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WINDOWING METHOD FOR DECODING
OF MPEG AUDIO DATA

CROSS REFERENCE TO RELATED
APPLICATION

This is a divisional of U.S. patent application Ser. No.
08/311,659, filed Sep. 23, 1994, now U.S. Pat. No.
5,649,029 which is a continuation-in-part of U.S. patent
application Ser. No. 08/288,652 entitled “A Variable Length
Code Decoder for Video Decompression Operations,” filed
Aug. 10, 1994, now abandoned which is a continuation of
U.S. patent application Ser. No. 07/890,732, filed May 28,
1992 (now abandoned) which was a continuation-in-part of
U.S. patent application Ser. No. 07/669,818, entitled
“Decompression Processor for Video Applications,” filed
Mar. 15, 1991 (now abandoned), all of which are incorpo-
rated by reference in their entirety.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent files or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates to decoders for generating audio
signals from digital data, and in particular to combined audio
and video decoding according to the MPEG standard.

Description of Related Art

The Motion Picture Experts Group (MPEG) developed an
international standard (sometimes referred to herein as the
“MPEG standard”) for representation, compression, and
decompression of motion pictures and associated audio on
digital media. The International Standards Organization
(ISO) publication, No. ISO/IEC 11172: 1993 (E), entitled
“Coding for Moving Pictures and Associated Audio—for
digital storage media at up to about 1.5 Mbit/s,” describes
the MPEG standard and is incorporated by reference herein
in its entirety. The MPEG standard specifies coded digital
representations of audio and video and is intended for
continuous data transfer from equipment such as compact
disks, digital audio tapes, or magnetic hard disks, at rates up
to 1.5 Mbits per second.

Under the MPEG standard, parallel data streams or time
multiplexed data streams provide video data frames and
audio data frames. Methods and systems for decompressing
video data frames are described in U.S. patent applications
Ser. Nos. 07/890,732 and 07/669,818 which were incorpo-
rated by reference above. Audio data frames contain a
header, side information, and subband data. Subband data
indicate frequency-domain vectors that are converted to
time-domain output sound amplitudes by a transformation
(matrixing) and a smoothing filter (windowing).

Typically, MPEG audio/video decoding systems for
decoding digital data include, two decoders, one for audio
decoding and one for video decoding, on two separate
integrated circuit chips. The audio decoder and video
decoder are separated because of the differences between
MPEG audio coding techniques and MPEG video coding
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2

techniques, but separate audio and video decoders increase
the amount of circuitry in and the cost of an audio/video
decoding system. A decoding architecture is needed that
reduces the amount of circuitry and the cost of decoding
MPEG audio and video data.

SUMMARY OF THE INVENTION

In accordance with this invention, an MPEG audio/video
decoder integrated on a single chip uses components such as
memories, a main CPU, a memory controller, and a signal
processing unit (SPU) for both audio and video decoding.
The SPU contains a multiplier (or multiply-and-accumulate
unit) and a butterfly unit which together alternately decode
video data and audio data. The combination of a multiplier
and a butterfly unit is efficient for both audio and video
decoding. In particular, for audio decoding, determining
particular sums and differences of the components of a
frequency-domain vector with a butterfly unit reduces the
number of multiplies required for matrixing (i.e. determin-
ing a component of a time-domain vector from a frequency-
domain sample vector). Determining combinations of the
components can be performed in series with dequantizing
and descaling of the components combined. Additionally,
matrixing and windowing (i.e. combining a present time-
domain vectors with previous time-domain vectors) are
combined in a single instruction to increase throughput of a
decoder by increasing parallel use of the multiplier, the
butterfly unit, and a memory controller which reads and
writes to an external memory.

Also in accordance with this invention, a degrouping
circuit for decoding MPEG standard subband codes includes
a divider which uses three clock cycles to perform two
divisions which convert a MPEG subband code into three
vector components. Performing two divides in three clock
cycles instead of two allows the divider to be smaller and
less costly, but does not slow decoding because three clock
cycles is the time required to write three vector components
into a single-port memory. Accordingly, the smaller divider
does not significantly increase the time required to degroup
subband codes and write the resulting components into
memory. Using the known limits on input dividends of the
divider, the size and cost of the divider can be further
reduced from that of a general purpose divider.

Also in accordance with this invention, in response to an
error signal from an external source of an MPEG audio data
stream, an MPEG audio decoder replaces errors in the audio
data stream with an error code which is a bit combination
rarely found in MPEG audio data frames, and then tempo-
rarily enables error handling. The audio data stream con-
taining error codes can be saved or bufferred in the decoder.
During audio decoding with error handling enabled, the
decoder checks the audio data for the bit combination
equaling the error code and replaces the bit combination
with reconstructed data. The replacement attempts to mini-
mize the audible effects of an error. Typically, some subband
data is replaced with zeros so that an error causes some of
the frequency components to be lost.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a block diagram of an MPEG audio/video
decoder in accordance with an embodiment of this inven-
tion.
FIG. 2 shows a block diagram of a degrouping circuit in
accordance with an embodiment of this invention.
FIGS. 3A, 3B, and 3C show a block diagram, a logic

table, and a gate level diagram of a divide-by-three circuit in
accordance with this invention.
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FIGS. 4A, 4B, and 4C show a block diagram, a logic
table, and a gate level diagram of a divide-by-five circuit in
accordance with this invention.

FIGS. 5A and 5B show a block diagram of another
embodiment of the degrouping circuit and a gate level
diagram of an address generator for dividing by three, five,
or nine in accordance with this invention.

FIG. 6 shows memory maps of previous vector compo-
nents used during a windowing process in accordance with
this invention.

FIGS. 7A, 7B, and 7C show a block diagram of an
embodiment of a signal processing unit in accordance with
an embodiment of this invention.

FIG. 8A shows a flow diagram of an audio decoding
process in accordance with this invention.

FIG. 8B shows a timing diagram for the process of FIG.
8A.

Use of the same reference symbols in different figures
indicates similar or identical elements.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In accordance with this invention, an audio/video decoder
decodes MPEG standard data streams to provide an audio
signal and a video signal. The audio/video decoder alternates
between decoding video data frames and decoding audio
data frames and employs the same memories and signal
processing unit (SPU) for both audio and video decoding.

FIG. 1 shows a block diagram of an audio/video decoder
100 for decoding MPEG standard audio and video data
frames. Decoder 100 receives MPEG standard coded audio
and video data via a serial bus 104, decodes the audio and
video data, and provides the decoded data over a video bus
176 and an audio bus 192. Decoder 100 includes static
random access memories (SRAMs) 134 to 137 (also referred
to herein as ZMEM 134, QMEM 135, THEM 136, and
PMEM 137) which alternate between holding video data for
video decoding and holding audio data for audio decoding,
and a signal processing unit (SPU) 140 which includes an
instruction memory, a register file, a multiplier or a multiply-
and-accumulate unit (MAC), and a butterfly unit for decod-
ing and decompressing video data or audio data depending
on whether decoder 100 is currently decoding video or
audio.

Audio/video decoder 100 interfaces with a source of
audio and video signals such as a host computer and a
compact disk digital signal processor (CD-DSP) over a host
bus 102 and serial bus 104. Serial bus 104 carries a stream
of compressed audio and video data following the MPEG
standard, which decoder 100 receives through a first-in-
first-out (FIFO) buffer 115 (“code FIFO 115”). A memory
controller 180 reads the compressed data from code FIFO
115 via a main bus 155 and writes the compressed data to an
external memory 160 (also referred herein as DRAM 160).
As disclosed below, an audio error code injector 118 can
inject error codes into audio data written to DRAM 160. A
central processing unit (CPU) 150, which is a microcoded
processor having its own instruction memory controls access
to main bus 155 and in particular, sends commands to
memory controller 130 which cause the data transfer from
code FIFO 115 to DRAM 160.

In this embodiment, DRAM 160 contains dynamic ran-
dom access memory (DRAM) components. Other suitable
memory technologies can also be used. DRAM 160 holds
compressed data from serial bus 104 and decompressed data
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4

for output to an audio bus 192 or a video bus 176. Under the
direction of CPU 150, memory controller 180 transfers
compressed audio or video data to a decoder FIFO 125 for
decoding of an audio data frame or a video data frame by
SPU 140.

According to the MPEG standard, a video data frame is a
compressed digital description of a picture and an audio data
frame is a digital description of a fixed number of frequency-
domain sound samples in up to two sound channels. The
MPEG standard for video data frames and decoding of video
data frames to produce a video signal are described in U.S.
patent applications Ser. Nos. 07/890,732 and 07/669,818
which were incorporated by reference above. The MPEG
standard currently defines three types of audio data frames
referred to as layer 1, layer 2, and layer 3 data frames.
Decoder 100 in FIG. 1 decodes layer 1 and layer 2 audio data
frames. Layer 1 and layer 2 audio data frames contain a
header, side information, and subband data. The header
indicates: the bitrate of the data stream providing the audio
data frames; the sample frequency of the decoded sound;
whether the subband data contains one or two sound chan-
nels; and a mode extension describing whether the sound
channels in the subband data are independent, stereo, or
intensity stereo. The side information indicates the number
of bits allocated per subband in the subband data and an
index to scalefactors F for dequantizing and descaling
subband data as described below.

CPU 150 controls the percentage of time SPU 140 spends
decoding audio data. For audio decoding, CPU 150 directs
memory controller 180 to move audio data from DRAM 160
to decoder FIFO 125 and directs SPU 140 to perform the
calculations necessary for decoding audio data. SPU 140
operates in parallel with CPU 150 and executes commands
according to software stored in an instruction memory in
SPU 140.

When decoding an audio data frame, SPU 140 first
executes a “get bits” command which loads the header and
side information of the audio data frame, from decoder FIFO
buffer 125, through a VLC/FLC decoder 120, into CPU 150.
The CPU 150 writes bit allocations and scalefactors from the
side information through SPU 140, into QMEM 135. Header
and side information pass through VLC/FLC decoder 120
unchanged. Subband data follows the side information in the
data stream from decoder FIFO buffer 125. VLC/FLC
decoder 120 contains circuits for decoding variable length
codes (VLC) in video data and fixed lengthcodes (FLC) in
audio and video data. VLC/FLC decoder 120 also contains
degrouping circuits for audio data as described below.

A “get subbands” command executed by SPU 140 causes
VLC/FLC decoder 120 to parse and convert subband codes
Ci from decoder FIFO buffer 125 into 192 scaled and
quantized components Si". VLC/FLC decoder 120 performs
degrouping as required and writes the scaled and quantized
components Si" into ZMEM 134. Each frequency-domain
vector S" has 32 components Si" in 32 frequency ranges
(subbands i). The “get subbands” command writes compo-
nents Si" for three frequency-domain vector S" in each
channel (six vectors S" total for two channels) to ZMEM
134. For intensity stereo, some of the frequency components
Si" are used by both channels. VLC/FLC decoder 120 writes
two copies of components that are shared by the channels so
that each vector S" in ZMEM 134 has 32 components Si".
For monophonic sound, VLC/FLC decoder 120 can write
two copies of all components Si" so that both channels of a
stereo output signal are the same. The number of vectors S"
in an audio data frame depends on the number of channels
and whether the audio data frame follows layer 1 or layer 2
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of the MPEG standard. Under layer 1, there are 12 vectors
S" (384 samples) per channel. Under layer 2, there are 36
vectors S" (1152 samples) per channel.

SPU 140 executes a “dequant/descale” command to gen-
erate components Si of frequency-domain vectors S by
descaling and dequantizing values Si" from ZMEM 134.
SPU 140 writes a representation of a vector S to a portion of
TNEM 136. Matrixing as described below transforms a
frequency-domain vector S to a time-domain vector V. SPU
140 stores components Vi of a time-domain vector V in
PMEM 137, and memory controller 180 writes components
Vi from PMEM 137 to DRAM 160. Components from 16
consecutive time-domain vectors V° to V'¢ from DRAM
160 are combined in a windowing process described below,
and the combination is accumulated in TMEM 136 to
provide 32 time-domain output sound amplitudes Ai. Time-
domain output sound amplitudes Ai are typically written to
an audio output FIFO buffer in DRAM 160, and written as
required from DRAM 160 through main bus 155, an output
audio FIFO 190, and an audio serializer 191 to audio output
bus 192. Output audio FIFO buffer 190 holds enough output
sound amplitude values so that at the fastest sampling rate
expected delayed access to main bus 155 does not interrupt
sound. Audio serializer 191 converts the output audio data to
a serial data stream, and a digital-to-analog converter (DAC)
and amplifier (not shown) generate a sound from the audio
data.

The side information indicates the number of possible
values for each quantized component Si" (and each subband
code Ci) in a subband i. For example, if subband codes Ci
in subband i have 0, 2, 4, . . ., or 2V possible values, then
0,1,2,...,orN bits are used for each code Ci. If no bits
are used for a subband i, VLC/FLC decoder 120 writes zero
into ZMEM 134 for components Si", and vector S has less
than 32 non-zero components. For a bit allocation repre-
senting 2V possible values for a subband i, VLC/FLC
decoder 120 uses the bit allocations from the side informa-
tion in QMEM 135 to identify the start and end of a
component Si" in the data stream and writes component Si"
to a word aligned location in ZMEM 134.

The MPEG standard allows components Si" to have 3, 5,
or 9 possible values and encodes three components S1i",
S2i", and S3i" from subband i of three different vectors S1,
S2, and S3 into a single code Ci. For example, there are 27
possible combinations of three quantized and scaled com-
ponents S1i", S2i", and S31" if each has three possible values
0, 1, or 2. A 5-bit subband code Ci given by eq. 1 represents
the 27 possible combinations.

Ci=3%53{"+3-S2i"+S1i" (eq. 1)
Similarly, a 7-bit code Ci given by eq. 2 represents three
components S1i", S2i", and S3i" having five possible values
0 to 4 each.

Ci=5%83{"+5-S2i"+S1i" (eq. 2)
Eq. 3 gives a 10-bit code Ci representing three components
S1i", S2i", and S3i" which each have 9 possible values, 0 to
8.

Ci=9-83i"+9-82i"+511" (eq. 3)

VLC/FLC decoder 120 degroups a code Ci into three
components S3i", S2i", and S1i" given by egs. 1 to 3 before
writing the scaled and quantized components S31", S2i" and
S1i" to ZMEM 134. Two divisions are sufficient to degroup
a code Ci given by egs. 1 to 3. For example, if Ci=x>-S3i"+
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x-S2i"+81i" and components S3i", S2i" and S1i" are less
than x, dividing Ci by x provides a quotient Q1 and a
remainder R1 given by eq. 4.

(Cifx)=01=x-53{ "+52i" with remainder

R1=51i" (cq. 4)

Dividing by x again provides a quotient Q2 and a remainder
R2 given by eq. 5.

(01/x)=02=53{" with remainder

R2=52i" (eq. 5)

If ZMEN 134 has a single port connected to VLC/FLC 120,
three clock cycles are required to write components S3i",
S2i", and S1i". Accordingly, VLC/FLC decoder 120 can use
three clock cycles for two divides which degroup a code Ci,
and not cause a pipeline delay in writing components S3i",
S2i", and S1i".

FIG. 2 shows decoding circuit 200 which performs two
divides for degrouping a code Ci in three clock cycles. The
first divide is an extended divide that takes two clock cycles.
The second divide takes one clock cycle. Using two clock
cycles for the first divide permits use of a smaller divider and
reduces the cost of VLC/FLC decoder 120. In the embodi-
ment of FIG. 2, a divider 210 receives dividend values from
multiplexers 220 and 221 and divides the dividend values by
a divisor x equal to 3, 5, or 9 to produce a quotient Q and
a remainder Rout. Side information gives the bit allocation
for each subband and determines the value of divisor x for
each subband which requires degrouping.

Code Ci is partitioned into three parts CiH, CiM, and CilL
for the first divide of degrouping.. Cil. contains the 2, 3, or
4 least significant bits of code Ci for divisor x equal to 3, 5,
or 9 respectively. CiM contains the next 2, 3, or 4 more
significant bits of code Ci, and CiH contains the most
significant 1, 1, or 2 bits of Ci for divisor x equal to 3, 5, or
9 respectively. CiH is padded on the left with zeros to 2, 3,
or 4 bits;

Degrouping proceeds as follows. During a first clock
cycle, multiplexers 220 and 221 assert signals CiH and CiM
to divider 210, and divider 210 produces a quotient Q1H and
a remainder R1' which are written to registers 231 and 230
at the end of the first clock cycle. Registers 230 and 231 in
the embodiment of FIG. 2 are edge triggered devices, but in
alternative embodiments, registers 230 and 231 may be
latches, memory locations, or any devices capable of hold-
ing and asserting digital data signals. During a second clock
cycle, multiplexers 220 and 221 assert respectively remain-
der R1' from register 230 and signal CiL to divider 210, and
divider 210 produces a quotient Q1L and remainder R1. At
the end of the second clock cycle, quotient Q1L and remain-
der R1 are written to registers 231 and 230 respectively, and
quotient Q1H is written from register 231 to a register 232.
Quotients Q1H and Q1L are respectively the most signifi-
cant and least significant bits of the quotient Q1 given in eq.
4. Remainder R1 is value S1i" as in eq. 1, 2, or 3.

During a third clock cycle, multiplexers 220 and 221
assert respectively signals Q1H and Q1L from registers 230
and 231 to divider 210, divider 210 produces quotient Q2
and remainder R2 that are given in eq. 5, and a multiplexer
240 selects value R1 from register 230 for writing to a
memory such as ZMEM 134 of FIG. 1. At the end of the
third clock cycle, quotient Q2 and remainder R2 are written
to registers 231 and 230, and the quotient Q1L is written
from register 231 to register 232.

During a fourth clock cycle, remainder R2 which equals
S2i" passes through multiplexer 240 and is written to the
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memory. Quotient Q2 is written to register 232 at the end of
the fourth clock cycle. Quotient Q2 which equals S3i" is
written to memory during the fifth clock cycle. A first divide
for a second code Ci' can be performed during the fourth and
fifth clock cycles and can proceed as disclosed above.
Accordingly, if a series of codes C are degrouped, degroup-
ing proceeds with a pipeline delay only for the first code in
the series.

Any known or yet to be developed digital divider circuit
may be employed for divider 210 providing the divider
circuit handles the correct size dividend, quotient, and
remainder. FIG. 3A shows a block diagram of a divide-by-
three circuit 300 which uses the limits on the values of codes
C to reduce the number of gates and transistors required.
Divide-by-three circuit 300 contains two identical circuit
blocks 310 and 320. Each block 310 and 320 has input
terminals for a 1-bit dividend signal C and a 2-bit remainder
signal Rin and output terminals for a 1-bit quotient signal Q
and a 2-bit remainder signal Rout. Output remainder signal
Rout from block 310 is asserted as input remainder signal
Rin of block 320. When used in divider 210 of FIG. 2,
divide-by-three circuit 300 has a remainder bus 312 con-
nected to multiplexer 220 (FIG. 2), dividend buses 311 and
321 connected to multiplexer 221, remainder output bus 324
connected to register 230, and quotient output buses 313 and
323 connected to register 231. Multiplexers (not shown)
may provide the connections which select divide-by-three
circuit 300 in response to the corresponding bit allocation of
a subband.

FIG. 3B shows a logic table relating the input signals Rin
and C to output signals Rout and Q for each of circuit blocks
310 and 320. During the first clock cycle, the maximum
input signal Rin applied to bus 312 equals the maximum
signal CiH which is 01 because code Ci contains only five
bits. The maximum remainder for any divide-by-three is 10
binary, and the maximum quotient Q1 of eq. 4 is 0100 binary
(26 divided by 3 is 8 with remainder 2). Accordingly, input
signal Rin which equals CiH, the most significant bits of Q1,
or a remainder should never be 11 binary.

The logic table in FIG. 3B reflects the reduced possibili-
ties by indicating output signals Q and Rout as x (don’t care)
when signal Rin represents 11. The remaining entries are
generated by dividing 3-bit values by three. FIG. 3C shows
a gate level diagram which implements the logic of FIG. 3B.
Counting inverters which invert input signals A,. B, and C,
the implementation of FIG. 3C requires 30 transistors per
block 310 or 320. Many other circuits can implement the
logic table of FIG. 3B.

FIG. 4A shows a block diagram of a divide-by-five circuit
400 which uses the limits on the values of codes C to reduce
the number of gates and transistors required to divide by
five. Divide-by-five circuit 400 contains three identical
blocks 410, 420, and 430 each of which have input terminals
for a 3-bit remainder signal Rin and a 1-bit dividend signal
Din and output terminals for a 3-bit output remainder signal
Rout and a 1-bit quotient signal Q. The output remainder
signal Rout of block 410 is asserted as the input remainder
signal Rin of block 420, and the output remainder signal
Rout of block 420 is asserted as the input remainder signal
Rin of block 430.

When used in divider 210 of FIG. 2, divide-by-five circuit
400 has a remainder bus 412 connected to. multiplexer 220
(FIG. 2), dividend buses 411, 421, and 431 connected to
multiplexer 221, remainder output bus 434 connected to
register 230, and quotient output busses 413, 423, and 433
connected to register 231. Multiplexers may provide the
connections which select divide-by-five circuit 400 in
response to the bit allocation of five values per subband
component.
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FIG. 4B shows a logic table relating the possible input
signals Rin and D for each block 410, 420, and 430 to the
desired output signals Q and Rout. FIG. 4C shows a gate
level diagram of a circuit which implements the logic table
of FIG. 4B. The implementation shown requires 48 transis-
tors for each of blocks 410, 420, and 430. Other implemen-
tutions of the logic table of FIG. 4B are possible in accor-
dance with this invention.

FIG. 5A shows a decoding circuit 500 which uses a ROM
550 and an address generator 560 to divide a dividend by
nine, five, or three. Two control signals Div3 and Div5 are
active high to indicate a divide-by-three and a divide-by-five
respectively. When both signals Div3 and Div5 are low, an
8-bit dividend indicated by signals R[3:0] and D[3:0] is
divided by nine. For a divide-by-nine, signals R[3:0] and
D[3:0] pass through address generator 560 unaltered, and
provide an address signal A[7:0] to ROM 550. ROM 550
holds 8-bit values where the four most significant bits. and
the four least significant bits equal the remainder and
quotient respectively that results from dividing an 8-bit
dividend R[3:0]:D[3:0] by nine. ROM 550 holds 145 8-bit
values at addresses 00000000 to 10001111 for dividends
between 0 and 10001111 binary. This range exhausts the
possible dividends to be divided by nine because the largest
remainder R[3:0] is 1000 (eight).

When Div$ is high, divider 210 divides a 6-bit quotient by
five. Input bits R3 and D3 in signals R[3:0] and D[3:0] are
always zero, and input bits RO, R1, R2, DO, D1, and D2
provide the 6-bit quotient. As shown in FIG. 5B, address
generator 560 contains logic which sets address bits A7 to
A0 of address signals A[7:0] to 1, R2, R1, R2, RO, D2, D1,
DO respectively, where R2 is the complement of R2. This
provides addresses for all 6-bit dividends given by signals
R[2:0] and D[2:0]. The addresses for divide-by-five are
greater than 10001111 binary and therefore do not overlap
the addresses for divide-by-nine.

When Div3 is high, divider 210 divides a 4-bit quotient by
three. Input bits R3, R2, D3, and D2 are zero, and input bits
RO, R1, DO, and D1 provide the 4-bit quotient. As shown in
FIG. 5B, address generator 560 contains logic which sets
bits A7 to A0 of address signals A[7:0] to 1, 0, 1, 0, RO, R1,
D1, DOrespectively when signal Div3 is high. This provides
addresses for all 4-bit quotients. The addresses for divide-
by-three are greater than 10001111 binary and have address
bits A6 and A4 equal to zero. Accordingly, addresses for
divide-by-three do not overlap the addresses for divide-by-
nine which are less than 1000111 or the addresses for
divide-by-five which have address bit A6 complementary to
address bit A4.

ROM 550 contains 199 8-bit output values. The highest
required address is 11000111 binary which contains a
remainder and a quotient for 100111 divided. by five. The
largest possible remainder signal R[2:0] is 100 binary (four)
for a divide-by-five and limits the largest quotient.

VLC/FLC decoder 120 of FIG. 1 identifies and degroups
subband codes Ci in a data stream from decoder FIFO buffer
125 and writes quantized and scaled values Si" into ZMEM
134. ZMEN 134 has 192 16-bit words of storage, enough to
hold components of six sample vectors S". 192 words of
storage are required because in some cases, a subband code
Ci provides values S1i", S2i", and S3i" for three vectors S1",
S2", and S3" and subband codes for two channels are
interleaved in the data stream under the MPEG standard.
Accordingly, in the worst case, components from six differ-
ent vectors (three in each channel) must be decoded before
one complete vector S" is known.

In the embodiment of FIG. 1, after SPU 140 instructs
VLC/FLC decoder 120 to get subband data, VLC/FLC
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decoder 120 reads the bit allocation per subband from
QMEM 135, reads subband codes C from decoder FIFO
buffer 125, degroups subband codes C (if necessary), and
writes the scaled and quantized components Sim for six
vectors to ZMEM 134, all without intervention from SPU
140. This frees SPU 140 for other operations. In alternative
embodiments, SPU 140 can take greater control of reading
and degrouping of subband codes. For example, SPU 140
can read the bit allocation for each subband, and VLC/FLC
decoder 120 can degroup each subband in response to
separate commands from SPU 140. VLC/FLC decoder 120
can also be eliminated if SPU 140 performs degrouping of
values from decoder FIFO buffer 125. SPU 140 is inactive
when VLC/FLC 120 is performing the “get subbands”
command because ZMEM 134 does not have space for more
than six vectors. However, VLC/FLC decoder 120 as
described above may perform faster degrouping than using
SPU 140. and therefore increases throughput of decoder
100.

Scaled and quantized components Si" correspond to com-
ponents Si as indicated in egs. 6 and 7,

Si=K1-(Si"+K2) (cq. 6)

Si=F-Si’ (eq. 7)

where constants K1 and K2 depend on the number of bits
used to represent values Si", and the side information of the
audio data frame provides an index which indicates scale-
factor F. Applying eq. 6 to a value Si"is sometimes referred
to herein as dequantizing. Applying eq. 7 to a value Si' is
sometimes referred to herein as descaling. Combinations of
dequantized and descaled vector components Si of a vector
S are combined as described below and stored in TMEM
136. TMEM 136 contains sixty four 22-bit storage locations,
32 storage locations for a vector S, and 32 locations for
accumulating a set of 32 output sound amplitudes Ai as
described below.

Determining output sound amplitudes Ai from sample
vector S in THEM proceeds in steps referred to herein as
matrixing and windowing. Matrixing produces a vector V by
performing the equivalent of matrix multiplication of
frequency-domain sample vector S by a transformation
matrix N given by the MPEG standard. The components Nji
of matrix N are

Nji=cos [(16+))(2i+1)m/64] (eq. 8)

where 0=J=63 and 0=i1=31. Matrix N is a 32-by-64 matrix
which contains only 31 different positive values A to Z and
AA to AE as shown in Appendix A. The remaining compo-
nents of matrix N are either 0, —1, or are the negative of one
of the values A to Z or AAto AE. Eq. 8 indicates the values
A to Z and AA to AE.

Vector V has 64 components Vj given by eq. 9.

31
Vi= X Nji-Si

=0

(eq. 9)

32 components Vj of vector V are linearly independent.
Determination of each component Vj of vector V, except
V16 and V48, requires 32 multiplications of components Si
of vector S by components Nji of matrix N, according to eq.
9. (V16 is always 0, and V48 is the negative of the sum of
the components Si.) Using a butterfly unit to determine
combinations TO to T31, sums and differences, of compo-
nents SO to S31, reduces the number of multiplications. An
example of a set of combinations TO to T31 which reduces
the number of multiplications required to generate vector V
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is shown in Appendix B. Appendix C shows the equations
that give the components VO to V63 of vector V in terms of
the combinations TO to T31. Components Si and interme-
diate values used to calculate TO to T31 are temporarily
stored in a register file of SPU 140.

The equations of Appendix C are equivalent to eq. 9 but
require fewer multiplications and therefore are calculated
more quickly in a digital system. In vector V, component
V16 is always zero. Components with an index which are a
multiple of four, V(4n), each require 4 multiplications.
Components with an index equal to one or three plus a
multiple of four, V(4n+1) or V(4n+3), each require 16
multiplications. Components with an index equal to two plus
a multiple of four, V(4n+2), each require 8 multiplications.
Components VO to V15 and V49 to V63 are either the same
or the negative of components V32 to V17 and V47 to V33.
In SPU 140, a MAC 750 shown in FIG. 7A, multiplies
combinations TO to T31 by quantities stored in a ROM 732
to determine 32 linearly independent components such as
components V17 to V48 of vector V. Components V17 to
V48 are stored in PMEM 137 and written in the order V48
to V17 to external DRAM 160. Alternative embodiments
may use other linearly independent sets of components or
other orders. As described below, the order of the compo-
nents written to DRAM 160 determines how windowing is
performed.

Successive vectors S for a channel are converted to
vectors V in sequential order from the data stream for one or
more audio data frames. A superscript is sometimes used
herein to distinguish the sequential order of vectors V (or S).
The components of a vector V° just determined from a
vector S° are written to DRAM 160 over the oldest vector
components for the channel. The components of 15 vectors
V™! to V** are in DRAM 160 while vector V° is being
determined. Windowing combines components from the just
determined vectors V° with the components of the 15
preceding vectors V™! to V™% to provide output sound
amplitude values Ai.

According to the MPEG standard, 32 output sound ampli-
tudes Ai are given by

15 (eq. 10)
Ai= 3 U(i=32k)-D(i + 32k)
k=0

where 0=i=31, vector U has a first set of components
defined by U(64m+i)=V*"i and a second set of components
defined by U(64m+32+i)=V~"*D(324i) for 0Sm=7, and
D(i+32k) is a component of a 512 component vector given
by the MPEG standard. Eq. 10 requires 64 components of
sixteen vectors V° to V! for windowing even though each
vector has only 32 independent components. Storing only
the independent components in DRAM 160 reduces the
required size of DRAM 160, the time to write the compo-
nents after matrixing, and the time to retrieve components
for windowing.

As shown in Appendix C, each vector V contains 32
linearly independent components. Components V1 to V15 to
equal the negative of components V17 to V32 respectively.
Component V16 equals 0. Components V33 to V47 equal
components V63 to V49 respectively, and V48 is indepen-
dent. Only a linearly independent set such as components
V48 to V17 is required for windowing if some of the
components are multiplied by values D(i+32k) of eq. 10.

As can be seen from eq. 10, one of the first 32 components
V" from each vector V¥ and one of the last 32 compo-
nents V-@**(324) from each vector V- contribute to
an output sound amplitude Ai. The first 32 components of
each vector V contains only 16 independent values. The last
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32 components of each vector V contains 17 independent
values. Accordingly, a total of 33 values from two vectors
V=2 and V=@ are sufficient to determine the contribu-
tions of vectors V™" and V™Y to 32 output sound
amplitudes Ai during windowing. Storing the 33 values at
consecutive addresses in DRAM 160 increases the speed of
reading the values for windowing because consecutive
addresses can be accessed with a minimum number of page
changes.

FIG. 6 shows three alternate memory maps 610, 620, and
630 for a section of DRAM 160 of FIG. 1. In the memory
map 610, vectors V°, V™1, V=2, V3 V™15 are stored
consecutively with components in order from the lowest to
highest index. For windowing according to eq. 10, determi-
nation of 32 output amplitudes Ai requires the first 32
components of each of vectors V°, V=2, . .. V-* and the last
32 components of each of vectors V7, V73, . . V715,
Reading components for windowing requires transfers from
seven blocks 612, 613, . . . of 64 consecutive addresses and
two blocks 611 and 619 of 32 consecutive addresses.
Typically, each of the nine transfers from blocks 611 to 619
requires at least one access to a new page. For a typical
DRAM, transfers which require changing pages require
extra clock cycles for addressing and therefore take longer
than transfers from a current page. Storing the components
of vectors V° to V™% in order of decreasing index as shown
in memory map 620 reduces the number of transfers to eight
blocks 621 to 628 of 64 consecutive addresses.

Memory map 630 stores only 32 linearly independent
components Vi for index i ranging from 48 to 17 per vector
V© to V7*°, In alternate embodiments, the set of linearly
independent components and the order of the components
may be changed if suitably matched windowing coefficients
D(i+32k) are employed. For memory map 630, windowing
requires transfers from eight blocks 631 to 638 of 33
consecutive addresses, and the number of bytes transferred
is cut nearly in half. In practice, at least one block of 33
vector components is not at consecutive addresses because
the current vector V° can be in any of sixteen positions in
memory and is not always at the lowest address as shown in
memory map 630. In any case, transfers from memory map
630 are less likely to include a page break than transfers
from memory map 620 because block transfers 631 to 638
are smaller than block transfers 621 to 628.

Returning to FIG. 1, components of vectors V° to V™% are
transferred from memory map 630 (FIG. 6) of DRAM 160
into PMEM 137. The transferred components are multiplied
by windowing coefficient D(i+32k) from eq. 10, and the
products of the transferred components and windowing
coefficients are accumulated in TMEM 136. Once contribu-
tions from sixteen vectors are accumulated, windowing is
complete, and the 32 accumulated sound amplitude values
Ai in TMEN 136 are written to the audio output FIFO buffer
in DRAM 160. SPU 140 performs dequantizing, descaling,
matrixing, and windowing for all sample vectors S in
ZMEM 134, and then more vectors are loaded into ZMEM
134 in response to “get subbands” commands. After reading
all of the subband information in the audio data frame, SPU
140 may be used for decoding of MPEG video data frames
while a DAC (not shown) reads decoded sound amplitudes
from DRAM 160 through audio output FIFO buffer 190.

Circuit blocks 170 to 175 in decoder 100 implement video
decoding. Block 170 performs half-pixel offsetting and
adding of reference blocks to error terms in accordance with
the MPEG standard. Blocks 171 to 175 form a video output
unit of audio/video decoder 100. Memory controller 180
transfers decoded video data from DRAM 160, to video
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FIFOs 171. Interpolater 173 expands the decoded video data
by two horizontally and by two vertically. Video overlay
data such as data representing lyric text is read from DRAM
160 into overlay FIFO 172, and block 174 blends the overlay
data with data from interpolater 173 to provide pixel values.
Converter 175 optionally converts the pixel values from a
YCbCr color representation to a RGB color representation
which is transmitted on video output bus 176.

FIGS. 7A, 7B, and 7C show a block diagram of a
signal-processing unit 140 in accordance with this invention.
SPU 140 has an instruction memory (not shown) and a
control unit (not shown) which executes a decoding program
stored in the instruction memory. SPU 140 decodes audio
and video data frames using information stored in memories
134 to 137. FIG. 7A shows portions of SPU 140 for audio
decoding. ZMEN 134 is a (3x64)x16 bit SRAM and is large
enough to store six vectors S" each containing thirty two
16-bit components Si", during audio decoding. During video
decoding, ZMEM 134 is a “zig-zag” memory which stores
two or three sets of 64 9-bit video coefficients. QMEM 135
is a 64x(2x8) memory. During audio decoding, QMEM 135
holds 32 subband bit allocations and scalefactor indices for
each of two sound channels. During video decoding, QMEM
135 holds two sets of 64 8-bit components of video quantizer
matrices according to the MPEG standard. Quantizer matri-
ces are swapped between QMEM 135 and DRAM 160 as
required when switching between video and audio decoding.

For audio decoding, a VLC/FLC decoder 120 writes six
quantized and scaled vectors S" to ZMEM 134 as described
above. SPU 140 performs a “dequant/descale” instruction
and “window/matrix” instructions on each vector S" in
ZMEM 134. The dequant/descale instruction determines
combinations TO to T31 from a vector S" by dequantizing,
descaling, and butterfly operations. For descaling, a 16-bit
component Si" from ZMEM 134 is fed through a multi-
plexer 716 as an input value Z of MAC 750. A multiplexer
706 asserts a value X equal to -1 to a register 707 coupled
to MAC 750, and multiplexer 712 asserts a value Y which
equals K2 as given in eq. 6, from ROM 732 to a register 713
coupled to MAC 750. MAC 750 determines the product of
value X and value Y and then subtracts value Z. A register
717 captures the output value from MAC 750 which can be
written to a multiported register file 733 which has three read
ports and three write ports. The value Si"+K2 is stored to
register file 733. In a second pass through MAC 750,
multiplexer 706 asserts signal X equal to Si"+K2 from
register file 733, through register 707, to MAC 750. Multi-
plexer 712 asserts signal Y equal to K1 (eq. 6) from ROM
732, through register 713, to MAC 750. Multiplexer 716
asserts a value Z equal to zero. The output signal of MAC
750 is a dequantized value Si' which is again written to
register file 733.

ROM 732 contains two ROMs 732A and 732B which are
alternately accessed to provide ROM 732 with twice the
read speed of ROMs 732A and 732B. ROM 732 contains
constants for dequantizing, descaling, matrixing,
windowing, and video decoding. The control unit of SPU
140 determines the correct address in ROM 732 from the
side information in QMEM 135.

Dequantized value Si' is asserted through multiplexer 706
as a value X for descaling. Descaling is performed in two
multiplications. For the first multiplication, multiplexer 712
and register 713 provide a first scalefactor F1 which is one
of 1, 27", and 2-**from ROM 732 according to an index
from the side information in QMEM 135. Value Z from
multiplexer 716 is zero. The resulting partly descaled value
is held by register 717, stored to register file 733, and
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asserted through multiplexer 706 and register 707 as value
X for the second multiply. Multiplexer 712 and register 713
provide a second scalefactor F2 which is one of 27 to 272°
from ROM 732 according to the index from the side
information in QMEM 135, and again value Z is zero. The
product of F1 and F2 equals scalefactor F of eq. 8. Descaling
with two multiplications reduces round-off error which
might result from a single multiplication by scalefactor F
which is small.

The dequantized and descaled value Si is written to
register file 733, and SPU 140 dequantizes and descales a
second component Sk" from ZMEK 134 in the same manner
as described above. When component Sk" is dequantized
and descaled to provide component Sk, butterfly unit 760
calculates the sum and the difference of Si and Sk. Calcu-
lation of sums and differences is conducted in parallel with
dequantizing and descaling other components. Components
Si" are descaled and dequantized in an order that facilitates
calculation of sums and differences TO to T31 shown in
Appendix B.

One example dequantizes and descales components SO,
S31, S15, S16, S7, S24, S8, and S23 in that order for a
determination of sum T28. Butterfly unit 760 determines the
sum and difference of SO and S31 while MAC 750 deter-
mines components S15 and S16. A register 725 holds the
sum S0+S31 for writing into register file 733. A register 726
holds difference (S0-S31)=TO, which passes through a
register 727, a multiplexer 728, an audio clamp 724, and a
multiplexer 723 to be written in TMEM 136. Subsequently,
butterfly unit 760 determines the difference (S15-S16)=T15
which is similarly stored in TMEM 136 and the sum
(S15+S16) which is temporarily stored in register file 733.
Next, butterfly unit 760 determines the sum and difference
of the sums (S0+S31) and (S15+S66). The difference (SO+
S31)—(S15+S16)-T15 is saved to TMEM 136. The sum
(S0+S31)+(S15+S16) is temporarily stored in register file
733. The same calculations as performed on S1, S31, S15,
and S16 are performed on S7, S24, S§, and S23 to determine
(S7-S24)=T7, (S8-S23)=T8, (S7+S24)-(S8+S23)-T23,
and (S7+S24)+(S8+S23). Butterfly unit 760 then combines
values (SO0+S31)+(S15+S16) and (S7+S24)+(S8+S23) from
register file 733 to determine difference T24 [(SO+S31)+
(S15+S16)]-[(S7+S24)+(S8+S23)] and sum T28 [(S0+S31)
+(S15+S16)]-[(S7+S24)+(S8+S23)], both of which are
stored in TMEM 136. The remaining components of vector
S are dequantized in parallel with operation of butterfly unit
760 in the order as required to determine sums T29 to T31
of Appendix B.

After all combinations TO to T31 are determined and
stored in TMEM 136, SPU executes a window/matrix
instruction. Combinations TO to T31 are asserted to MAC
750 through multiplexer 706 and register 707. MAC 750
multiplies combinations TO to T31 by matrixing coefficients
from ROM 732 as given in Appendix C to determine
components V17 to V48. Butterfly unit 760 performs addi-
tions or subtractions needed to accumulate components V17
to V48 which are passed through registers 726 and 727,
multiplexer 728, and clamp 729 to be saved in PMEM 137.
The number of multiplications required is 4, 8, or 16 per
component Vi depending on the index.

Windowing filters vector components Vi which result
from matrixing. For each window/matrix instruction,
memory controller 180 reads sets of 33 previous vector
components as in memory map 630 of DRAM 160, into
PMEM 137 with the 33 previous vector components from
oldest vectors (from vectors V™** and V%) being read from
DRAM 160 first. The previous vector components in PMEM
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137 are fed through multiplexer 706 and register 707 to
MAC 750. MAC 750 multiplies the previous vector com-
ponents by windowing coefficients D(i+32k) and accumu-
lates the product into 32 sound amplitude values being
accumulated in TMEM 136. For each set of 33 vector
components, 64 multiplies are performed, and two values
are accumulated for each sound amplitude value.

Matrixing and windowing of a vector requires eight
window/matrix instructions. Each window/matrix instruc-
tion determines and stores into DRAM 160 four components
of a vector V°, and accumulates two windowing contribu-
tions for each of 32 sound amplitude values Ai. Before the
first window/matrix instruction, old sound amplitude values
Ai must be saved from TMEM 136 to DRAM 160. Saving
old sound amplitude values can be performed simulta-
neously with dequantizing and descaling of a new vector if
TMEM 136 is dual ported or if writes to TMEN 136 during
the dequantizing and descaling process can be stalled. Oth-
erwise window/matrix instruction must wait until old sound
amplitude values are saved to DRAM 160. Window/matrix
instruction also must wait until dequantizing and descaling
of the current vector is complete.

Initially, memory controller 180 transfers 33 vector com-
ponents from DRAM 160 to a first portion of PPEM 137. For
the MPEG standard, vector components are. kept to 20 bits
of accuracy, but standard DRAM have 16-bit storage loca-
tions. Accordingly, 33 vector components are stored at 42
addresses in DRAM 160. PMEN 137 is 18 bits wide for
holding two 9-bit video error terms. Vector components are
stored in PMEM 137 in 42 addresses as reccived from
DRAM 160. Once the 33 vector components are in PMEM
137, SPU 140 begins executing a window/matrix instruction
on the first portion of PMEM 137 and retrieves 20-bit
components as required. The window/matrix instruction
accumulates the windowing contributions of the 33 compo-
nents in PMEM 137 to the sound amplitude values Ai in
TMEM 136 and determines a set of four vector components
of the current vector V°. It should be noted that each set of
four vector components V17 to V20, V21 to V24, V25 to
V28, V29 to V32, V33 to V36, V37 to V40, V41 to V44, and
V45 to V48 if determined by the equations in Appendix C
requires 44 multiplications. The set of four vector compo-
nents determined by matrixing are stored in PMEM 137.

Simultaneously with execution of the window/matrix
instruction, memory controller 180 transfers 33 more vector
components from DRAM 160 to a second portion of PMEM
137. When a window/matrix instruction is complete, four
vector components are written from PMEN 137 to DRAM
160, and then another window/matrixing instruction begins
using the second portion of PMEM 137. The eighth and final
window/matrix instruction for a vector V° uses components
of vector V° for windowing. Since windowing only requires
components V°17 to V°33 windowing, the necessary com-
ponents for windowing are calculated and stored in DRAM
160 in previous window/matrix instructions before being
retrieved for windowing. After theeighth window/matrix
instruction, the 32 sound amplitude values Ai are ready for
transfer from TMEM 136 to DRAM 160. Audio clamp 724
clamps the accumulated sound amplitude values. Ai to 16
bits for writing to DRAM 160. If dequantizing and descaling
is not stallable, SPU 140 waits while memory controller 180
transfers sound amplitude values Ai to DRAM 160.

An advantage of the combined window/matrix step arises
because multiply time limits matrixing, and windowing is
slightly limited by memory access to DRAM 160. Combin-
ing windowing and matrixing provides an instruction that
more evenly utilizes the resources of SPU 140 and decoder
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100. Additionally, if the windowing and matrixing were not
combined transfers from DRAM 160 to video FIFOs 171
and 172 (and FIFOs 125, 115, and 190) would delay
windowing. By combining windowing and matrixing, trans-
fers from DRAM 160 to video FIFOs 171 and 172 can
overlap the window/matrix computations because matrixing
does not use much DRAM bandwidth. Matrixing only needs
to write four 20-bit values to DRAM 160.

FIG. 8A illustrates a process loop executed by CPU 150
for audio data frame decoding, and FIG. 8B shows the
timing of the process loop. Initially, in step 805, CPU 150
loads QMEM 135 with scalefactor indices and bit alloca-
tions for a layer 1 audio data frame or for part of a layer 2
audio data frame and then in step 810, requests that memory
controller 180 transfer 33 vector components from DRAM
160 to PMEM 137. The 33 vector components are trans-
ferred to a first half of PMEM 137 during time T1 (FIG. 8B).
Meanwhile, CPU 150 issues a get subbands command in
step 820 that VLC/FLC decoder 120 executes in parallel
with the transfer during time T1. The get subbands com-
mand as disclosed above moves components for six vectors
into ZMEM 134. CPU 150 waits in step 825 until VLC/FLC
decoder 120 is idle before issuing a dequant/descale com-
mand in step 835. SPU 140 performs the dequant/descale
command in parallel with the transfer during time T1.

SPU 140 can not proceed from the dequant/descale com-
mand to a window/matrix command until transfer of 33
vector components requested in step 810 is complete
because the 33 vector components are required for window-
ing. SPU requires the results of the dequant/descale com-
mand (step 835) for matrixing. Additionally, window/matrix
commands can not begin until previously determined sound
amplitude values are saved from TMEM 136 to DRAM 160.
Accordingly, CPU 150 waits in steps 840, 845, and 855
before directing SPU 140 to execute a window/matrix
command in step 860. During a time T2, the window/matrix
command is performed as disclosed above. In step 865, CPU
150 requests that memory controller 180 transfer 33 more
vector components from DRAM 160 to a second half of
PMEM 137. The transfer of 33 more components occurs
during time T3 in parallel with the window/matrix command
of step 860. Memory controller 180 does not interfere with
data being used by SPU 140 because memory controller 180
and SPU 140 access different halves of PMEM 137.

CPU 150 waits in step 870 until SPU 140 completes the
window/matrix command, before requesting in step 875 that
memory controller 180 transfer to DRAM 160 four vector
components just determined by the window/matrix com-
mand. The transfer to DRAM 160 occurs during a time T4.
CPU 150 transitions through step 880 back to step 855 and
waits until the 33 components requested in step 865 are
transferred to the second half of PMEM 137. Decoding
proceeds as disclosed above except that a second window/
matrix command of step 860 operates on the second half of
PMEM 137, and a second execution of step 865 request a
transfer of 33 vector components to the first half of PMEM
137. SPU 140 executes the second window/matrix command
during a time T5 and in parallel with transfer of the
previously four vector components to DRAM 160 during
time T4 and then in parallel with transfer of the next set of
33 vector components from DRAM 160 during time T6 as
shown in FIG. 8B.

Steps 855 to 880 are repeated eight times. In each
iteration, steps 860 and 865 alternate operating on the first
and second halves of PMEM 137. During an eighth iteration
of steps 855 to 880, vector components for windowing the
next vector are requested in step 865 unless the vector is the
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last vector of the last set of vectors. After the eight iterations
of the window/matrix command,. CPU 150 transitions to
step 885 and requests transfer of the 32 just determined
sound amplitude values Ai from TMEM 136 to DRAM 160.
CPU 150 transitions to step 890 and then step 835 and
begins a dequant/descale command for the next vector in
ZMEN 134. A loop from step 835 to step 890 is executed six
times to decode three vectors in each of two channels. After
the six vectors are decoded, CPU 150 jumps from step 895
to step 820 to get subband data for a next set of six vectors.
Aloop from step 820 to step 895 is executed for four sets of
vectors. After four sets of six vectors, new bit allocations and
scalefactor indices are needed.

Appendix D contains a C code listing of a program which
executes the steps of dequantizing, descaling, matrixing, and
windowing as described above.

Audio/video decoder 100 (FIG. 1) of this invention also
performs video decoding according to the MPEG standard.
Video decoding under the MPEG standard is described in
U.S. patent app. Ser. Nos. 07/890,732 and 07/669,818 which
were incorporated by reference above. VLC/FLC decoder
120 converts codes in a video data stream from decoder
FIFO 125 into quantized discrete cosine transformation
(DCT) coefficients which are stored in ZMEM 134. For
video decoding, ZMEM 134 is sometimes referred to as a
zig-zag memory because of the order in which coefficients
are stored. QMEM 135 holds dequantization constants
which are swapped into QMEM 135 from DRAM 160 after
audio decoding or are changed according to the video data
stream. SPU 140 uses the dequantization constants for
dequantizing the DCT coefficients.

SPU 140 multiplies the dequantized DCT coefficients by
a cosine factor and then converts the DCT coefficients to
pixel values by a two-dimensional inverse discrete cosine
transformation (IDCT). The two-dimensional IDCT may be
performed as two one-dimensional IDCTS, and TMEM 136
is used to hold intermediate values during the IDCT. After
the IDCT, the resulting error terms are stored into PMEM
137 and then written to DRAM 160. Decoded video is read
from DRAM 160 through blocks 171 to 175 for output on
video bus 176.

SPU 140 executes operations including the
dequantization, the cosine multiply, and the IDCT described
above and in U.S. patent app. Ser. No. 07/890,732. In
addition to the blocks shown in FIG. 7A, SPU 140 uses the
circuit blocks shown in FIGS. 7B and 7C during a video
decoding. During a cosine multiply operation, a multiplexer
712 is set to select a cosine factor from ROM 732 which
MAC 750 multiplies by a DCT coefficient. For a dequanti-
zation instruction, a dequantization constant is retrieved
from QMEM 135 via a multiplexer 714 and a register 715.
Multiplexer selects either the most or least significant eight
bits of a 16-bit signal from QMEM 135. A multiplier 711
scales the dequantization constant by a value provided by a
multiplexer 710. Multiplexer 710 selects either a fixed
constant for the DC term of intra macroblocks or a 5-bit
scaling factor from registers 708 and 709. Multiplier 711
provides the scaled dequantization constant via multiplexer
712 and a register 713 to MAC 750 for multiplication by a
DCT coefficient retrieved from ZMEM 134.

Prior to being asserted to MAC 750, each 9-bit DCT
coefficient from ZMEM 134 may be padded, decremented
by decrementer 704, made odd or rounded towards zero by
rounder 733, or clipped to a predetermined range by clamp
705, according to the requirements of the MPEG standard.
AND gate 702 sets a 9-bit DCT coefficient from ZMEM 134
to zero in response to a control signal “coded”. During a
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video dequantization instruction, multiplexer 703 selects
output signal decrin [10:.0] equal to an 11-bit signal formed
by padding the 9-bit zQCode[8:0] from gate 702, on the
right. Alternatively, when executing an instruction other than
a dequantization instruction, multiplexer 703 selects signal
decrin[10:0] equal to an 11-bit signal SRC3[13:3] from
register file 733. Decrementer 704 decrements signal decrin
[10:09 when required by the MPEG standard to provide an
output signal decrout[10:0]. If a decrement operation is not
required, signal decrout equals signal decrin[10:0].

Rounder 733 replaces bits 0 (the LSB) and 4 of the output
datum of signal decrout[10:0] if required under the MPEG
standard. Rounder 733 zeros signal decrout[10:0] if the DCT
coefficient from ZMEM 134 is zero, during execution of a
dequantization instruction, or signal SRC3[13:3] is zero,
during execution of a non-dequantization instruction (e.g. a
cosine multiply instruction). Bits [21:14] of signal SRC3
from the register file 733 prefixes to signal decrout[10:0]
resulting in a 19-bit signal CLAMPIN[18:0] which is passed
into clamp 705. Clamp 705 clamps signal CLAMPIN[18:0]
to a 14-bit signal CLAMPOUT(13:0] having values between
-2047 and 2047 during execution of a non-dequantization
instruction. Alternatively, during a dequantization
instruction, clamp 705 passes the input signal unchanged.
Signal CLAMPOUT[13:0] is then zero-padded on the right
to form a 22-bit signal passed through multiplexer 706 and
register 707 as the signal X to MAC 750.

MAC 750 can, depending on the instruction executed,
multiply two numbers X and Y (e.g. in a dequantization or
cosine multiply instruction), or compute the value of the
expression X*Y-Z (e.g. in an IDCT multiply-subtract
instruction). The DCT coefficients are fetched from either
ZMEM 134 or TMEM 136 to register file 733. In addition,
the resulting value from MAC 750 can be routed as an
operand to butterfly unit 760 bypassing register file 733.

Butterfly unit 760 computes simultaneously the sum and
the difference of two input operands X and Y. Since MAC
750 and butterfly unit 760 can each operate on their respec-
tive operands in parallel during the execution of a multiply
instruction, a multiply instruction can result in both a
multiplication result and a butterfly result. Additionally, a
pipeline is achieved by using the output value (an “inter-
mediate” result) of MAC 750 directly through multiplexer
718 to butterfly unit 760. This arrangement increases
throughput because the delay caused by loading then reading
an intermediate result in register file 733 is eliminated.

The results from a butterfly operation of a first pass IDCT
are routed into TMEM 136, whereas the results from a
butterfly operation of a second pass IDCT operation are
“clipped” by clamp 729 and routed to PMEM 137. A
program executable by SPU 140 for video decoding is
described in U.S. patent application Ser. No. 07/890,732.

The MPEG standard does not define an error code that is
injected into the audio bit stream because any possible bit
combination can validly appear in the bit stream of a layer
1 or layer 2 audio data frame. Instead a CD-DSP may
generate a separate-error signal for any audio data byte
which includes a detected error. The audio/video decoder
100 of FIG. 1 includes an audio error code injector 118
which when an error signal is received from a CD-DSP,
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changes a section of audio data received on serial bus 104 to
a bit combination that is rare in audio data frames. Code
FIFO 115 is 18 bits wide to store two bytes of coded data
each with a ninth bit for the error signal. Audio error code
injector 118 checks the error bit of the coded data, and if the
error bit is set, overwrites the byte with an error code. For
example, if decoder 100 receives an error signal while
receiving an audio data stream, audio error code injector 118
inserts a 32-bit word aligned value 7FFD7FFD hexadecimal
into an audio data frames In this case, the error coded
replaces the byte with the error and three other bytes. In a
statistical study of MPEG data frames for actual sounds, the
32-bit value $7FFD7FFD was estimated to occur less than
once every 100 hours of audio data;

Bytes with errors can not be overwritten with an error
code when written into code FIFO 115 because different
types of data streams typically use different error codes, and
decoder 100 does not identify the type of data stream
containing the error until the data is removed from code
FIFO 115. For example, audio/video decoder 100 may-
receive an audio data stream, a video data stream, and a lyric
data stream. Errors in the video data stream are overwritten
with $000001B4. Errors in the lyric data stream are over-
written with 32 bits of zero.

When an error signal for an audio data frame is received,
host interface 110 inserts a 1 into an 8-bit shift register that
is shifted once for every audio data packet. Accordingly, the
value in the shift register is not zero for a number of audio
data frames greater than or equal to the number of shifts
required to move the 1 out of the shift register. The value in
the shift register is non-zero for the time that an input audio
data buffer in DRAM 160 could contain an error code.
VLC/FLC decoder 120 checks for bit combinations equal to
the error code in all audio frames that are decoded while the
value in the shift register is not zero. If the bit combination
is detected, the VLC/FLC decoder 120 initiates an error
concealment procedure. Bit combinations which are not
actual injected error codes are rarely detected because the
chances of the bit combination occurring within a short time
interval of an audio frame containing an error are small.

The error concealment procedure tries to minimize the
effect that the error in the data stream has on sound quality.
For example, if the error code occurs in subband data,
VLC/FLC decoder 120 replaces the components corrupted
by the error code with zeros, so that the generated sound is
only missing some frequency components. If the error code
corrupts the header or side information of an audio data
frame so that the audio data frame can not be decoded,
VLC/FLC decoder 120 generates an interrupt to CPU 150.
CPU 150 can try to reconstruct the missing data using
previous audio data frames or cause SPU 140 to decode
again the previous audio data frame for the channel.

Although the present invention has been described with
reference to particular embodiments, the description is only
an example of the invention’s application and should not be
taken as a limitation. Various adaptations and combinations
of features of the embodiments disclosed will be apparent to
those skilled in the art and are within the scope of the present
invention as defined by the following claims.
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- O*T7 + Q*T8 - S*T9 + UT10 - W*T11 + Y*T12
- AA*T13 + AC*T14 - AE*T15

23 24
-continued
Appendix B Appendix C
Results of Dequant/Descale Instruction Matrix Equations
TO = (S0-S31) 5 Vie= 0
T1 = (S1-S30) Vi7= -Vi5
T2 = (S2-529) Vig= -Vi4
T3 = (S3-528) Vo= Vi3
T4 = (S4-527) V0= -Vi2
TS = (S5-526) val= -vi1
T6 = (S6-525) 10 V22= -V10
T7 = (S7-S24) V3= -Vo
TS = (S8-523) V4= V8
TO = (S9-522) Vi3s= -v7
T10 = (S10-S21) V6= -V6
T11 = (S11-S20) V7= V5
T12 = (S12-519) 15 Va8= -v4
T13 = (S13-518) V9= V3
T14 = (S14-S17) Vo= -V2
T15 = (S15-S16) vil= -1
T16 = (SO + S31) - (S15 + S16) V2= -VO
T17 = (S1 + S30) - (S14 + S17) V33 = —Q*TO + M*T1 + U*T12 - I*T3 — Y*T4 + E*T5 + AC*T6
T18 = (S2 + 529) - (S13 + S18) ~ A*T7 - AE*T8 — C*T9 + AA*T10 + G*T11 - W*T12
T19 = (S3 + S28) - (S12 + S19) 20 ~ K*T13 + S*T14 + O*T15
T20 = (54 + S27) - (S11 + S20) V34= —R*T16 + J*T17 + Z*T18 — B*T19 — AD*T20 — F*T21
T21 = (S5 + S26) - (510 + S21) + V*T22 + N*T23
T22 = (S6 + S25) - (S9 + $22) V35=  -S*TO + G*T1 + AE*T2 + E*T3 — U*T4 — Q*T5 + [*T6
T23 = (S7 + S24) - (S8 + $23) + AC*T7 + C*T8 - W*T9 — O*T10 + K*T11 + AA*T12
T24 = [(SO + S31) + (S15 + S16)] - [(S7 + S24) + (S8 + 523)] +A*T13 - Y*T14 - M*T15
T25 = [(S1 + S30) + (S14 + S17)] - [(S6 + S25) + (S9 + 522)] 25 V36= —T*T24 + D*T25 + AB*T26 + L*T27
T26 = [(S2 + S29) + (S13 + S18)] - [(S5 + S26) + (S10 + S21)] V37=  —U*TO + A*T1 + W*T2 + S*T3 — C*T4 - Y*T5 — Q*T6
T27 = [(S3 + S28) + (S12 + S19)] - [(S4 + S27) + (S11 + S20)] + E*T7 + AA*T8 + O*T9 — G*T10 — AC*T11 — M*T12
T28 = [(SO + S31) + (S15 + S16)] + [(S7 + S24) + (S8 + 523)] + I*T13 + AE*T14 + K*T15
T29 = [(S1 + S30) + (S14 + S17)] + [(S6 + S25) + (S9 + 522)] V38= —V*T16 - B*T17 + R*T18 + Z*T19 + F*T20 - N*T21
T30 = [(S2 + S29) + (S13 + S18)] + [(S5 + S26) + (S10 + S21)] - AD*T22 - J*T23
T31 = [(S3 + S28) + (S12 + S19)] + [(S4 + S27) + (S11 + S20)] 30 V39= -W*TO - E*T1 + M*T2 + AE*T3 + O*T4 - C*T5 - U*T6
~ Y*T7 - G*T8 + K*T9 + AC*T10 + Q*T11 - A*T12
~ S*T13 - AA*T14 — I*T15
V40 = -X*T28 - H*T29 + H*T30 + X*T31
V4l= —Y*TO - K*T1 + C*T2 + Q*T3 + AE*T4 + S*T5 + E*T6
Appendix C ~ I*T7 - W*T8 — AA*T9 — M*T10 + A*T11 + O*T12
Mo s 35 + AC*T13 + U*T14 + G*T15
4 V42 = —Z*T16 - N*T17 — B*T18 + J*T19 + V*T20 + AD*T21
VO = P*T28 — P*T29 — P*T30 + P*T31 + R¥T22 + F*T23
V1o OO - SUTI - K¥T2 4+ WHT3 4 G*T4 — AA*TS — C¥T6 V43 =  —AA*TO — Q*T1 — G*T2 + C*T3 + M*T4 + W*T5 + AE*T6
+ AE*T7 — A*T8 — AC*T9 + E*T10 + Y*T11 - [*T12 + UT7 + KT8 + A*T9 - [*T10 — §*T11 - AC*T12
~ U*T13 + M*T14 + Q*T15 -Y*T13 - O*T14 - E*T15
V2= N*T16 - V*T17 - F*T18 + AD*T19 — B*T20 - A*T21 4 VA= -ABMT24 - T¥T25 - L*T26 - D*127
T2 4 RT3 V45 =  —AC*TO — W*T1 — Q*T2 - KIT3 — E*T4 + A*T5 + G*T6
V3e  MUTO - VT - ART2 + AARTS - K¥T4 — O°TS + WTG + M*T7 + S*T8 + Y*T9 + AE*T10 + AA*T11 + U*T12
+ C*T7 = AC*T8 + I*T9 + Q*T10 — U*T11 — E*T12 +O*T13 + [*T14 + C*T15
AETLS - G¥T14 - $¥T15 V46 = —AD*T16 - Z*T17 — V*T18 — R*T19 — N*T20 — J*T21
V4= L*T24 — AB¥T25 + D*T26 + T*T27 - F*T22 - B*T23
V5= K*T0 - AE*T1 + [*T2 + M*T3 - AC*T4 + G*TS + O*T6 V47 = -AE"TO - AC'T1 - AAT2 - Y*T3 - W*T4 - U*TS
~ AA*T7 + E*T8 + Q*T9 — Y*T10 + C*T11 + S*T12 45 = §*T6 - Q*T7 - O*T8 - M*T9 - K*T10 - [*T11 - G*T12
~ W*T13 + A*T14 + U*T15 - E*T13 - C*T14 - A*T15
V6= J*T16 - AD*T17 + N*T18 + F*T19 — Z*T20 + R*T21 vag = -1*T28 - 1*T29 - 1*T30 - 1* T31
+ B¥T22 - V*T23 Va9 = V47
V7= I¥T0 - AA*TI + S*T2 — A*T3 — Q*T4 + AC*T5 — K*T6 V50 = V46
~ G*T7 + Y*T8 - U*T9 + C*T10 + O*T11 - AE*T12 V51= V45
+ M*T13 - E*T14 - W*T15 50 V52= Va4
V8= H*T28 - X*T29 + X*T30 — H*T31 V53= V43
VO =  G¥I0 - U*T1 + AC*T2 — O*T3 + A*T4 + M*T5 — AA*T6 V54- Va2
+ W*T7 - I*T8 — E*T9 + S*T10 - AE*T11 + Q*T12 V55= V4l
~ C*T13 - K*T14 + Y*T15 V56= V40
V10 = F*T16 - R*T17 + AD*T18 — V*T19 + J*T20 + B*T21 V57= V39
~ N*T22 + Z°T23 55 Vo8= V38
Vil= E*T0 - O*T1 + Y*T2 — AC*T3 + S*T4 - [*T5 — A*T6 V59 = V37
+ K*T7 - U*TS + AE*T9 — W*T10 + M*T11 - C*T12 V60 = V36
~ G*T13 + Q*T14 - AA*T15 V6l= V35
V12=  D*T24 — L*I25 + T*T26 - AB*T27 Vel= V34
V13 = C*T0 - [*T1 + O*T2 - U*T3 + AA*T4 — AE*T3 + Y*T6 Ve3= V33
~ S*T7 +0 M*T8 — G*T9 + A*T10 + E*T11 - K*T12 60
+Q*T13 - W*T14 + AC*T15
- # _ F* * _ N* *: R £
Vi4= f ZT*1T622 _F [;%ZTJZZ; T18 - N*T19 + R*T20 - V*T21 V17 through 48 are stored in PMEM in reverse order.
V15=  A*T0 - C*T1 + E*T2 — G*T3 + [*T4 — K*T5 + M*T6

Table D.1 contains a C code listing of a program that
executes dequantizing, descaling, matrixing, and windowing
steps as described above.
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TABLE D.1

/* Audio Section of CL480 Signal Processing Unit */

/* Written by Dave Galbi */

#include “gobal.h”

#include “spurom.h”

#include “command.h”

spua(cmd,pbank) {/* cmd=command being executed, pbank=pmem bank being used by SPU */

int ik; /* loop counters for subband */

int zdata; /* subband samples read from zmem */

int bitalloc,scf; /* bit allocation and scale factor indices */

int dequant; /* dequantized subband sample */

int descale; /* subband sample descaled by 2°(-¥5) or 2°(-%3) */

int sb[32]; /* fully descaled subband samples */

int u; /* unpacked input for windowing (called u[i] in MPEG spec) */
int paddr; /* address of pmem location with MSBs of u[i] */

int waddrl,waddr2; /* address of window coefficients */

int a,b,c,d; /* matrixing results */

static int zvec=0; /* indicates which of 6 vectors in zmem is being processed */

static int mindex=0; /* indicates which of 8 WINDOW_MATRIX sections is being processed */
/* compute x*y where x is s1.20, y is s1.18 and the result is s1.20 */
#define mul(x,y)floor((double)x* (double)y/0x40000+.5)
#define clamp22(x)CLAMP(x,0x1FFFFF, —0x200000) /* clamp is s1.20 */
#define bfly_and_ clamp(sum,diff,x,y) {diff=clamp22(x-y);sum = clamp22(x+y;}
if(cmd==DEQUANT_DESCALE) {
for(i=0; i<32;i++) {

zdata = zmem[JOIN3(zvec,2,1,1,4,0,zvec,0,0)] << 3;/* zmem is s.15,zdata is 5.18 */

/* LSB of zvec selects between left channel (0) and right channel (1) */

bitalloc = BIT(zvec,0) ? BITS(qmem|i+32],15,8) : BITS(qmem[i+32],7,0);

dequant = mul(coeffc[bitalloc], (zdata + coeffd[bitalloc]));

scf = BIT(zvec,0) ? BITS(qmem[i],15,8) : BITS(qmem[i],7,0);

scf = BIT(scf,7) ? 0 : BIT(scf,6) ? 63 : scf; /* clamp scf to [63,0] */

descale = mul(dequant, nint(pow(2., —(scf%3)/3.)*0x40000));

sb[i] = mul(descale, nint(pow(2., 1.—scf/3 )*0x40000));

zvec = (zvec+1)%6;

for(i=0; i<16; i++) bfly_and_ clamp(sb[31-i],tmem[i], sb[i],sb[31-i]);
for(i=16; i<24; i++) bfly_and_ clamp(sb[47-i],tmem][i], sb[47-1],sb[i]);
for(i=24; i<28; i++) bfly_and_ clamp(tmem[4+i],tmem][i], sb[55-i],sb[i]);

/* compute a + x*y where a and x are s1.20, y is s1.18 and the results is s1.20 */
#define mac__and__clamp(a,x,y)clamp22(a+(int)floor((double)x * (double)y/0x40000+.5))
#define N(1,k) nint(cos((16+1)*(2*k+1)*M__PI/64)*0x40000)/* s1.18 matrix coefficients */
if(cmd==WINDOW_ MATRIX) {
/* Perform % of windowing for a vector:tmem = tmem + pmem*coeffw */
waddrl = 64*(7-mindex) + 32;
waddr2 = 64*(7-mindex) + 63;
for(i=0; i<33; i++) {
if(mindex==0 & i<17) tmem [32+i]=0; /* reset tmem[32:48] when start new vector */
if(mindex==0 & i>0 & i<16)tmem[64-i]=0;/* reset tmem[49:63] when start new vector */
paddr = 2*(i + (i+3)/4) + pbank*128;
switch (i%4) {/* unpacked s.19 from pmem and multiply by 2 to get s.20 format */
case 0; u = 2*(JOIN3(pmem[paddr],7,4,pmem|[paddr+2],7,0,pmem|[paddr+3],7,0)); break;
case 1; u = 2*(JOIN3(pmem[paddr],7,0,pmem|[paddr+1],7,0,pmem|[paddr+3],3,0)); break;
case 2; u = 2*(JOIN3(pmem[paddr],7,0,pmem|[paddr+1],7,4,pmem|[paddr+3],7,0)); break;
case 3; u = 2*(JOIN3(pmem[paddr],7,0,pmem|[paddr+2],3,0,pmem|[paddr+3],7,0)); break;

u —= BIT(1,20) ? 0x200000 : 0;/* extend sign of data read from pmem */
if(i<32) {
tmem[32+i] = mac_and_ clamp(tmem| 32+i],u,coeffw] waddrl++]);
if(i==16)waddrl -= 32;

}

if(i>0 & i1=16) {
tmem[64-i] = mac_and clamp(tmem[64-i],u*(i>157-1:1),coeffw] waddr2--]);
if(i==15)waddr2 -= 33;

if(mindex==7)/* convert decoded samples to s.15 at end of last windowing step */
for(i=32; i<64;i++) {
if(tmem[i]<0) tmem[i] += 31; /* round toward zero because of conformance test */
tmem[i] = BITS( CLAMP (tmem[i],0xFFFFE,-0x100000),20,5);

/* Perform Y& of matrixing for a vector: pmem = SUM( tmem*Nik ) */
a=b=c=d=0;
for(k=0; k<16; k++){ a = mac_and _ clamp(a, tmem[k], N(17+mindex*4,k));
¢ = mac_and_ clamp(c, tmem[k], N(19+mindex*4,k)); }
for(k=0; k<8; k++) b = mac_and clamp(b, tmem[k+16,], N(18+mindex*4,k));
for(k=0; k<4; k+ ) d = mac_and clamp(d, tmem[k+24+(mindex%2)*4], N(20+mindex*4.k));
mindex=(mindex+1)%8;
/* Clamp matrix results to s.20 */
a = CLAMP(a, 0xFFFFF, ~0x100000);
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TABLE D.1-continued

b = CLAMP(b, OxFFFFF, —0x100000);

¢ = CLAMP(c, 0xFFFFF, ~0x100000);

d = CLAMP(d, OxFFFFF, ~0x100000);

/* Pack 4 matrix results into pmem */
pmem|[pbank*128] = BITS(a,20,13);
pmem[pbank*128+1] = BITS(a,12,5);
pmem[pbank*128+2] = BITS(b,20,13);
pmem[pbank*128+3] = JOIN2(b,12,9,a,4,1);
pmem[pbank*128+4] = BITS(c,20,13);
pmem[pbank*128+5] = BITS(b,8,1);
pmem[pbank*128+6] = JOIN2(d,20,17,¢,12,9);
pmem[pbank*128+7] = BITS(c,8,1);
pmem[pbank*128+8] = BITS(d,16,9);
pmem[pbank*128+9] = BITS(d,8,1);

/* CLA480 Signal Processing Unit */
/* Written by Dave Galbi */
#include “global.h”

#include “command.h”

spu() {

int ij; /* row and column of coefficient in block */

int addr; /* address of coefficient in block */

int qac; /* quantized AC coefficient */

int qaddr,qdata; /* qmem address and qmem data */

int tmp; /* temporary variable */

int dmac; /* results of dmac operation */

double cosine; /* cosine in floating-point */

int pass; /* 1 for IDCT from zmem to tmem, 2 for IDCT from tmem to pmem */

int A0,B0,C0,D0,AA0,BB0,CCO,DD0,AAA0,BBB0,CCCO,DDDO; /* intermediate IDCT results */
int A1,B1,C1,D1,AA1,BB1,CC1,DD1,AAA1,BBB1,CCC1,DDD1; /* intermediate IDCT results */

in iA,iB,iC,iAA,BB; /* intermediate IDCT results from imac operations */

static int cmd=0; /* command being processed by SPU (0 is idle) */

static int clock=0; /* number of clocks since last SPU command was start */

static int coded=7; /* SPU__coded register, indicates which blocks are coded */

static int intral,intra0; /* SPU__intra register, intra bit for new or previous macroblock */
static int quantl,quantO; /* SPU__quant register, quant for new or previous macroblock */
static int iaddr; /* address for indirect SPU registers */

static int taddr; /* tmem read/write address */

static int zaddr; /* zmem read address */

static int zblock=0; /* block of zmem being processed by IDCT */

static int pblank=0; /* pmem bank being used by SPU, each bank holds 2 8x8 blocks */
static int oldgsel=511; /* value of gsel on previous clock */

if(!BIT(gsel,6)) /* read gbus register */
switch(BITS(gsel,5,0)) {
case SPU__cmd: gbus_n = JOIN4(cmd!=0,0,0,zer0,6,0,iaddr,3,0,cmd,3,0); break;
case SPU__coded: gbus_n = coded; break;
case SPU_intra: gbus_n = JOIN2(intra,1,0,0,intra0,0,0); break;
case SPU__quant: gbus_ n = JOIN2(quant,4,0, quant0,4,0); break;
case SPU__tmem: gbus_n = BITS(tmem[32+taddr++],15,0);/* only non-test mode is */
taddr &= 32; break;/*supported, which reads addr 32 to 63 */
case SPU__zaddr: gbus_n = zaddr; break;
case SPU__zmem: gbus_ n = zmem[zddr++];
zaddr %= 256; break;
case SPU_idata:
switch (iaddr) {
case SPU_QMEM: gbus_ n = qmem[JOIN2(intra0,0,0, zaddr++,4,0)];
zaddr %= 256; break;
case SPU_BANK: gbus_n = pbank; break;

}
break;

}
if(BIT(oldgsel,6))/* write gbus register */
switch(BITS(oldgsel,5,0)){
case SPU__cmd: cmd = BITS(gbus,3,0);
iaddr = BITS(gbus,7,4)<<4;
pbank "= !BIT(cmd,0) & cmd<0;/* invert pbank on WINDOW_MATRIX and */
clock = 0; break; /* every other IDCT instruction */
case SPU__coded: coded = JOIN2(coded,2,0,gbus,0,0); break;
case SPU_intra: intra0 = BIT(gbus,0); break;
case SPU__quant: quant0 = BITS(gbus,4,0); break;
case SPU__zaddr: zblock = BITS(gbus,7,6); /* zblock is the address for stage 2 */
zaddr = BITS(gbus,7,0); break;/* in both hardware and C-model */
case SPU__tmem: tmem[32+taddr++] = gbus; /* only non-test mode is supported, which */
taddr %= 32; break; /* writes addresses 32 to 63 */
case SPU__idata:
switch(iaddr) {
case SPU_QMEM: qmem[JOIN2(intra0,0,0, zaddr++,4,0)]= gbus;
zaddr %= 256; break;
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TABLE D.1-continued

case SPU_TADDR: taddr = BITS(gbus,5,1);

if(!BIT(gbus,0))
printf(“WARNING: SPU_TADDR|0] should be written with one.\n™);
break;

case SPU_PBANK: pbank = BIT(gbus,0); break;

break;

b
oldgsel = gsel;

if(cmd==DEQUANT__DESCALE && clock++==152) {spua(cmd,pbank); cmd=0;}
if(cmd==WINDOW__MATRIX && clock++==127) {spua(cmd,pbank); cmd=0;}
if(cmd>=1 & cmd<=6 && clock++==214) {/* Perform IDCT command */

if(emd==3) {
intral = intra0;
quantl = quant0;}
for(pass=2; pass>0;pass--) {
for(i=0; i<8;i++) {

if(pass==1) for (j=0; j<8; j++) {/* Perform dequantization and cosine multiply */
addr = BIT(cmd,0) ? i*8 + j: j*8 + i;/* do pass 1 on rows when cmd is odd */
gac = BIT(coded,3) * zmem[addr + zblock*64];
if(!BIT(intral,0) & qac<0) qac--;
/* Upper half of qmem is quantizer for intra, lower half is for non-intra */
gaddr = JOIN2(intral,0,0,addr,5,0);
qdata = BIT(qaddr,0) ? BITS(qmem|[qaddr>>1],15,8) : BITS(qmem|qgaddr>>1],7,0);
/* Do not use quantizer scale factor for the DC term of an intra MB */
tmp =(qaddr==64) ? 8*qdata: quant1*qdata;
/* Results of dmac instruction should be 2x value of dmac computed below */
dmac = (tmp * (2*qac + BIT(~intral & qac!=0,0)) + (qac<0)*0xf)>>4;
cosine=cos((i?1:4)*M_PI/16) * cos((j?j:4)*M_PI/16);
/* Round cosine to 18 fraction bits */
cosine = floor(cosine*(1<<18) + .5)/(1<<18);
/* Decrement dmac if it is positive and is not the intra DC */
if(dmac>0 & qaddr!=64)dmac--;
/* Replace LSB of dmac */
tmp = (dmac*~1) + BIT(qaddr!=64 & dmac!=0,0);
/* Limit range of temp to [2047,-2048] and shift left */
tmp = CLAMP(tmp,2047,-2048) << 8;
/* Increment DC term a bit 7 so truncated output of IDCT is rounded */
tmem[addr] = floor(cosine * tmp + .5) + ((addr==0)?1<<9:0);

#define X(index) tmem[BIT(cmd,0) ? i*8 + index : index*8 + i]

#define bily(sum,diff, x,y) sum=x+y; diff=x-y;

#define imac(a,b,c,d)cosine = floor(cos(d*m_ PI/8)*(1<<19) + .5)/(1<<18);\
a = floor(c*cosine + .5) - b;

bily(A0,A1, X(1),X(7));
bily(BO,B1, X(3),X(5));
bily(CO,C1, X(2),X(6));
bily(DO,D1, X(0),X(4));
imac(iA, A0,A1,1);
imac(iB, B0,B1,3);
imac(iC, C0,C1,2);
bfly(AAD,AA1, AD,BO);
bfly(BBO,BB1, iA,iB);
bfly(CC0,CC1, D1,iC);
bfly(DD0,DD1, DO,CO);
imac(iAA, BB0,AA12);
imac(iBB, AA0,BB1,2);

bily(X(0),X(7), DD0,AAD);
bily(X(1),X(6), CC0,BBO);
bily(X(2),X(5), CC1,iAA);
bily(X(3),X(4), DD1,iBB);

if(pass==2)

for(i=0; i<64; i++) {/* copy tmem to pmem */
/* chroma blocks (cmd=2 or 3) are interleaved in pmem, luma blocks are not */
/* for luma, cmd[0] determines which of the 2 blocks in a bank is written */
addr = (cmd!=2 & cmd!=3) ? ((i&7) | ((i<<1) & 0xf0) | ((i>>4) & 8)) + 8*(cmd&1):
((emd==2) ? 2*1 : 2% + 1);
/* intra blocks are clamped to [255,0], non-intra are clamped to [255,-256] */
pmem|addr + pbank*128] = CLAMP (tmem[i]>>10,255intra1?0:-256);

¥

b
if(BIT(coded,3))

zblock = (zblock+1)%3;

coded = JOIN2(coded,2,0, coded,0,0);

cmd=0;

}
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I claim:
1. A method for generating sound from data following an
MPEG encoding standard comprising:

transferring a block consisting of independent compo-
nents of time-domain vectors to a first memory,
wherein transferring the block comprises transferring a
total of 17 components from a first time-domain vector
and 16 components from a second time-domain vector;

determining products of the independent components in
the block with corresponding windowing coefficients;

accumulating the products in a plurality of sums, each
sum corresponding to a different sound amplitude
value; and

generating a sound from the sound amplitude values.

2. The method of claim 1, wherein:

the step of determining products comprises performing 64
multiplications, each multiplication involving one of
the components from the block and a windowing
coefficient; and

10

15

32

the step of accumulating comprises adding a pair of the
products to each of 32 sums.

3. The method of claim 2, further comprising:

multiplying each of a series of matrixing coefficients by a
corresponding combination of components of a
frequency-domain vector;

accumulating the products to generate four components of
a time-domain vector; and

writing the four components of the time-domain vector to
a second memory, wherein transferring the block is
from the second memory to the first memory.

4. The method of claim 3, further comprising repeating
the steps of claims 1, 2, and 3 eight times wherein no two
steps of transferring a block transfers components from the
same pair of time-domain vectors.
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