ect~ to any disclaimer, the term of this 5,694,600 A 12/1997 Khenson et a1‘
patent is extended or ad]usted under 35 5,701,477 A 12/1997 chejlavaj In
U-S-C- 154(b) by 0 days~ 5,715,456 A 2/1998 Bennett et al.

5,717,930 A 2/1998 Imaietal.
(21) App1_ NO; 09/336,110 5,727,213 A 3/1998 Vander Kamp et al.

5,732,268 A 3/1998 BiZZarri
(22) Filed: Jun. 18, 1999 5,748,957 A 5/1998 Klein

7 5,754,853 A 5/1998 Pearce
(51) Int. Cl. G06F 9/445 5,764,593 A 6/1998 Turpin et a1_
(52) US. Cl. 713/2 5,781,758 A 7/1998 Morley
(58) Field of Search . 713/2; 709/107 5,790,849 A 8/1998 Crockef 6t a1~

5,796,984 A 8/1998 Pearce et al.
(56) References Cited 5,802,363 A 9/1998 Williams et al.

5,805,880 A 9/1998 Pearce et al.
US. PATENT DOCUMENTS 5,805,882 A 9/1998 Cooper et al.

5,815,706 A 9/1998 Stewart et al.
5,063,496 A * 11/1991 Dayan et al. 713/200 5,819,063 A 1O/1998 Dahl et a1_

5,121,345 A 6/1992 Lem 5,828,888 A 10/1998 Kozakietal.
5,128,995 A 7/1992 Arnold et al. 5,832,251 A 11/1998 Takahashi
5,131,089 A 7/1992 C016 5,842,011 A 11/1998 Basu
5,142,680 A 8/1992 Ottman et al. 5,854,905 A 12/1998 Gamey
5,146,568 A 9/1992 Flaherty et al. 5,864,698 A 1/1999 Krau et a1_
5,214,695 A 5/1993 Arnold et al. 5,887,164 A 3/1999 Gupta
5,274,816 A 12/1993 Oka 5,901,310 A 5/1999 Rahman et al.
5,280,627 A 1/1994 Flaherty et al. 5,907,679 A 5/1999 Hoang et a1_
5,307,497 A 4/1994 Feigenbaum er 91- 5,978,912 A * 11/1999 Rakavy et al. 713/2
5,325,532 A 6/1994 Crosswy et al.
5,379,431 A 1/1995 Lemon et al. * cited by examiner
5,381,549 A 1/1995 Tamura _ _
5,418,918 A 5/1995 Vander Kamp et aL Primary Examiner—Thomas M. Heckler

5,444,850 A 8/1995 Chang (57) ABSTRACT
5,448,741 A 9/1995 Oka
574527454 A 9/1995 Bas‘} The present invention is a method and apparatus to perform
5’463’766 A 10/1995 schlejve et a1‘ multitasking in a basic input and output system (BIOS).

2 éllggglll’eilllet a1‘ Interrupt signals are enabled at predetermined interrupt
5’522’076 A 5/1996 D ewa et aL' times. A ?rst task is performed in response to the interrupt
5:526:523 A 6/1996 Straub et aL signals at the interrupt times. A second task is performed
5,542,082 A 7/1996 solhjell betWeen the successive interrupt times.
5,581,740 A 12/1996 Jones
5,586,327 A 12/1996 Bealkowski et al. 40 Claims, 7 Drawing Sheets

/ s00

WAUZE USER \NTERACT‘ON
CES (A9.‘ msPuiv, KEYBOARD)

H30

DOES
, \NTERRUPT

occur?
7

7‘ s40
‘ PERFORM/CONTWUE TO PERFORM
‘ NORMAL srcom: TASK

IS

550

msABLE \NTEIQRUPT GENERATOR
555

V 8001 UP DPERA‘HNG SYSTEM

END

1 B m

2 0

1, 1 I I I I I I ll

0 _| J
4, E 6 _

6 _ 5 Y) _ S _ r R s _

U A(

_ D E _

NH .

O_ 0% _
5_ RE _ _,_ SW _

L _

7 _ _

M _ 4 _

1 _ _

5

a _ / _
1m. _ YE _

S R W

_ AS _ _ m w _ R _ PW _

m _ _

0

2 _ _

4, _ _ n. _ _

u 2

_ / m _

_ M H _

l _) R$ _
t S T B _ n . _?._\ 5E _

w G _ .u m w _ a l _ m R _

P F _ M _ S F I T l l I I |||_

fzo

INFO
SERVICE

COMPUTER M

/261
INFO

SERVICE
COMPUTER 1

/ 22

24

DATABASE

SERVER(S)

/
301V

\

/40,V

USER
COMPUTER N

30,

USER
COMPUTER 1

Ti) 111m
ITTJT / A, 5/

401

E

U.S. Patent Jun. 4, 2002 Sheet 6 0f 7 US 6,401,202 B1

mGK
E252

@GK
Y v_m<._. azoomm i262

EmK

256m 530528 89> Gama _ \moinzma
.\

S: K SI

GEE 292272 $3 va? ENE
$5 5% ll! 18 252 m8 5% <20 85% E215;

gm K 2% K A

“02550 E355;
26K

can

E225;
NB K

38 2:;
2% K

U.S. Patent Jun. 4, 2002 Sheet 7 0f 7 US 6,401,202 B1

FIG. 5 /600
[610

PERFORM HARDWARE RESET

I f 615
PERFORM MINIMAL HARDWARE TEST

I f 620
INITIALIZE USER INTERACTION

DEVICES (e.g., DISPLAY, KEYBOARD)

I r625
CONFIGURE INTERRUPT GENERATOR

FOR THE FIRST TASK

f 535

PERFORM FIRST TASK
(e.g., PROCESS

ANIMATION FRAMES)

DOES
INTERRUPT
OCCUR

'?

f 640

PERFORM/CONTINUE TO PERFORM
NORMAL SECOND TASK

SECOND
TASK

COMPLETED

DISABLE INTERRU PT GENERATOR

I 655
BOOT UP OPERATING SYSTEM

END

US 6,401,202 B1
1

MULTITASKING DURING BIOS BOOT-UP

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to ?rmware in a processor based

system. In particular, the invention relates to multitasking in
basic input and output system (BIOS).

2. Description of Related Art
To execute a program, a processor in a computer system

has to access the executable code of the program from the
memory. When the computer is ?rst poWered up, the pro
cessor usually executes the ?rmWare Which generally is the
Basic Input and Output System (BIOS) program. The BIOS
contains the executable code for a boot-up program. It is
essentially a built-in softWare containing a set of instructions
that control systems devices and test memory. Because it is
typically stored in a Read-Only Memory (ROM) chip on the
motherboard, it is sometimes call the ROM BIOS.

In a typical poWer up sequence, upon poWer up the
processor “Wakes up” and sends a message to activate the
BIOS. When executed, the BIOS runs a series of tests, called
the POST for PoWer On Self Test, to make sure the system
devices are Working correctly. In general, the BIOS initial
iZes system hardWare and chipset registers, initialiZes poWer
management, tests RAM (Random Access Memory),
enables the keyboard, tests serial and parallel ports, initial
iZes ?oppy disk drives and hard disk drive controllers, and
displays system summary information. During POST, the
BIOS compares the system con?guration data obtained from
POST With the system information stored in a non-volatile
memory, generally a CMOS (Complementary Metal-Oxide
Semiconductor) memory chip located on the motherboard.
This non-volatile memory chip, Which is updated Whenever
neW system components are added, contains the latest infor
mation about system components.

After the POST tasks are completed, the BIOS looks for
the boot program responsible for loading the operating
system. Usually, the BIOS looks on the ?oppy disk drive A
folloWed by hard drive C. After being loaded into memory,
the boot program then loads the system con?guration
information, typically contained in the registry in the oper
ating system (OS) environment, and device drivers. Finally,
the operating system is loaded, and, default programs in a
start up directory or folder are executed.

The BIOS also helps operating systems and application
programs manage the hardWare by means of a set of routines
called BIOS Run-Time Services. Application programs as
Well as the operating system can call these services to
perform hardWare-related functions.

The BIOS boot-up sequence typically takes some time to
complete. Depending on the BIOS tasks, the type and speed
of the processor, the BIOS boot-up time may vary from a
feW seconds to half a minute. During this time, the display
typically shoWs system status information, summary of
statistics, and results of the tests. Since most computer
systems are functional and operational, the displayed infor
mation usually is not interesting. The BIOS boot-up
sequence typically consists of a series of sequential tasks.
These sequential tasks are mainly for internal tests and
device initialiZation. During that time, the user is not pro
vided useful or interesting information.

Therefore there is a need in the technology to provide a
simple and ef?cient method to perform multitasking during
BIOS boot-up.

SUMMARY

The present invention is a method and apparatus to
perform multitasking in a basic input and output system

10

15

25

35

45

55

65

2
(BIOS). Interrupt signals are enabled at predetermined inter
rupt times. A ?rst task is performed in response to the
interrupt signals at the interrupt times. A second task is
performed betWeen the successive interrupt times.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention Will
become apparent from the folloWing detailed description of
the present invention in Which:

FIG. 1 is a system block diagram of one embodiment of
an information distribution system in Which the apparatus
and method of the invention is used.

FIG. 2 illustrates an exemplary processor system or user
computer system Which implements embodiments of the
present invention.

FIG. 3 illustrates a logical diagram of one embodiment of
the invention.

FIGS. 4A and 4B illustrates one embodiment of a process
How chart provided in accordance With the principles of the
invention.

FIG. 5 is a diagram illustrating an architecture to perform
multitasking in a basic input and output system (BIOS)
according to one embodiment of the invention.

FIG. 6 is a ?oWchart illustrating a process to perform
multitasking in a BIOS according to one embodiment of the
invention.

DESCRIPTION

The present invention is a method and apparatus to
perform multitasking in a BIOS. At the beginning of the
BIOS, an interrupt sequence corresponding to a plurality of
interrupt times is generated. A ?rst task is performed at the
interrupt times. A second task is performed betWeen succes
sive interrupt times. The technique provides efficient use of
BIOS boot-up time to display useful and interesting infor
mation on the screen.

In the folloWing description, for purposes of explanation,
numerous details are set forth in order to provide a thorough
understanding of the present invention. HoWever, it Will be
apparent to one skilled in the art that these speci?c details
are not required in order to practice the present invention. In
other instances, Well knoWn electrical structures and circuits
are shoWn in block diagram form in order not to obscure the
present invention.

De?nitions

As discussed herein, a “computer system” is a product
including circuitry capable of processing data. The computer
system may include, but is not limited to, general purpose
computer systems (e.g., server, laptop, desktop, palmtop,
personal electronic devices, etc.), personal computers (PCs),
hard copy equipment (e.g., printer, plotter, fax machine,
etc.), banking equipment (e.g., an automated teller machine),
and the like. An infomediary is a Web site that provides
information on behalf of producers of goods and services,
supplying relevant information to businesses about products
and/or services offered by suppliers and other businesses.
Content refers to application programs, driver programs,
utility programs, the payload, etc., and combinations
thereof, as Well as graphics, informational material (articles,
stock quotes, etc.) and the like, either singly or in any
combination. “Payload” refers to messages With graphics or
informational material (such as, articles, stock quotes, etc.)
and may include ?les or applications. In one embodiment, it
is transferred at a predetermined time to the system’s mass

US 6,401,202 B1
3

storage media. In addition, a “communication link” refers to
the medium or channel of communication. The communi
cation link may include, but is not limited to, a telephone
line, a modem connection, an Internet connection, an Inte
grated Services Digital Network (“ISDN”) connection, an
Asynchronous Transfer Mode (ATM) connection, a frame
relay connection, an Ethernet connection, a coaxial
connection, a ?ber optic connection, satellite connections
(e.g. Digital Satellite Services, etc.), Wireless connections,
radio frequency (RF) links, electromagnetic links, tWo Way
paging connections, etc., and combinations thereof.

In addition, the loading of an operating system (“OS”)
refers to the initial placement of the operating system
bootstrap loader. In one embodiment, during the OS load, a
sector of information is typically loaded from a hard disk
into the system memory. Alternatively, the bootstrap loader
is loaded from a netWork into system memory. An OS “boot”
refers to the execution of the bootstrap loader. This places
the OS in control of the system. Some of the actions
performed during the OS boot include system con?guration,
device detection, loading of drivers and user logins. OS
runtime refers to the completion of the boot phase and the
beginning of the execution of applications by the OS. In one
embodiment, during OS runtime, the OS interacts With the
user to execute and/or run applications.

PoWer On Self Test (POST) refers to the instructions that
are executed to con?gure and test the system hardWare prior
to loading an OS.

System OvervieW

Adescription of an exemplary system, Which incorporates
embodiments of the present invention, is hereinafter
described.

FIG. 1 shoWs a system block diagram of one embodiment
of an information distribution system 10 in Which the
apparatus and method of the invention is used. The system
10 relates to providing an infomediary. It involves the
construction and maintenance of a secure and private reposi
tory of Internet user and system pro?les, collected primarily
from Warranty service registrations, Internet service
registrations, system pro?les, and user preferences. Initially,
this information is used to register the user With the manu
facturers of purchased hardWare and softWare products, and
With the providers of on-line or other services. Over time,
the user data is used to create a user pro?le and notify users
of relevant softWare updates and upgrades, to encourage
on-line purchases of related products, and to enable one-to
one customiZed marketing and other services.

In one embodiment, tWo softWare modules are used to
implement various embodiments of the invention. One is
resident on a user’s system, and is used to access a prede
termined Web site. For example, in one embodiment, the
operating system and Basic Input and Output System
(BIOS) are pre-installed on a computer system, and When
the computer system is subsequently ?rst poWered up, an
application, referred to for discussion purposes as the ?rst
softWare module (in one embodiment, the ?rst softWare
module is the initial start-up application (ISUA), Which Will
be described in the folloWing sections), Will alloW the
launching of one or more executable programs in the pre
boot environment. In one embodiment, the ?rst softWare
module facilitates the launching of one or more executable
programs prior to the loading, booting, execution and/or
running of the OS. In one embodiment, the user is encour
aged to select the use of such a program (i.e., the use of the
?rst softWare module), and in alternative embodiments, the

10

25

35

45

55

65

4
program is automatically launched. The program(s) con
tained in the ?rst softWare module enables tools and utilities
to run at an appropriate time, and With proper user
authoriZation, also alloW the user to doWnload a second
softWare module that includes drivers, applications and
additional payloads through the Internet connection on the
PC. The programs may also provide for remote management
of the system if the OS fails to launch successfully.

Once the second softWare module has been delivered, it
may become memory resident, and may disable the trans
ferred copy of the ?rst softWare module. The original copy
of the ?rst softWare module still residing in the system’s
non-volatile memory remains idle until the second softWare
module fails to function, becomes corrupted or is deleted,
upon Which a copy of the original ?rst softWare module is
again transferred as described above. The second softWare
module may include an application that connects the user to
a speci?c server on the Internet and directs the user to a
predetermined Web site to seek authoriZation to doWn load
further subscription material. The second softWare module
may also include content that is the same or similar to the
content of the ?rst softWare module.

In one embodiment, the system may also include an initial
payload that is stored in Read Only Memory BIOS (ROM
BIOS). In one embodiment, the initial payload is part of the
?rst softWare module (e.g., the ISUA). In an alternative
embodiment, the initial payload is stored as a module in
ROM BIOS, separate from the ?rst softWare module. In one
embodiment, the initial payload is launched from ROM
BIOS and displayed on the screen after the PoWer On Self
Test (POST) but prior to the booting, loading and/or execu
tion of the OS. This may occur at a predetermined time, such
as When the system is being manufactured, assembled and
tested, or When the end user ?rst activates the system. In an
alternate embodiment, this initial payload is copied to a
predetermined location (such as the system’s hard disk) at a
predetermined time, such as When the system is being
manufactured, assembled and tested, or When the end user
?rst activates the system. Once copied, the payload executes
after POST but prior to operation of the OS, and may display
graphics, advertisements, animation, Joint Photographic
Experts Group (JPEG)/Moving Picture Experts Group
(MPEG) formatted material on the screen. When additional
programs and/or payloads are delivered (via the Internet or
other outside connection), the display screen may be used to
provide customiZed screens in the form of messages or
graphics prior to and during booting of the OS. In addition,
executable programs delivered in the ?rst softWare module,
as Well as subsequent programs (such as the second softWare
module) doWnloaded from the Web site, may be used to
survey the PC to determine various types of devices, drivers,
and applications installed. In one embodiment, as described
in co-pending US. patent application Ser. No. 09/336,289,
entitled “Method and Apparatus for Automatically Installing
And Con?guring SoftWare on a Computer” incorporated
herein by reference, the ?rst softWare module is used to
identify and to automatically create shortcuts and/or book
marks for the user. The programs doWnloaded from the
Website may include softWare that collects and maintains a
user pro?le based on the user’s preferences. Such informa
tion may be provided to the infomediary, Which subse
quently forWards portions of the information and/or com
piled data based on the information to suppliers and other
businesses to obtain updates or revisions of information
provided by the suppliers and other businesses.

Referring to FIG. 1, the information distribution system
10 comprises a service center 20 that is connected over one

US 6,401,202 B1
5

or more communications links 301—30N to one or more user

computer systems 401—40N (“40”). The service center 20
includes one or more servers 22, one or more databases 24,

and one or more computers 261—26M. The one or more
computers 261—26M are capable of simultaneous access by a
plurality of the user computer systems 401—40N. If a plurality
of computers are used, then the computers 261—26M may be
connected by a local area netWork (LAN) or any other
similar connection technology. HoWever, it is also possible
for the service center 20 to have other con?gurations. For
example, a smaller number of larger computers (ie a feW
mainframe, mini, etc. computers) With a number of internal
programs or processes running on the larger computers
capable of establishing communications links to the user
computers.

The service center 20 may also be connected to a remote
netWork 50 (e.g., the Internet) or a remote site (e.g., a
satellite, Which is not shoWn in FIG. 1). The remote netWork
50 or remote site alloWs the service center 20 to provide a
Wider variety of computer softWare, content, etc. that could
be stored at the service center 20. The one or more databases
24 connected to the service center computer(s), e.g., com
puter 261, are used to store database entries consisting of
computer softWare available on the computer(s) 26. In one
embodiment, each user computer 401—40N has its oWn
secure database (not shoWn), that is not accessible by any
other computer. The communication links 301—30N alloW the
one or more user computer systems 401—40N to simulta
neously connect to the computer(s) 261—26M. The connec
tions are managed by the server 22.

After a user computer system 40 establishes tWo-Way
communications With the information service computer 26,
the content is sent to the user computer system 40 in a
manner hereinafter described. The doWnloaded content
includes an application that surveys the user and/or the user
computer system’s hardWare and/or softWare to develop a
user pro?le as Well as a pro?le of the user’s system. The
information gathered from the user and/or user’s computer
system is subsequently provided to the service center 20,
Which provides additional content to the user computer 40
based on the user and system pro?le. The database entries
from the database connected to the service computer 26
contain information about computer softWare, hardWare, and
third party services and products that are available to a user.
Based on the user and/or system pro?le, the content is
further sent to the user computer for display. The content
may also include a summary of information such as the
availability of patches and ?xes for existing computer
softWare, neW versions of existing computer softWare, brand
neW computer softWare, neW help ?les, etc. The content may
further include information regarding availability of hard
Ware and third party products and services that is of interest
to the user. The user is then able to make one or more choices

from the summary of available products and services, and
request that the products be transferred from the service
computer 26 to the user computer. Alternatively, the user
may purchase the desired product or service from the
summary of available products and services.

FIG. 2 illustrates an exemplary computer system 100 that
implements embodiments of the present invention. The
computer system 100 illustrates one embodiment of user
computer systems 401—40N and/or computers 261—26M (FIG.
1), although other embodiments may be readily used.

Referring to FIG. 2, the computer system 100 comprises
a processor or a central processing unit (CPU) 104. The
illustrated CPU 104 includes an Arithmetic Logic Unit
(ALU) for performing computations, a collection of regis

15

25

35

45

55

65

6
ters for temporary storage of data and instructions, and a
control unit for controlling operation for the system 100. In
one embodiment, the CPU 104 includes any one of the X86,
PentiumTM, Pentium IITM, and Pentium ProTM microproces
sors as marketed by IntelTM Corporation, the K-6 micropro
cessor as marketed by AMDTM, or the 6x86MX micropro
cessor as marketed by CyrixTM Corp. Further examples
include the AlphaTM processor as marketed by Digital
Equipment CorporationTM, the 680X0 processor as marketed
by MotorolaTM; or the PoWer PCTM processor as marketed by
IBMTM. In addition, any of a variety of other processors,
including those from Sun Microsystems, MIPS, IBM,
Motorola, NEC, Cyrix, AMD, Nexgen and others may be
used for implementing CPU 104. The CPU 104 is not
limited to microprocessor but may take on other forms such
as microcontrollers, digital signal processors, reduced
instruction set computers (RISC), application speci?c inte
grated circuits, and the like. Although shoWn With one CPU
104, computer system 100 may alternatively include mul
tiple processing units.
The CPU 104 is coupled to a bus controller 112 by Way

of a CPU bus 108. The bus controller 112 includes a memory
controller 116 integrated therein, though the memory con
troller 116 may be external to the bus controller 112. The
memory controller 116 provides an interface for access by
the CPU 104 or other devices to system memory 124 via
memory bus 120. In one embodiment, the system memory
124 includes synchronous dynamic random access memory
(SDRAM). System memory 124 may optionally include any
additional or alternative high speed memory device or
memory circuitry. The bus controller 112 is coupled to a
system bus 128 that may be a peripheral component inter
connect (PCI) bus, Industry Standard Architecture (ISA)
bus, etc. Coupled to the system bus 128 are a graphics
controller, a graphics engine or a video controller 132, a
mass storage device 152, a communication interface device
156, one or more input/output (I/O) devices 1681—168N, and
an expansion bus controller 172. The video controller 132 is
coupled to a video memory 136 (e.g., 8 Megabytes) and
video BIOS 140, all of Which may be integrated onto a single
card or device, as designated by numeral 144. The video
memory 136 is used to contain display data for displaying
information on the display screen 148, and the video BIOS
140 includes code and video services for controlling the
video controller 132. In another embodiment, the video
controller 132 is coupled to the CPU 104 through an
Advanced Graphics Port (AGP) bus.

The mass storage device 152 includes (but is not limited
to) a hard disk, ?oppy disk, CD-ROM, DVD-ROM, tape,
high density ?oppy, high capacity removable media, loW
capacity removable media, solid state memory device, etc.,
and combinations thereof. The mass storage device 152 may
include any other mass storage medium. The communica
tion interface device 156 includes a netWork card, a modem
interface, etc. for accessing netWork 164 via communica
tions link 160. The I/O devices 1681—168N include a
keyboard, mouse, audio/sound card, printer, and the like.
The I/O devices 1681—168N may be a disk drive, such as a
compact disk drive, a digital disk drive, a tape drive, a Zip
drive, a jaZZ drive, a digital video disk (DVD) drive, a solid
state memory device, a magneto-optical disk drive, a high
density ?oppy drive, a high capacity removable media drive,
a loW capacity media device, and/or any combination
thereof. The expansion bus controller 172 is coupled to
non-volatile memory 175 Which includes system ?rmWare
176. The system ?rmWare 176 includes system BIOS 82,
Which is for controlling, among other things, hardWare

US 6,401,202 B1
7

devices in the computer system 100. The system ?rmware
176 also includes ROM 180 and ?ash (or EEPROM) 184.
The expansion bus controller 172 is also coupled to expan
sion memory 188 having RAM, ROM, and/or ?ash memory
(not shoWn). The system 100 may additionally include a
memory module 190 that is coupled to the bus controller
112. In one embodiment, the memory module 190 comprises
a ROM 192 and ?ash (or EEPROM) 194.
As is familiar to those skilled in the art, the computer

system 100 further includes an operating system (OS) and at
least one application program, Which in one embodiment,
are loaded into system memory 124 from mass storage
device 152 and launched after POST. The OS may include
any type of OS including, but not limited or restricted to,
DOS, WindoWsTM (e.g., Windows 95”‘, Windows 98”‘,
WindoWs NTTM), Unix, Linux, OS/2, OS/9, Xenix, etc. The
operating system is a set of one or more programs Which
control the computer system’s operation and the allocation
of resources. The application program is a set of one or more
softWare programs that performs a task desired by the user.

In accordance With the practices of persons skilled in the
art of computer programming, the present invention is
described beloW With reference to symbolic representations
of operations that are performed by computer system 100,
unless indicated otherWise. Such operations are sometimes
referred to as being computer-executed. It Will be appreci
ated that operations that are symbolically represented
include the manipulation by CPU 104 of electrical signals
representing data bits and the maintenance of data bits at
memory locations in system memory 124, as Well as other
processing of signals. The memory locations Where data bits
are maintained are physical locations that have particular
electrical, magnetic, optical, or organic properties corre
sponding to the data bits.
When implemented in softWare, the elements of the

present invention are essentially the code segments to per
form the necessary tasks. The program or code segments can
be stored in a processor readable medium or transmitted by
a computer data signal embodied in a carrier Wave over a
transmission medium or communication link. The “proces
sor readable medium” may include any medium that can
store or transfer information. Examples of the processor
readable medium include an electronic circuit, a semicon
ductor memory device, a ROM, a ?ash memory, an erasable
ROM (EROM), a ?oppy diskette, a CD-ROM, an optical
disk, a hard disk, a ?ber optic medium, a radio frequency
(RF) link, etc. The computer data signal may include any
signal that can propagate over a transmission medium such
as electronic netWork channels, optical ?bers, air,
electromagnetic, RF links, etc. The code segments may be
doWnloaded via computer netWorks such as the Internet,
Intranet, etc.

FIG. 3 illustrates a logical diagram of computer system
100. Referring to FIGS. 2 and 3, the system ?rmWare 176
includes softWare modules and data that are loaded into
system memory 124 during POST and subsequently
executed by the processor 104. In one embodiment, the
system ?rmWare 176 includes a system BIOS module 82
having system BIOS handlers, hardWare routines, etc., a
ROM application program interface (RAPI) module 84, an
initial start-up application (ISUA) module 86, an initial
payload 88, cryptographic keys 90, a cryptographic engine
92, and a display engine 94. The aforementioned modules
and portions of system ?rmWare 176 may be contained in
ROM 180 and/or ?ash 184. Alternatively, the aforemen
tioned modules and portions of system ?rmWare 176 may be
contained in ROM 190 and/or ?ash 194. The RAPI 84

15

25

35

45

55

65

8
provides a secure interface betWeen ROM application pro
grams and system BIOS 82. The RAPI 84, ISUA 86, and
initial payload 88a may each be separately developed and
stored in the system ?rmWare 176 prior to initial use of the
computer system 100. In one embodiment, the RAPI 84,
ISUA 86, and initial payload 88 each includes proprietary
softWare developed by Phoenix Technologies, Ltd. One
embodiment of RAPI 84 is described in co-pending US.
patent application Ser. No. 09/336,889 entitled “System and
Method for Securely Utilizing Basic Input and Output
System (BIOS) Services,” ?led on Jun. 18, 1999, assigned to
Phoenix Technologies, Ltd., and Which is incorporated
herein by reference. One embodiment of ISUA 86 is
described in co-pending US. patent application Ser. No.
09/336,289 entitled “Method and Apparatus for Automati
cally Installing and Con?guring SoftWare on a Computer,”
?led on Jun. 18, 1999, assigned to Phoenix Technologies,
Ltd., and Which is incorporated herein by reference.

In one embodiment, as shoWn in FIGS. 3 and 4A and 4B,
after poWer is initially turned on to a neW computer system
100, the system commences With POST procedures. During
the initial POST, the ISUA 86 is transferred to the mass
storage device 152, as shoWn by A1. In one embodiment,
such a transfer is made during the manufacturing and/or
assembly process, When the system 100 is ?rst poWered up
after the operating system has been installed (but prior to
loading and running the operating system). In an alternative
embodiment, such a transfer may be made after the manu
facturing and/or assembly process, after the user receives
and poWers up the system 100. In a further alternate
embodiment, during the transfer of the ISUA 86, additional
programs, applications, drivers, data, graphics and other
information may also be transferred (for example, from
ROM) to the mass storage device 152. For example, the
transfer may include the transfer of the initial payload 88a
to the mass storage device 152, subsequent to Which the
initial payload is delivered from the mass storage device
152. Alternatively, the initial payload may be delivered from
the ROM. One embodiment of the system and process for
facilitating such a transfer is described in co-pending US.
patent application Ser. No. 09/336,067, entitled “System and
Method for Transferring an Application Program from Sys
tem FirmWare to a Storage Device” ?led on Jun. 18, 1999,
Which is assigned to Phoenix Technologies, Ltd., the con
tents of Which are incorporated herein by reference. Alter
native embodiments of the system and process for facilitat
ing such a transfer are described in co-pending US. patent
application Ser. No. 09/272,859, entitled “Method and
Apparatus for Providing Memory-based Device Emulation”
?led on Mar. 19, 1999, in co-pending US. patent
Continuation-in-Part application Ser. No. 09/336,307,
entitled “Method and Apparatus for Providing Memory
Based Device Emulation” ?led on Jun. 18, 1999, and in
co-pending US. patent application Ser. No. 09/336,281,
entitled “System and Method for Inserting One or More
Files Onto Mass Storage” ?led Jun. 18, 1999, each of Which
is assigned to Phoenix Technologies, Ltd., the assignee of
the present invention, the contents of each of Which are
incorporated herein by reference.

In one embodiment, the ISUA 86 is a computer softWare
executable program that Will determine if there are prein
stalled programs that are resident on the end user’s system.
If so, it Will identify those preinstalled programs and create
shortcuts (on the desktop in the case of a WindoWs operating
system), or bookmarks, to alloW the user to automatically
launch the programs. In this embodiment, the executable
program is also capable of initiating and establishing tWo

US 6,401,202 B1
9

Way communications With one or more applications on the
server 22 and/or any one of the service computers 26 (FIG.
1), as described below. Moreover, in one embodiment,
graphical content of the initial payload 88a is displayed by
display engine 94 on the user’s display screen 148 during
POST. Alternatively, the graphical content of the initial
payload 88a may be displayed after a subsequent booting
process. For example, as part of the user’s pro?le as
described beloW, the user may be asked if he or she Would
like to obtain additional information regarding one or more
products and/or services. If the user so desires, content
regarding the desired products and/or services Will be dis
played during subsequent boot processes.

Once POST is completed, the OS is loaded, executed, and
initialiZed. Standard OS drivers and services are then loaded.
The user is then prompted to enter registration information
including demographic information such as age, gender,
hobbies, etc. In addition, the ISUA 86 is executed, and runs
in the background, remaining idle until it detects a commu
nication link established betWeen the computer system 100
and a remote server (e.g., server 22 of FIG. 1) over NetWork
164 of FIG. 2 (e.g., over the Internet). In one embodiment,
the ISUA 86 may search through the operating system to
determine if there are applications that have been pre-loaded
and pre-installed onto the system. If so, the ISUA 86 may
automatically provide short cuts and/or bookmarks for the
applications to launch into a predetermined server once the
communication link is established. This communication link
can be established With a netWork protocol stack, (e.g.
TCP/IP) through sockets, or any other tWo-Way communi
cations technique knoWn in the art. Once the communication
link 30 is established, the ISUA86 issues a request signal to
the server 22 (as shoWn by A2) to doWnload an initial
content package 62 from a content module 60. Responsive
to the request, the server doWnloads the initial content
package 62 (as shoWn by A3), Which, in one embodiment, is
stored in the mass storage device 152. In one embodiment,
the initial content 62 and subsequent content 64 may be
developed separately, and each is encrypted and/or digitally
signed using encryption keys, prior to storing of the initial
content 62 and subsequent content 64 on the server 22.
When the initial content 62 and/or subsequent content 64
is/are subsequently doWnloaded into system 100, the crypto
engine 92 Will use keys 90 to decrypt the initial content 62
and/or subsequent content 64.
As discussed earlier, the initial content package 62 may

include applications 62a, drivers 62b, and payloads 62c. In
one embodiment, the applications 62a include a data loader
application and a pro?le manager application. The data
loader application functions in the same or a similar manner
as ISUA86, and once doWnloaded, disables and replaces the
ISUA 86. More speci?cally, the data loader application is a
computer softWare program Which is also capable of
initiating, establishing, and terminating tWo-Way communi
cations betWeen the server 22 and the computer system 100.
The data loader application also provides traf?c control
management betWeen the server 22 and computer system
100, as Well as other functions to facilitate communication
betWeen the end user’s system and the designated server, and
content doWnloading to the end user’s system.

The pro?le manager obtains the user and system pro?les
of the computer system 100 based on user preferences,
system hardWare, and softWare installed at the computer
system 100. Upon obtaining the user and system pro?le of
the computer system 100, the pro?le manager application
forWards the results to the data loader application, Which
subsequently provides the information to the server 22,

15

25

35

45

55

65

10
Which matches the user indicted preferences With database
24 (FIG. 1). The results may be forWarded at predetermined
intervals or at the user’s request. The server 22 then pro
cesses the user pro?le or demographic data and targets
content to the users Which have similar pro?les. In addition,
the user pro?le data of a plurality of users are compiled on
the server 22 and aggregated to create an aggregate user
pro?le model. Content is then transmitted to user computer
system’s based on the user pro?le data and/or the aggregate
user pro?le model (as shoWn by A4). The subsequent
content 64 is doWnloaded and stored in system ?rmWare
176, designated by numeral 88b. In one embodiment, the
subsequent content 64 is stored in non-volatile memory such
as ?ash or EEPROM, With the loading of the subsequent
content being done by re?ashing the ROM, as is Well knoWn
by those skilled in the art. The subsequent content 64 may
also be stored as one or more ?les on mass storage device

152 or may be used to modify the WindoWsTM system ?le
(under the WindoWsTM environment). The pro?le collection
process is continued as long as the computer system 100 is
activated. In one embodiment, content may be doWnloaded
after the user’s pro?le is received and analyZed at the server
22.
When the computer system 100 is subsequently poWered

up (see FIG. 4B), the system again performs POST. The
content that Was previously doWnloaded and stored in sys
tem ?rmWare 176, and subject to copyright issues being
resolved, is then displayed, prior to loading and/or execution
of the operating system. In the WindoWsTM environment, the
WindoWsTM logo, Which is displayed during the initial
loading of the operating system, is subsequently replaced by
one or more screen that display the previously doWnloaded
content stored in system ?rmWare 176.

In the case of storing the content as one or more ?les on

the mass storage device 152, as opposed to re?ashing the
ROM, the WindoWsTM logo ?le, Which is displayed during
boot-up and shutdoWn, may be altered or replaced. One
embodiment utiliZing this approach involves replacing the
corresponding WindoWsTM system ?les With the one or more
?les shoWing the content (e.g., a graphic ?le), as described
in co-pending US. patent application Ser. No. 09/336,003,
entitled “Displaying Images during Boot-up and Shut
doWn” ?led on Jun. 18, 1999, Which is assigned to Phoenix
Technologies, LTD., the contents of Which are incorporated
herein by reference. The boot-up WindoWs display ?le is
named LOGO.SYS and is usually located in the WindoWs
directory. First the WindoWsTM LOGO.SYS ?le is trans
ferred from the WindoWs directory to another directory.
Then, the content graphics ?le is renamed as LOGO.SYS
and is transferred to the WindoWsTM directory. The operating
system retrieves this ?le When the operating system is ?rst
launched, and hence the content is displayed on the display
screen. WindoWsTM expects the LOGO.SYS ?le to be a
bit-mapped ?le resolution 320x400 and 256 colors although
WindoWsTM Will later stretch the resolution to 640x400 for
displaying purposes. Therefore, the content graphics ?le is
to be the same graphics format (usually named With the
extension “.BMP” before being renamed to LOGO.SYS).
The operating system is then loaded, executed, and ini

tialiZed. The standard operating system drivers and applica
tions are also loaded. The pro?le manager is then executed.
When a link has been established With the predetermined
Web site, additional content may be doWnloaded and sub
sequently displayed. Such additional content are either pro
vided arbitrarily or provided based on the information
obtained from a survey of the user or the user’s system. In
one embodiment, once the boot process is completed, a

US 6,401,202 B1
11

portion of the display screen may be used to provide icons
or shortcuts that are used to access detailed information
regarding the previously displayed messages or advertise
ments. In a further embodiment, the messages or advertise
ments may again be displayed during the shut-doWn process,
for example, replacing the screen display that displays the
message “WindoWs is shutting doWn” or “It is noW safe to
turn off your computer” With other selected content.

DETAILED DESCRIPTION

FIG. 5 is a diagram illustrating an architecture 500 to
perform multitasking in a basic input and output system
(BIOS) according to one embodiment of the invention. The
architecture 500 includes the BIOS, an interrupt generator
530, a ?rst task interrupt service routine (ISR) 540, a ?rst
task data 550, the graphics/video controller 144, and the
display screen 148.

The BIOS includes an initial code 510, and interrupt
con?guration 512, a normal second task 514, an interrupt
disable code 516, and an operating system (OS) boot-up
code 518.

The initial code 510 includes code that performs initial
BIOS operations to prepare for the multitasking operations.
Examples of these initial BIOS operations include hardWare
reset, initialiZation of data entry devices (e.g., keyboard,
mouse) and output devices (e.g., display, speaker).

The interrupt con?guration 520 includes code that con
?gures the interrupt generator 530. In one embodiment, the
processor and the chipset are of the Intel Architecture and
interrupts can be con?gured to be System Management
Interrupts (SMI). The interrupt con?guration 512 schedules
the interrupt times such that the task to be performed to
respond to the interrupt can be completed Without generating
any noticeable degradation such as display ?ickering.

The normal second task 514 includes code to perform the
normal BIOS operations. These normal BIOS operations
usually take longer to complete than the initial BIOS opera
tions performed by the initial code 510. Examples of these
normal BIOS operations include complete memory tests,
initialiZation of peripheral devices such as mass storage
controllers, communication interface devices.

The interrupt disable code 516 includes code to disable
the interrupt generator 530. The interrupt disable code 516
is optional. The interrupt disable code 516 is invoked When
the normal second task 514 is completely performed. The
OS boot-up code 518 includes code to load the OS from the
mass storage device to the system memory.

The interrupt generator 530 can be con?gured to generate
interrupt signals at predetermined interrupt times. The inter
rupt generator 530 is con?gured by the interrupt con?gura
tion 512 and is optionally disabled by the interrupt disable
code 516. In one embodiment, the interrupt generator 530 is
a programmable interval timer that can be programmed to
generate an interrupt When the timer reaches a speci?ed
value. The programmable interval timer can be programmed
to continuously generate the interrupt signals at predeter
mined intervals or interrupt times. The interval betWeen tWo
consecutive interrupts is selected such that the ?rst task in
the interrupt service routine can be performed Without
having any noticeable degradation effects. For example, if
the ?rst task is a graphic animation Where an animation
frame is continuously refreshed on the display screen, then
the interrupt interval is selected such that the animation
sequence looks natural and continuous Without any ?icker
ing or jerky effects.

The ?rst task ISR 540 is the code that responds to the
interrupt signal generated by the interrupt generator 530.

10

15

25

35

45

55

65

12
The ISR 540 may reside in the same device that contains the
BIOS or in a separate device. The ISR 540 is executed each
time the interrupt generator 530 generates an interrupt signal
such as When the timer reaches a speci?ed value. When the
ISR 540 is complete, the program control is returned to the
normal second task 514 Which Will continue to perform the
normal second task in the BIOS. The ISR 540 may use data
provided by the ?rst task data 550. The ISR 540 may operate
upon the graphics engine in performing the ?rst task. For
example, the ?rst task may be a graphics animation that
display animated sequence of banners and/or advertise
ments.

The ?rst task data 550 contains data that are used by the
?rst task ISR 540 during performing the ?rst task. Examples
of the ?rst task data 550 include animation frames that are
pre-generated representing banners and/or advertisements.
The ?rst task data 550 typically reside in a storage area
separate from the BIOS device. The ?rst task data 550 may
be updated as often as necessary by the system.

The graphics/video controller 144 generates display infor
mation to be displayed on the display screen 148. The
graphics/video controller 144 may be controlled by the ISR
540 in performing the ?rst task such as displaying animated
sequence.

FIG. 6 is a ?oWchart illustrating a process 600 to perform
multitasking in a BIOS according to one embodiment of the
invention.

Upon START, the process 600 performs a hardWare reset
to reset all devices and circuitry in the computer system
(Block 610). After the hardWare reset, the process 600
performs minimal hardWare test to prepare for the multi
tasking operation (Block 615). Then, the process 600 ini
tialiZes user interaction devices such as keyboard, mouse,
display device, graphics engine (Block 620).
The process 600 con?gures the interrupt generator to

generate interrupt signals for the ?rst task (Block 625). In
one embodiment, the con?guration of the interrupt generator
includes setting up a programmable interval timer to gen
erate an interrupt each time the timer reaches a pre
determined timing value. Then the process 600 determines if
an interrupt has occurred (Block 630). As is knoWn by one
skilled in the art, the interrupt mechanism is a hardWare
process and does not necessarily occur sequentially as
shoWn in a ?oWchart. If an interrupt has occurred, e.g., an
interrupt signal is generated by the interrupt generator, the
process 600 performs the ?rst task such as processing
animation frames to display on the display screen (Block
635). Then the process 600 goes to Block 640. If an interrupt
has not occurred, the process 600 performs the second task
or continue to perform the second task (Block 640). Then the
process 600 determines if the second task has been com
pleted (Block 645).

If the second task has not been completed, the process 600
returns to block 630 to monitor the interrupt signal. If the
second task has been completed, the process 600 optionally
disables the interrupt generator (Block 650). If the interrupt
generator is not disabled, the ?rst task continues to be
performed until the interrupt generator is disabled or reset by
the operating system.

Next, the process 600 proceeds to boot up the operating
system by transferring the OS from the mass storage device
to the system memory. Then the process 600 is terminated.

Although the above ?oWchart illustrates a multitasking
scheme involving tWo tasks, the technique can be modi?ed
to perform more than tWo tasks. For example, the interrupt
generator may be con?gured to generate different types of

US 6,401,202 B1
13

interrupt signals. Multiple tasks can then be invoked in
separate interrupt service routines according to the corre
sponding interrupt signals. Alternatively, a single interrupt
service routine may also be used to provide service to
multiple tasks by examining a task ?ag con?gured by the
appropriate events.

In one embodiment, the technique is implemented With
certain PC chipsets for Pentium category CPUs that support
hardWare timers that generate System Management Inter
rupts (SMI) instead of the standard Interrupt Requests to the
CPU.

When the BIOS initialiZes the SMI handler it enables
other portions of code to hook themselves into the chain of
routines called When an SMI is generated. The System
Management Mode (SMM) that is entered When an SMI is
received by the CPU gives full access to the system
resources Without having to modify other portions of code.
The SMI handler goes unseen by the interrupted code. This
alloWs an easy implementation of secondary tasks that
interrupt the standard BIOS POST.

The animation initialiZation decompresses the animation
data stored in the systems ROM into the systems memory
making it accessible to the SMI handler animation code. The
decompressed frames for the animation data are stored in the
systems memory in a “raW” format not requiring any eXtra
manipulation before being transferred to the video memory.
The animation data generally occupies only a portion of the
screen. The data contains the position, siZe, and frame rate
at Which it should be displayed.

The animation initialiZation sets up the graphics video
mode on standard Video Graphics Adapter (VGA). The
mode chosen is generally a mode Where one piXel on the
screen is one unit in memory (i.e., only one single assembly
instruction is required to modify one piXel on the screen).
The standard BIOS code is con?gured so as not to sWitch
video modes until the system is ready to load the operating
system. The normal teXt output of the BIOS is directed to a
separate portion of the video memory. This redirection
alloWs the animation to be interrupted if anything goes
Wrong during the POST. At this time the redirected BIOS
teXt output is displayed to the user just by sWitching the
video mode back to teXt mode.

The animation initialiZation routine then hooks the ani
mation code into the chain of SMI handlers and ?nally
enables a hardWare timer to generate SMIs. The interval
betWeen the interrupts is chosen so that the display frame
rate is not too sloW for the eye and not too fast to the point
of using up all the CPUs poWer. Rates betWeen four to 25
frames per second are acceptable.

The animation SMI handler keeps track of What animation
frame needs to be rendered to the screen. Each frame is
transferred in turn into the video memory. To avoid ?ick
ering While the neW frame is transferred the animation
handler uses a technique called double-buffering in Which a
portion of the video adapter’s memory that is not displayed
can be Written to. Once that portion of memory contains the
image to be displayed the animation code sWitches that
portion of memory With portion being displayed. It does so
by programming certain hardWare registers in the video
adapter. After a frame is displayed the frame counter is
increased so that at the neXt SMI the neXt frame Will be used.

The complete animation sequence Would generally be
shorter than the time required for the BIOS to ?nish its
POST. For that reason the animation code Would cycle
through the frames and restart from the ?rst after the last
frame is displayed. This impacts the design of the animation

10

15

25

35

45

55

65

14
sequence. But the animation might be longer than BIOS
POST. In that case the data contains a ?ag that tells the
animation code Whether to Wait for the end of the sequence
or terminate abruptly.

The animation is tentatively terminated When the BIOS
has ?nished initialiZing the system and is ready to load the
OS. At that point the BIOS calls the animation termination
code.

The animation termination code is able to Wait for the
animation sequence to terminate. A ?ag in the animation
data determines this. Once the animation is to be terminated
the timer generating the SMIs is disabled, the SMI handling
animation code is unchained from the SMI handlers. The
BIOS then continues the normal boot process by loading the
OS.

Thus, the present invention is an ef?cient technique to
perform multitasking in a BIOS. The BIOS con?gures an
interrupt generator to generate interrupt signals. A ?rst task
is performed in response to the interrupt signals at scheduled
interrupted times. A normal BIOS second task is performed
betWeen the successive interrupt times. The technique pro
vides use of BIOS boot-up time to provide useful and
interesting information to the user.

While this invention has been described With reference to
illustrative embodiments, this description is not intended to
be construed in a limiting sense. Various modi?cations of the
illustrative embodiments, as Well as other embodiments of
the invention, Which are apparent to persons skilled in the art
to Which the invention pertains are deemed to lie Within the
spirit and scope of the invention.
What is claimed is:
1. A method to perform multitasking in a basic input and

output system (BIOS) by a processor, the method compris
ing:

enabling interrupt signals at predetermined interrupt
times;

performing a ?rst task in response to the interrupt signals
at the interrupt times; and

performing a second task betWeen the successive interrupt
times.

2. The method of claim 1 further comprising:
disabling the ?rst task after the second task is completely

performed.
3. The method of claim 2 Wherein the ?rst task is

performed repetitively at each interrupt time.
4. The method of claim 3 Wherein the ?rst task includes

a graphic animation.
5. The method of claim 4 Wherein the predetermined

interrupt times are sufficiently long to alloW the graphic
animation to be performed Without noticeable ?ickering.

6. The method of claim 2 Wherein the second task includes
device testing and initialiZation.

7. The method of claim 2 Wherein the ?rst task is
performed by code residing on a device accessible to the
processor.

8. The method of claim 2 Wherein the second task is part
of the BIOS.

9. The method of claim 1 Wherein enabling the interrupt
signals comprises:

con?guring an interrupt controller to generate the inter
rupt signals at the predetermined interrupt times.

10. The method of claim 1 Wherein enabling the interrupt
signals comprises:

scheduling an interval timer to generate the interrupt
signals at the predetermined interrupt times.

US 6,401,202 B1
15

11. A computer program product comprising:
a computer usable medium having computer program

code embodied therein to perform multitasking in a
basic input and output system (BIOS) by a processor,
the computer program product having:

computer readable program code for enabling interrupt
signals at predetermined interrupt times;

computer readable program code for performing a ?rst
task in response to the interrupt signals at the interrupt
times; and

computer readable program code for performing a second
task betWeen the successive interrupt times.

12. The computer program product of claim 11 further
comprising:

computer readable program code for disabling the ?rst
task after the second task is completely performed.

13. The computer program product of claim 12 Wherein
the ?rst task is performed repetitively at each interrupt time.

14. The computer program product of claim 13 Wherein
the ?rst task includes a graphic animation.

15. The computer program product of claim 14 Wherein
the predetermined interrupt times are suf?ciently long to
alloW the graphic animation to be performed Without notice
able ?ickering.

16. The computer program product of claim 12 Wherein
the second task includes device testing and initialiZation.

17. The computer program product of claim 12 Wherein
the ?rst task is performed by code residing on a device
accessible to the processor.

18. The computer program product of claim 12 Wherein
the second task is part of the BIOS.

19. The computer program product of claim 11 Wherein
the computer readable program code for enabling the inter
rupt signals comprises:

computer readable program code for con?guring an inter
rupt controller to generate the interrupt signals at the
predetermined interrupt times.

20. The computer program product of claim 11 Wherein
the computer readable program code for enabling the inter
rupt signals comprises:

computer readable program code for scheduling an inter
val timer to generate the interrupt signals at the prede
termined interrupt times.

21. A computer data signal embodied in a carrier Wave
comprising:

a multitasking code segment to perform multitasking in a
basic input and output system (BIOS) by a processor,
the multitasking code segment having:

an interrupt enable code segment for enabling interrupt
signals at predetermined interrupt times;

a ?rst task code segment for performing a ?rst task in
response to the interrupt signals at the interrupt times;
and

a second task code segment for performing a second task
betWeen the successive interrupt times.

22. The computer data signal of claim 21 further com
prising:

a disable code segment for disabling the ?rst task after the
second task is completely performed.

23. The computer data signal of claim 22 Wherein the ?rst
task is performed repetitively at each interrupt time.

24. The computer data signal of claim 23 Wherein the ?rst
task includes a graphic animation.

10

15

25

45

55

16
25. The computer data signal of claim 24 Wherein the

predetermined interrupt times are suf?ciently long to alloW
the graphic animation to be performed Without noticeable
?ickering.

26. The computer data signal of claim 22 Wherein the
second task includes device testing and initialiZation.

27. The computer data signal of claim 22 Wherein the ?rst
task is performed by code residing on a device accessible to
the processor.

28. The computer data signal of claim 22 Wherein the
second task is part of the BIOS.

29. The computer data signal of claim 21 Wherein the
interrupt enable code segment comprises:

a con?guration code segment for con?guring an interrupt
controller to generate the interrupt signals at the pre
determined interrupt times.

30. The computer data signal of claim 21 Wherein the
interrupt enable code segment comprises:

a scheduler code segment for scheduling an interval timer
to generate the interrupt signals at the predetermined
interrupt times.

31. A system comprising;
a processor; and

a memory coupled to the processor, the memory contain
ing a program code, the program code When executed
by the processor causing the processor to:
enable interrupt signals at predetermined interrupt

times,
perform a ?rst task in response to the interrupt signals

at the interrupt times, and
perform a second task betWeen the successive interrupt

times.
32. The system of claim 31 Wherein the program code,

When eXecuted by the processor further causing the proces
sor to:

disable the ?rst task after the second task is completely
performed.

33. The system of claim 32 Wherein the ?rst task is
performed repetitively at each interrupt time.

34. The system of claim 33 Wherein the ?rst task includes
a graphic animation.

35. The system of claim 34 Wherein the predetermined
interrupt times are sufficiently long to alloW the graphic
animation to be performed Without noticeable ?ickering.

36. The system of claim 32 Wherein the second task
includes device testing and initialiZation.

37. The system of claim 32 Wherein the ?rst task is
performed by code residing on a device accessible to the
processor.

38. The system of claim 32 Wherein the second task is part
of the BIOS.

39. The system of claim 31 Wherein the program code
causing the processor to enable the interrupt signals by
causing the processor to:

con?gure an interrupt controller to generate the interrupt
signals at the predetermined interrupt times.

40. The system of claim 31 Wherein the program code
causing the processor to enable the interrupt signals by
causing the processor to:

schedule an interval timer to generate the interrupt signals
at the predetermined interrupt times.

* * * * *

