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WINDOWING METHOD FOR DECODING 
OF MPEG AUDIO DATA 

CROSS REFERENCE TO RELATED 
APPLICATION 

This is a divisional of US. patent application Ser. No. 
08/311,659, ?led Sep. 23, 1994, now US. Pat. No. 
5,649,029 Which is a continuation-in-part of US. patent 
application Ser. No. 08/288,652 entitled “A Variable Length 
Code Decoder for Video Decompression Operations,” ?led 
Aug. 10, 1994, noW abandoned Which is a continuation of 
US. patent application Ser. No. 07/890,732, ?led May 28, 
1992 (noW abandoned) Which Was a continuation-in-part of 
US. patent application Ser. No. 07/669,818, entitled 
“Decompression Processor for Video Applications,” ?led 
Mar. 15, 1991 (noW abandoned), all of Which are incorpo 
rated by reference in their entirety. 

COPYRIGHT NOTICE 

A portion of the disclosure of this patent document 
contains material Which is subject to copyright protection. 
The copyright oWner has no objection to the facsimile 
reproduction by anyone of the patent document or the patent 
disclosure, as it appears in the Patent and Trademark Of?ce 
patent ?les or records, but otherWise reserves all copyright 
rights Whatsoever. 

BACKGROUND OF THE INVENTION 

Field of the Invention 

This invention relates to decoders for generating audio 
signals from digital data, and in particular to combined audio 
and video decoding according to the MPEG standard. 

Description of Related Art 

The Motion Picture Experts Group (MPEG) developed an 
international standard (sometimes referred to herein as the 
“MPEG standard”) for representation, compression, and 
decompression of motion pictures and associated audio on 
digital media. The International Standards OrganiZation 
(ISO) publication, No. ISO/IEC 11172: 1993 (E), entitled 
“Coding for Moving Pictures and Associated Audio—for 
digital storage media at up to about 1.5 Mbit/s,” describes 
the MPEG standard and is incorporated by reference herein 
in its entirety. The MPEG standard speci?es coded digital 
representations of audio and video and is intended for 
continuous data transfer from equipment such as compact 
disks, digital audio tapes, or magnetic hard disks, at rates up 
to 1.5 Mbits per second. 

Under the MPEG standard, parallel data streams or time 
multiplexed data streams provide video data frames and 
audio data frames. Methods and systems for decompressing 
video data frames are described in US. patent applications 
Ser. Nos. 07/890,732 and 07/669,818 Which Were incorpo 
rated by reference above. Audio data frames contain a 
header, side information, and subband data. Subband data 
indicate frequency-domain vectors that are converted to 
time-domain output sound amplitudes by a transformation 
(matrixing) and a smoothing ?lter (WindoWing). 

Typically, MPEG audio/video decoding systems for 
decoding digital data include, tWo decoders, one for audio 
decoding and one for video decoding, on tWo separate 
integrated circuit chips. The audio decoder and video 
decoder are separated because of the differences betWeen 
MPEG audio coding techniques and MPEG video coding 
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2 
techniques, but separate audio and video decoders increase 
the amount of circuitry in and the cost of an audio/video 
decoding system. A decoding architecture is needed that 
reduces the amount of circuitry and the cost of decoding 
MPEG audio and video data. 

SUMMARY OF THE INVENTION 

In accordance With this invention, an MPEG audio/video 
decoder integrated on a single chip uses components such as 
memories, a main CPU, a memory controller, and a signal 
processing unit (SPU) for both audio and video decoding. 
The SPU contains a multiplier (or multiply-and-accumulate 
unit) and a butter?y unit Which together alternately decode 
video data and audio data. The combination of a multiplier 
and a butter?y unit is ef?cient for both audio and video 
decoding. In particular, for audio decoding, determining 
particular sums and differences of the components of a 
frequency-domain vector With a butter?y unit reduces the 
number of multiplies required for matrixing (i.e. determin 
ing a component of a time-domain vector from a frequency 
domain sample vector). Determining combinations of the 
components can be performed in series With dequantiZing 
and descaling of the components combined. Additionally, 
matrixing and WindoWing (i.e. combining a present time 
domain vectors With previous time-domain vectors) are 
combined in a single instruction to increase throughput of a 
decoder by increasing parallel use of the multiplier, the 
butter?y unit, and a memory controller Which reads and 
Writes to an external memory. 

Also in accordance With this invention, a degrouping 
circuit for decoding MPEG standard subband codes includes 
a divider Which uses three clock cycles to perform tWo 
divisions Which convert a MPEG subband code into three 
vector components. Performing tWo divides in three clock 
cycles instead of tWo alloWs the divider to be smaller and 
less costly, but does not sloW decoding because three clock 
cycles is the time required to Write three vector components 
into a single-port memory. Accordingly, the smaller divider 
does not signi?cantly increase the time required to degroup 
subband codes and Write the resulting components into 
memory. Using the knoWn limits on input dividends of the 
divider, the siZe and cost of the divider can be further 
reduced from that of a general purpose divider. 

Also in accordance With this invention, in response to an 
error signal from an external source of an MPEG audio data 
stream, an MPEG audio decoder replaces errors in the audio 
data stream With an error code Which is a bit combination 
rarely found in MPEG audio data frames, and then tempo 
rarily enables error handling. The audio data stream con 
taining error codes can be saved or bufferred in the decoder. 
During audio decoding With error handling enabled, the 
decoder checks the audio data for the bit combination 
equaling the error code and replaces the bit combination 
With reconstructed data. The replacement attempts to mini 
miZe the audible effects of an error. Typically, some subband 
data is replaced With Zeros so that an error causes some of 

the frequency components to be lost. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shoWs a block diagram of an MPEG audio/video 
decoder in accordance With an embodiment of this inven 
tion. 

FIG. 2 shoWs a block diagram of a degrouping circuit in 
accordance With an embodiment of this invention. 

FIGS. 3A, 3B, and 3C shoW a block diagram, a logic 
table, and a gate level diagram of a divide-by-three circuit in 
accordance With this invention. 
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FIGS. 4A, 4B, and 4C show a block diagram, a logic 
table, and a gate level diagram of a divide-by-?ve circuit in 
accordance With this invention. 

FIGS. 5A and 5B shoW a block diagram of another 
embodiment of the degrouping circuit and a gate level 
diagram of an address generator for dividing by three, ?ve, 
or nine in accordance With this invention. 

FIG. 6 shoWs memory maps of previous vector compo 
nents used during a WindoWing process in accordance With 
this invention. 

FIGS. 7A, 7B, and 7C shoW a block diagram of an 
embodiment of a signal processing unit in accordance With 
an embodiment of this invention. 

FIG. 8A shoWs a How diagram of an audio decoding 
process in accordance With this invention. 

FIG. 8B shoWs a timing diagram for the process of FIG. 
8A. 

Use of the same reference symbols in different ?gures 
indicates similar or identical elements. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

In accordance With this invention, an audio/video decoder 
decodes MPEG standard data streams to provide an audio 
signal and a video signal. The audio/video decoder alternates 
betWeen decoding video data frames and decoding audio 
data frames and employs the same memories and signal 
processing unit (SPU) for both audio and video decoding. 

FIG. 1 shoWs a block diagram of an audio/video decoder 
100 for decoding MPEG standard audio and video data 
frames. Decoder 100 receives MPEG standard coded audio 
and video data via a serial bus 104, decodes the audio and 
video data, and provides the decoded data over a video bus 
176 and an audio bus 192. Decoder 100 includes static 
random access memories (SRAMs) 134 to 137 (also referred 
to herein as ZMEM 134, QMEM 135, THEM 136, and 
PMEM 137) Which alternate betWeen holding video data for 
video decoding and holding audio data for audio decoding, 
and a signal processing unit (SPU) 140 Which includes an 
instruction memory, a register ?le, a multiplier or a multiply 
and-accumulate unit (MAC), and a butter?y unit for decod 
ing and decompressing video data or audio data depending 
on Whether decoder 100 is currently decoding video or 
audio. 

Audio/video decoder 100 interfaces With a source of 
audio and video signals such as a host computer and a 
compact disk digital signal processor (CD-DSP) over a host 
bus 102 and serial bus 104. Serial bus 104 carries a stream 
of compressed audio and video data folloWing the MPEG 
standard, Which decoder 100 receives through a ?rst-in 
?rst-out (FIFO) buffer 115 (“code FIFO 115”). A memory 
controller 180 reads the compressed data from code FIFO 
115 via a main bus 155 and Writes the compressed data to an 
external memory 160 (also referred herein as DRAM 160). 
As disclosed beloW, an audio error code injector 118 can 
inject error codes into audio data Written to DRAM 160. A 
central processing unit (CPU) 150, Which is a microcoded 
processor having its oWn instruction memory controls access 
to main bus 155 and in particular, sends commands to 
memory controller 130 Which cause the data transfer from 
code FIFO 115 to DRAM 160. 

In this embodiment, DRAM 160 contains dynamic ran 
dom access memory (DRAM) components. Other suitable 
memory technologies can also be used. DRAM 160 holds 
compressed data from serial bus 104 and decompressed data 
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4 
for output to an audio bus 192 or a video bus 176. Under the 
direction of CPU 150, memory controller 180 transfers 
compressed audio or video data to a decoder FIFO 125 for 
decoding of an audio data frame or a video data frame by 
SPU 140. 

According to the MPEG standard, a video data frame is a 
compressed digital description of a picture and an audio data 
frame is a digital description of a ?Xed number of frequency 
domain sound samples in up to tWo sound channels. The 
MPEG standard for video data frames and decoding of video 
data frames to produce a video signal are described in US. 
patent applications Ser. Nos. 07/890,732 and 07/669,818 
Which Were incorporated by reference above. The MPEG 
standard currently de?nes three types of audio data frames 
referred to as layer 1, layer 2, and layer 3 data frames. 
Decoder 100 in FIG. 1 decodes layer 1 and layer 2 audio data 
frames. Layer 1 and layer 2 audio data frames contain a 
header, side information, and subband data. The header 
indicates: the bitrate of the data stream providing the audio 
data frames; the sample frequency of the decoded sound; 
Whether the subband data contains one or tWo sound chan 
nels; and a mode eXtension describing Whether the sound 
channels in the subband data are independent, stereo, or 
intensity stereo. The side information indicates the number 
of bits allocated per subband in the subband data and an 
indeX to scalefactors F for dequantiZing and descaling 
subband data as described beloW. 

CPU 150 controls the percentage of time SPU 140 spends 
decoding audio data. For audio decoding, CPU 150 directs 
memory controller 180 to move audio data from DRAM 160 
to decoder FIFO 125 and directs SPU 140 to perform the 
calculations necessary for decoding audio data. SPU 140 
operates in parallel With CPU 150 and eXecutes commands 
according to softWare stored in an instruction memory in 
SPU 140. 
When decoding an audio data frame, SPU 140 ?rst 

eXecutes a “get bits” command Which loads the header and 
side information of the audio data frame, from decoder FIFO 
buffer 125, through a VLC/FLC decoder 120, into CPU 150. 
The CPU 150 Writes bit allocations and scalefactors from the 
side information through SPU 140, into QMEM 135. Header 
and side information pass through VLC/FLC decoder 120 
unchanged. Subband data folloWs the side information in the 
data stream from decoder FIFO buffer 125. VLC/FLC 
decoder 120 contains circuits for decoding variable length 
codes (VLC) in video data and ?Xed lengthcodes (FLC) in 
audio and video data. VLC/FLC decoder 120 also contains 
degrouping circuits for audio data as described beloW. 
A “get subbands” command eXecuted by SPU 140 causes 

VLC/FLC decoder 120 to parse and convert subband codes 
Ci from decoder FIFO buffer 125 into 192 scaled and 
quantiZed components Si“. VLC/F LC decoder 120 performs 
degrouping as required and Writes the scaled and quantiZed 
components Si“ into ZMEM 134. Each frequency-domain 
vector S“ has 32 components Si“ in 32 frequency ranges 
(subbands i). The “get subbands” command Writes compo 
nents Si“ for three frequency-domain vector S“ in each 
channel (siX vectors S“ total for tWo channels) to ZMEM 
134. For intensity stereo, some of the frequency components 
Si“ are used by both channels. VLC/FLC decoder 120 Writes 
tWo copies of components that are shared by the channels so 
that each vector S“ in ZMEM 134 has 32 components Si“. 
For monophonic sound, VLC/FLC decoder 120 can Write 
tWo copies of all components Si“ so that both channels of a 
stereo output signal are the same. The number of vectors S“ 
in an audio data frame depends on the number of channels 
and Whether the audio data frame folloWs layer 1 or layer 2 
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of the MPEG standard. Under layer 1, there are 12 vectors 
S“ (384 samples) per channel. Under layer 2, there are 36 
vectors S“ (1152 samples) per channel. 
SPU 140 executes a “dequant/descale” command to gen 

erate components Si of frequency-domain vectors S by 
descaling and dequantiZing values Si“ from ZMEM 134. 
SPU 140 Writes a representation of a vector S to a portion of 
TNEM 136. Matrixing as described beloW transforms a 
frequency-domain vector S to a time-domain vector V. SPU 
140 stores components Vi of a time-domain vector V in 
PMEM 137, and memory controller 180 Writes components 
Vi from PMEM 137 to DRAM 160. Components from 16 
consecutive time-domain vectors V0 to V16 from DRAM 
160 are combined in a WindoWing process described beloW, 
and the combination is accumulated in TMEM 136 to 
provide 32 time-domain output sound amplitudes Ai. Time 
domain output sound amplitudes Ai are typically Written to 
an audio output FIFO buffer in DRAM 160, and Written as 
required from DRAM 160 through main bus 155, an output 
audio FIFO 190, and an audio serialiZer 191 to audio output 
bus 192. Output audio FIFO buffer 190 holds enough output 
sound amplitude values so that at the fastest sampling rate 
expected delayed access to main bus 155 does not interrupt 
sound. Audio serialiZer 191 converts the output audio data to 
a serial data stream, and a digital-to-analog converter (DAC) 
and ampli?er (not shoWn) generate a sound from the audio 
data. 

The side information indicates the number of possible 
values for each quantized component Si“ (and each subband 
code Ci) in a subband i. For example, if subband codes Ci 
in subband i have 0, 2, 4, . . . , or 2N possible values, then 
0, 1, 2, . . . , or N bits are used for each code Ci. If no bits 

are used for a subband i, VLC/FLC decoder 120 Writes Zero 
into ZMEM 134 for components Si“, and vector S has less 
than 32 non-Zero components. For a bit allocation repre 
senting 2N possible values for a subband i, VLC/FLC 
decoder 120 uses the bit allocations from the side informa 
tion in QMEM 135 to identify the start and end of a 
component Si“ in the data stream and Writes component Si“ 
to a Word aligned location in ZMEM 134. 

The MPEG standard alloWs components Si“ to have 3, 5, 
or 9 possible values and encodes three components S1i“, 
S2i“, and S3i“ from subband i of three different vectors S1, 
S2, and S3 into a single code Ci. For example, there are 27 
possible combinations of three quantized and scaled com 
ponents S1i“, S2i“, and S3i“ if each has three possible values 
0, 1, or 2. A 5-bit subband code Ci given by eq. 1 represents 
the 27 possible combinations. 

Ci=32-S3i"+3-S2i"+S1i" (eq. 1) 

Similarly, a 7-bit code Ci given by eq. 2 represents three 
components S1i“, S2i“, and S3i“ having ?ve possible values 
0 to 4 each. 

Ci=52-S3i"+5-S2i"+S1i" (eq. 2) 

Eq. 3 gives a 10-bit code Ci representing three components 
S1i“, S2i“, and S3i“ Which each have 9 possible values, 0 to 
8. 

VLC/FLC decoder 120 degroups a code Ci into three 
components S3i“, S2i“, and S1i“ given by eqs. 1 to 3 before 
Writing the scaled and quantiZed components S3i“, S2i“ and 
S1i“ to ZMEM 134. TWo divisions are suf?cient to degroup 
a code Ci given by eqs. 1 to 3. For example, if Ci=x2-S3i“+ 
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6 
x~S2i“+S1i“ and components S3i“, S2i“ and S1i“ are less 
than x, dividing Ci by x provides a quotient Q1 and a 
remainder R1 given by eq. 4. 

Dividing by x again provides a quotient Q2 and a remainder 
R2 given by eq. 5. 

(Q1 /x)=Q2=S 3i " With remainder 

If ZMEN 134 has a single port connected to VLC/FLC 120, 
three clock cycles are required to Write components S3i“, 
S2i“, and S1i“. Accordingly, VLC/FLC decoder 120 can use 
three clock cycles for tWo divides Which degroup a code Ci, 
and not cause a pipeline delay in Writing components S3i“, 
S2i“, and S1i“. 

FIG. 2 shoWs decoding circuit 200 Which performs tWo 
divides for degrouping a code Ci in three clock cycles. The 
?rst divide is an extended divide that takes tWo clock cycles. 
The second divide takes one clock cycle. Using tWo clock 
cycles for the ?rst divide permits use of a smaller divider and 
reduces the cost of VLC/FLC decoder 120. In the embodi 
ment of FIG. 2, a divider 210 receives dividend values from 
multiplexers 220 and 221 and divides the dividend values by 
a divisor x equal to 3, 5, or 9 to produce a quotient Q and 
a remainder Rout. Side information gives the bit allocation 
for each subband and determines the value of divisor x for 
each subband Which requires degrouping. 

Code Ci is partitioned into three parts CiH, CiM, and CiL 
for the ?rst divide of degrouping.. CiL contains the 2, 3, or 
4 least signi?cant bits of code Ci for divisor x equal to 3, 5, 
or 9 respectively. CiM contains the next 2, 3, or 4 more 
signi?cant bits of code Ci, and CiH contains the most 
signi?cant 1, 1, or 2 bits of Ci for divisor x equal to 3, 5, or 
9 respectively. CiH is padded on the left With Zeros to 2, 3, 
or 4 bits; 

Degrouping proceeds as folloWs. During a ?rst clock 
cycle, multiplexers 220 and 221 assert signals CiH and CiM 
to divider 210, and divider 210 produces a quotient Q1H and 
a remainder R1‘ Which are Written to registers 231 and 230 
at the end of the ?rst clock cycle. Registers 230 and 231 in 
the embodiment of FIG. 2 are edge triggered devices, but in 
alternative embodiments, registers 230 and 231 may be 
latches, memory locations, or any devices capable of hold 
ing and asserting digital data signals. During a second clock 
cycle, multiplexers 220 and 221 assert respectively remain 
der R1‘ from register 230 and signal CiL to divider 210, and 
divider 210 produces a quotient Q1L and remainder R1. At 
the end of the second clock cycle, quotient Q1L and remain 
der R1 are Written to registers 231 and 230 respectively, and 
quotient Q1H is Written from register 231 to a register 232. 
Quotients Q1H and Q1L are respectively the most signi? 
cant and least signi?cant bits of the quotient Q1 given in eq. 
4. Remainder R1 is value S1i“ as in eq. 1, 2, or 3. 

During a third clock cycle, multiplexers 220 and 221 
assert respectively signals Q1H and Q1L from registers 230 
and 231 to divider 210, divider 210 produces quotient Q2 
and remainder R2 that are given in eq. 5, and a multiplexer 
240 selects value R1 from register 230 for Writing to a 
memory such as ZMEM 134 of FIG. 1. At the end of the 
third clock cycle, quotient Q2 and remainder R2 are Written 
to registers 231 and 230, and the quotient Q1L is Written 
from register 231 to register 232. 

During a fourth clock cycle, remainder R2 Which equals 
S2i“ passes through multiplexer 240 and is Written to the 
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memory. Quotient Q2 is Written to register 232 at the end of 
the fourth clock cycle. Quotient Q2 Which equals S3i“ is 
Written to memory during the ?fth clock cycle. A ?rst divide 
for a second code Ci‘ can be performed during the fourth and 
?fth clock cycles and can proceed as disclosed above. 
Accordingly, if a series of codes C are degrouped, degroup 
ing proceeds With a pipeline delay only for the ?rst code in 
the series. 
Any knoWn or yet to be developed digital divider circuit 

may be employed for divider 210 providing the divider 
circuit handles the correct siZe dividend, quotient, and 
remainder. FIG. 3A shoWs a block diagram of a divide-by 
three circuit 300 Which uses the limits on the values of codes 
C to reduce the number of gates and transistors required. 
Divide-by-three circuit 300 contains tWo identical circuit 
blocks 310 and 320. Each block 310 and 320 has input 
terminals for a 1-bit dividend signal C and a 2-bit remainder 
signal Rin and output terminals for a 1-bit quotient signal Q 
and a 2-bit remainder signal Rout. Output remainder signal 
Rout from block 310 is asserted as input remainder signal 
Rin of block 320. When used in divider 210 of FIG. 2, 
divide-by-three circuit 300 has a remainder bus 312 con 
nected to multiplexer 220 (FIG. 2), dividend buses 311 and 
321 connected to multiplexer 221, remainder output bus 324 
connected to register 230, and quotient output buses 313 and 
323 connected to register 231. Multiplexers (not shoWn) 
may provide the connections Which select divide-by-three 
circuit 300 in response to the corresponding bit allocation of 
a subband. 

FIG. 3B shoWs a logic table relating the input signals Rin 
and C to output signals Rout and Q for each of circuit blocks 
310 and 320. During the ?rst clock cycle, the maximum 
input signal Rin applied to bus 312 equals the maximum 
signal CiH Which is 01 because code Ci contains only ?ve 
bits. The maximum remainder for any divide-by-three is 10 
binary, and the maximum quotient Q1 of eq. 4 is 0100 binary 
(26 divided by 3 is 8 With remainder 2). Accordingly, input 
signal Rin Which equals CiH, the most signi?cant bits of Q1, 
or a remainder should never be 11 binary. 

The logic table in FIG. 3B re?ects the reduced possibili 
ties by indicating output signals Q and Rout as x (don’t care) 
When signal Rin represents 11. The remaining entries are 
generated by dividing 3-bit values by three. FIG. 3C shoWs 
a gate level diagram Which implements the logic of FIG. 3B. 
Counting inverters Which invert input signals A,. B, and C, 
the implementation of FIG. 3C requires 30 transistors per 
block 310 or 320. Many other circuits can implement the 
logic table of FIG. 3B. 

FIG. 4A shoWs a block diagram of a divide-by-?ve circuit 
400 Which uses the limits on the values of codes C to reduce 
the number of gates and transistors required to divide by 
?ve. Divide-by-?ve circuit 400 contains three identical 
blocks 410, 420, and 430 each of Which have input terminals 
for a 3-bit remainder signal Rin and a 1-bit dividend signal 
Din and output terminals for a 3-bit output remainder signal 
Rout and a 1-bit quotient signal Q. The output remainder 
signal Rout of block 410 is asserted as the input remainder 
signal Rin of block 420, and the output remainder signal 
Rout of block 420 is asserted as the input remainder signal 
Rin of block 430. 
When used in divider 210 of FIG. 2, divide-by-?ve circuit 

400 has a remainder bus 412 connected to. multiplexer 220 
(FIG. 2), dividend buses 411, 421, and 431 connected to 
multiplexer 221, remainder output bus 434 connected to 
register 230, and quotient output busses 413, 423, and 433 
connected to register 231. Multiplexers may provide the 
connections Which select divide-by-?ve circuit 400 in 
response to the bit allocation of ?ve values per subband 
component. 
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8 
FIG. 4B shoWs a logic table relating the possible input 

signals Rin and D for each block 410, 420, and 430 to the 
desired output signals Q and Rout. FIG. 4C shoWs a gate 
level diagram of a circuit Which implements the logic table 
of FIG. 4B. The implementation shoWn requires 48 transis 
tors for each of blocks 410, 420, and 430. Other implemen 
tutions of the logic table of FIG. 4B are possible in accor 
dance With this invention. 

FIG. 5A shoWs a decoding circuit 500 Which uses a ROM 
550 and an address generator 560 to divide a dividend by 
nine, ?ve, or three. TWo control signals Div3 and Div5 are 
active high to indicate a divide-by-three and a divide-by-?ve 
respectively. When both signals Div3 and Div5 are loW, an 
8-bit dividend indicated by signals R[3:0] and D[3:0] is 
divided by nine. For a divide-by-nine, signals R[3:0] and 
D[3:0] pass through address generator 560 unaltered, and 
provide an address signal A[7:0] to ROM 550. ROM 550 
holds 8-bit values Where the four most signi?cant bits. and 
the four least signi?cant bits equal the remainder and 
quotient respectively that results from dividing an 8-bit 
dividend R[3:0]:D[3:0] by nine. ROM 550 holds 145 8-bit 
values at addresses 00000000 to 10001111 for dividends 
betWeen 0 and 10001111 binary. This range exhausts the 
possible dividends to be divided by nine because the largest 
remainder R[3:0] is 1000 (eight). 
When Div5 is high, divider 210 divides a 6-bit quotient by 

?ve. Input bits R3 and D3 in signals R[3:0] and D[3:0] are 
alWays Zero, and input bits R0, R1, R2, D0, D1, and D2 
provide the 6-bit quotient. As shoWn in FIG. 5B, address 
generator 560 contains logic Which sets address bits A7 to 
A0 of address signals A[7:0] to 1, R2, R1, E, R0, D2, D1, 
D0 respectively, Where E is the complement of R2. This 
provides addresses for all 6-bit dividends given by signals 
R[2z0] and D[2z0]. The addresses for divide-by-?ve are 
greater than 10001111 binary and therefore do not overlap 
the addresses for divide-by-nine. 
When Div3 is high, divider 210 divides a 4-bit quotient by 

three. Input bits R3, R2, D3, and D2 are Zero, and input bits 
R0, R1, D0, and D1 provide the 4-bit quotient. As shoWn in 
FIG. 5B, address generator 560 contains logic Which sets 
bits A7 to A0 of address signals A[7:0] to 1, 0, 1, 0, R0, R1, 
D1, D0respectively When signal Div3 is high. This provides 
addresses for all 4-bit quotients. The addresses for divide 
by-three are greater than 10001111 binary and have address 
bits A6 and A4 equal to Zero. Accordingly, addresses for 
divide-by-three do not overlap the addresses for divide-by 
nine Which are less than 1000111 or the addresses for 
divide-by-?ve Which have address bit A6 complementary to 
address bit A4. 
ROM 550 contains 199 8-bit output values. The highest 

required address is 11000111 binary Which contains a 
remainder and a quotient for 100111 divided. by ?ve. The 
largest possible remainder signal R[210] is 100 binary (four) 
for a divide-by-?ve and limits the largest quotient. 
VLC/FLC decoder 120 of FIG. 1 identi?es and degroups 

subband codes Ci in a data stream from decoder FIFO buffer 
125 and Writes quantiZed and scaled values Si“ into ZMEM 
134. ZMEN 134 has 192 16-bit Words of storage, enough to 
hold components of six sample vectors S“. 192 Words of 
storage are required because in some cases, a subband code 
Ci provides values S1i“, S2i“, and S3i“ for three vectors S1“, 
S2“, and S3“ and subband codes for tWo channels are 
interleaved in the data stream under the MPEG standard. 
Accordingly, in the Worst case, components from six differ 
ent vectors (three in each channel) must be decoded before 
one complete vector S“ is knoWn. 

In the embodiment of FIG. 1, after SPU 140 instructs 
VLC/FLC decoder 120 to get subband data, VLC/FLC 
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decoder 120 reads the bit allocation per subband from 
QMEM 135, reads subband codes C from decoder FIFO 
buffer 125, degroups subband codes C (if necessary), and 
Writes the scaled and quantized components Sim for six 
vectors to ZMEM 134, all Without intervention from SPU 
140. This frees SPU 140 for other operations. In alternative 
embodiments, SPU 140 can take greater control of reading 
and degrouping of subband codes. For example, SPU 140 
can read the bit allocation for each subband, and VLC/FLC 
decoder 120 can degroup each subband in response to 
separate commands from SPU 140. VLC/FLC decoder 120 
can also be eliminated if SPU 140 performs degrouping of 
values from decoder FIFO buffer 125. SPU 140 is inactive 
When VLC/FLC 120 is performing the “get subbands” 
command because ZMEM 134 does not have space for more 
than six vectors. HoWever, VLC/F LC decoder 120 as 
described above may perform faster degrouping than using 
SPU 140. and therefore increases throughput of decoder 
100. 

Scaled and quantized components Si“ correspond to com 
ponents Si as indicated in eqs. 6 and 7, 

Where constants K1 and K2 depend on the number of bits 
used to represent values Si“, and the side information of the 
audio data frame provides an index Which indicates scale 
factor F. Applying eq. 6 to a value Si“is sometimes referred 
to herein as dequantiZing. Applying eq. 7 to a value Si‘ is 
sometimes referred to herein as descaling. Combinations of 
dequantiZed and descaled vector components Si of a vector 
S are combined as described beloW and stored in TMEM 
136. TMEM 136 contains sixty four 22-bit storage locations, 
32 storage locations for a vector S, and 32 locations for 
accumulating a set of 32 output sound amplitudes Ai as 
described beloW. 

Determining output sound amplitudes Ai from sample 
vector S in THEM proceeds in steps referred to herein as 
matrixing and WindoWing. Matrixing produces a vector V by 
performing the equivalent of matrix multiplication of 
frequency-domain sample vector S by a transformation 
matrix N given by the MPEG standard. The components Nji 
of matrix N are 

Where 0;]; 63 and 0§i§31. Matrix N is a 32-by-64 matrix 
Which contains only 31 different positive values A to Z and 
AA to AE as shoWn in Appendix A. The remaining compo 
nents of matrix N are either 0, —1, or are the negative of one 
of the values A to Z or AA to AE. Eq. 8 indicates the values 
Ato Z andAAtoAE. 

Vector V has 64 components Vj given by eq. 9. 

32 components Vj of vector V are linearly independent. 
Determination of each component Vj of vector V, except 

V16 and V48, requires 32 multiplications of components Si 
of vector S by components Nji of matrix N, according to eq. 
9. (V16 is alWays 0, and V48 is the negative of the sum of 
the components Si.) Using a butter?y unit to determine 
combinations T0 to T31, sums and differences, of compo 
nents S0 to S31, reduces the number of multiplications. An 
example of a set of combinations T0 to T31 Which reduces 
the number of multiplications required to generate vector V 
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10 
is shoWn in Appendix B. Appendix C shoWs the equations 
that give the components V0 to V63 of vector V in terms of 
the combinations T0 to T31. Components Si and interme 
diate values used to calculate T0 to T31 are temporarily 
stored in a register ?le of SPU 140. 
The equations of Appendix C are equivalent to eq. 9 but 

require feWer multiplications and therefore are calculated 
more quickly in a digital system. In vector V, component 
V16 is alWays Zero. Components With an index Which are a 
multiple of four, V(4n), each require 4 multiplications. 
Components With an index equal to one or three plus a 
multiple of four, V(4n+1) or V(4n+3), each require 16 
multiplications. Components With an index equal to tWo plus 
a multiple of four, V(4n+2), each require 8 multiplications. 
Components V0 to V15 and V49 to V63 are either the same 
or the negative of components V32 to V17 and V47 to V33. 
In SPU 140, a MAC 750 shoWn in FIG. 7A, multiplies 
combinations T0 to T31 by quantities stored in a ROM 732 
to determine 32 linearly independent components such as 
components V17 to V48 of vector V. Components V17 to 
V48 are stored in PMEM 137 and Written in the order V48 
to V17 to external DRAM 160. Alternative embodiments 
may use other linearly independent sets of components or 
other orders. As described beloW, the order of the compo 
nents Written to DRAM 160 determines hoW WindoWing is 
performed. 

Successive vectors S for a channel are converted to 
vectors V in sequential order from the data stream for one or 
more audio data frames. A superscript is sometimes used 
herein to distinguish the sequential order of vectors V (or S). 
The components of a vector VO just determined from a 
vector S0 are Written to DRAM 160 over the oldest vector 
components for the channel. The components of 15 vectors 
V-1 to V-15 are in DRAM 160 While vector V0 is being 
determined. WindoWing combines components from the just 
determined vectors V0 with the components of the 15 
preceding vectors V-1 to V-15 to provide output sound 
amplitude values Ai. 
According to the MPEG standard, 32 output sound ampli 

tudes Ai are given by 

(eq. 10) 

Where 0§i§31, vector U has a ?rst set of components 
de?ned by U(64m+i)=V2'"i and a second set of components 
de?ned by U(64m+32+i)=V_(2'”+1)(32+i) for 0émé7, and 
D(i+32k) is a component of a 512 component vector given 
by the MPEG standard. Eq. 10 requires 64 components of 
sixteen vectors V0 to V15 for WindoWing even though each 
vector has only 32 independent components. Storing only 
the independent components in DRAM 160 reduces the 
required siZe of DRAM 160, the time to Write the compo 
nents after matrixing, and the time to retrieve components 
for WindoWing. 
As shoWn in Appendix C, each vector V contains 32 

linearly independent components. Components V1 to V15 to 
equal the negative of components V17 to V32 respectively. 
Component V16 equals 0. Components V33 to V47 equal 
components V63 to V49 respectively, and V48 is indepen 
dent. Only a linearly independent set such as components 
V48 to V17 is required for WindoWing if some of the 
components are multiplied by values D(i+32k) of eq. 10. 
As can be seen from eq. 10, one of the ?rst 32 components 

Vzmi from each vector V2'" and one of the last 32 compo 
nents V_(2'”+1)(32+i) from each vector V_(2'”+1) contribute to 
an output sound amplitude Ai. The ?rst 32 components of 
each vector V contains only 16 independent values. The last 
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32 components of each vector V contains 17 independent 
values. Accordingly, a total of 33 values from tWo vectors 
V'Zm and V_(2'”+1) are sufficient to determine the contribu 
tions of vectors V'Zm and V_(2'”+1) to 32 output sound 
amplitudes Ai during WindoWing. Storing the 33 values at 
consecutive addresses in DRAM 160 increases the speed of 
reading the values for WindoWing because consecutive 
addresses can be accessed With a minimum number of page 
changes. 

FIG. 6 shoWs three alternate memory maps 610, 620, and 
630 for a section of DRAM 160 of FIG. 1. In the memory 
map 610, vectors V0, V_1, V_2, V_3, . . . V-15 are stored 
consecutively With components in order from the loWest to 
highest index. For WindoWing according to eq. 10, determi 
nation of 32 output amplitudes Ai requires the ?rst 32 
components of each of vectors V0, V_2, . . . V-14 and the last 
32 components of each of vectors V_1, V_3, . . . V_15. 
Reading components for WindoWing requires transfers from 
seven blocks 612, 613, . . . of 64 consecutive addresses and 

tWo blocks 611 and 619 of 32 consecutive addresses. 
Typically, each of the nine transfers from blocks 611 to 619 
requires at least one access to a neW page. For a typical 
DRAM, transfers Which require changing pages require 
extra clock cycles for addressing and therefore take longer 
than transfers from a current page. Storing the components 
of vectors V0 to V-15 in order of decreasing index as shoWn 
in memory map 620 reduces the number of transfers to eight 
blocks 621 to 628 of 64 consecutive addresses. 
Memory map 630 stores only 32 linearly independent 

components Vi for index i ranging from 48 to 17 per vector 
V0 to V_15. In alternate embodiments, the set of linearly 
independent components and the order of the components 
may be changed if suitably matched WindoWing coefficients 
D(i+32k) are employed. For memory map 630, WindoWing 
requires transfers from eight blocks 631 to 638 of 33 
consecutive addresses, and the number of bytes transferred 
is cut nearly in half. In practice, at least one block of 33 
vector components is not at consecutive addresses because 
the current vector VO can be in any of sixteen positions in 
memory and is not alWays at the loWest address as shoWn in 
memory map 630. In any case, transfers from memory map 
630 are less likely to include a page break than transfers 
from memory map 620 because block transfers 631 to 638 
are smaller than block transfers 621 to 628. 

Returning to FIG. 1, components of vectors V0 to V-15 are 
transferred from memory map 630 (FIG. 6) of DRAM 160 
into PMEM 137. The transferred components are multiplied 
by WindoWing coefficient D(i+32k) from eq. 10, and the 
products of the transferred components and WindoWing 
coef?cients are accumulated in TMEM 136. Once contribu 
tions from sixteen vectors are accumulated, WindoWing is 
complete, and the 32 accumulated sound amplitude values 
Ai in TMEN 136 are Written to the audio output FIFO buffer 
in DRAM 160. SPU 140 performs dequantiZing, descaling, 
matrixing, and WindoWing for all sample vectors S in 
ZMEM 134, and then more vectors are loaded into ZMEM 
134 in response to “get subbands” commands. After reading 
all of the subband information in the audio data frame, SPU 
140 may be used for decoding of MPEG video data frames 
While a DAC (not shoWn) reads decoded sound amplitudes 
from DRAM 160 through audio output FIFO buffer 190. 

Circuit blocks 170 to 175 in decoder 100 implement video 
decoding. Block 170 performs half-pixel offsetting and 
adding of reference blocks to error terms in accordance With 
the MPEG standard. Blocks 171 to 175 form a video output 
unit of audio/video decoder 100. Memory controller 180 
transfers decoded video data from DRAM 160, to video 
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12 
FIFOs 171. Interpolater 173 expands the decoded video data 
by tWo horiZontally and by tWo vertically. Video overlay 
data such as data representing lyric text is read from DRAM 
160 into overlay FIFO 172, and block 174 blends the overlay 
data With data from interpolater 173 to provide pixel values. 
Converter 175 optionally converts the pixel values from a 
YCbCr color representation to a RGB color representation 
Which is transmitted on video output bus 176. 

FIGS. 7A, 7B, and 7C shoW a block diagram of a 
signal-processing unit 140 in accordance With this invention. 
SPU 140 has an instruction memory (not shoWn) and a 
control unit (not shoWn) Which executes a decoding program 
stored in the instruction memory. SPU 140 decodes audio 
and video data frames using information stored in memories 
134 to 137. FIG. 7A shoWs portions of SPU 140 for audio 
decoding. ZMEN 134 is a (3><64)><16 bit SRAM and is large 
enough to store six vectors S“ each containing thirty tWo 
16-bit components Si“, during audio decoding. During video 
decoding, ZMEM 134 is a “Zig-Zag” memory Which stores 
tWo or three sets of 64 9-bit video coef?cients. QMEM 135 
is a 64><(2><8) memory. During audio decoding, QMEM 135 
holds 32 subband bit allocations and scalefactor indices for 
each of tWo sound channels. During video decoding, QMEM 
135 holds tWo sets of 64 8-bit components of video quantiZer 
matrices according to the MPEG standard. QuantiZer matri 
ces are sWapped betWeen QMEM 135 and DRAM 160 as 
required When sWitching betWeen video and audio decoding. 

For audio decoding, a VLC/FLC decoder 120 Writes six 
quantiZed and scaled vectors S“ to ZMEM 134 as described 
above. SPU 140 performs a “dequant/descale” instruction 
and “Window/matrix” instructions on each vector S“ in 
ZMEM 134. The dequant/descale instruction determines 
combinations T0 to T31 from a vector S“ by dequantiZing, 
descaling, and butter?y operations. For descaling, a 16-bit 
component Si“ from ZMEM 134 is fed through a multi 
plexer 716 as an input value Z of MAC 750. A multiplexer 
706 asserts a value X equal to —1 to a register 707 coupled 
to MAC 750, and multiplexer 712 asserts a value Y Which 
equals K2 as given in eq. 6, from ROM 732 to a register 713 
coupled to MAC 750. MAC 750 determines the product of 
value X and value Y and then subtracts value Z. A register 
717 captures the output value from MAC 750 Which can be 
Written to a multiported register ?le 733 Which has three read 
ports and three Write ports. The value Si“+K2 is stored to 
register ?le 733. In a second pass through MAC 750, 
multiplexer 706 asserts signal X equal to Si“+K2 from 
register ?le 733, through register 707, to MAC 750. Multi 
plexer 712 asserts signal Y equal to K1 (eq. 6) from ROM 
732, through register 713, to MAC 750. Multiplexer 716 
asserts a value Z equal to Zero. The output signal of MAC 
750 is a dequantiZed value Si‘ Which is again Written to 
register ?le 733. 
ROM 732 contains tWo ROMs 732A and 732B Which are 

alternately accessed to provide ROM 732 With tWice the 
read speed of ROMs 732A and 732B. ROM 732 contains 
constants for dequantiZing, descaling, matrixing, 
WindoWing, and video decoding. The control unit of SPU 
140 determines the correct address in ROM 732 from the 
side information in QMEM 135. 

DequantiZed value Si‘ is asserted through multiplexer 706 
as a value X for descaling. Descaling is performed in tWo 
multiplications. For the ?rst multiplication, multiplexer 712 
and register 713 provide a ?rst scalefactor F1 Which is one 
of 1, 2_%, and 2_%from ROM 732 according to an index 
from the side information in QMEM 135. Value Z from 
multiplexer 716 is Zero. The resulting partly descaled value 
is held by register 717, stored to register ?le 733, and 
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