
US005890124A

Ulllted States Patent [19] [11] Patent Number: 5,890,124
Galbi [45] Date of Patent: Mar. 30, 1999

[54] WINDOWING METHOD FOR DECODING 5,140,544 8/1992 Lin et al. 364/761
()1? MPEG AUDIO DATA 5,414,469 5/1995 Gonzales et al. 348/408

5,436,917 7/1995 KarasaWa 371/37.4

[75] Inventor: David E_ Galbi, Sunnyvale, Calif 5,452,104 9/1995 Lee "2...‘ 358/433
5,508,949 4/1996 Konstantinides 364/725

Assigneez C_Cube Microsystems Inc‘, M?pitas, 5,644,310 7/1997 Laczko, SLCI al. 341/143

Cahf- OTHER PUBLICATIONS

[21] Appl, N()_j 548,889 1992 IEEE International Conference on Consumer Electron
_ ics; Maturi, “Single chip MPEG audio decoder”. vol. 38 pp.

[22] Flledl Oct. 26, 1995 348_356 Aug' 1992'

Related US‘ Application Data Primary Examiner—Richemond Dorvil
_ _ _ Attorney, Agent, or Firm—Skjerven, Morrill, MacPherson,

[60] DlVlSlOIl of Ser. No. 311,659, Sep. 23, 1994, Pat. No. F kl- & F - 1_ D -d T M-H
5,649,029, which is a continuation-in-part of Ser. No. 288, ran H1 H6 ’ avl ' 1 ers

652, Aug. 10, 1994, abandoned, which is a continuation of
Ser. 'No. ‘890,732, May 28, 1992, abandoned, which is a [57] ABSTRACT
Zgggggggindmpm of Ser' No' 669’818’ Man 15’ 1991’ An MPEG audio/video decoder has memories, a signal

6 processing unit (SPU) including a multiplier and a butter?y
[51] Int. Cl. G10L 3/00 unit, a main CPU, and a memory Controller Which are time
[52] US. Cl. 704/501 division multiplexed between decoding video and audio
[58] Field of Search 395/209, 2.94, data. For audio decoding, the butter?y unit determines

395/291, 2.12; 382/232, 233, 234, 250; combinations of components of a frequency-domain vector
704/500, 501, 502, 503, 504 to reduce the number of multiplies required to transform to

_ the time domain (matriXing). MatriXing is interwoven With
[56] References Clted MPEG ?ltering to increase throughput of the decoder by

increasing parallel use of the multiplier, the butter?y unit,
U'S' PATENT DOCUMENTS and a memory controller. AWidoWing process for the MPEG

3,688,039 8/1972 Ishiguro 371/31 standard uses only independent components of the audio
4,302,775 11/1981 Widegren et al 358/136 vectors. This reduces the required number of components to
473947774 7/1983 Wldergren ct a1~ 382/56 be stored, thereby reducing the siZe of required memory, the

FBenen ettal'l time to Write the components after matriXing, and the time
, , orgers e a. - - -

4,989,173 1/1991 Kaneda 364/764 to remeve the Components for Wmdowmg'

5,021,891 6/1991 Lee 358/432

5,070,503 12/1991 Shikakura 371/371 4 Claims, 13 Drawing Sheets

100 \
125\ 118\ 115\ 110\

r 104
Decoder FIFO 1 'L5 Audio Error Code FIFO H -

(64x16) ‘ ‘ Code Injector ‘7 (31x18) H°st ser'a' Bus
Interface Host Bus

120 \ l 4/155 180 102
VLC/FLC H /
Decoder Memory I ,

Controller DRAM

l r134 K
ZMEM 171 \ 173 \ 16°

(192x16) n Y, CbCrFIFOs I Vert, Horz
135 N i (56x16, 64x16) Interpolation
QMEM K140 l
(64x16) 4 ~ Signa, 172 \ 174 \

Prqcessing 9 Overlay FIFO I Overlay
TMEM ‘ : Unll (64x16) Blending

(84 x 22) i y
136 9 137 \ 150 \ 175 \ 176

PMEM _ CPU Conversion Video
(123 X18) ‘ ' to RGB Output

170 \ i 190 \ 191 \ 192

Motion : t # Audio FIFO 4 Audio Audio
Compensation (4 x 16) Serralrzer Output

U.S. Patent 5,890,124 Mar. 30, 1999 Sheet 2 0f 13

/ 200
CH

'—\1 - CiL 2 [CW' 2 / 1\ 3
221

220
4bits 4bits

£210
Rin Din

Rout Q

{4bits i4bits 231
@230

QL

232
\

240
TO ZMEM

FIG. 2

U.S. Patent Mar. 30, 1999 Sheet 4 0f 13 5,890,124

400 /
411 421 431

\11 [410 \1‘ [420 \1‘ /430
dividend dividend dividend

Q Q Q

11» 413 1'1» 423 t» 433
FIG. 4A

9 S D. (D D 0. ID?!) 3 (D2. 3 O. (‘D —1 ABCDin Q I
0000 0 000
0001 0 001
0010 0 010
0011 0 011
0100 0 100
0101 1 000
0110 1 001
0111 1 010
1000 1 011
1001 1 100

FIG. 4B

U.S. Patent Mar. 30, 1999 Sheet 5 0f 13 5,890,124

12TRANS|STORS

DCBA
10 TRANSISTORS

12 TRANSISTORS

24TRANSISTORS

8-8

FIG. 4C

U.S. Patent Mar. 30, 1999 Sheet 6 0f 13 5,890,124

I
l

l
l
l
i

_|

I

’ ‘

1 m

_ 7(SQO1

22

/
220

210 1

D[3:O]
Address Generator

A[7:0]

i (550
200 x 8 ROM

231 /

R[3:O]

Rout

: Div3 ->
Div5 ->

I
I

I
|

230 J

232 J

240

FIG. 5A

U.S. Patent Mar. 30, 1999 Sheet 7 0f 13 5,890,124

NB
we

2 2 2 2 2

3“,

“mm gm

Sm mwm 8“, www

5 _ _ A 25 95 $30 £95 £5 25 2a 225 3a F o 5Q
00 0E E mm mm

U.S. Patent Mar. 30, 1999 Sheet 9 0f 13 5,890,124

5 snag/12
mm“ mm“ 0

:55 5'23

sésgsqw 535% a“ 55%:

6“ aims:

I»

, EaEmEU

e350 oizswnmw
m K

F u 588: i“- H 69E; m. H ?it:
9.5 28% 1% £21 + 625m 99m 28% 1w: veg + 628

r .I I. | |_ EN $229.6 NE

. Q3

6%: 8.58% .

E“ SE

mu .UE EOE"

U.S. Patent Mar. 30, 1999 Sheet 12 0f 13 5,890,124

[805
LTRANSFER BIT ALLOCATION AND SCALEFACTORS TO QMEM I

I [810
[TRANSFER 33 COMPONENTS TO PMEIVTI

820

f 825
WATT UNTIL VLC/FLC IS IDLEI

DEQUANT/DESCALE

8
WAIT UNTIL SPU IS IDLE

40

(845
|WAIT UNTIL TRANSFER OF SOUND AMPLITUDE VALUES IS COMPLEEI

f855
WMAIT UNTIL TRANSFER OF 33 COMPONENTS IS COMPLETE I

WINDOW/MATRIX

f 865
I IF NOT THE 8TH ITERATION FOR THE LAST VECTOR, ISSUE TRANSFER OF 33 COMPONENTS I

870
WAIT UNTIL SPU IS IDLE

[875
?ssuE TRANSFER OF 4 MATRIX RESULTS]

[885
IEIANSFER s2 DECODEFI SOUND AMPLITUDE VALUES]

NEXT VECTOR

89
NEXT SET OF VECTORS

5

FIG. 8A

U.S. Patent Mar. 30, 1999 Sheet 13 0f 13 5,890,124

SPU

FIG. 8B

5,890,124
1

WINDOWING METHOD FOR DECODING
OF MPEG AUDIO DATA

CROSS REFERENCE TO RELATED
APPLICATION

This is a divisional of US. patent application Ser. No.
08/311,659, ?led Sep. 23, 1994, now US. Pat. No.
5,649,029 Which is a continuation-in-part of US. patent
application Ser. No. 08/288,652 entitled “A Variable Length
Code Decoder for Video Decompression Operations,” ?led
Aug. 10, 1994, noW abandoned Which is a continuation of
US. patent application Ser. No. 07/890,732, ?led May 28,
1992 (noW abandoned) Which Was a continuation-in-part of
US. patent application Ser. No. 07/669,818, entitled
“Decompression Processor for Video Applications,” ?led
Mar. 15, 1991 (noW abandoned), all of Which are incorpo
rated by reference in their entirety.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material Which is subject to copyright protection.
The copyright oWner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Of?ce
patent ?les or records, but otherWise reserves all copyright
rights Whatsoever.

BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates to decoders for generating audio
signals from digital data, and in particular to combined audio
and video decoding according to the MPEG standard.

Description of Related Art

The Motion Picture Experts Group (MPEG) developed an
international standard (sometimes referred to herein as the
“MPEG standard”) for representation, compression, and
decompression of motion pictures and associated audio on
digital media. The International Standards OrganiZation
(ISO) publication, No. ISO/IEC 11172: 1993 (E), entitled
“Coding for Moving Pictures and Associated Audio—for
digital storage media at up to about 1.5 Mbit/s,” describes
the MPEG standard and is incorporated by reference herein
in its entirety. The MPEG standard speci?es coded digital
representations of audio and video and is intended for
continuous data transfer from equipment such as compact
disks, digital audio tapes, or magnetic hard disks, at rates up
to 1.5 Mbits per second.

Under the MPEG standard, parallel data streams or time
multiplexed data streams provide video data frames and
audio data frames. Methods and systems for decompressing
video data frames are described in US. patent applications
Ser. Nos. 07/890,732 and 07/669,818 Which Were incorpo
rated by reference above. Audio data frames contain a
header, side information, and subband data. Subband data
indicate frequency-domain vectors that are converted to
time-domain output sound amplitudes by a transformation
(matrixing) and a smoothing ?lter (WindoWing).

Typically, MPEG audio/video decoding systems for
decoding digital data include, tWo decoders, one for audio
decoding and one for video decoding, on tWo separate
integrated circuit chips. The audio decoder and video
decoder are separated because of the differences betWeen
MPEG audio coding techniques and MPEG video coding

10

15

20

25

30

35

40

45

55

60

65

2
techniques, but separate audio and video decoders increase
the amount of circuitry in and the cost of an audio/video
decoding system. A decoding architecture is needed that
reduces the amount of circuitry and the cost of decoding
MPEG audio and video data.

SUMMARY OF THE INVENTION

In accordance With this invention, an MPEG audio/video
decoder integrated on a single chip uses components such as
memories, a main CPU, a memory controller, and a signal
processing unit (SPU) for both audio and video decoding.
The SPU contains a multiplier (or multiply-and-accumulate
unit) and a butter?y unit Which together alternately decode
video data and audio data. The combination of a multiplier
and a butter?y unit is ef?cient for both audio and video
decoding. In particular, for audio decoding, determining
particular sums and differences of the components of a
frequency-domain vector With a butter?y unit reduces the
number of multiplies required for matrixing (i.e. determin
ing a component of a time-domain vector from a frequency
domain sample vector). Determining combinations of the
components can be performed in series With dequantiZing
and descaling of the components combined. Additionally,
matrixing and WindoWing (i.e. combining a present time
domain vectors With previous time-domain vectors) are
combined in a single instruction to increase throughput of a
decoder by increasing parallel use of the multiplier, the
butter?y unit, and a memory controller Which reads and
Writes to an external memory.

Also in accordance With this invention, a degrouping
circuit for decoding MPEG standard subband codes includes
a divider Which uses three clock cycles to perform tWo
divisions Which convert a MPEG subband code into three
vector components. Performing tWo divides in three clock
cycles instead of tWo alloWs the divider to be smaller and
less costly, but does not sloW decoding because three clock
cycles is the time required to Write three vector components
into a single-port memory. Accordingly, the smaller divider
does not signi?cantly increase the time required to degroup
subband codes and Write the resulting components into
memory. Using the knoWn limits on input dividends of the
divider, the siZe and cost of the divider can be further
reduced from that of a general purpose divider.

Also in accordance With this invention, in response to an
error signal from an external source of an MPEG audio data
stream, an MPEG audio decoder replaces errors in the audio
data stream With an error code Which is a bit combination
rarely found in MPEG audio data frames, and then tempo
rarily enables error handling. The audio data stream con
taining error codes can be saved or bufferred in the decoder.
During audio decoding With error handling enabled, the
decoder checks the audio data for the bit combination
equaling the error code and replaces the bit combination
With reconstructed data. The replacement attempts to mini
miZe the audible effects of an error. Typically, some subband
data is replaced With Zeros so that an error causes some of

the frequency components to be lost.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shoWs a block diagram of an MPEG audio/video
decoder in accordance With an embodiment of this inven
tion.

FIG. 2 shoWs a block diagram of a degrouping circuit in
accordance With an embodiment of this invention.

FIGS. 3A, 3B, and 3C shoW a block diagram, a logic
table, and a gate level diagram of a divide-by-three circuit in
accordance With this invention.

5,890,124
3

FIGS. 4A, 4B, and 4C show a block diagram, a logic
table, and a gate level diagram of a divide-by-?ve circuit in
accordance With this invention.

FIGS. 5A and 5B shoW a block diagram of another
embodiment of the degrouping circuit and a gate level
diagram of an address generator for dividing by three, ?ve,
or nine in accordance With this invention.

FIG. 6 shoWs memory maps of previous vector compo
nents used during a WindoWing process in accordance With
this invention.

FIGS. 7A, 7B, and 7C shoW a block diagram of an
embodiment of a signal processing unit in accordance With
an embodiment of this invention.

FIG. 8A shoWs a How diagram of an audio decoding
process in accordance With this invention.

FIG. 8B shoWs a timing diagram for the process of FIG.
8A.

Use of the same reference symbols in different ?gures
indicates similar or identical elements.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In accordance With this invention, an audio/video decoder
decodes MPEG standard data streams to provide an audio
signal and a video signal. The audio/video decoder alternates
betWeen decoding video data frames and decoding audio
data frames and employs the same memories and signal
processing unit (SPU) for both audio and video decoding.

FIG. 1 shoWs a block diagram of an audio/video decoder
100 for decoding MPEG standard audio and video data
frames. Decoder 100 receives MPEG standard coded audio
and video data via a serial bus 104, decodes the audio and
video data, and provides the decoded data over a video bus
176 and an audio bus 192. Decoder 100 includes static
random access memories (SRAMs) 134 to 137 (also referred
to herein as ZMEM 134, QMEM 135, THEM 136, and
PMEM 137) Which alternate betWeen holding video data for
video decoding and holding audio data for audio decoding,
and a signal processing unit (SPU) 140 Which includes an
instruction memory, a register ?le, a multiplier or a multiply
and-accumulate unit (MAC), and a butter?y unit for decod
ing and decompressing video data or audio data depending
on Whether decoder 100 is currently decoding video or
audio.

Audio/video decoder 100 interfaces With a source of
audio and video signals such as a host computer and a
compact disk digital signal processor (CD-DSP) over a host
bus 102 and serial bus 104. Serial bus 104 carries a stream
of compressed audio and video data folloWing the MPEG
standard, Which decoder 100 receives through a ?rst-in
?rst-out (FIFO) buffer 115 (“code FIFO 115”). A memory
controller 180 reads the compressed data from code FIFO
115 via a main bus 155 and Writes the compressed data to an
external memory 160 (also referred herein as DRAM 160).
As disclosed beloW, an audio error code injector 118 can
inject error codes into audio data Written to DRAM 160. A
central processing unit (CPU) 150, Which is a microcoded
processor having its oWn instruction memory controls access
to main bus 155 and in particular, sends commands to
memory controller 130 Which cause the data transfer from
code FIFO 115 to DRAM 160.

In this embodiment, DRAM 160 contains dynamic ran
dom access memory (DRAM) components. Other suitable
memory technologies can also be used. DRAM 160 holds
compressed data from serial bus 104 and decompressed data

10

15

20

25

30

35

40

45

55

60

65

4
for output to an audio bus 192 or a video bus 176. Under the
direction of CPU 150, memory controller 180 transfers
compressed audio or video data to a decoder FIFO 125 for
decoding of an audio data frame or a video data frame by
SPU 140.

According to the MPEG standard, a video data frame is a
compressed digital description of a picture and an audio data
frame is a digital description of a ?Xed number of frequency
domain sound samples in up to tWo sound channels. The
MPEG standard for video data frames and decoding of video
data frames to produce a video signal are described in US.
patent applications Ser. Nos. 07/890,732 and 07/669,818
Which Were incorporated by reference above. The MPEG
standard currently de?nes three types of audio data frames
referred to as layer 1, layer 2, and layer 3 data frames.
Decoder 100 in FIG. 1 decodes layer 1 and layer 2 audio data
frames. Layer 1 and layer 2 audio data frames contain a
header, side information, and subband data. The header
indicates: the bitrate of the data stream providing the audio
data frames; the sample frequency of the decoded sound;
Whether the subband data contains one or tWo sound chan
nels; and a mode eXtension describing Whether the sound
channels in the subband data are independent, stereo, or
intensity stereo. The side information indicates the number
of bits allocated per subband in the subband data and an
indeX to scalefactors F for dequantiZing and descaling
subband data as described beloW.

CPU 150 controls the percentage of time SPU 140 spends
decoding audio data. For audio decoding, CPU 150 directs
memory controller 180 to move audio data from DRAM 160
to decoder FIFO 125 and directs SPU 140 to perform the
calculations necessary for decoding audio data. SPU 140
operates in parallel With CPU 150 and eXecutes commands
according to softWare stored in an instruction memory in
SPU 140.
When decoding an audio data frame, SPU 140 ?rst

eXecutes a “get bits” command Which loads the header and
side information of the audio data frame, from decoder FIFO
buffer 125, through a VLC/FLC decoder 120, into CPU 150.
The CPU 150 Writes bit allocations and scalefactors from the
side information through SPU 140, into QMEM 135. Header
and side information pass through VLC/FLC decoder 120
unchanged. Subband data folloWs the side information in the
data stream from decoder FIFO buffer 125. VLC/FLC
decoder 120 contains circuits for decoding variable length
codes (VLC) in video data and ?Xed lengthcodes (FLC) in
audio and video data. VLC/FLC decoder 120 also contains
degrouping circuits for audio data as described beloW.
A “get subbands” command eXecuted by SPU 140 causes

VLC/FLC decoder 120 to parse and convert subband codes
Ci from decoder FIFO buffer 125 into 192 scaled and
quantiZed components Si“. VLC/F LC decoder 120 performs
degrouping as required and Writes the scaled and quantiZed
components Si“ into ZMEM 134. Each frequency-domain
vector S“ has 32 components Si“ in 32 frequency ranges
(subbands i). The “get subbands” command Writes compo
nents Si“ for three frequency-domain vector S“ in each
channel (siX vectors S“ total for tWo channels) to ZMEM
134. For intensity stereo, some of the frequency components
Si“ are used by both channels. VLC/FLC decoder 120 Writes
tWo copies of components that are shared by the channels so
that each vector S“ in ZMEM 134 has 32 components Si“.
For monophonic sound, VLC/FLC decoder 120 can Write
tWo copies of all components Si“ so that both channels of a
stereo output signal are the same. The number of vectors S“
in an audio data frame depends on the number of channels
and Whether the audio data frame folloWs layer 1 or layer 2

5,890,124
5

of the MPEG standard. Under layer 1, there are 12 vectors
S“ (384 samples) per channel. Under layer 2, there are 36
vectors S“ (1152 samples) per channel.
SPU 140 executes a “dequant/descale” command to gen

erate components Si of frequency-domain vectors S by
descaling and dequantiZing values Si“ from ZMEM 134.
SPU 140 Writes a representation of a vector S to a portion of
TNEM 136. Matrixing as described beloW transforms a
frequency-domain vector S to a time-domain vector V. SPU
140 stores components Vi of a time-domain vector V in
PMEM 137, and memory controller 180 Writes components
Vi from PMEM 137 to DRAM 160. Components from 16
consecutive time-domain vectors V0 to V16 from DRAM
160 are combined in a WindoWing process described beloW,
and the combination is accumulated in TMEM 136 to
provide 32 time-domain output sound amplitudes Ai. Time
domain output sound amplitudes Ai are typically Written to
an audio output FIFO buffer in DRAM 160, and Written as
required from DRAM 160 through main bus 155, an output
audio FIFO 190, and an audio serialiZer 191 to audio output
bus 192. Output audio FIFO buffer 190 holds enough output
sound amplitude values so that at the fastest sampling rate
expected delayed access to main bus 155 does not interrupt
sound. Audio serialiZer 191 converts the output audio data to
a serial data stream, and a digital-to-analog converter (DAC)
and ampli?er (not shoWn) generate a sound from the audio
data.

The side information indicates the number of possible
values for each quantized component Si“ (and each subband
code Ci) in a subband i. For example, if subband codes Ci
in subband i have 0, 2, 4, . . . , or 2N possible values, then
0, 1, 2, . . . , or N bits are used for each code Ci. If no bits

are used for a subband i, VLC/FLC decoder 120 Writes Zero
into ZMEM 134 for components Si“, and vector S has less
than 32 non-Zero components. For a bit allocation repre
senting 2N possible values for a subband i, VLC/FLC
decoder 120 uses the bit allocations from the side informa
tion in QMEM 135 to identify the start and end of a
component Si“ in the data stream and Writes component Si“
to a Word aligned location in ZMEM 134.

The MPEG standard alloWs components Si“ to have 3, 5,
or 9 possible values and encodes three components S1i“,
S2i“, and S3i“ from subband i of three different vectors S1,
S2, and S3 into a single code Ci. For example, there are 27
possible combinations of three quantized and scaled com
ponents S1i“, S2i“, and S3i“ if each has three possible values
0, 1, or 2. A 5-bit subband code Ci given by eq. 1 represents
the 27 possible combinations.

Ci=32-S3i"+3-S2i"+S1i" (eq. 1)

Similarly, a 7-bit code Ci given by eq. 2 represents three
components S1i“, S2i“, and S3i“ having ?ve possible values
0 to 4 each.

Ci=52-S3i"+5-S2i"+S1i" (eq. 2)

Eq. 3 gives a 10-bit code Ci representing three components
S1i“, S2i“, and S3i“ Which each have 9 possible values, 0 to
8.

VLC/FLC decoder 120 degroups a code Ci into three
components S3i“, S2i“, and S1i“ given by eqs. 1 to 3 before
Writing the scaled and quantiZed components S3i“, S2i“ and
S1i“ to ZMEM 134. TWo divisions are suf?cient to degroup
a code Ci given by eqs. 1 to 3. For example, if Ci=x2-S3i“+

1O

15

25

35

45

55

65

6
x~S2i“+S1i“ and components S3i“, S2i“ and S1i“ are less
than x, dividing Ci by x provides a quotient Q1 and a
remainder R1 given by eq. 4.

Dividing by x again provides a quotient Q2 and a remainder
R2 given by eq. 5.

(Q1 /x)=Q2=S 3i " With remainder

If ZMEN 134 has a single port connected to VLC/FLC 120,
three clock cycles are required to Write components S3i“,
S2i“, and S1i“. Accordingly, VLC/FLC decoder 120 can use
three clock cycles for tWo divides Which degroup a code Ci,
and not cause a pipeline delay in Writing components S3i“,
S2i“, and S1i“.

FIG. 2 shoWs decoding circuit 200 Which performs tWo
divides for degrouping a code Ci in three clock cycles. The
?rst divide is an extended divide that takes tWo clock cycles.
The second divide takes one clock cycle. Using tWo clock
cycles for the ?rst divide permits use of a smaller divider and
reduces the cost of VLC/FLC decoder 120. In the embodi
ment of FIG. 2, a divider 210 receives dividend values from
multiplexers 220 and 221 and divides the dividend values by
a divisor x equal to 3, 5, or 9 to produce a quotient Q and
a remainder Rout. Side information gives the bit allocation
for each subband and determines the value of divisor x for
each subband Which requires degrouping.

Code Ci is partitioned into three parts CiH, CiM, and CiL
for the ?rst divide of degrouping.. CiL contains the 2, 3, or
4 least signi?cant bits of code Ci for divisor x equal to 3, 5,
or 9 respectively. CiM contains the next 2, 3, or 4 more
signi?cant bits of code Ci, and CiH contains the most
signi?cant 1, 1, or 2 bits of Ci for divisor x equal to 3, 5, or
9 respectively. CiH is padded on the left With Zeros to 2, 3,
or 4 bits;

Degrouping proceeds as folloWs. During a ?rst clock
cycle, multiplexers 220 and 221 assert signals CiH and CiM
to divider 210, and divider 210 produces a quotient Q1H and
a remainder R1‘ Which are Written to registers 231 and 230
at the end of the ?rst clock cycle. Registers 230 and 231 in
the embodiment of FIG. 2 are edge triggered devices, but in
alternative embodiments, registers 230 and 231 may be
latches, memory locations, or any devices capable of hold
ing and asserting digital data signals. During a second clock
cycle, multiplexers 220 and 221 assert respectively remain
der R1‘ from register 230 and signal CiL to divider 210, and
divider 210 produces a quotient Q1L and remainder R1. At
the end of the second clock cycle, quotient Q1L and remain
der R1 are Written to registers 231 and 230 respectively, and
quotient Q1H is Written from register 231 to a register 232.
Quotients Q1H and Q1L are respectively the most signi?
cant and least signi?cant bits of the quotient Q1 given in eq.
4. Remainder R1 is value S1i“ as in eq. 1, 2, or 3.

During a third clock cycle, multiplexers 220 and 221
assert respectively signals Q1H and Q1L from registers 230
and 231 to divider 210, divider 210 produces quotient Q2
and remainder R2 that are given in eq. 5, and a multiplexer
240 selects value R1 from register 230 for Writing to a
memory such as ZMEM 134 of FIG. 1. At the end of the
third clock cycle, quotient Q2 and remainder R2 are Written
to registers 231 and 230, and the quotient Q1L is Written
from register 231 to register 232.

During a fourth clock cycle, remainder R2 Which equals
S2i“ passes through multiplexer 240 and is Written to the

5,890,124
7

memory. Quotient Q2 is Written to register 232 at the end of
the fourth clock cycle. Quotient Q2 Which equals S3i“ is
Written to memory during the ?fth clock cycle. A ?rst divide
for a second code Ci‘ can be performed during the fourth and
?fth clock cycles and can proceed as disclosed above.
Accordingly, if a series of codes C are degrouped, degroup
ing proceeds With a pipeline delay only for the ?rst code in
the series.
Any knoWn or yet to be developed digital divider circuit

may be employed for divider 210 providing the divider
circuit handles the correct siZe dividend, quotient, and
remainder. FIG. 3A shoWs a block diagram of a divide-by
three circuit 300 Which uses the limits on the values of codes
C to reduce the number of gates and transistors required.
Divide-by-three circuit 300 contains tWo identical circuit
blocks 310 and 320. Each block 310 and 320 has input
terminals for a 1-bit dividend signal C and a 2-bit remainder
signal Rin and output terminals for a 1-bit quotient signal Q
and a 2-bit remainder signal Rout. Output remainder signal
Rout from block 310 is asserted as input remainder signal
Rin of block 320. When used in divider 210 of FIG. 2,
divide-by-three circuit 300 has a remainder bus 312 con
nected to multiplexer 220 (FIG. 2), dividend buses 311 and
321 connected to multiplexer 221, remainder output bus 324
connected to register 230, and quotient output buses 313 and
323 connected to register 231. Multiplexers (not shoWn)
may provide the connections Which select divide-by-three
circuit 300 in response to the corresponding bit allocation of
a subband.

FIG. 3B shoWs a logic table relating the input signals Rin
and C to output signals Rout and Q for each of circuit blocks
310 and 320. During the ?rst clock cycle, the maximum
input signal Rin applied to bus 312 equals the maximum
signal CiH Which is 01 because code Ci contains only ?ve
bits. The maximum remainder for any divide-by-three is 10
binary, and the maximum quotient Q1 of eq. 4 is 0100 binary
(26 divided by 3 is 8 With remainder 2). Accordingly, input
signal Rin Which equals CiH, the most signi?cant bits of Q1,
or a remainder should never be 11 binary.

The logic table in FIG. 3B re?ects the reduced possibili
ties by indicating output signals Q and Rout as x (don’t care)
When signal Rin represents 11. The remaining entries are
generated by dividing 3-bit values by three. FIG. 3C shoWs
a gate level diagram Which implements the logic of FIG. 3B.
Counting inverters Which invert input signals A,. B, and C,
the implementation of FIG. 3C requires 30 transistors per
block 310 or 320. Many other circuits can implement the
logic table of FIG. 3B.

FIG. 4A shoWs a block diagram of a divide-by-?ve circuit
400 Which uses the limits on the values of codes C to reduce
the number of gates and transistors required to divide by
?ve. Divide-by-?ve circuit 400 contains three identical
blocks 410, 420, and 430 each of Which have input terminals
for a 3-bit remainder signal Rin and a 1-bit dividend signal
Din and output terminals for a 3-bit output remainder signal
Rout and a 1-bit quotient signal Q. The output remainder
signal Rout of block 410 is asserted as the input remainder
signal Rin of block 420, and the output remainder signal
Rout of block 420 is asserted as the input remainder signal
Rin of block 430.
When used in divider 210 of FIG. 2, divide-by-?ve circuit

400 has a remainder bus 412 connected to. multiplexer 220
(FIG. 2), dividend buses 411, 421, and 431 connected to
multiplexer 221, remainder output bus 434 connected to
register 230, and quotient output busses 413, 423, and 433
connected to register 231. Multiplexers may provide the
connections Which select divide-by-?ve circuit 400 in
response to the bit allocation of ?ve values per subband
component.

10

15

20

25

30

35

40

45

50

55

60

65

8
FIG. 4B shoWs a logic table relating the possible input

signals Rin and D for each block 410, 420, and 430 to the
desired output signals Q and Rout. FIG. 4C shoWs a gate
level diagram of a circuit Which implements the logic table
of FIG. 4B. The implementation shoWn requires 48 transis
tors for each of blocks 410, 420, and 430. Other implemen
tutions of the logic table of FIG. 4B are possible in accor
dance With this invention.

FIG. 5A shoWs a decoding circuit 500 Which uses a ROM
550 and an address generator 560 to divide a dividend by
nine, ?ve, or three. TWo control signals Div3 and Div5 are
active high to indicate a divide-by-three and a divide-by-?ve
respectively. When both signals Div3 and Div5 are loW, an
8-bit dividend indicated by signals R[3:0] and D[3:0] is
divided by nine. For a divide-by-nine, signals R[3:0] and
D[3:0] pass through address generator 560 unaltered, and
provide an address signal A[7:0] to ROM 550. ROM 550
holds 8-bit values Where the four most signi?cant bits. and
the four least signi?cant bits equal the remainder and
quotient respectively that results from dividing an 8-bit
dividend R[3:0]:D[3:0] by nine. ROM 550 holds 145 8-bit
values at addresses 00000000 to 10001111 for dividends
betWeen 0 and 10001111 binary. This range exhausts the
possible dividends to be divided by nine because the largest
remainder R[3:0] is 1000 (eight).
When Div5 is high, divider 210 divides a 6-bit quotient by

?ve. Input bits R3 and D3 in signals R[3:0] and D[3:0] are
alWays Zero, and input bits R0, R1, R2, D0, D1, and D2
provide the 6-bit quotient. As shoWn in FIG. 5B, address
generator 560 contains logic Which sets address bits A7 to
A0 of address signals A[7:0] to 1, R2, R1, E, R0, D2, D1,
D0 respectively, Where E is the complement of R2. This
provides addresses for all 6-bit dividends given by signals
R[2z0] and D[2z0]. The addresses for divide-by-?ve are
greater than 10001111 binary and therefore do not overlap
the addresses for divide-by-nine.
When Div3 is high, divider 210 divides a 4-bit quotient by

three. Input bits R3, R2, D3, and D2 are Zero, and input bits
R0, R1, D0, and D1 provide the 4-bit quotient. As shoWn in
FIG. 5B, address generator 560 contains logic Which sets
bits A7 to A0 of address signals A[7:0] to 1, 0, 1, 0, R0, R1,
D1, D0respectively When signal Div3 is high. This provides
addresses for all 4-bit quotients. The addresses for divide
by-three are greater than 10001111 binary and have address
bits A6 and A4 equal to Zero. Accordingly, addresses for
divide-by-three do not overlap the addresses for divide-by
nine Which are less than 1000111 or the addresses for
divide-by-?ve Which have address bit A6 complementary to
address bit A4.
ROM 550 contains 199 8-bit output values. The highest

required address is 11000111 binary Which contains a
remainder and a quotient for 100111 divided. by ?ve. The
largest possible remainder signal R[210] is 100 binary (four)
for a divide-by-?ve and limits the largest quotient.
VLC/FLC decoder 120 of FIG. 1 identi?es and degroups

subband codes Ci in a data stream from decoder FIFO buffer
125 and Writes quantiZed and scaled values Si“ into ZMEM
134. ZMEN 134 has 192 16-bit Words of storage, enough to
hold components of six sample vectors S“. 192 Words of
storage are required because in some cases, a subband code
Ci provides values S1i“, S2i“, and S3i“ for three vectors S1“,
S2“, and S3“ and subband codes for tWo channels are
interleaved in the data stream under the MPEG standard.
Accordingly, in the Worst case, components from six differ
ent vectors (three in each channel) must be decoded before
one complete vector S“ is knoWn.

In the embodiment of FIG. 1, after SPU 140 instructs
VLC/FLC decoder 120 to get subband data, VLC/FLC

5,890,124

decoder 120 reads the bit allocation per subband from
QMEM 135, reads subband codes C from decoder FIFO
buffer 125, degroups subband codes C (if necessary), and
Writes the scaled and quantized components Sim for six
vectors to ZMEM 134, all Without intervention from SPU
140. This frees SPU 140 for other operations. In alternative
embodiments, SPU 140 can take greater control of reading
and degrouping of subband codes. For example, SPU 140
can read the bit allocation for each subband, and VLC/FLC
decoder 120 can degroup each subband in response to
separate commands from SPU 140. VLC/FLC decoder 120
can also be eliminated if SPU 140 performs degrouping of
values from decoder FIFO buffer 125. SPU 140 is inactive
When VLC/FLC 120 is performing the “get subbands”
command because ZMEM 134 does not have space for more
than six vectors. HoWever, VLC/F LC decoder 120 as
described above may perform faster degrouping than using
SPU 140. and therefore increases throughput of decoder
100.

Scaled and quantized components Si“ correspond to com
ponents Si as indicated in eqs. 6 and 7,

Where constants K1 and K2 depend on the number of bits
used to represent values Si“, and the side information of the
audio data frame provides an index Which indicates scale
factor F. Applying eq. 6 to a value Si“is sometimes referred
to herein as dequantiZing. Applying eq. 7 to a value Si‘ is
sometimes referred to herein as descaling. Combinations of
dequantiZed and descaled vector components Si of a vector
S are combined as described beloW and stored in TMEM
136. TMEM 136 contains sixty four 22-bit storage locations,
32 storage locations for a vector S, and 32 locations for
accumulating a set of 32 output sound amplitudes Ai as
described beloW.

Determining output sound amplitudes Ai from sample
vector S in THEM proceeds in steps referred to herein as
matrixing and WindoWing. Matrixing produces a vector V by
performing the equivalent of matrix multiplication of
frequency-domain sample vector S by a transformation
matrix N given by the MPEG standard. The components Nji
of matrix N are

Where 0;]; 63 and 0§i§31. Matrix N is a 32-by-64 matrix
Which contains only 31 different positive values A to Z and
AA to AE as shoWn in Appendix A. The remaining compo
nents of matrix N are either 0, —1, or are the negative of one
of the values A to Z or AA to AE. Eq. 8 indicates the values
Ato Z andAAtoAE.

Vector V has 64 components Vj given by eq. 9.

32 components Vj of vector V are linearly independent.
Determination of each component Vj of vector V, except

V16 and V48, requires 32 multiplications of components Si
of vector S by components Nji of matrix N, according to eq.
9. (V16 is alWays 0, and V48 is the negative of the sum of
the components Si.) Using a butter?y unit to determine
combinations T0 to T31, sums and differences, of compo
nents S0 to S31, reduces the number of multiplications. An
example of a set of combinations T0 to T31 Which reduces
the number of multiplications required to generate vector V

10

15

20

25

30

35

40

45

55

60

65

10
is shoWn in Appendix B. Appendix C shoWs the equations
that give the components V0 to V63 of vector V in terms of
the combinations T0 to T31. Components Si and interme
diate values used to calculate T0 to T31 are temporarily
stored in a register ?le of SPU 140.
The equations of Appendix C are equivalent to eq. 9 but

require feWer multiplications and therefore are calculated
more quickly in a digital system. In vector V, component
V16 is alWays Zero. Components With an index Which are a
multiple of four, V(4n), each require 4 multiplications.
Components With an index equal to one or three plus a
multiple of four, V(4n+1) or V(4n+3), each require 16
multiplications. Components With an index equal to tWo plus
a multiple of four, V(4n+2), each require 8 multiplications.
Components V0 to V15 and V49 to V63 are either the same
or the negative of components V32 to V17 and V47 to V33.
In SPU 140, a MAC 750 shoWn in FIG. 7A, multiplies
combinations T0 to T31 by quantities stored in a ROM 732
to determine 32 linearly independent components such as
components V17 to V48 of vector V. Components V17 to
V48 are stored in PMEM 137 and Written in the order V48
to V17 to external DRAM 160. Alternative embodiments
may use other linearly independent sets of components or
other orders. As described beloW, the order of the compo
nents Written to DRAM 160 determines hoW WindoWing is
performed.

Successive vectors S for a channel are converted to
vectors V in sequential order from the data stream for one or
more audio data frames. A superscript is sometimes used
herein to distinguish the sequential order of vectors V (or S).
The components of a vector VO just determined from a
vector S0 are Written to DRAM 160 over the oldest vector
components for the channel. The components of 15 vectors
V-1 to V-15 are in DRAM 160 While vector V0 is being
determined. WindoWing combines components from the just
determined vectors V0 with the components of the 15
preceding vectors V-1 to V-15 to provide output sound
amplitude values Ai.
According to the MPEG standard, 32 output sound ampli

tudes Ai are given by

(eq. 10)

Where 0§i§31, vector U has a ?rst set of components
de?ned by U(64m+i)=V2'"i and a second set of components
de?ned by U(64m+32+i)=V_(2'”+1)(32+i) for 0émé7, and
D(i+32k) is a component of a 512 component vector given
by the MPEG standard. Eq. 10 requires 64 components of
sixteen vectors V0 to V15 for WindoWing even though each
vector has only 32 independent components. Storing only
the independent components in DRAM 160 reduces the
required siZe of DRAM 160, the time to Write the compo
nents after matrixing, and the time to retrieve components
for WindoWing.
As shoWn in Appendix C, each vector V contains 32

linearly independent components. Components V1 to V15 to
equal the negative of components V17 to V32 respectively.
Component V16 equals 0. Components V33 to V47 equal
components V63 to V49 respectively, and V48 is indepen
dent. Only a linearly independent set such as components
V48 to V17 is required for WindoWing if some of the
components are multiplied by values D(i+32k) of eq. 10.
As can be seen from eq. 10, one of the ?rst 32 components

Vzmi from each vector V2'" and one of the last 32 compo
nents V_(2'”+1)(32+i) from each vector V_(2'”+1) contribute to
an output sound amplitude Ai. The ?rst 32 components of
each vector V contains only 16 independent values. The last

5,890,124
11

32 components of each vector V contains 17 independent
values. Accordingly, a total of 33 values from tWo vectors
V'Zm and V_(2'”+1) are sufficient to determine the contribu
tions of vectors V'Zm and V_(2'”+1) to 32 output sound
amplitudes Ai during WindoWing. Storing the 33 values at
consecutive addresses in DRAM 160 increases the speed of
reading the values for WindoWing because consecutive
addresses can be accessed With a minimum number of page
changes.

FIG. 6 shoWs three alternate memory maps 610, 620, and
630 for a section of DRAM 160 of FIG. 1. In the memory
map 610, vectors V0, V_1, V_2, V_3, . . . V-15 are stored
consecutively With components in order from the loWest to
highest index. For WindoWing according to eq. 10, determi
nation of 32 output amplitudes Ai requires the ?rst 32
components of each of vectors V0, V_2, . . . V-14 and the last
32 components of each of vectors V_1, V_3, . . . V_15.
Reading components for WindoWing requires transfers from
seven blocks 612, 613, . . . of 64 consecutive addresses and

tWo blocks 611 and 619 of 32 consecutive addresses.
Typically, each of the nine transfers from blocks 611 to 619
requires at least one access to a neW page. For a typical
DRAM, transfers Which require changing pages require
extra clock cycles for addressing and therefore take longer
than transfers from a current page. Storing the components
of vectors V0 to V-15 in order of decreasing index as shoWn
in memory map 620 reduces the number of transfers to eight
blocks 621 to 628 of 64 consecutive addresses.
Memory map 630 stores only 32 linearly independent

components Vi for index i ranging from 48 to 17 per vector
V0 to V_15. In alternate embodiments, the set of linearly
independent components and the order of the components
may be changed if suitably matched WindoWing coefficients
D(i+32k) are employed. For memory map 630, WindoWing
requires transfers from eight blocks 631 to 638 of 33
consecutive addresses, and the number of bytes transferred
is cut nearly in half. In practice, at least one block of 33
vector components is not at consecutive addresses because
the current vector VO can be in any of sixteen positions in
memory and is not alWays at the loWest address as shoWn in
memory map 630. In any case, transfers from memory map
630 are less likely to include a page break than transfers
from memory map 620 because block transfers 631 to 638
are smaller than block transfers 621 to 628.

Returning to FIG. 1, components of vectors V0 to V-15 are
transferred from memory map 630 (FIG. 6) of DRAM 160
into PMEM 137. The transferred components are multiplied
by WindoWing coefficient D(i+32k) from eq. 10, and the
products of the transferred components and WindoWing
coef?cients are accumulated in TMEM 136. Once contribu
tions from sixteen vectors are accumulated, WindoWing is
complete, and the 32 accumulated sound amplitude values
Ai in TMEN 136 are Written to the audio output FIFO buffer
in DRAM 160. SPU 140 performs dequantiZing, descaling,
matrixing, and WindoWing for all sample vectors S in
ZMEM 134, and then more vectors are loaded into ZMEM
134 in response to “get subbands” commands. After reading
all of the subband information in the audio data frame, SPU
140 may be used for decoding of MPEG video data frames
While a DAC (not shoWn) reads decoded sound amplitudes
from DRAM 160 through audio output FIFO buffer 190.

Circuit blocks 170 to 175 in decoder 100 implement video
decoding. Block 170 performs half-pixel offsetting and
adding of reference blocks to error terms in accordance With
the MPEG standard. Blocks 171 to 175 form a video output
unit of audio/video decoder 100. Memory controller 180
transfers decoded video data from DRAM 160, to video

5

15

25

35

45

55

65

12
FIFOs 171. Interpolater 173 expands the decoded video data
by tWo horiZontally and by tWo vertically. Video overlay
data such as data representing lyric text is read from DRAM
160 into overlay FIFO 172, and block 174 blends the overlay
data With data from interpolater 173 to provide pixel values.
Converter 175 optionally converts the pixel values from a
YCbCr color representation to a RGB color representation
Which is transmitted on video output bus 176.

FIGS. 7A, 7B, and 7C shoW a block diagram of a
signal-processing unit 140 in accordance With this invention.
SPU 140 has an instruction memory (not shoWn) and a
control unit (not shoWn) Which executes a decoding program
stored in the instruction memory. SPU 140 decodes audio
and video data frames using information stored in memories
134 to 137. FIG. 7A shoWs portions of SPU 140 for audio
decoding. ZMEN 134 is a (3><64)><16 bit SRAM and is large
enough to store six vectors S“ each containing thirty tWo
16-bit components Si“, during audio decoding. During video
decoding, ZMEM 134 is a “Zig-Zag” memory Which stores
tWo or three sets of 64 9-bit video coef?cients. QMEM 135
is a 64><(2><8) memory. During audio decoding, QMEM 135
holds 32 subband bit allocations and scalefactor indices for
each of tWo sound channels. During video decoding, QMEM
135 holds tWo sets of 64 8-bit components of video quantiZer
matrices according to the MPEG standard. QuantiZer matri
ces are sWapped betWeen QMEM 135 and DRAM 160 as
required When sWitching betWeen video and audio decoding.

For audio decoding, a VLC/FLC decoder 120 Writes six
quantiZed and scaled vectors S“ to ZMEM 134 as described
above. SPU 140 performs a “dequant/descale” instruction
and “Window/matrix” instructions on each vector S“ in
ZMEM 134. The dequant/descale instruction determines
combinations T0 to T31 from a vector S“ by dequantiZing,
descaling, and butter?y operations. For descaling, a 16-bit
component Si“ from ZMEM 134 is fed through a multi
plexer 716 as an input value Z of MAC 750. A multiplexer
706 asserts a value X equal to —1 to a register 707 coupled
to MAC 750, and multiplexer 712 asserts a value Y Which
equals K2 as given in eq. 6, from ROM 732 to a register 713
coupled to MAC 750. MAC 750 determines the product of
value X and value Y and then subtracts value Z. A register
717 captures the output value from MAC 750 Which can be
Written to a multiported register ?le 733 Which has three read
ports and three Write ports. The value Si“+K2 is stored to
register ?le 733. In a second pass through MAC 750,
multiplexer 706 asserts signal X equal to Si“+K2 from
register ?le 733, through register 707, to MAC 750. Multi
plexer 712 asserts signal Y equal to K1 (eq. 6) from ROM
732, through register 713, to MAC 750. Multiplexer 716
asserts a value Z equal to Zero. The output signal of MAC
750 is a dequantiZed value Si‘ Which is again Written to
register ?le 733.
ROM 732 contains tWo ROMs 732A and 732B Which are

alternately accessed to provide ROM 732 With tWice the
read speed of ROMs 732A and 732B. ROM 732 contains
constants for dequantiZing, descaling, matrixing,
WindoWing, and video decoding. The control unit of SPU
140 determines the correct address in ROM 732 from the
side information in QMEM 135.

DequantiZed value Si‘ is asserted through multiplexer 706
as a value X for descaling. Descaling is performed in tWo
multiplications. For the ?rst multiplication, multiplexer 712
and register 713 provide a ?rst scalefactor F1 Which is one
of 1, 2_%, and 2_%from ROM 732 according to an index
from the side information in QMEM 135. Value Z from
multiplexer 716 is Zero. The resulting partly descaled value
is held by register 717, stored to register ?le 733, and

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description
	Page 24 - Description
	Page 25 - Description
	Page 26 - Description
	Page 27 - Description
	Page 28 - Description
	Page 29 - Description
	Page 30 - Claims

