US005949438A

United States Patent [(1] Patent Number: 5,949,438
Cyman et al. [45] Date of Patent: *Sep. 7, 1999
[54] HIGH RESOLUTION REAL TIME RASTER 5,113,494 5/1992 Menendez et al.ccce.... 345/502
IMAGE PROCESSING SYSTEM AND 5,146,554 9/1992 Statt 345/428
METHOD 5,528,374 6/1996 Matiasccoceerereeeerevesrennennns 358/444
[75] Inventors: Theodore F. Cyman, Grand Island; OTHER PUBLICATIONS
Edward W. Schimminger, Tonawanda, Seybold Report on Publishing Systems, V22, n16, ps10(2)
Frank J. Rocco, Lockport; Carl F. “Output Devices: Faster RIPs and Recorders”, Alexander et
Armstrong, Buffalo; Frank J. al, May 19, 1993.
Mariani, Grand Island, all of N.Y. Primary Examiner—Kee M. Tung
[73] Assignee: Moore Business Forms, Inc., Grand Attorney, Agent, or Firm—Nixon & Vanderhye, P.C.
Island, N.Y. [57] ABSTRACT
[*] Notice: This patent is subject to a terminal dis- A raster image processing system and method that can keep
claimer. up with the fastest high resolution printers now available can
process images “on the fly”"—that is, generate images from
[21] Appl. No.: 08/996,995 compact input representations so rapidly that printing can
occur substantially in the same real time as raster image
[22] Filed: Dec. 23, 1997 processing of input data. This system is capable of auto-
L matically “screening” data relating to the images so that the
Related U.S. Application Data various gray scales or color levels are correct for a contone
o o printing process. Different print engine control modules can
[63] gotntgluag(% gaﬁ’phcatwn No. 08/500,011, Jul. 10, 1995, pe peplaceably plugged into and out of the system to allow
ak No- 5,702 it to be used with different types of print engines/intelligent
[51] Int. CLO oo GO6F 15/16 imaging systems—including high speed, high resolution
[52] US.CL .. 345/502; 345/192; 345/467, color printing engines. A high speed data cache and associ-
395/101; 395/104; 395/110 ated array disk drive provide high speed throughput of data
[58] Field of Searcheeeeeee 395/101, 102, into the system. The disk array may, for example, store a
395/104, 109, 110, 111, 114-116; 345/501, library of high resolution graphics that can be accessed “on
502, 507-509, 467-468, 192-195 the fly” as needed in response to the input data stream. A
graphics accelerator can generate, on the fly, many “primi-
[56] References Cited tive” or simple graphics (e.g, angles, lines, boxes, etc.) at the
same time that the remainder of the print image is being
U.S. PATENT DOCUMENTS generated.
5,003,496 3/1991 Hunt, Jr. et al. w.oveeveeeereerrne. 345/430
5,109,476 4/1992 Thompson 395/105 14 Claims, 16 Drawing Sheets

OPERATOR

66
FACE |~
IEéE?ROCL l XL DATA SYSTEM |/52
TERMINAL
GPI

1007
————————————— BUS—————————/———‘
S

,64
]

-
l g EBSYNC SIGNAL
'l XL INTERFACE MODULE ot
i PRINT
| y-1000 \100 REGISTRATION!
i Ml CONTROLI
| Ela———o] MASTER CONTROLLER MODULE SIGNALS
: 0 : \200 : :
S (

o—> |
Lo RISC CONTROLLER MODULE !

[]
' \ 1|
I k1002 300 Lo
bl FONT IMAGE MEMORY {FIM} MODULE .
Lo PIXEL BITMAPS, FONT DATA b
| R Ta00 1004~ B I }
| B S
i BINARY IMAGE GENERATOR (BIG) ! :
By MODULE _BIMs(2), SHIFTER LOGIC |o——oFp | |
Lo 600y t500 10068 | |
| -——pl 5 Lol
I | ENGINE CONTROL MODULE {ECM) 1
o —————t—
[PIXEL OPERATING i
L __ ___|pATA_ _ _ ___ __|CONTROL SIGNALS

'
68~ PRINT ENGINE
MIDAX 300, SCITEX, OTHERS

5,949,438

Sheet 1 of 16

Sep. 7, 1999

U.S. Patent

SHIMOVLS ‘'SH3QT04
'SYIAVLS ‘SH3ILIND

ONITIONVH Y3dVd

—— ————

/

0L

|
ogg—--T 3NION3 |
I LNIMd e —
_ 43410 |
e
1
I
I
]
3NION3
1Nind
VT
2L ‘\
89

| b4

O]
[elfs](1]
IEIEIC 099
aae
0000
D00 4.6@
=200
99—
W7z \\111\ 299
L
\
gossD08d | | waisss |,
H3LSvH viva X
vm\ 200! Nw_

009

S =09

5,949,438

Sheet 2 of 16

Sep. 7, 1999

U.S. Patent

JOVIAI
39vd
a3137dN0D
JZ1431Svd

qz2is

30IA3A Alil\\\\\\\

1nd1no oL

AHOWIN

NI

JOVINI
Jovd alind

7

ogls

SOIHdVYYHO

006 —

N
/O

004 \

AHOWIN

JOVWI INOA

430702 ~ —
aav ‘mﬁmuunuuumuw
— , 0! -

: —ol¢ o
= \x1{|x%\

\ / (00

g3ovin

34 01 J39vd
HOV3

HO4 1811
AV1dSIa

08

-
=

||||||||||||||||||||||||||| 28

| 3HOVO viva

ERIE!
NOILdI¥2s3d
gor

Z ‘b4

U.S. Patent Sep. 7, 1999 Sheet 3 of 16 5,949,438
Fig. 3

OPERATOR | o6

INTERFACE | 62

CONTROL XL DATA SYSTEM |~

TERMINAL 6

1007~ JGP! e
——————— = == BUS — — — = — — — — —,) — — |
| g B STNC SIGNALS
| ke XL INTERFACE MODULE '
b T T BRINT |
| yI-1000 \00 REGISTRATION,
I Ml CONTROL |
| El———0] MASTER CONTROLLER MODULE SIGNALS |
l
: 3| \200 : :
| Sl— o
L. RISC CONTROLLER MODULE !
|
C
| 1002 300 L
FONT IMAGE MEMORY (FIM) MODULE Ly
.. "| PIXEL BITMAPS, FONT DATA R ’; Ly
' 1004~
| : \400 y '
| U BINARY IMAGE GENERATOR (BIG) |
| SIT"| MODULE _BIMs(2), SHIFTER LOGIC o | :
o 600, t500 10068 | |
| <——lg ||
| J&———">] ENGINE CONTROL MODULE (ECM) | 4
I -— e emm e— —
! PIXEL OPERATING :
o DATA_ _ _ _ _ _ __|CONTROL SIGNALS _,
s~ PRINT ENGINE

MIDAX 300, SCITEX, OTHERS

U.S. Patent

OPERATOR
INTERFACE
CONTROL
TERMINAL

/66

(e T TS T TS TS T T T T T TS T T T T ST T T T T T T T T T T T T

wCcow

'l

68~1

Sep. 7, 1999

XL DATA SYSTEM

XL INTERFACE MODULE

\100

MASTER CONTROLLER MODULE

- \200

RISC CONTROLLER MODULE

- \300

FONT IMAGE MEMORY (FIM) MODULE
PIXEL BITMAPS, FONT DATA |

\400

GRAPHICS MODULE

900

DATA CACHE MODULE

DC-BUS \
1010 800

SCREEN MODULE

SCR-BUS

C
1012 0

o]

BINARY IMAGE GENERATOR (BIG) [< DJ'

MODULE BIMs(2), SHIFTER LOGIC

GOOL \500

ENGINE CONTROL MODULE (ECM)

DATA

— e . o — —— ——

PRINT ENGINE

Sheet 4 of 16

5,949,438

1006—B
g oY

—————‘.—

PIXEL OPERATING
- CONTROL SIGNALS _ |

PRINT

_____ 1
REGISTRATION |

CONTROL !
SIGNALS |

wco® M

1

AS

MIDAX 300, SCITEX, OTHERS

U.S. Patent Sep. 7, 1999 Sheet 5 of 16 5,949,438
Fig. 4
RISC SOFTWARE FUNCTIONAL BREAKDOWN
SYSTEM
4
inimaLization |8
PROCESS 86
DISPLAY LIST
88
> TYPE
90 o1 92 93 94
A \ A \ \
END
SET TEXT GRAPHICS IMAGE OF
COLOR PAGE
96\ ‘
95\
comMmano | | commano | | commanp 97
FIM GRAPHIC SCR
A
98~ WRITE TO BIG
T
HDWR STATUS

RETURN

U.S. Patent

Sep. 7, 1999

Sheet 6 of 16

5,949,438

Fig. 5
XL INTERFACE MODULE 100
FIFO
OUTPUT TOF INTERRUPT
TO
VME BUS
HOST RESET INTERRUPT
1000 FIFO EMPTY INTERRUPT /'00
r-f(----{--j- ---------------\----—- 1
|
| !
: VME INTERFACE | 102 MICROPROCESSOR :
& 8
l DATA FIFO INTERRUPT CONTROL |_110 :
|
| |
| 14 Jopi oatA :
1007b 112 |
(1 TOF |
! GP1 108 |
1007
ooTe INTERFACE / !
' L
[{ i
L o6 U104 REGISTRATION :
: N\ CONTROLLER ,
| |
| SERIAL COMM. f |
i a T |
| |OPERATOR INTERFACE RASTER ENCODER |
! PINWHEEL ENCODER |
| SENSEMARK SCANNER |
U N B —— —\ — J_|
i TR
4 GPI DATA MIDAX COMM. S
MESSAGE OUTPUT, TO TERMINAL 66 v
N M REMOTE
GPLBUS REGISTRATION
1007 QUTPUT TO

ECM 600

U.S. Patent Sep. 7, 1999 Sheet 7 of 16 5,949,438

F Ig' 6 XL INTERFACE REGISTRATION CONTROLLER 108

SENSEMARK >—

WEB
SYNC { PINWHEELS >
SIGNALS
RASTERS?>
116 118 120
\ v \ \
PIC 16CR54 87C751 OPTICAL
MICROCONTROLLER MICROCONTROLLER ISOLATOR
i
RASTER
COUNT |
\ ;Y Yy
MUX MUX MUX MUX
' f ‘ 134
1287 130) k132
/122 124) ‘ 126)

COUNTER 3 COUNTER 2 COUNTER 1§

CTOF GTOF REGISTRATION REGISTRATION SENSEMARK
INTERRUPT INTERRUPT INTERRUPT 2 INTERRUPT 1 INTERRUPT

5,949,438

Sheet 8 of 16

Sep. 7, 1999

U.S. Patent

2001
sna-y

A

00¢ \

r 9l
¥vdy [Nwm
UMY
Nava |TONLANOD/3Ov443LINI| SNE SSAAV Lig-2€ 80V
—_ -
SS3MAAY /1 ?
21907 180ddNS
JISVY O0HLNOD
WYNa/ndd JSIN
_ A
m:m _m kmm SY344nG VIVA ¥/ —o ~
L val \ m:m_m..r%
pig val
8 v
Wyl WYNI 80¢
q2ie ™ [~ 02lE oISV [TAND
IOHLNOD INA WA
908
S¥344n8 SN8 Naay
SNa SS3¥aaQv Lig-2¢ A SS34Aav WA INA
poe
SN344N9 SN | wiva
Sna viva 1i8-2¢ aA viva 3IWA INA
A

|

JSIM

Z 914

000!
SN8 WA

5,949,438

Sheet 9 of 16

Sep. 7, 1999

U.S. Patent

qtQO0!l

Sng-4 ——] S4344na sne

(AMOW3W 39VW! LNO3)
WId

& 94

FAe) 4

NG/
JONLNOD 30V4d3LNI -
SS34aaV WI4/JSIN dvdd
MY
Hawvy
m»_%%w XNWA/XNIN 118-2¢ sn8 1val
N344N8 SN /4|
M/Y YLYa WI4 Sy34d 119-2¢
7 SNg Lvad J
o
sO414
90b 80t ~
] ONVAWOD W14
JISV WNSHMIIHD
Wi
bop~] SY3AIEA /2ISV
JONLINOD WIJ
SWYNQ
—8. 4— 000} SN8-4
aW9S2/aWb9 AHOW3IW WId SNg ¥OQv Wi
\.

Noor

2001
sng-o

5,949,438

Sheet 10 of 16

Sep. 7, 1999

U.S. Patent

IWv201/9SN [@vaw Sna-d
MY
905 Havy
(MOLYH3IN3IO IOVWI 118) 9149 L1849 0414 e »OOL
&6 N1 €9 0QHS| ViVO WId sng sne-4
118-9
1va4
00S .// w-v9| ue-peolls |© 2101
gHS| v1va N330S Sna
¢ 118-69
) 1Va¥IS
q2is 815
\ ¢l
8IS sna Lig-v9 sng 118-v9
I WIg \ Ol MO Y1VQ H3LIIHS HOIH V.LVA H3L4IHS
yaav |1 1041N0D L
AW1g wig
sng 1ig-82i
vlvad ¥3L3IHS
sng Lig-zz | ¥3dIINW/H3LAINS
6 SS3HAAY N\-0l5
cl N31JIHS
HOQY O T0M.LNOD
WWig WIg
y 9
O WIS oEiG
sJIsv 9IS
S118 9 dON) NOILISOd/1SVIN 918
om_mv 8 S
80S vS/1val ANVWOD 918 206
(H 02¢ ; | sng
' 118-2¢
900! XNW av3y f sy344n8 vival 1vaM¥ q2001
sna-d4 sng Ll8-»9 lvad viva W18 sng 1i9-2¢ v1va 1vdO01 Y201/ sne-d

U.S. Patent Sep. 7, 1999 Sheet 11 of 16 5,949,438

FIG 104

MIDAX ECM BLOCK DIAGRAM
600\
604
[
P-BUS P-BUS
€02 —™ INTERFACE J‘—'1006

o DATA
SEQUENCER |CONTROL §

MP 606

v ([

¢+ HOLDING LATCHI

DATA
STATUS
Y Y
DIFFERENTIAL DRIVER/RECEIVERS [~-608
A
STATUS CONTROL [DATA

v Y

TO MIDAX PRINT ENGINE

U.S. Patent Sep. 7, 1999 Sheet 12 of 16 5,949,438

FIG 10F

INDIGO ECM BLOCK DIAGRAM

600a
612
\ 4

| P-BUS P-BUS
Gio ™ INTERFACE I ™ 1006
DATA
INPUT | CONTROL | |
SEQUENCER 614
INPUT FIFOs
r—
DATA
./618
ouTPut | CONTROL L
SEQUENCER e -4 = INDIGO FORMATTER 616
lDATA
TSTATUS !
DIFFERENTIAL L »| FIBER OPTIC TRANSMITTERS
DRIVER/RECEIVERS

620/ TSTATUS lcom'Rou_ lDATA \622

TO INDIGO EPRINT 1000

U.S. Patent Sep. 7, 1999 Sheet 13 of 16 5,949,438

FIG 17

GRAPHIC MODULE BLOCK DIAG.

900\

902 ;-:04 906
1002—3’/2—— INPUT
16 16 64
— INTERFACE
VCEP
~918
908 910 o12
[/
32 | DISPLAY
RISC v LIST }———»{ PIXEL }—»
PROCESSOR FIFO PLACER
[9140
9('6 IMAGE MEMORY 1|
) 1 MEG ’
64 OUTPUT 64
-—b -)
FIM BUS FILL and ERASE
1004
IMAGE MEMORY 2 y
1 MEG

AN4gb

5,949,438

Sheet 14 of 16

Sep. 7, 1999

U.S. Patent

2001
sng-y
|||||||||||||||||||||||||||||||||||||||]
_
|
|
_
808~ | ¥31081NOD _
N 3rova viva co8 |
|
_
_
_
ﬁ 09 LNOD _
|
Y _
|
_
_
SIHILY ansal OV4HILINI _
———————— e EEEEEeee—— g
1NdLNO viva WYH 0414 Viva IddIH u>rm%m mzm |
vIVa LN "
_ . _
_ wom\ vOm\ "
o8 _
_

WYHOVIQ %2078 3HIVD viva Zf ,Q\ L

5,949,438

Sheet 15 of 16

Sep. 7, 1999

U.S. Patent

WYH9OVIa XO0718
3NAOW N3340S

£1 914

2001
sna-y

[-—— —————— - — - - - - - - - oo TS o-Toms T oo Tm e 1
9lL “
sQdld _
ANVYIWNOD |

il
) A _
! |
_
] |
A HOLVY3IN39 N\-Ol.
2127 | 437108.LNOD SS34aav M3 TIO¥LNOD |
1Nd1no Wvd N33HOS LNdNI _
_
_
_
704.LNOD |
_
JOHLNOD « JO¥LNOD _
9 \ \ \ |
[
|
|
|
viva viva » viva _
|
|

Y3L3IHS V1IVG
y31S1934 ~ 3INQOW 4edgy sO414 "
NOYID ONINIINOS LNdNI

1nd1no 90L oL /1510y _
: |
viva 202’ ."

OLo1
sng-q

5,949,438

Sheet 16 of 16

Sep. 7, 1999

U.S. Patent

— — —— o . —— —— — — — ———— — — T — — — G — ——— — —— | — —— —— — — —

OL™N

r _
| |
_ _
| |
| |
| |
| f——— |
_ Wy 378vL _
| QIOHS3NHL _
] |
! _
“ mc.\ “
| 3XId LNd1NO HO1VHYIWOD |
| [
| |
| I
| |
_ 02L _
I |
i |
I — |
| WNVN |
_ viva JOVII _
_ |
| _
| _
| .

— e — — — —— o — — — — — — — O — — i — ——— e ———— —

POL
WYHOVIA 20718 LINDHID 9NIN33HOS

vl Il4

5,949,438

1

HIGH RESOLUTION REAL TIME RASTER
IMAGE PROCESSING SYSTEM AND
METHOD

This is a continuation of application Ser. No. 08/500,011,
filed Jul. 10, 1995, now U.S. Pat. No. 5,796,411.

FIELD OF THE INVENTION

This invention relates to high speed, high resolution
intelligent electronic imaging, and more particularly to high
speed electronic plateless printing. More particularly, the
present invention relates to Raster Image Processors
(“RIPs”) for rapidly generating images. Still more
particularly, the present invention relates to high speed
dedicated Raster Image Processor Systems for real time
generation of high resolution images including various dif-
ferent types of image objects.

BACKGROUND AND SUMMARY OF THE
INVENTION

Modern high speed electronic “plateless” printing engines
have capabilities not even dreamed of only a few years ago.
For example, the current line of MIDAX® printing engines
available from Moore Business Forms, Inc. of Lake Forest,
I1l. can print high resolution images on a continuous “web”
of paper moving at a speed on the order of 500 feet per
minute. High speed, high resolution color printing engines
are also now available that can print very high resolution
(e.g., 600 dpi) color images on continuous or sheet-fed paper
moving at speeds of on the order of 300 feet per minute or
more.

To provide maximum image flexibility, high performance
“intelligent” electronic printing engines generally take as an
input, data defining a digital value for each printable location
on the printed page. Such locations are commonly referred
to as “pixels” (short for “picture elements”). Although
pixel-based intelligent electronic printing engines can print
virtually any arbitrary image (within the resolution, color
and other limitations of the print engine), they require a
massive amount of input data for high resolution printing.
For example, to print an 8 % inch by 11-inch page at a 600
dots-per-inch resolution requires 5100x6600=33.66 million
individual pixel values. High speed printers can print on the
order of 300 to 500 pages per minute (i.e., on the order of
8 pages or more per second)—and therefore require in the
excess of 300 million pixels (120,000 characters) per sec-
ond. The digital value associated with each pixel may
nominally be only one digital “bit” (if the “bit” is “on” the
printer should place ink at the corresponding location; if the
“bit” is “off” the printer should not place ink at that
location). However, modern electronic printing engines pro-
vide multiple (e.g., 4) bits for each pixel to encode gray scale
level or one of several different colors. This requires a data
delivery system that can provide on the order of 1.2 billion
digital bits per second.

General purpose digital computers of reasonable cost and
complexity are not capable of supplying print stream data at
these incredible rates. The alternative to real time
processing—generating print images “off line” and storing
them for later retrieval by the printer—is not feasible at least
because the amount of data involved in an average print run
is too massive to be economically stored and rapidly
accessed using conventional mass storage techniques.

To meet the data rate demands of prior generations of
intelligent electronic printing engines, dedicated systems
commonly known as Raster Image Processors (“RIPs”) were

10

15

20

25

30

35

40

45

50

55

60

2

developed to generate image data based on a compact input
representation such as a PostScript file or other variable data
stream. Some such prior RIP designs could not generate
image data in real time. Thus, these prior RIPs suffered from
the drawback that the data coming in from the input device
had to be completely converted before any output data could
be supplied to the output printing device and the print job
could begin to run. This inability to rasterize in real time
required each print job to be handled in two phases: an
off-line conversion process, and a later on-line printing
process. This caused delays, and was a severe problem with
“just in time” requirements for delivery of completed print
jobs to customers.

Some prior art RIP systems were, however, capable of
generating image data “on the fly” while the print job was
running. One example of a prior art raster image processor
capable of generating image data in real time synchronism
with printing operations is the “Hybrid RIP” (“H-RIP”)
manufactured by Moore Business Forms, Inc. and described
in Technical Reference Manual entitled “H-RIP Technical
Manual ” (Moore Business Forms, Inc. 1994). The H-RIP
system used dedicated hardware circuitry controlled by a
microprocessor-based master controller to generate raster-
ized print image data in real time. Briefly, the prior art H-RIP
system accepted, as an input, a standardized file format
stored on a mass storage device such as magnetic tape. In
this prior design, an intermediate “XL Data System” read the
input file from the tape and supplied it to the H-RIP for
processing. The H-RIP included an XL Interface that
received and buffered the data from the XL data system and
supplied the data to a microprocessor-based master control-
ler. The master controller interpreted the input data and
created a display list specifying the objects to be rendered on
the next printed page. The master controller wrote bit map
images of the fonts required to image the display list
representation into a Font Image Memory (“FIM”) to make
these objects available for rendering. The master controller
then controlled the FIM to write the bit map images into a
Binary Image Generator (“BIG”) including a pair of full-
page bit map memories—thereby “rendering” a memory
image of the entire page to be printed. While one page of
image was being created in one of the full-page bit map
memories, dedicated print engine control and interface cir-
cuitry could access an already complete memory image in
the other memory and provide its pixel values to the printing
engine in real time synchronism with paper “web” move-
ment. Typically, the printer engine could not accept a fill
page at a time, but rather required the data to be presented
to it in smaller “chunks” (e.g., in blocks comprising one or
several lines of the image). The H-RIP supplied these
“chunks” to the printer engine in synchronism with the
engine’s need for the data.

Moore’s prior art H-RIP system was successful in its own
right. However, further improvements are possible. For
example, this prior art H-RIP system does not have sufficient
speed and bandwidth to keep up with advanced high-speed
high-resolution print engines now available. Additionally,
the prior art H-RIP was limited to monochrome printing and
had no color capabilities. Furthermore, this prior art H-RIP
was limited to only a single input format, and could not
handle graphical images efficiently. In addition, the prior art
H-RIP could work with only a single type of print engine (a
Moore Business Forms MIDAX® intelligent printer) and
was incompatible with other print engine types. As dis-
cussed below, these shortcomings present severe disadvan-
tages in some applications.

One disadvantage of the prior H-RIP design relates to its
ability to work with only a single type of printer. The H-RIP

5,949,438

3

was custom-designed to supply data to a Moore MIDAX®
300 intelligent printer, and was incapable of working with
any other (non-compatible) printer. However, purchasers
typically have a choice of several different models of intel-
ligent printing engines, and larger printing facilities may
have several different types of printers for use with different
types of print runs. For example, one printer may be used for
production of long print runs, another printer may be used
for production of short runs which require high quality
graphics and color, and a still further printer might be
optimal for printing text with simplified graphics such as
lines, boxes and angles. In the past, the print shop had to
purchase a different RIP system for each different printer
device since each RIP was specifically customized for a
corresponding particular printer.

The requirement for several different types of RIPs (each
of which may cost several tens of thousands of dollars,
assuming they are even commercially available) led to great
expense and confusion. For example, different RIP systems
typically would have completely different cabling,
installation, maintenance and other requirements. Techni-
cians and operators had to be trained to service each of
several dissimilar RIP systems. Spare parts for many differ-
ent RIP systems had to be stocked. Software and input data
incompatibilities between the different RIP systems required
extensive logistical coordination to ensure that print jobs
were prepared for the right combination of RIP and
uniquely-associated print engine. These problems may have
effectively limited the number of different types of printing
devices a given printing facility could afford to have—thus
decreasing the types of printing services that could be
offered to customers.

Prior art RIPs such as the H-RIP also suffered from the
disadvantage that it could only accept input data in a single
standardized format. To use input data in a different format,
a print operator would have to convert the data to the
standard format (or use a different RIP designed to accept
that different input format). Each time the printer operator
wanted to use a different input format, he or she would have
to convert the data to a format usable by the RIP associated
with the printing device scheduled to print the job. The
printer operator might have to custom tailor or purchase a
RIP or other appropriate conversion system if no existing
system would handle the new, non-standard format. Con-
versions off line were tedious, sometimes unreliable, and
added substantially to the overall processing time and man
hours required to complete a particular print job. For
example, to process a single print order comprising multiple
parts representing different input formats, the print operator
might have to run the first part of the job, and then reset the
system with a different RIP (which must be done off line) to
interpret a different input format. He or she would then run
the next part of the print set, and possibly thereafter reset and
reconfigure the system again to run a further part of the job
using a still different input format. The operator would have
to continue in this fashion until the entire multi-part print job
was completed—a rather lengthy, cumbersome and ineffi-
cient process which was quite time consuming.

Moreover, prior RIP designs such as the H-RIP were not
capable of providing in excess of 300-million pixels per
second required to drive high speed, high resolution mono-
chrome and color electronic print engines. Prior RIP systems
capable of generating color graphic images were limited By
to conversion speeds of about 100 million pixels per
second—whereas the most current high resolution color
printing engines can require data at rates in excess of three
times that. Throughput and bandwidth problems are exac-

10

15

20

25

30

35

40

45

50

55

60

65

4

erbated by the ever increasing use of complex graphics in the
intelligent imaging process. Processing operations related to
graphics and adjusting portions of the page to accommodate
the graphics can be very time-consuming operations, and
full-color high resolution graphics take up a great deal of
storage space. The manipulation of graphic images may also
require the input data to be “screened” to provide appropri-
ate color grades—adding even more processing time.

There is thus a long felt need for a raster image processor
that can receive inputs in various different formats (e.g.,
fonts, full color graphics, line art, patterns, etc.) from a
variety of different input devices and is capable of generat-
ing outputs in different formats usable by different types of
printing (or other) output devices. In addition, there is a need
to provide a raster image processor having very high
throughput that is also capable of screening and processing
color data. There is also a need to provide a raster image
processor that is modular and expandable to meet varying
needs and requirements. Furthermore, it would be desirable
to provide a raster image processor that can generate high
resolution graphics data “on the fly” to supply in real time
to a high speed print engine.

The present invention provides a raster image processor
that can meet these objectives. It provides a raster image
processing system and method that can keep up with the
fastest high resolution printers now available. It can process
images “on the fly”"—that is, generate images from compact
input representations so rapidly that printing can occur
substantially in the same real time as the RIP processor
processes the input data. This has substantial benefit to
customers because it allows print orders to be turned around
very rapidly, thereby satisfying the requirements of “just in
time” delivery—which was not possible using some prior
RIP based systems.

The ability to form print images in real time is further
enhanced by the use of a high speed data cache and
associated array disk drive to provide high speed throughput
of data into the system. The disk array may, for example,
store a library of high resolution graphics that can be
accessed “on the fly” as needed in response to the input data
stream. In the preferred embodiment, the disk array provides
very high storage capability and throughput (e.g., total
storage of 32 gb of information that can be accessed at a rate
of over 50 mb per second). This allows the system to access
graphical images while the particular print job is
underway—enabling nearly simultaneous conversion,
retrieval and printing of graphics and images. A data caching
arrangement coupled to the disk array provides a FIFO
(first-in-first-out) caching/buffering arrangement to maxi-
mize throughput and reduce access time.

To further enhance graphics capabilities, the system may
also provide a custom graphics accelerator that can generate,
on the fly, many “primitive” or simple graphics (e.g, angles,
lines, boxes, etc.) at the same time that the remainder of the
print image is being generated.

The present invention in a preferred embodiment may, for
example, provide a completely modular architecture includ-
ing an XL interface module for input data synchronization
and interfacing, a master controller module for overall
control and coordination, a RISC high speed processor
module for data conversion and manipulation, a Font Image
Memory (“FIM”) module for storing bit images of fonts, a
Binary Image Generator (“BIG”) module for double-
buffered storage of full-page images, and an Engine Control
Module (“ECM”) controlling and interfacing with particular
printer or other output devices.

5,949,438

5

In the processing and printing of documents, a job block
or file is provided which contains a description of the entire
job to be run including a page by page layout of the job.
Once input is received, the RIP collects and assembles the
characters and other image “objects” in a full page bitmap
memory. The information provided with the job determines
the size and positioning of text and graphics. The system
automatically “remembers” where certain characters are
positioned so as not to duplicate or overlay new characters.

The present invention has been able to achieve vastly
superior speeds to that of prior RIP based systems, and can
operate at speeds upwards of 300 mega pixels per second.
Part of the success of the system and its ability to operate at
such high speeds, is that the preferred embodiment of the
instant invention is also capable of “screening on the fly.”
That is, it can automatically screen data relating to the
images so that the various gray scales or color levels are
correct for a contone printing process.

Other advantageous features provided in accordance with
this invention include:

A high performance “generic” RIP for a multiplicity of

printing or other output devices.
Capabilities and speeds not attainable using prior RIP
designs.
Expandable to maintain low cost for lower level applica-
tions while still providing the capabilities required by
high performance color printing devices.
Maintains compatibility with prior RIP designs—can run
the same RIP code used to run prior Moore Hybrid RIP
and PC configuration systems.
Up to 20,000 Job Input Block (“JIB”) entries per page.
Up to 32,000 standard characters or 16,000 kanji type—
mono characters per page; 15,000 colored screened text
Up to 254 fonts per job each containing up to 65,535
characters.
Up to eight patterns per job using optional screening
hardware.
Up to 3,000 logos per job.
Ability to generate rules, rectangles and sides of boxes
without additional storage overhead.
Supports the Moore Command Code Stream (MCCS) (a
standard output of the data system for MIDS
applications) and is also compatible with the Moore
MIDAX® format.
Half-tone screening module converts continuous tone
images to half-tone screen images “on the fly” during
production for high resolution output engines.
Graphics module is capable of generating bar charts, pie
charts, diagonal and curved lines “on the fly” during
production.
Feedback for quality metrics and system productivity.
Accepts a variety of input formats including:
images in the form of fonts (e.g., outline format, Adobe
type 1 or Moore XLF format), line art (compressed
or uncompressed), and ConTone images;

objects represented in dynamic MCCS (Moore Com-
mand Code Stream) formatted data stream and stan-
dard JIB, oriented objects;

full color graphics;

screening tables; and

color lookup tables for color applications.

Input may be received from several standard inputs such
as, for example, AFP or Advance Functional Printing,
which is the standard input from International Business

10

15

20

25

30

35

40

45

50

55

60

65

6

Machines of Armonk, N.Y., or the standard input from
Xerox DIDE Records of Rochester, N.Y.

The printer operator can develop his or her own particular
input or font types for use in the production of orders
(one such example would be Moore Business Forms,
Inc. of Lake Forest, I1L.).

Provides a number of different outputs, including raster
data to suitable printing engine, printing engine syn-
chronization and control, data system feedback for
engine status, job analysis, error reports and audit trail
information.

Examples of output devices include Midax® printer avail-
able from Moore Business Forms, Inc. of Lake Forest,
I11., a Scitex Print Station, available from Scitex Digital
Printing, Inc. of Dayton, Ohio, or MICA available from
Moore Business Forms, Inc. of Lake Forest Ill. For
color printing, example output devices include Indigo
(available from Indigo America, Inc. of Amherst, N.H.)
and Xeikon (available from Xeikon N.V. of Mortsel,
Belgium).

Very high data rates:

120,000 characters per second (220% faster than prior
Hybrid RIP design);

320 million pixels per second (assuming pixels are
moved in 64 pixel blocks).

Additional graphics capabilities boost graphics oriented
speeds to the 320 million pixels per second rate.

Imaging of variable full process color images and colored
text in addition to existing XL/Hybrid capabilities.

Upwardly compatible with XL Data System, print
devices, job and fonts so that existing jobs written for
prior RIP designs will run.

More than 1000 8%x11" full color, full process color
images variably from form to form or equivalent cov-
erage using smaller images.

Full color images and colored text and line art can be
printed using half-tone screening technology. Full color
images can be half-tone screened “on the fly” as they
are printed. The system can screen a document at
various line frequencies (e.g., 50 lpi to 150 Ipi in
increments of roughly 5 Ipi) and dot shapes (e.g.,
round, square, elliptical and line). Super cell technol-
ogy provides very accurate angles for process color
screening.

Any object which overlaps another object of a different
color will utilize trapping to avoid undesired contami-
nation by the underlying image.

Imaging of text and line art in a number of modes
describing the way in which the image is formed and
the manner in which it is merged into the page. The
following modes of text and line art formation are
supported: Normal (solid/colored text); Pattern
(geometric filled text); Picture (image-filled text). The
system supports several merge types including Trans-
parent (background remains), Overprint (background
replaced), Knockout (background under character
glyph is removed).

Elements—the smallest entity within an object—are
selectable based on the results of a particular selection
criterion and test, providing a higher level of select-
ability allowing only portions of objects to be printed if
desired.

Color of an element can be changed via select criteria.

With the optional hardware accelerator we are able to
interpret graphic data structures including pie charts,
bar charts, form overlays and art at high speeds.

5,949,438

7

Each job can have up to 64 homogeneous colors defined
for use in coloring text and line art. They can be solid
ink colors, or colors created by screening various levels
of the four process colors. Screened full color continu-
ous tone images are not restricted to these 64 colors.

Color support for four process color inks (e.g., cyan,
magenta, yellow and black).

Images can be input via a “front end” system and then
networked to a high speed disk array system in the
proper format.

Post Script files can be initially converted to bit images by
a Post Script interpreter residing on the “front end,” or
may be interpreted at high speed on download and
imaged “on the fly.”

Integrated system built out of modular subsystems.

The system ensures data integrity from the live data input
media through to the printed page.

Audit trail of job status.

Automatic monitoring and recording of system perfor-
mance.

All system feedback is easily interpreted by the operator,
including error/warning messages and system perfor-
mance metrics.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages provided by the
present invention will be better and more completely under-
stood by referring to the following detailed description of
presently preferred examples of embodiments of the inven-
tion in conjunction with the drawings, of which:

FIG. 1 is an example of an overall intelligent imaging
system constructed in accordance with a preferred embodi-
ment of this invention;

FIG. 2 shows overall example operations performed by
the raster image processor shown in FIG. 1;

FIG. 3 shows an example architecture of the FIG. 1 raster
image processor;

FIG. 3a shows the FIG. 3 raster image processor
expanded to include screening, graphics and data cache
capabilities;

FIG. 4 is a flowchart of example overall control opera-
tions performed by the RISC controller module to control
data processing by the raster image processor;

FIG. 5 shows an example architecture for the XL interface
module;

FIG. 6 shows an example architecture for the XL interface
registration controller;

FIG. 7 shows an example architecture for the RISC
controller module;

FIG. 8 shows an example architecture for the font image
memory (FIM) module;

FIG. 9 shows an example architecture for the binary
image generator (BIG) module;

FIGS. 10A and 10B show two different examples of
engine control modules 600 for different print engines 68;

FIG. 11 shows an example architecture for a graphics
module 900;

FIG. 12 shows an example of an architecture of a data
cache module 800 (including associated RAID disk array);

FIG. 13 shows an example architecture for screen module
700; and

FIG. 14 shows an example implementation for the screen-
ing circuits shown in FIG. 13.

10

15

20

25

30

35

40

45

50

55

60

65

8
DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an intelligent imaging system 50 provided
by the present invention. System 50 performs the overall
task of assembling digital image “objects” based on input
digital data to create a visible image that can be viewed by
a person. In this particular example, the visible image is
printed onto a medium such as moving a paper “web” 72 to
produce finished printed matter 76 that can be distributed
and read or viewed.

Overall Intelligent Imaging System 50

Intelligent imaging system 50 may include various input
data sources such as a magnetic tape drive 52, an optical
scanner 54, a network 56 and a optical disk drive system 58.
In addition, system 50 includes a “front end” computer
system 60; an XL data system 62; and a raster image
processor 64. Components 60, 62 and 64 are electronic
devices that create, store, manipulate and process digital
data to produce a digital representation of a visible image. In
this example, system 50 further includes a print engine 68
and a paper handling mechanism 70. The print engine 68
may be a high resolution, high speed monochrome or color
conventional print engine device, such as, for example, a
Moore Business Forms MIDAX® print engine, a Scitex
print head, or an Indigo high speed color printer.

The print engine 68 shown in FIG. 1 prints on a continu-
ous “web” 72 of paper supplied, for example, from a large
paper roll 74 at high speeds of up to 300 to 500 feet per
minute. Print engine 68 includes electronic print heads that
print images on web 72 as the web travels through the print
engine (ie., “plateless printing”). The printed web 72 is
processed by conventional paper handling mechanisms 70
(e.g., cutters, staplers, gluers, folders, collators, stackers,
etc.) to provide finished printed products 76.

The “raw materials” for the images to be printed by print
engine 68 come from data sources 52—58. The system 50
accepts input data in a variety of forms including for
example:

Images

fonts such as outline font formats (e.g., Adobe type 1,
Post Script, true type and bit stream);
pre-generated Moore XLF format fonts;

LineArt in compressed or uncompressed format;

ConTone or full color graphics images;

Objects

dynamic MCCS (Moore Command Code Stream) for-
matted data stream
standard JIB oriented objects;

Screening tables;

Color lookup tables;

Executable software for raster image processor 64 to

execute;

Job description file instructions including, for example,

input text.

Various ones of data sources 52, 54, 56 and 58 may supply
these various types of input data as may be convenient. For
example, input text to be printed may be stored on magnetic
tape 53 or magnetic disk 55. Optical scanner 54 may be used
to scan in photographs or other images for storage on disk
55 and later retrieval. Optical drive 58 accepts optical disks
59 that may store a variety of information including, for
example, line art, fonts, executables, etc. Network 56 may
connect system 50 to other similar systems 50 and/or other
computing and/or storage devices located locally or
remotely.

“Front end” image handling system 60 enables users to
input and correct full color images as well as line art, fonts

5,949,438

9

and Post Script files. Front end 60 may be, for example, a
general purpose digital computer such as a high-capability
personal computer including a display 60a and a keyboard
60b. Front end 60 need not be co-located with the rest of
system 50, but could be remote and communicate with XL
data system 62 and raster image processor 64 via magnetic
tape 53 and/or network 56, for example. Thus, for example,
in one configuration the front end 60, optical scanner 54,
optical drive 58 and disk 55 might be located remotely to the
rest of the system 50, and produce as its “output” a job
description file stored on magnetic tape 53. Magnetic tape 53
could then be physically carried to a production floor and
inserted into another magnetic tape drive 52 coupled to XL
data system 62, raster image processor 64 and print engine
68.

The “human” job coordinator operates front end 60 to
perform a variety of tasks. For example, the human operator
may, using front end 60, select and collect images from the
various data sources such as continuous tone pictures
scanned using optical scanner 54, continuous tone images
stored on a Photo CD optical disk 59 or Post Script files
supplied by magnetic tape 53 and/or disk 55 (or authored
using the front end). The human operator also uses front end
60 to collect all line art such as graphics and logos, from
either scannable line art or from Post Script files defining the
graphics. The human operator also uses front end 60 to
identify all fonts needed for a particular printing job, and if
necessary, uses front end 60 to convert the font layout to an
acceptable format. The job coordinator also uses front end
60 to select job layout and configuration. He or she will
select and locate all objects to be printed on the finished
printed products 76. The job coordinator creates, using front
end 60, a “job description file” and supplies it plus all
necessary fonts to raster image processor 64 via XL Data
System 62 (for example, the job description file may be
stored on magnetic tape 53 for later retrieval).

Raster image processor 64 is an electronic device that
creates an image in computer memory based on the job
description file provided by front end 60, and sends the
digital image to print engine 68 for printing. More
particularly, raster image processor 64 rasterizes variable
combinations of text, graphics and continuous tone images
at high speed based on an inputted job description file, and
outputs the rasterized image in digital form to print engine
68 in real time synchronism with the operations of the print
engine. Raster image processor 64 monitors the travel of
web 72 through print engine 68 and synchronizes its opera-
tions with web travel. Raster image processor 64 also
controls print engine 68 to provide correct print registration
of the images the print engine prints on web 72. Raster
image processor 64 thus coordinates with XL data system 62
to receive portions of the inputted job description file as they
are needed, creates electronic images (in memory) to be
printed on web 72, and supplies those electronic images in
digital form at the rates, resolutions and formats required by
print engine 68.

In the preferred embodiment, raster image processor 64 is
capable of driving a number of different print engines or
other output devices including, for example, Moore’s
MIDAX® print engine, Scitex print heads, and other imag-
ing devices. FIG. 1 indicates this by showing another print
engine 68a that may be coupled to the output of raster image
processor 64 instead of print engine 68. In the preferred
embodiment, no configuration changes to raster image pro-
cessor 64 are required if the other print engine 68a is
compatible with print engine 68. However, if the other print
engine 68a is not compatible, then a simple swap of a single

5

10

15

20

25

30

35

40

45

50

55

60

65

10

plug-in electronic control module within raster image pro-
cessor 64 for another is all that would be required to allow
the raster image processor to work with the other print
engine.

In the preferred embodiment, the human operator controls
raster image processor 64 through a hand-held data display
terminal 66 that includes a keypad 66a, an array of light-up
indicators (e.g., light emitting diodes) 66b, and an LCD
display 66¢. Terminal keypad 664 includes mode keys that
select modules within raster image processor 64 to be
controlled by the terminal. The human operator can use
terminal 66 to read status information and error conditions,
control operating parameters (e.g., feet per minute, offset,
registration mode, type of registration, etc.), invoke reset
and download, and perform a variety of other control
operations.

Raster Image Processor Operations

FIG. 2 shows the overall operations performed by raster
image processor 64 in the preferred embodiment. The “front
end” 60 supplies a job description file 80 to the raster image
processor 64. This job description file 80 typically contains
a compact digital representative description how each of the
pages of the finished printed product 76 will look. That is,
for each different page to be imaged, a job description file
will specity all text to appear on the page, identify the fonts
to be used, specify any graphics or line art to be included,
and also specify (if color imaging is employed) what colors
are to be used. Job description file 80 essentially provides a
complete representation in digital form of the entire print
“job”—which may consist of many different pages of
images.

Raster image processor 64 converts the job description
file 80 into one or more “display lists” 82. Raster image
processor 64 creates a display list 82 for the next (and each)
page to be imaged. Display list 82 specifies objects and their
corresponding positions on the page as well as color/density
information and other characteristics. For example, display
list 82 typically specifies text information to be imaged, the
position of the text on the page, and the font the text is to be
imaged in.

Raster image processor 64 interprets the display list 82 as
a list of instructions specifying the next page to be imaged.
Raster image processor 64 constructs a digital representation
of a complete image in memory in accordance with the
instructions contained within the display list 82. Raster
image processor 64 interprets the display list 82 to identify
all “fonts” (e.g., type styles) required to image the next page.
The raster image processor then writes bit map images of the
necessary fonts into a “font image memory” (“FIM”) 400 so
they are available for imaging. Raster image processor 64
also parses the display list 82 to identify all graphics images
that need to be supplied to image the page. The raster image
processor can generate some simplified types of graphics
“on the fly”. For example, if a special component called a
“graphics accelerator” module 900 is present, the raster
image processor 64 can generate curved lines, geometrical
shapes, etc. “on the fly” in real time and supply them on an
as-needed basis in response to the instructions within the
display list 82.

For color imaging, raster image processor 64 may add
color information to the font information supplied by font
image memory 400 (and also to the graphics generated by
graphics accelerator 900)—all as instructed by the display
list 82.

The raster image processor 64 can also access pre-stored
graphics such as color images, line art, etc., from a graphics
library stored in a “data cache” 800. The raster image

5,949,438

11

processor 64 may control “data cache” module 800 (if
present) to retrieve and supply the appropriate graphics
images as needed and specified by display list 82.

Once the various “objects” to be imaged are ready to be
supplied, raster image processor 64 assembles them together
to form a complete digital representation of the final image.
This digital representation is stored in a “Bit Image
Memory” 512. In a preferred embodiment, Bit Image
Memory 512 has “double buffers”—i.e., it has a pair of
duplicate memories 512a, 512b each of which can store an
entire image. This allows raster image processor 64 to output
a completed image to the output device at the same time that
it is creating the next image in the bit image memory 512 in
real time.

In this example, each of Bit Image Memories 5124, 512b
comprises a full page “bitmap” having discrete storage
locations positionally corresponding to each position on the
page that can be filled in with a dot. In a preferred
embodiment, this bit mapped memory image may comprise
four “bit planes” to provide a total of sixteen (2*) color or
monochrome density values. The graphics and line art
provided by data cache 800 may supply the appropriate
color information directly to Bit Image Memory 512.

When raster image processor 64 has finished storing a
completed page image into one of Bit Image Memories
512a, 512b, it ceases accessing that bit image memory and
begins working on a new image in the other Bit Image
Memory. Output circuitry then accesses the completed
image and output the data in a sequence and at a rate
required by the print engine 68 being used. Thus, for
example, raster image processor 64 may supply the com-
pleted bit mapped image one line at a time or multiple lines
at a time as required by the print engine 68, and does so at
timing synchronized with the movement of web 72 through
print engine 68. While one part of the raster image processor
64 is accessing the completed memory image in Bit Image
Memory 5124, another part of it may at the same time be
building the next page image in its duplicate binary image
memory 512b—and still another part of the raster image
processor may be converting another portion of job descrip-
tion file 80 into a new display list 62 for the second-to-next
succeeding page.

Architecture of Raster Image Processor

FIG. 3 shows an example modular architecture for raster
image processor 64. In the preferred embodiment, raster
image processor 64 is fully modular, and is constructed
based on a generalized bus architecture and associated back
plane that allows the different modules (preferably each of
which comprises a single printed circuit board) to be
replaceably plugged in and out. This modular architecture
provides easy expandability to add additional capabilities
(compare FIGS. 3 and 3A), and also allows some modules
to be swapped out for other modules to adapt to different
requirements (e.g., different output devices such as different
print engines).

In the example shown in FIG. 3, raster image processor 64
includes an XL interface module 100, a master controller
module 200, a RISC controller 300, a font image memory
(“FIM™) module 400, a binary image generator (“BIG”)
module 500, and an engine control module (“ECM”) 600. A
VME bus 1000 provides communication between XL inter-
face module 100, master controller module 200 and RISC
controller module 300. An “R-BUS” 1002 allows commu-
nication (image, commands) between RISC controller mod-
ule 300, FIM 400, BIG 500 and ECM 600. An F-BUS 1004
allows transfer of image date (e.g., fonts and logos) between
the FIM 400 and the BIG 500. A P-BUS 1006 transfers final
form image data from BIG 500 to ECM 600.

10

15

20

25

30

35

40

45

50

55

60

65

12

As shown in FIG. 3A, R-BUS 1002 also provides com-
munications to optional enhancement modules such as, for
example, a screening module 700, a data cache module 800
and a graphics module 900. F-BUS 1004 allows transfer of
image date between the FIM 400 and/or the BIG 500, and
the graphics module 900. In addition, in this expanded
configuration, data cache module 800 may communicate
data to screening module 700 over a DC (data cache) bus
1010, and screen module 700 may communicate data to BIG
700 via a SCR (screen) bus 1012.

Briefly, the XL interface module 100 accepts the job
description file 80 from an XL Data System 62 and supplies
it for processing to master controller module 200. Master
controller module 200 converts the job description file 80
into display lists 82, and supplies the display lists to RISC
controller module 300 for imaging. The RISC controller
module 300 coordinates the operations of FIM 400 and the
BIG 500 (which contains the Bit Image Memories 5124,
512b) to generate the digital representation of the image
based on the display list 82 for the next page to be imaged.
The ECM 600 breaks the completed digital representation
up into suitably sized “chunks” and provides them to print
engine 68 exactly at the time the print engine needs them to
print the next portion of the image.

The (optional) graphics module 900 generates vector
graphics “on the fly” based on instructions from RISC
controller module 300, and also is capable of efficiently
de-compressing and/or scaling image files. The (optional)
data cache module 800 stores a graphics library and supplies
required prestored graphics information to screen module
700 in real time. Screen module 700 “screens” contone
image files and provides the resulting pixelized data values
to BIG 500.

More Detailed Description of Raster Image Processor
Operations

FIG. 4 is an example of a sequence of control steps
performed by RISC controller module 300 to coordinate the
various activities performed by raster image processor 64.
Raster Image processor 64 and its associated RISC control-
ler 300 begins operations by initializing (block 84). Then,
RISC controller 300 looks for a display list 82 to process
(block 86). Once the RISC controller 300 receives a display
list 82, it begins parsing it (e.g., from top to bottom) to
determine the type of objects it specifies (block 88). If the
display list 82 “instruction” specifies a color, then RISC
controller 300 sets the default color to the specified color for
use in further rendering of text and graphics (block 90). If an
“instruction” within display list 82 specifies text (exit block
91), RISC controller 300 sends a command to the FIM 400
(block 95) specifying the characteristics of the text charac-
ters to be imaged. If the display list 82 “instruction” specifies
a graphic (exit block 92), RISC controller 300 sends a
command to the graphic module 900 specifying the charac-
teristics of the graphic to be generated (block 96). If an
instruction within display list 82 specifies an image (exit
block 93), RISC controller 300 sends a command to the
Screen module 97 (block 97). This parsing process continues
in an interactive fashion until RISC controller 300 encoun-
ters of “end of page” instruction (block 94)—at which time
it checks hardware status (block 99) and “returns” to wait for
arrival of the next display list 86 to process. Meanwhile,
each of FIM 400, Graphic module 900 and Screen Module
700 writes its respective output into the bit image memory
512 within BIG 500.

More Detailed Discussion of Raster Image Processor Mod-
ules

The overall operations and architecture of raster image
processor 64 are described above. The following provides

5,949,438

13

additional, more detailed descriptions of each of the various
modules within raster image processor 64.
XL Interface Module 100

FIG. 5 shows an example of an overall architecture for XL
interface module 100. XL interface module 100 in this
example is a microprocessor-based interface device that:

provides communications between the X data system 62

via the GPI bus 1007,
provides web synchronization and registration control for
the raster image processor 64;

receives data from the XL data system 62 and buffers it

into a FIFO (up to 16 mb); and

drives operator control terminal 66.

In this example, XL interface module 100 includes a VME
bus interface and data FIFO block 102, a GPI bus interface
104, a serial communications and operator interface block
106, a registration controller block 108, and a microproces-
sor and interrupt control block 110. An internal bus 112
allows blocks 102-110 to communicate among themselves.
In addition, a further data path 114 between VME interface
and data FIFO 102 and GPI interface 104 allows information
to be rapidly transferred from the GPI bus 1007 and the
VME bus 1000.

The overall operation of XL interface module 100 is
controlled by microprocessor and interrupt control 110,
which may include a Motorola 680180 microprocessor with
64 K-bytes of EPROM, 256 K-bytes of RAM and a decode
and interface PASIC. In this example, microprocessor 110
controls all functions of XL interface module 100 except for
those of data FIFO 102.

Registration controller 108 synchronizes the imaging
operations of raster image processor 64 with the travel of
web 72. Registration controller accepts web synchronization
signals from various encoders and scanners disposed on
print engine 60 to monitor the position and travel of web 72.
In response, registration controller 108 generates print reg-
istration control signals which it provides to ECM 600. ECM
600 uses these print registration control signals to synchro-
nize itself and print engine 68 with the movement and
position of web 72.

FIG. 6 shows a more detailed functional diagram of
registration controller 108. The registration controller 108
includes signal conditioning devices 116, 118 and 120 to
condition the web synchronization signals it receives. Reg-
istration controller 108 also includes registration counters
122, 124, 126 (implemented in this example by one or more
PASICs—programmable application-specific integrated
circuits) that keep track of the position of web 72 relative to
the current (and next) page. An array of multiplexors
128-134 is used to select between the various web synchro-
nization signals depending on the particular registration
mode being used. The following table shows examples of
how top-of-form is generated in each of five different
registration modes:

Mode How Top-Of-Form is Generated

Sensemark Optical scanner senses a preprinted mark on the form
Pinwheel Tractor-driven encoder with resolution of 36 pulses per inch
Tight Web XL Data System’s CUE signal

Plain Paper Raster or pitch encoder

Fake Mode Internally generated rasters Test only

Based on this processing, registration controller 108 gener-
ates a top-of-form (TOF) control signal that it supplies to
microprocessor and interrupt controller 110. This TOF sig-
nal is used as a primary synchronization control signal to
synchronize raster image processor 64 with web 72 move-
ment.

10

15

20

25

30

35

40

45

50

55

60

65

14

Referring once again to FIG. 5, GPI bus interface 104
includes two main functional sections. The first section
receives data from GPI bus 1007 and passes it to the on
board data FIFO 102 via data path 114. Microprocessor 110
can also pass data to data FIFO 102, using this channel
during stand-alone operation. A second section of GPI
interface 104 is used to pass message data back—serially—
to the XL data system 62. The GPI bus 1007 in the preferred
embodiment includes data path 10074 and a message output
path 1007) for these respective purposes.

The serial communications and operator interface block
106 of XL interface module 100 comprises an 8-channel
serial controller chip, serial bus drivers, and interrupt control
circuitry for microprocessor 110. These channels enable all
functional parts of raster image processor 64 to communi-
cate with XL interface module 100 and display terminal 66.

The VME interface and data FIFO block 102 can be, in
this example, configured with 4, 8 or 16 mb of memory. This
block 102 is used to buffer data from the XL Data System 62
or other host data system to be accessed by master controller
200 across the VME bus 1000. The control logic within
VME interface and data FIFO 102 may, for example, com-
prise a pair of PASICs. One of these PASICs may control the
FIFO input, while the other may oversee the reading of the
FIFO in the VME bus interface and decode. Interrupt
arbitration for the three VME interrupts provided (FIFO
empty, TOF and host reset) are also handled by this block
102 in this example.

In more detail, the FIFO controller section of block 102
may consist of DRAM and associated DRAM controller that
can be configured as a 4, 8 or 16 mb FIFO. Data from an
input latch may be read and put into the main FIFO, and then
moved into a smaller on-board 512-byte FIFO as the smaller
one is emptied through the VME bus controller onto the
VME bus 1000. The DRAM controller in this example
produces three main cycles: read, write and refresh. The
controller looks for data to be available in its input latch.
When data becomes available, the controller performs a
write cycle and writes the byte into DRAM. When the FIFO
is not empty, and the 512-byte FIFO is not full, then a read
cycle is performed to move the byte from the main DRAM
FIFO to the 512-byte output FIFO. The DRAM controller
also produces a refresh approximately every 15 ms to
maintain valid data in the DRAMs.

The VME bus interface section within block 102 in this
example contains a PASIC and other circuitry which con-
trols the VME bus decoding and arbitration, as well as the
FIFO output data shifting. The FIFO data can be accessed by
either byte, word or long word in this example. Data is read
from the 512-byte FIFO when not empty, and shifted into an
output shifter. The output shifter is a 4-byte shift register in
this example that shifts one byte at a time, down to the least
significant bit location. As the least significant bit location is
filled, the next byte is shifted into the next least significant
position until all four bytes are filled. When a byte-wide
VME read occurs, the first byte is shifted into the shifter.
Next the three remaining bytes and a new byte from the
512-byte FIFO are shifted simultaneously to fill the shifter
again. This also occurs for word and long word FIFO
accesses. Block 102 maintains a status register readable by
main controller module 200 over the VME bus 1000 that
indicates FIFO status and data availability. The VME inter-
face portion of block 102 also includes 2 kB of dual-port
RAM in this example that accessible by both the micropro-
cessor 110 and by master controller 200 and RISC controller
300 over the VME bus 1000. This shared RAM is used for
control and communication between XL interface module
and master controller module 200.

5,949,438

15
Master Controller Module 200

Master controller module 200 includes a Motorola 68040
microcontroller in this example with an associated 4 Mb of
RAM. Master controller module 200 is the master controller
of raster image processor 64, and provides for communica-
tion between the XL interface module 100 and RISC con-
troller module 300. The master controller module 200,
which is based on a prior master controller design used in the
prior art Hybrid RIP product, performs various control and
processing operations under software control. For example,
master controller module 200 maintains a Job Information
Block (JIB) that contains information for each line to be
imaged including start information, font, rotation, placement
and line length. Master controller module 200 also maintains
a Font Address Memory that stores the starting pointers of
each character within FIM 400. As master controller module
200 processes job information passed to it by XL interface
module 100, it passes the information over VME bus 1000
to a memory within RISC controller module 300.

RISC Controller Module 300

RISC controller module 300 in this example oversees all
image handling and synchronization of the FIM 400, BIG
500 and ECM 600. FIG. 7 shows a block diagram of RISC
controller module 300. The heart of RISC controller module
300 is a 33000 RISC processor 302 including 4 Mb of
DRAM for internal code storage and associated control and
support logic for decoding and control operation. RISC
processor 302 communicates with the VME bus 1000 via
buffers 304, 306 and control logic 308. A pair of 1-Mb
SRAM modules 3124, 312b are used to receive job infor-
mation for the current page to be imaged passed to RISC
controller module 300 by master controller module 200 over
VME bus 1000. Two SRAMSs 312 are used because this
memory space is shared between RISC processor 302 and
master controller 200, with one SRAM 312 being accessed
by the RISC processor and the other SRAM 312b being
accessed by master controller 200. RISC processor 302
communicates with R bus 1002 via data buffers 314 and
address interface control logic 316. In this example, R bus
1002 provides a 32-bit wide data path, a 32-bit wide address
path and additional control lines (e.g., write control and
parity).

Font Image Memory 400

FIM 400 comprises a large random access memory used
to store the pixel patterns of all of the fonts, logos and
patterns being used in the current print job. FIM 400
interfaces to the R bus 1002 (from which it receives pixel
images sent to it by RISC controller 300), and outputs stored
images via F bus 1004. In this example, F bus 1004 includes
a 64-bit data bus 1004b and associated address path 1004a
as is shown in FIG. 8 (a block diagram of the internal
architecture of an example FIM 400).

As shown in FIG. 8, the core of FIM 400 is a large block
of random access memory 402 comprising 64 Mb of DRAM
expandable to 256 Mb. In this example, RAM 402 may be
comprised of eight 2 megx36 bit SIMM memory modules
that can be upgraded to eight 8 megx36 bit SIMMSs. ASIC-
based refresh control logic 404 performs all necessary
DRAM refresh control and DRAM address selection. Driv-
ers within block 404 may operate the address lines, write
enable lines, etc., of memory 402. Additional ASIC-based
control logic 406 is used in this example to handle the
checksum operation for all fonts, logos and patterns being
loaded into memory 402. An FIM command FIFO 408
receives FIM commands from RISC controller 300 neces-
sary to place a pixel image into FIM memory 402. These
commands are sent to FIM control ASIC/drivers 404 for

10

20

25

30

35

40

45

50

55

60

65

16

processing. Interface to R bus 1002 is provided by buffers
410 and interface control 412.

To reduce memory requirements, FIM 400 may store font
information in monochrome format and maintain associated
color values in the same or different memory. These color
values are specified by RISC controller 300 when the RISC
controller controls the FIM 400 to write the font information
into its memory. During the process of writing the memory
contents of FIM 400 to BIG 500, the FIM may supply the
color values (e.g., four bits wide) to result in the BIG writing
these color values into its bit image memory 512.

Binary Image Generator 500

Binary image generator 500 assembles and stores a
memory image of the final image to be printed. FIG. 9 shows
a block diagram of an example of BIG 500. In this example,
BIG 500 interfaces with the R bus 1002 via data buffers 502
and address control 504, and interfaces with F bus 1004 via
an FIM data FIFO 506. BIG 500 also interfaces with P-bus
1006 (a 64-bit bus in the preferred embodiment) via a BIM
data read multiplexor 508 and a shifter/multiplier 510.

The heart of BIG 500 is a pair of binary image memories
512a, 512b each having a size of 64 Mb. Each of memories
512a, 512b store a complete page to be imaged. A shifter/
multiplier 510 writes data into one of memories 5124, 512b
while the contents of the other are streamed out over P bus
1006 for output. Write operations into memories 512a, 512b
occur under control of R bus 1002 via blocks 502, 504. All
commands for each character’s size, position and type are
received via data transceivers within block 502 and written
into command FIFOs 514.

The BIG master controller 516 is, in this example, an
ASIC that generates BIG timing signals including clock and
load signals for X and Y position commands, clock signals
for shifter/multiplier 510, and read signals for command
FIFOs 514 and screen data FIFO 518. Master controller 516
also originates merge and crop signals, and receives all X
and Y size commands for each character’s placement within
memories 512a, 512b. The Y positions are passed through
multiplier 510 prior to being clocked into the BIM controller
518a, 518b. The X positions are placed directly on the
internal bus 520.

BIM controllers 518 in this example each comprise an
ASIC. There are two BIM controllers 518, one for each BIM
512. BIM controllers 518a, 518b receive shifter address
values via internal bus 520. These address values specify the
starting point for each character cell for the X and Y
positions. Controllers 518a, 518b pass these positions along
to BIM memory modules 512a, 512b respectively, in the
form of addresses over multiplexed buses that work in
conjunction with read and write control signals generated by
the controllers 518. Offset bits also supplied by BIM con-
trollers 518a, 518b specify offsets from the nominal
addresses specified on the address lines.

Each BIM 512 in this example comprises eight SIMM
modules for a total of 64 Mb of memory. Each BIM memory
512a, 512b is arranged in a 4 Mb deep by 128 bit wide
structure. Each SIMM memory module used to compose
BIM memories 5124, 512b has 16 full Mb by 1 bit DRAM
memories, merge logic and mask logic. Thus, each 4
Mbx128 BIM memory 512 is equal to one complete page
image, dynamically sized per requirements of ECM 600.
ECM accesses the image over P bus 1006.

ECM 600

The basic function of ECM 600 is to transfer binary
information stored in BIM 512 to tile print engine 68 at
timings and in quantities/formats demanded by the print
engine. Different ECMs 600 are used in this example

5,949,438

17

depending on the particular print engine 68 being employed.
To use raster image processor 64 with a different print
engine 68, a technician can unplug one ECM 600 modular
printed circuit board from a backplane connecting it to the
rest of raster image processor 64, and plug in another ECM
600 designed for the new print engine.

FIG. 10A shows an example of an ECM 600 for the
MIDAX 300 print engine. In this example, ECM 600
includes a PIC17C42 microcontroller 602, two ASIC chips,
and some interface logic including a P-Bus interface 604, a
latch 606 and differential drivers/receivers. The microcon-
troller 602 controls the interface logic to transfer 32 pixels
of image from BIG 500 at a time to print engine 68. The
internal microcontroller reads 64 pixels of BIG 500 memory
over Pbus 1006, and latches this double long word into latch
606. It then reads the latch 606 a long word at a time and
sends the pixel data to print engine 68 via drivers 608.
Associated ASIC-based control logic takes care of synchro-
nization between ECM 600, RISC controller 300, BIG 500
and print engine 68. Additional ASIC-based control logic
provides appropriate hand shaking between BIG 500 and
print engine 68 under supervision of the ECM internal
microcontroller 602. Still additional ASIC-based control
logic provides handshaking RISC controller 300 and ECM
600.

FIG. 10B shows an example of an alternate architecture
for an ECM 600a designed to be used with a color high
speed printer such as the Indigo print engine. In this alternate
example, ECM 600a includes an input sequencer 610, a
P-Bus interface 612, input FIFOs 614, an Indigo formatter
616, an output sequencer 618, differential drivers/receivers
620, and fiber optic transmitter 622. In this example, input
sequencer 610 (which may be microcontroller based) reads
pixels from BIG 500 memory over P-Bus 1006 via P-Bus
interface circuitry 612, and stores the read information in
input FIFOs 614. Special formatter circuitry 616 under
control of output sequencer 618 automatically reformats the
input data to conform with the requirements of the Indigo
print engine, and provides the output data in reformatted
form to the Indigo printer via fiber optic transmitter 622.
Differential drivers/receivers 620 communicate status and
control signals between output sequencer 618 and the Indigo
print engine. ECM 600a includes additional ASIC-based
control logic to provide appropriate handshaking with the
rest of raster image processor 64 as discussed above.
Graphics Module 900

FIG. 11 shows an example architecture for a graphics
module 900 shown in FIG. 3A. Graphics module 900
provides raster image processor 64 with both data stream
image “lift” capability and vector graphics drawing capa-
bility in the preferred embodiment. The data stream image
processing may, for example, support CCITT Group 3 and
Group 4 image expansion along with variable scaling of
non-compressed images. Graphics module 900 may provide
full X and Y scaling of the expanded images from % scale
to four times before the image is transferred to BIG 500 over
F bus 1004.

As shown in FIG. 11, graphics module 900 includes an
input FIFO/data interface 902, a VCEP expansion processor
904, a scaler 906, a RISC processor 908, a display list FIFO
910, a pixel placer 912, first and second image memories
914a, 914b, and an output section 916. In this example,
graphics processor 900 receives instructions from RISC
controller 300 via the R-Bus 1002. In addition, graphics
processor 900 may also receive compressed image data over
the R-Bus 1002 and/or F bus 1004. The information sent to
graphics processor 900 is stored by the graphics processor in

10

15

20

25

30

35

40

45

50

55

60

65

18

input FIFO/data interface 902. This component 902 routes
commands to internal RISC processor 908 and/or to display
list FIFO 910, and also provides first-in-first-out buffering
for compressed (or uncompressed) image data which it
routes to VCEP 904 for processing.

VCEP expansion processor 904 comprises a conventional
image expander (de-compressor) circuit that operates at 16.6
Mb per second in transparent mode (no compression) and
from 20 MB/SEC to 50 MB/SEC on a compressed image—
depending on the image compression ratio. VCEP 904
“expands” image data from a more compact, compressed
format (used to more efficiently store and communicate the
image data) to a decompressed format suitable for imaging.
VCEP 904 provides its decompressed output (or transpar-
ently passes images data if it was initially provided in
decompressed format) to the input of a scaler 906.

Scaler 906 provides conventional full X and Y variable
scaling of the expanded image data from, for example, ¥
scale to four times, and provides the scaled, decompressed
image data onto an internal data bus 918 for temporary
buffering in “double-buffered” image memories 914a, 914b.
In this example, the throughput from the output of expansion
processor 904 to image memories 9144, 914b may be on the
order of 200 ms/word=10 mb/sec (for a scaled image) or on
the order of 100 ms/word=20 mb/sec (for a 1:1 scale image).

Graphics RISC processor 908 performs program control
steps to coordinate the operations of the other components of
graphics module 900. RISC processor 908, display list FIFO
910 and pixel placer 912 in this example support the “on the
fly” drawing of full page vector graphics (including optional
area filling and accelerated PostScript rendering). More
particularly, RISC processor 908 may perform, under soft-
ware control, certain graphics generation steps based on
display list instructions passed to graphics module 900 by
RISC controller 300 over R bus 1002. These display list
instructions may temporarily reside in display list FIFO 910
while they are being processed. Actual pixel generation is
preferably performed by pixel placer 912 under control of a
“display list” provided in display list FIFO 910. The display
list FIFO 910 does not store display list 82 generated by
master controller 200, but rather, stores a different type of
display list designed to control pixel placer 912. In this
example, pixel placer 912 includes hardware circuitry
capable of generating vector graphics at high speed. Pixel
placer 912 provides its output to image memories 914a,
914b over internal bus 918. Output bus 916 takes the output
from image memories 914a, 914b (the output bus can read
from one of image memories 914 while the pixel placer 912
and/or the scaler 906 is filling the other image memory),
processes them to provide automatic area filling (e.g., to file
in a box automatically), and outputs the graphics results onto
F-Bus 1004 for receipt by BIG 500. Additionally, the output
block 916 performs “erase” functions to erase already-
output data from image memories 914.

Data Cache 800

FIG. 12 shows an example of an architecture for data
cache 800. In this example, raster image processor 64 may
be enhanced by the use of an array disk drive 802 (e.g., a
RAID array manufactured by Maximum Strategy of Cali-
fornia providing up to 30 GB of data storage with a 53
MB/SEC output rate). Data cache module 800 maximizes
data throughput by “caching” the data output by the RAID
drive 802 and placing it onto DC bus 1010 for further
processing by screen module 700. In this example, data
cache module 800 includes a conventional HIPPI interface
804 providing an interface to the RAID drive 802. The
output of interface 804 is provided to a large FIFO RAM

5,949,438

19

(e.g., 128 MB) 806 under control of data cache controller
808—which in turn receives its instructions (e.g., which
graphics to retrieve) from RISC controller 300 via R bus
1002. The information stored in FIFO 806 is provided to DC
bus 1010 via high speed output latches 810.

Screen Module 700

FIG. 13 shows an example architecture for screen module
700. In the preferred embodiment, screen module 700 pro-
vides the following functions for raster image processor 64:

it generates screen patterns to be merged by the BIG 500

with character data or to create “screened” lines and
boxes;

it generates a screened image at the proper output reso-

lution from an input contone file of almost any reso-
lution;

it passes prescreened images from the data cache 800 to

the BIG 500; and

it reads and disposes of data from the data cache 800 to

clear the image pipeline of unneeded data.

In this example, screen module 700 includes input FIFOs
702, screening circuits 704, a data shifter 706, an output
register 708, an input controller 710, an output controller
712 and a screen RAM address generator 714. In the
preferred embodiment screen module 800 receives its input
from data cache 800 over the DC bus 1010. This input is
temporarily stored in input FIFOs 702. If the data does not
need to be screened, it may be passed (e.g., via multiplexors
not shown) directly to output register 708 and on to BIG 500
via a screen bus 1012 (see the FIG. 9 diagram of BIG 500,
which shows SCR bus 1012 providing an additional input to
shifter/multiplier 510).

As is well known, “screening” refers to a process in which
contone images are pixelized. If the data needs to be
screened, it is passed from input FIFOs 702 to the input of
screening circuits 704. A primary function of screen circuits
704 is to generate screened image data at the proper output
resolution from an input contone file of almost any resolu-
tion. In this example, there are sixteen identical screening
circuits as shown in FIG. 14 within screen module 700 to
provide 16-channel parallel screen processing. In this
example, each screening circuit 704 includes an image data
RAM 716, a threshold table RAM 718 and a comparator
720. Image data RAM 76 is used to store image data to be
screened received from input FIFOs 702. Threshold table
RAM 718 stores an array of “threshold values™ and associ-
ated screened output values. The contents of RAM 718 may
be provided to screen module 700 via RISC controller 300,
for example, and can be changed depending on the particular
contone image being screened. Threshold table RAM 718
stores threshold or “mapping” information that controls the
transformation between an input contone file and screened
output data. In this example, a comparator 720 compares
each image data value stored in image data RAM 716 with
the threshold values stored in threshold table RAM 718, and
provides appropriate corresponding “mapped” or “screened”
output data in the form of an output pixel value. This
“mapped” “screen” output pixel value is provided to data
shifter 706 for temporary storage.

Referring back again to FIG. 13, the output of data shifter
706 is provided to BIG 500 via SCR bus 1012 and output
registers 708.

In this example, input controller 710 controls the opera-
tion of input FIFOs 702, and output controller 712 controls
the operation of output register 708. Input controller 710 and
output controller 712 receive instructions from RISC con-
troller 300 over R bus 1002 via a command FIFO 716. Input
controller 710, output controller 712 and screen RAM

10

15

20

25

30

35

40

45

50

55

60

65

20

address generator 714 also provide their control inputs to
screening circuits 704 to allow the screening circuits to
synchronize their operations. Screen RAM address genera-
tor 714 is used to address image data RAM 716 and also to
control data shifter 706.

While the invention has been described in connection
with what is presently considered to be the most practical
and preferred embodiment, it is to be understood that the
invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifica-
tions and equivalent arrangements included within the spirit
and scope of the appended claims.

What is claimed is:

1. A raster image processor comprising:

a processor portion of said raster image processor that
receives a display list and performs image generation
functions based thereon;

a processor bus connected to said processor portion;

a font image memory connected to said processor bus,
said font image memory storing fonts for imaging; and

a bit image generator connected to said processor bus,
said bit image generator forming a digital representa-
tion of an image based on said stored fonts and said
image generation functions and outputting said formed
digital representation over an output bus to an engine
control module to be provided by said engine control
module to a print engine,

wherein said raster image processor can output said
formed digital representation at a rate in excess of 300
million pixels per second.

2. A raster image processor as in claim 1 wherein said
raster image processor is connected to a print engine, and
said raster image processor further includes an engine con-
trol module coupled to said bit image generator, said engine
control module for synchronizing said outputting with said
print engine.

3. A raster image processor as in claim 1 wherein said
raster image processor is connected to sense the movement
of a moving paper web, and wherein said raster image
processor further includes means for synchronizing at least
said outputting with the movement of said moving paper
web.

4. A raster image processor as in claim 1 further including
an expansion processor that receives compressed image
files, decompresses said compressed image files, and pro-
vides said decompressed image files to said bit image
generator.

5. A raster image processor as in claim 1 further including
scaling means for scaling graphics images and providing
data representing said scaled graphics images to said bit
image generator.

6. A raster image processor comprising:

a processor portion of said raster image processor that
receives a display list and performs image generation
functions based thereon;

a processor bus connected to said processor portion;

a font image memory connected to said processor bus,
said font image memory storing fonts for imaging; and

a bit image generator connected to said processor bus,
said bit image generator forming a digital representa-
tion of an image based on said stored fonts and said
display list and outputting said formed digital repre-
sentation over an output bus to an engine control
module to be provided by said engine control module
to a print engine, said digital representation including
color information.

5,949,438

21

7. A raster image processor comprising:

a processor portion of said raster image processor that
receives a display list and performs image generation
functions based thereon;

a processor bus connected to said processor portion;

a font image memory connected to said processor bus,
said font image memory storing fonts for imaging;

a graphics generator coupled to said processor bus, said
graphics generator generating graphics in real time
based on instructions received thereby from said pro-
cessor portion; and

a bit image generator connected to said processor bus,
said bit image generator forming a digital representa-
tion of an image based on said stored fonts and said
generated graphics, and for outputting said formed
digital representation over an output bus to an engine
control module to be provided by said engine control
module to a print engine.

8. A raster image processor comprising:

a processor portion of said raster image processor that
receives a display list and performs image generation
functions based thereon;

a processor bus connected to said processor portion;

a font image memory connected to said processor bus,
said font image memory storing fonts for imaging; and

a bit image generator connected to said processor bus,
said bit image generator including a pair of full page
bitmapped image memories and forming a digital rep-
resentation of an image based on said stored fonts and
said image generation functions and outputting said
formed digital representation over an output bus to an
engine control module to be provided by said engine
control module to a print engine,

wherein said raster image processor can output said
formed digital representation at a rate in excess of 300
million pixels per second.

9. A raster image processor comprising:

a processor portion of said raster image processor that
receives a display list and performs image generation
functions based thereon;

a processor bus connected to said processor portion;

a font image memory connected to said processor bus,
said font image memory storing fonts for imaging;

a bit image generator connected to said processor bus,
said bit image generator forming a digital representa-
tion of an image based on said stored fonts and said
image generation functions and outputting said formed
digital representation over an output bus to an engine
control module to be provided by said engine control
module to a print engine; and

10

15

20

25

30

35

40

45

50

22

a graphics generator coupled to said processor bus, said
graphics generator generating vector graphics in real
time and outputting said generated graphics to said bit
image generator,

wherein said raster image processor can output said
formed digital representation at a rate in excess of 300
million pixels per second.
10. A system for producing images for printing, compris-
ing:
at least one input device which produces job description
files that are converted into a display list;

a raster image processor including processor portion that
receives said display list and performs image genera-
tion functions based thereon, said raster image proces-
sor further including
a processor bus connected to said processor portion;
a font image memory connected to said processor bus,
said font image memory storing fonts for imaging;

a bit image generator connected to said processor bus,
said bit image generator forming a digital represen-
tation of an image based on said stored fonts and said
display list and outputting said formed digital
representation, said digital representation including
color information; and

a screening circuit coupled to said bit image generator,
said screening circuit operable to convert continuous
tone input data to screened output data, said screen-
ing circuit further operable to provide said screened
output data to said bit image generator.

11. A system as in claim 10 wherein said raster image
processor is connected to a print engine, and said raster
image processor further includes an engine control module
coupled to said bit image generator, said engine control
module for synchronizing said outputting with said print
engine.

12. A raster image processor as in claim 10 further
including a graphics generator coupled to said processor
bus, said graphics generator generating vector graphics in
real time and outputting said generated graphics to said bit
image generator.

13. A raster image processor as in claim 10 further
including a data cache coupled to said processor bus, said
data cache retrieving graphics data from a library of graphics
and providing retrieved graphics data to said bit image
generator.

14. A raster image processor as in claim 10 further
including scaling means for scaling graphics images and
providing data representing said scaled graphics images to
said bit image generator.

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Drawings
	Page 16 - Drawings
	Page 17 - Drawings
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description
	Page 24 - Description
	Page 25 - Description
	Page 26 - Description
	Page 27 - Description/Claims
	Page 28 - Claims

