[54] CYCLOPROPYLAKLYL OR -ALKENYL OR HETEROCYCLIC COMPOUNDS, PROCESS FOR THEIR PREPARATION AND THEIR USE IN LIQUID-CRYSTALLINE MIXTURES
[75] Inventors: Armin de Meijere, Seevetal; Hans-Rolf Dübal, Königstein/Taunus; Claus Escher, Mühltal; Wolfgang Hemmerling, Sulzbach; Ingrid Müller, Hofheim am Taunus; Dieter Ohlendorf, Liederbach; Rainer Wingen, Hattersheim am Main; Takamasa Harada; Gerhard Illian, both of Frankfurt am Main, all of Germany; Mikio Murakami, Kakegawa, Japan
[73] Assignee: Hoechst Aktiengesellschaft, Frankfurt am Main, Germany
[22] Filed: - Oct. 4, 1993
[63] Continuation-in-part of Ser. No. 917,792, Jul. 20, 1992, abandoned, and Ser. No. 919,085, Jul. 23, 1992, abandoned, which is a continuation of Ser. No. 799,754, Nov. 27, 1991, abandoned, which is a continuation of Ser. No. 522,248, May 11, 1990, abandoned, said Ser. No. 917,792 , is a continuation of Ser. No. 804,618, Dec. 4,1991 , abandoned, which is a continuation of Ser. No. 560,017 , Jul. 27, 1990, abandoned, which is a continuation of Ser. No. 275,210, Nov. 23, 1988, abandoned.
[30]
Foreign Application Priority Data
Nov. 25, 1987 [DE] Germany 3739884.9
May 13, 1989 [DE] Germany 3915804.7
[51] Int. \qquad C09K 19/52; C09K 19/34; C07D 239/26
U.S. Cl. . .. \qquad 252/299.01; 252/299.61; 252/299.63; 252/299.64; 252/299.65; 252/299.67; 544/229; 544/242; 544/298;

544/335
Field of Search \qquad 252/299.01, 299.61, 252/299.63, 299.64, 299.65, 299.66, 299.67; 544/298, 242, 335, 229; 359/103, 104

References Cited

U.S. PATENT DOCUMENTS

3,948,961 4/1976 Henrick et al. 560/1

| $3,966,969$ | $6 / 1976$ | Willy et al. $424 / 343$ |
| ---: | ---: | :--- | ---: |
| $4,014,922$ | $3 / 1977$ | Herrick et al. $560 / 1$ |
| $4,638,073$ | $1 / 1987$ | Welba et al. $549 / 556$ |
| $4,820,839$ | $4 / 1989$ | Krause et al. $544 / 316$ |
| $4,876,028$ | $10 / 1989$ | Hemmerling et al. $252 / 299.61$ |
| $4,880,561$ | $11 / 1989$ | Tabohashi et al. $252 / 299.61$ |
| $4,927,244$ | $5 / 1990$ | Bahr et al. $359 / 103$ |
| $5,200,521$ | $4 / 1993$ | Illian et al. $544 / 298$ |

FOREIGN PATENT DOCUMENTS

0104011	$3 / 1984$	European Pat. Off. .
244129	$11 / 1987$	European Pat. Off. .
0289270	$11 / 1988$	European Pat. Off. .
0316181	$5 / 1989$	European Pat. Off. .
318423	$5 / 1989$	European Pat. Off. .
0318423	$5 / 1989$	European Pat. Off. .
0343487	$11 / 9189$	European Pat. Off. .
3633968	$10 / 1986$	Germany .
$2-118618$	$5 / 1990$	Japan .

OTHER PUBLICATIONS

Shobara et al., Chemical Abstracts, vol. 113, No. 26 (Dec. 26, 1990), Abstract No. 241609.
Primary Examiner-Shean Wu
Attorney, Agent, or Firm-Curtis, Morris \& Safford
Disclosed and claimed are liquid-crystalline cyclopropylalkyl or -alkenyl or heterocyclic compounds, process for their preparation, and their use in liquid-crystalline mixtures. The novel cyclopropylalkyl or -alkenyl or heterocyclic compounds are of the general formula

In this formula A^{1}, A^{2} and $\mathbf{A}^{\mathbf{3}}$ are unsubstituted or substituted, aromatic or heteroaromatic molecular components such as 1,4 -phenylene or pyrimidine-2,5-diyl which are linked via a single bond (in the case where k and $\mathrm{m}=0$) or via functional groups M^{1} and M^{2}, such as $\mathrm{CO}-\mathrm{O}$ or $\mathrm{CH}_{2}-\mathrm{O} ; \mathrm{j}, \mathrm{k}, 1, \mathrm{~m}$ and n are zero, 1 or 2 . The radicals R^{2}, R^{3} and R^{4} are H or alkyl/alkenyl, R^{1} is alkyl/alkenyl or one of the substitutents known from LC chemistry such as an α-haloalkanoic acid radical. At least one of the components $\mathrm{A}^{1}, \mathrm{~A}^{2}$ and A^{3} can be heteroaromatic, and G is alkylene or alkenylene.

19 Claims, No Drawings

CYCLOPROPYLAKLYL OR -ALKENYL OR HETEROCYCLIC COMPOUNDS, PROCESS FOR THEIR PREPARATION AND THEIR USE IN LIQUID-CRYSTALLINE MIXTURES

RELATED APPLICATIONS

This application is a continuation-in-part of application Ser. No. 07/919,085, filed Jul. 23, 1992, now abandoned, which in turn is a continuation of application Serial No. 07/799,754, filed Nov. 27, 1991, now abandoned, which in turn is a continuation of application Ser. No. 07/522,248, filed May 11, 1990, now abandoned, with a claim of priority from German application No. P3915804.7, filed May 13, 1989; each of these predecessor U.S. and priority German applications are hereby incorporated herein by reference. This application is also a continuation-in-part of application Ser. No. 07/917,792, filed Jul. 20, 1992, now abandoned, as a continuation of application Ser. No. 07/804,618, filed Dec. 4, 1991, now abandoned, as a continuation of application Ser. No. 07/560,017, filed Jul. 27, 1990, now abandoned, as a continuation of application Serial No. $07 / 275,210$, filed Nov. 23, 1988, now abandoned, with a claim of priority from German application No. P3739884.9, filed Nov. 25, 1987; and, each of these predecessor U.S. and priority German applications are hereby incorporated herein by reference. This application claims the benefits of priority under 35 U.S.C. $\S 119$ from German applications P3915804.7 and P3739884.9, filed respectively on May 13, 1989 and Nov. 25, 1987.

FIELD OF THE INVENTION

The present invention relates to cyclopropylalkyl or -alkenyl or heterocyclic compounds, processes for their preparation and their use in liquid-crystalline mixtures.

BACKGROUND OF THE INVENTION

The unusual combination of anisotropic and fluid behaviour of liquid crystals has resulted in their use in a large number of electro-optical switching and display devices. In these, their electrical, magnetic, elastic and/or thermal properties can be used for changes in orientation. Optical effects can then be achieved, for example, with the aid of birefringence, the inclusion of dichroically absorbing dye molecules ("guest-host mode") or light scattering.

In order to satisfy the constantly increasing practical requirements in the various fields of application, there is a constant demand for novel, improved liquid-crystal mixtures and thus also for a large number of mesogenic compounds of a very wide variety of structures. This applies both to the areas in which nematic LC phases (for example TN = "twisted nematic", STN="supertwisted nematic", SBE="supertwisted birefringence effect", $\mathrm{ECB}=$ "electrically controlled birefringence") are used, and in those using smectic LC phases (for example ferroelectric and electroclinic).

Many of the compounds which are suitable for LC mixtures can be described by a structure principle (building plan) [see, for example J. Am. Chem. Soc. 108, 4736 (1986), structure I; Science 231, 350 (1986), FIG. 1A; J. Am. Chem. Soc. 108, 5210 (1986), FIG. 3] in which nuclei of cyclic compounds-aromatics, heteroaromatics, but also saturated ring systems-are linked to alkyl side chains which are straight-chain or derivatives which are optically active and are linked to one of the known mesogenic radicals via a $-\mathrm{CO}-\mathrm{O}-\mathrm{CH}_{2}-,-\mathrm{O}-\mathrm{CO}-$ or $-\mathrm{CH}_{2}-$ bridge (the cyclopropyl ring is located at the right-hand end of the particular bridging member). These compounds are said to be suitable as components for ferroelectric LC mixtures (spontaneous polarization of up to $11 \mathrm{nC} / \mathrm{cm}^{2}$).

OBJECTS AND SUMMARY OF THE INVENTION

The object of the present invention is to provide novel mesogenic compounds which can be combined with many other components to form a very wide variety of LC mixtures. The compounds defined below achieve this object:

Liquid-crystalline cyclopropylalkyl or -alkenyl and/or heterocyclic compounds of the general formula (I)

in which:
R^{1} is straight-chain or branched (with or without an asymmetrical carbon atom) alkyl or alkenyl having 2 to 16 carbon atoms, it also being possible for one or two non-adjacent - Ch_{2} - groups to be replaced by - O -, $-\mathrm{S}-,-\mathrm{CO}-,-\mathrm{CO}-\mathrm{O}-,-\mathrm{O}-\mathrm{CO}-$ or $-\mathrm{O}-$ $\mathrm{CO}-\mathrm{O}$ and it also being possible for H to be replaced by F, or one of the following radicals

$\mathrm{CN}, \mathrm{OCF}_{3}, \mathrm{OCF}_{2}, \mathrm{~F}$ or $\mathrm{CF}_{3} ; \mathrm{A}^{1}, \mathrm{~A}^{2}$, and A^{3} are identical or different, unsubstituted or mono-or dihalo-sub-
stituted 1,4 -phenylene, unsubstituted or 1 - or $4-\mathrm{CN}$-substituted 1,4-cyclohexylene, trans-1,4-cyclohexene, pyra-zine-2,5-diyl, pyridazine-3,6-diyl, pyridine-2,5-diyl, pyrimidine-2,5-diyl, or (1,3,4)-thiadiazole-2,5-diyl;
M^{1} and M^{2} are identical or different $\mathrm{CO}-\mathrm{O}, \mathrm{O}-\mathrm{CO}, 5$ $\mathrm{CO}-\mathrm{S}, \quad \mathrm{S}-\mathrm{CO}, \quad \mathrm{CH}_{2}-\mathrm{O}, \quad \mathrm{O}-\mathrm{CH}_{2}, \quad \mathrm{C}=\mathrm{C}$, $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ or a single bond;
G is a straight-chain or branched alkylene having 1 to 16 carbon atoms or alkenylene having 2 to 16 carbon atoms in which it is also possible for one or two non- 10 adjacent $-\mathrm{CH}_{2}-$ groups to be replaced by $-\mathrm{O}-$, $-\mathrm{SO}-\mathrm{S}-\mathrm{O}-\mathrm{CO},-\mathrm{CO}-\mathrm{O}-,-\mathrm{S}-\mathrm{CO}-$ or - $\mathrm{CO}-\mathrm{S}-$;
$\mathbf{R}^{2}, \mathbf{R}^{3}$ and \mathbf{R}^{4} are H or straight-chain or branched alkyl having 1 to 16 carbon atoms or alkenyl having 2 to 16 carbon atoms in which it is also possible for one $-\mathrm{CH}_{2}-$ group to be replaced by -O-, $-\mathrm{CO}-\mathrm{O}$ - or $-\mathrm{O}-\mathrm{CO}$-;
k and m are zero or 1 ; and
$\mathrm{j}, 1$ and n are zero, 1 or 2.
In some instances it is preferred that: a) $\mathrm{j}+\mathrm{l}+\mathrm{n}=2$ or 3 ; and/or b) one of the groups A^{1}, A^{2} and A^{3} is not 1,4-phenylene or trans-1,4-cyclohexylene; and/or c), in the case where $R^{2}=H, R^{3}$ and R^{4} need not simultaneously be CH_{3} and G need not be $\mathrm{CO}-\mathrm{O}-\mathrm{CH}_{2}$, $\mathrm{O}-\mathrm{CO}$ or OCH_{2}, more preferably R^{3} and R^{4} are not simultaneously CH_{3}.

DETAILED DESCRIPTION

Preferred compounds of this type are those in which, 30 in the general formula (I), the $\left(-\mathrm{A}^{1}\right)_{k}\left(-\mathrm{M}^{1}\right)_{k}\left(-\mathrm{A}^{2}\right)$ -$x\left(-\mathrm{M}^{2}\right)_{m}\left(-\mathrm{A}^{3}\right)_{n}-$ group denotes:

60

65

In addition, particularly preferred compounds are those in which, in the general formula (I), the group $\mathbf{R}^{1}\left(-\mathbf{A}^{1}\right)_{j}\left(-\mathbf{M}^{1}\right)_{k}\left(-\mathbf{A}^{2}\right)_{1}\left(-\mathbf{M}^{2}\right)_{m}\left(-\mathbf{A}^{3}\right)_{n}$ is:

5

10

15

30

35

40

45

50

55

60

continued

Particularly preferred compounds of the general formula (I) are also those in which $\mathbf{A}^{1}, \mathbf{A}^{2}$ and \mathbf{A}^{3} are identical or different, unsubstituted 1,4 -phenylene, mono- or di-fluoro-substituted, 1,4-phenylene, 1,4-cyclohexylene, pyridine-2,5-diyl or pyrimidine-2,5-diyl.

The novel cyclopropylalkyl or -alkenyl compounds are chemically, photochemically and thermally stable and have good mixture compatibility. Compared with the corresponding n-alkyl homologs, these compounds frequently have a lower melting point; in mixtures such as LC mixtures frequently result in lower melting points; and, a lower value for the optical anisotropy $\Delta \mathrm{n}$.

A further solution of the said object is a liquid-crystal mixture containing at least one liquid-crystalline compound and containing, as the liquid-crystalline compound, at least one compound of the general formula (I).

The liquid-crystal mixtures comprise 2 to 20, preferably 2 to 15 , components, including at least one of the nyls, pyrimidines, cinnamic acid esters, cholesterol esters and various bridged, polynuclear p-alkylbenzoic acid esters with terminal polar groups. In general, com0 mercially available liquid-crystal mixtures exist, even before addition of the compound(s) according to the invention, as mixtures of a very wide variety of components of which at least one is mesogenic, i.e., exhibits a liquid crystal phase [=at least one enantiotropic (clear point $>$ melting point) or monotropic (clear poin$t<$ melting point) mesophase formation can be expected] as the compound, in derivatized form or mixed with certain cocomponents.
The liquid-crystal mixtures generally contain 0.01 to 70% by weight, in particular 0.05 to 50% by weight, of the compound(s) according to the invention.

The compounds according to the invention can be prepared by standard reactions known per se from mesogenic monofunctional reactive parent structures by linking with likewise monofunctional reactive cyclopropylalkyl compounds, where the synthesis of the two components may be regarded as known.
Thus, for example, mesogenic hydroxyl or mercapto compounds can be linked to cyclopropyl-alkanols in the presence of triphenylphosphine/azodicarboxylic acid diesters (Mitsunobu reaction, for example in J. Chem. Soc. Perkin Trans. 1975, 461). It is also possible to react the alkali metal salts or alkaline earth metal salts of these mesogenic hydroxyl or mercapto compounds, produced separately or intermediately, with halo-, toluene-sulfonyloxy- or methylsulfonyloxy-cyclopropylalkyl compounds (Williamson reaction, for example in Patai, The Chemistry of the Ether Linkage, Interscience Publishers, N.Y. 1967, pp. 446-468).

However, it is also possible to react mesogenic car5 boxylic acids with cyclopropylalkanols under condensation conditions (for example in March, Advanced Organic Chemistry, 2nd Ed., McGraw-Hill, Kogakuska Ltd., Tokyo 1977, pp. 363-365. This is also possible in the same way using mesogenic hydroxyl or mercapto compounds and cyclopropyl-alkanoic acids.

The cyclopropylalkyl compounds necessary for the linkage are prepared by standard methods; in this respect, reference is made to the abovementioned publications (US-A) by Henrick et al.

In addition, cyclopropyl compounds can be prepared by the Simmons-Smith reaction (see, for example, in March, Advanced Organic Chemistry, pp. 793-794) from the corresponding olefins.

The following non-limiting Examples are given by way of illustration only and are not to be considered a limitation of this invention.

EXAMPLES

In the Examples below, parts by weight have the same relationship to parts by volume as the kilogram to the liter.

EXAMPLE 1

5-Heptyloxy-2-[4-(9-cyclopropyl-nonyl)oxy-pheny1]pyrimidine

Phase sequence: $\mathrm{C} 41.3 \mathrm{~S}_{c} 51 \mathrm{~S}_{A} 57.6 \mathrm{~N} 60.2 \mathrm{In}| | 1.616$ $\mathrm{n} \perp 1.486 \Delta \mathrm{n}=0.13$ (at $45^{\circ} \mathrm{C} ., 589 \mathrm{~nm}$)
Measurement method: An important characteristic quantity for the quality of the contrast of a LC display

0.5 part by weight of 9 -cyclopropylnonanol and 0.95 part by weight of 4-(5-heptyloxypyrimidine-2-yl)phenol were added to a solution of 0.52 part by volume of diethyl azodicarboxylate and 0.85 part by weight of triphenylphosphine. After a reaction time of 24 hours, the solvent was removed by distillation and the residue was purified chromatographically $\left(\mathrm{SiO}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. After recrystallization from 2 -propanol, 0.52 part by weight of colorless crystals were obtained.
is the optical birefringence $\Delta n=n\|-n \perp . n\|$ and $n \perp$ are the refractive indices for light polarized parallel or perpendicular to the director n . Both refractive indices can be determined as a function of temperature and wavelength using an Abbé refractometer.

EXAMPLE 4
5-Octyloxy-2-[4-(9-cyclopropyl-nonyl)oxy-phenyl]pyrimidine

Phase sequence: $\mathrm{C} 56.4 \mathrm{~S}_{c} 71.3 \mathrm{~S}_{A} 83.4 \mathrm{~N} 85.1 \mathrm{I}$
The syntheses below were carried out in accordance with the procedure of Example 1, adjusting the quantities appropriately.

Phase sequence: $\mathrm{C} 69.2 \mathrm{~S}_{c} 75.8 \mathrm{~S}_{A} 90.2 \mathrm{I}$

EXAMPLE 5

5-Nonyl-2-[4-(9-cyclopropyl-nonyl) oxy-phenyl]pyrimidine

EXAMPLE 2
Phase sequence: $\mathrm{C} 52.8 \mathrm{~S}_{c} 56.8 \mathrm{~S}_{A} 67.2 \mathrm{I}$
5-Hexyl-2-[4-(9-cyclopropyl-nonyl)oxy-pheny1]pyrimidine

Phase sequence: C 44 N 53 I
EXAMPLE 3
5-Octyl-2 -
[4-(9-cyclopropyl-nonyl)oxy-phenyl]pyrimidine

EXAMPLE 6
5-Decyl-2-[4-(9-cyclopropyl-nonyl)oxy-phenyl]pyrimidine

EXAMPLE 9

5-Dodecyl-2-[4-(9-cyclopropyl-nonyl)oxy-phenyl]pyrimidine

Phase sequence: $\mathrm{C} 44 \mathrm{~S}_{c} 64.9 \mathrm{~S}_{A} 67.7 \mathrm{I}$
EXAMPLE 7
5-Undecyl-2-[4-(9-cyclopropyl-nonyl)oxy-phenyl]pyrimidine

Phase sequence: C $52 \mathrm{~S}_{c} 72.3 \mathrm{I}$
EXAMPLE 10
2 -Decylthio-5-
[4-(9-cyclopropyl-nonyl)oxy-phenyl]pyrimidine

Phase sequence: $\mathrm{C} 48 \mathrm{~S}_{\boldsymbol{c}} 70.2 \mathrm{~S}_{A} 71.8 \mathrm{I}$
EXAMPLE 8
5-Undecyloxy-2-[4-(9-cyclopropyl-nonyl)oxy-phenyl]pyrimidine
${ }^{45}$ Phase sequence: C 67.5 [$38 \mathrm{~S}_{2} 57 \mathrm{~S}_{\boldsymbol{c}} 65$] I
EXAMPLE 11
5-(9-Cyclopropyl-nonyl)oxy-2-(4-heptyloxy-phenyl)pyrimidine

EXAMPLE 12
5-(9-Cyclopropyl-nonyl)oxy-2-(4-octyloxy-phenyl)pyrimidine

Phase sequence: $\mathrm{C}\left[\begin{array}{lllll}38 & \mathrm{~S}_{\boldsymbol{c}} & 40 & \mathrm{~S}_{\boldsymbol{A}} & 44.3\end{array}\right] 48.5 \mathrm{I}$ $[\alpha]^{25} D=-2.0\left(\mathrm{c}=4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

EXAMPLE 15

Phase sequence: C 63.7 $\mathrm{S}_{c} 93.2$ I
5-Octyl-2-[4-(6-cyclopropyl-hexyl)oxy-phenyl]pyrimidine

EXAMPLE 13
5-Octyl-2-[4-<5-((3S)-2,2-dimethylcyclopropyl)-3me-thylpentyl>oxy-phenyl]pyrimidine

Phase sequence: $\mathrm{C} 39 \mathrm{~S}_{c} 46 \mathrm{~S}_{A} 50 \mathrm{~N} 59.5 \mathrm{I}$
EXAMPLE 16

Phase sequence: $\mathrm{C}\left[-21.5 \mathrm{~S}_{A} 16\right] 18.5$ I $[\alpha]{ }^{25}{ }_{D}:-5.2$ ($\mathrm{c}=5, \mathrm{CH}_{2} \mathrm{Cl}_{2}$)

5-Decyl-2-
[4-(6-cyclopropyl-hexyl)oxy-phenyl]pyrimidine

Measurement method: If a small amount of a chiral compound is added to a (non-chiral) solvent, the plane of linear-polarized light is rotated by the (characteristic) angle α; this angle is given as follows $[\alpha]^{T_{D}}(\mathrm{C}=\mathrm{x}, 45$ solv.), where the symbols have the following meaning:

Phase sequence: C $42 \mathrm{~S}_{c} 60 \mathrm{~S}_{A} 65 \mathrm{I}$
EXAMPLE 17
5-Heptyloxy-2-[4-(6-cyclopropyl-hexyl)oxy-phenyl]pyrimidine

$\mathrm{x}=$ concentration of the solution in g / l, solv. $=$ solvent, \quad Phase sequence: $\mathrm{C} 54 \mathrm{~S}_{c} 72 \mathrm{~S}_{\boldsymbol{A}} 78 \mathrm{~N} 88 \mathrm{I}$
$\mathrm{D}=589 \mathrm{~nm}$ (NaD line), $\mathrm{T}=$ temperature of the solution. 55 The angle of rotation is determined in a polarimeter at a path length of 10 cm .

EXAMPLE 14
(2S,3S)-4-[5-(9-cyclopropyl-nonyl)oxy-pyrimidine-2- 60 yl)-phenyl-2- chloro-3-methyl-pentanoate

15
5,407,599

EXAMPLE 18
5-Octyloxy-2-[4-(6-cyclopropyl-hexyl)oxy-phenyl]pyrimidine

Phase sequence: $\mathrm{C} 61 \mathrm{~S}_{c} 77 \mathrm{~S}_{A} 87 \mathrm{I}$
EXAMPLE 22
trans-2-<9-[4-(5-octyl-pyrimidin-2-yl)phenyloxy]no-

has an $\mathrm{S}_{c} / \mathrm{S}_{A}$ transition at 81 , an $\mathrm{S}_{A} / \mathrm{N}$ transition at 89
nyl>-cyclopropaneethylcarboxylate

and a clear point at $92^{\circ} \mathrm{C}$.
EXAMPLE 19
5-(6-Cyclopropyl-hexyl)oxy-2-(4-nonyloxy-phenyl)pyrimidine

20 Phase sequence: $\mathrm{C}\left[11 \mathrm{~S}_{c} 36 \mathrm{~S}_{A}\right] 38 \mathrm{I}$
EXAMPLE 23
5-Octyl-2-[4-(7-cyclopropyl-heptyl)oxy-phenyl]pyrimidine

Phase sequence: $\mathbf{C} 56.5 \mathrm{~S}_{\boldsymbol{c}} 79 \mathrm{~S}_{A} 85 \mathrm{~N} 89.5 \mathrm{I}$
EXAMPLE 20
5-(6-Cyclopropyl-hexyl)oxy-2-(4-undecyloxy-phenyl)pyrimidine

Phase sequence: C $33 \mathrm{~S}_{c} 45.5 \mathrm{~S}_{A} 54.6 \mathrm{~N} 58.4 \mathrm{I}$
40
5-(7-Cyclopropyl-heptyl)oxy-2-(4-nonyloxy-phenyl)pyrimidine

Phase sequence: $\mathrm{C} 57.5 \mathrm{~S}_{c} 76.5 \mathrm{~S}_{A} 86.7 \mathrm{~N} 87 \mathrm{I}$
Phase sequence: C $60 \mathrm{~S}_{c} 87.9 \mathrm{~S}_{A} 90.4 \mathrm{I}$
EXAMPLE 21
5-(6-Cyclopropyl-hexyl)oxy-2-(4-dodecyloxy-phenyl)- 60 pyrimidine

EXAMPLE 25

5-(7-Cyclopropyl-heptyl)oxy-2-(4-undecyloxy-phenyl)pyrimidine

18
Phase sequence: $\mathrm{C}\left[\begin{array}{lll}1 \mathrm{~S}_{3} & \left.42 \mathrm{~S}_{c} 55.5\right] & 61.6 \mathrm{~S}_{A} 62.2 \mathrm{I}\end{array}\right.$
EXAMPLE 29
5-Octyl-2-[4-(11-cyclopropyl-5-oxa-undecyl)oxy-

Phase sequence: C $53.4 \mathrm{~S}_{c} 87.6 \mathrm{~S}_{A} 90.5 \mathrm{I}$
phenyl]pyrimidine

EXAMPLE 26
5-(7-Cyclopropyl-heptyl)oxy-2-(4-dodecyloxy-phenyl)pyrimidine

Phase sequence: C [16 $\left.\mathrm{S}_{c} 25.6 \mathrm{~N} 31\right] 40.9$ I
EXAMPLE 30
5-(9-Cyclopropyl-nonyl)oxy-2-[4-(trans-4-pentyl-cyclo-

Phase sequence: $\mathbf{C} 67.4 \mathrm{~S}_{\boldsymbol{c}} 88.1 \mathrm{~S}_{\boldsymbol{A}} 90.5 \mathrm{I}$
hexyl)- carbonyloxy-phenyl]pyrimidine

EXAMPLE 27
5-Octyloxy-2-[4-(7-cyclopropyl-heptyl)oxy-phenyl]pyrimidine

Phase sequence: C [$76 \mathrm{~S}_{2} 84.3$] 86.5 $\mathrm{S}_{c} 129.2 \mathrm{~N} 179$ I
EXAMPLE 31
5-(6-Cyclopropyl-5-oxa-hexyl)oxy-2-(4-nonyloxy-

Phase sequence: $\mathrm{C} 60 \mathrm{~S}_{c} 78.2 \mathrm{~S}_{A} 90 \mathrm{~N} 90.2$ I
phenyl)pyrimidine

EXAMPLE 28
Phase sequence: $\mathrm{C}\left[58 \mathrm{~S}_{c} 58.4 \mathrm{~N} 72\right] 72.4 \mathrm{I}$
2-Octylthio-5-[4-(7-cyclopropyl-heptyl)oxy-phenyl]- 60 pyrimidine

19
EXAMPLE 32
5-Octyl-2-[4-(6-cyclopropyl-5-oxa-hexyl)oxy-phenyl]pyrimidine

20
Phase sequence: $C 40.3 \mathrm{~S}_{\boldsymbol{c}} 61 \mathrm{~S}_{A} 66.2 \mathrm{I}$
EXAMPLE 36
5-(7-Cyclopropyl-heptyl)oxy-2-(4-octyloxy-phenyl)-

Phase sequence: C [-4 S $\left.\mathrm{S}_{c} 22\right] 28.5 \mathrm{~N} 40.2$ I
pyrimidine

EXAMPLE 33
5-(9-Cyclopropyl-nonyl)oxy-2-(4-undecyloxy-phenyl)pyrimidine

Phase sequence: $C 56.5 \mathrm{~S}_{c} 89.1 \mathrm{~S}_{A} 91.6 \mathrm{I}$
EXAMPLE 37
5-Dodecyl-2-[4-(11-cyclopropyl-undecyl)oxy-phenyl]-

Phase sequence: C $55 \mathrm{~S}_{\boldsymbol{c}} 94.2$ I
pyrimidine

EXAMPLE 34
5-(9-Cyclopropyl-nonyl)oxy-2-(4-dodecyloxy-phenyl)pyrimidine

Phase sequence: C $72 \mathrm{~S}_{c} 95.3$ I
40
EXAMPLE 38
5-Decyl-2-[4-(11-cyclopropyl-undecyl)oxy-phenyl]-

Phase sequence: C $63 \mathrm{~S}_{\boldsymbol{c}} 94.2$ I
pyrimidine

EXAMPLE 35
Phase sequence: $C 51.7 \mathrm{~S}_{\boldsymbol{c}} 65.6 \mathrm{~S}_{\boldsymbol{A}} 67.3 \mathrm{I}$
5-Decyl-2-[4-(7-cyclopropyl-heptyl)oxy-phenyl]- 60 pyrimidine

EXAMPLE 39
5- (7-Cyclopropyl-heptyl) oxy-2-(4-hexyloxy-phenyl)pyrimidine

EXAMPLE 43
5-(8-Cyclopropyl-octyl)oxy-2-(4-dodecyloxy-phenyl)-

Phase sequence: $\mathbf{C} 51.8 \mathrm{~S}_{c} 86.5 \mathrm{~S}_{A} 89.6 \mathrm{~N} 89.8 \mathrm{I} \quad$ pyrimidine

EXAMPLE 40
5-Octyl-2-[4(8-cyclopropyl-octyl)oxy-phenyl]pyrimidine

20 Phase sequence: C $54.9 S_{c} 92.3 S_{A} 93$ I
EXAMPLE 44
5-Octyloxy-2-[4-(8-cyclopropyl-octyl)oxy-phenyl]-

Phase sequence: C $35 \mathrm{~S}_{c} 51.5 \mathrm{~S}_{A} 55.5 \mathrm{~N} 61.2 \mathrm{I}$ pyrimidine

EXAMPLE 41
5-
(8-Cyclopropyl-octyl)oxy-2-(4-nonyloxyphenyl)pyrimidine

Phase sequence: C $51 \mathrm{~S}_{c} 79.2 \mathrm{~S}_{A} 91 \mathrm{~N} 91.6 \mathrm{I}$
40
EXAMPLE 45
2-Octylthio-5-[4-(8-cyclopropyl-octyl)oxy-phenyl]pyrimidine

Phase sequence: $\mathrm{C} 56.2 \mathrm{~S}_{c} 91.8 \mathrm{~S}_{A} 93 \mathrm{I}$
Phase sequence: C [42.2 $\left.S_{c} 59.5 S_{A} 62.5\right] 64.7$ I

EXAMPLE 42

5-(8-Cyclopropyl-octyl)oxy-2-(4-undecyloxy-phenyl)- 60 pyrimidine

23
5,407,599

EXAMPLE 46
5-(8-Cyclopropyl-octyl)oxy-2-(4-hexyloxy-phenyl)pyrimidine

24

Phase sequence: C [82 $\mathrm{S}_{c} 95.7$] 100 I

EXAMPLE 50

5-Decyl-2-[4-(8-cyclopropyl-octyl)oxy-phenyl]pyrimi-

Phase sequence: C $54.1 \mathrm{~S}_{c} 88.2 \mathrm{~S}_{A} 90.8 \mathrm{I}$
dine

EXAMPLE 47
5-(8-Cyclopropyl-octyl)oxy-2-(4-oxtyloxy-phenyl)pyrimidine

20 Phase sequence: $C 42.3 S_{c} 62.5 \mathrm{~S}_{A} 67.2 \mathrm{I}$
EXAMPLE 51
5-Octyloxy-2-[4-(cyclopropylmethyl)oxy-phenyl]-

Phase sequence: $\mathrm{C} 56.4 \mathrm{~S}_{c} 91.7 \mathrm{~S}_{A} 92.9 \mathrm{I}$
pyrimidine

EXAMPLE 48
5-(11-Cyclopropyl-undecyl)oxy-2-(4-dodecyloxyphenyl)pyrimidine

40
Phase sequence: $\mathrm{C} 59 \mathrm{~S}_{c} 62.8 \mathrm{~S}_{A} 72.9 \mathrm{~N} 73.6 \mathrm{I}$

EXAMPLE 52

2-(9-Cyclopropyl-nonyl)oxy-5-[4-(9-cyclopropyl-

Phase sequence: 54.6 $\mathrm{S}_{c} 73.8$ I
nonyl-oxy)phenyllpyrimidine

EXAMPLE 49
Phase sequence: $\mathbf{C}\left[79.3 \mathbf{S}_{c} 79.5\right] 89.4$ I
3-(9-Cyclopropyl-nonyl)oxy-6-(4-octyloxy-phenyl)- 60 pyridazine

EXAMPLE 53
2-(9-Cyclopropyl-nonyl)oxy-5-(4-decyloxyphenyl)pyrimidine

EXAMPLE 57

(R)-4-[2-(9-Cyclopropyl-nonyl)oxy-pyrimidin-5-yl]phenyl 2,2-dimethyl-1,3-dioxolane-4-carboxylate

Phase sequence: $C\left[70 \mathrm{~S}_{3} 70.55 \mathrm{~S}_{c} 84 \mathrm{~S}_{A} 87.6\right] 88 \mathrm{I}$
EXAMPLE 54
4-(2-Octylthiopyrimidin-5-yl)phenyl trans-2-hexyl-cyclopropanecarboxylate

Phase sequence: C 84 I $[\alpha]^{20_{D}}:+5.46\left(\mathrm{C}=2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
20

EXAMPLE 58
(2S, 3S)-4-[2-(9-Cyclopropyl-nonyl) oxy-pyrimidin-5-yl]-phenyl

Phase sequence: C 40.5 I
2-chloro-3-methyl-pentanoate

EXAMPLE 55
5-(8-Cyclopropyl-octyl)oxy-2-(4-decyloxy-phenyl)pyrimidine

Phase sequence: $\mathrm{C} 81 \mathrm{I}[\alpha]^{20} D_{D}:+1.2\left(\mathrm{C}=2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
40
5-Octyl-2-[4-(4-cyclopropyl-butyl)oxy-phenyl]pyrimi-

Phase sequence: $\mathrm{C} 58.5 \mathrm{~S}_{c} 91.6 \mathrm{~S}_{A} 92 \mathrm{I}$
dine

EXAMPLE 56
5-(8-Cyclopropyl-octyl)oxy-2-[4-butyloxy-phenyl]pyrimidine

Phase sequence: C [$\left.16 \mathrm{~S}_{c} 37 \mathrm{~S}_{A} 43.6\right] 45 \mathrm{~N} 56 \mathrm{I}$

Phase sequence: C $55.4 \mathrm{~S}_{\boldsymbol{c}} 81 \mathrm{~S}_{A} 87.8 \mathrm{I}$

EXAMPLE 60
5-Decyl-2-[4-cyclopropyl-butyl)oxy-phenyl]pyrimidine

28
Phase sequence: C $48 \mathrm{~S}_{\mathrm{c}} 53 \mathrm{~S}_{A} 62$ I
EXAMPLE 64
5-(5-Cyclopropyl-pentyl)oxy-2-(4-hexyloxy-phenyl)-

Phase sequence: C [47 $\left.\mathrm{S}_{c} 48\right] 64 \mathrm{~N} 88$ I
pyrimidine

20 Phase sequence: C $53 \mathrm{~S}_{c} 73 \mathrm{~S}_{A} 75 \mathrm{~N} 86 \mathrm{I}$
EXAMPLE 65
5-(4-Cyclopropyl-butyl)oxy-2-(4-hexyloxy-phenyl)pyrimidine

5-(7-Cyclopropyl-heptyl)oxy-2-(4-decyloxy-phenyl)-

Phase sequence: C [47 S $\left.\mathrm{S}_{c} 48\right] 64 \mathrm{~N} 88 \mathrm{I}$
pyrimidine

EXAMPLE 62
Phase sequence: $\mathrm{C} 55.7 \mathrm{~S}_{c} 90 \mathrm{~S}_{A} 92.5 \mathrm{I}$
5-Octyl-2-[4-(5-cyclopropyl-pentyl)oxy-phenyl]pyrimi- ${ }^{40}$
40 dine

EXAMPLE 66

4-(5-Octyl-pyrimidin-2-yl)phenyl

Phase sequence: $\mathrm{C}\left[18 \mathrm{~S}_{c} 34\right] 38 \mathrm{~S}_{A} 51 \mathrm{~N} 54 \mathrm{I}$
trans-2-hexyl-cyclo-propylcarboxylate

EXAMPLE 63
Phase sequence: C 44 I
5-Decyl-2-[4-(5-cyclopropyl-pentyl)oxy-phenyl]- 60 pyrimidine

30
Phase sequence: C $42 S_{c} 45 S_{A} 47 \mathrm{~N} 64 \mathrm{I}$
EXAMPLE 71
5-(5-Cyclopropyl-pentyloxy)-2-[4-(5-oxa-nonyloxy)-

Phase sequence: $\mathrm{C} 75 \mathrm{I}[\alpha]^{20} \mathrm{D}:-9.6\left(\mathrm{C}=2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \quad$ phenyl]pyrimidine

EXAMPLE 68
4-[2-(9-Cyclopropylnonyloxy)-pyrimidin-5-yl]pheny1 (2S)-2-fluoro-3-methyl-butanoate

20 Phase sequence: $X 39 S_{c} 63 S_{A} 65 \mathrm{~N} 67 \mathrm{I}$
EXAMPLE 72
5-(6-Cyclopropyl-hexyloxy)-2-[4-(5-oxa-nonyloxy)-

Phase sequence: X[63 $\left.\mathrm{S}_{A} 64\right] 78 \mathrm{I}[\alpha]^{20}{ }_{D}:-1.0(\mathrm{C}=2$,
phenyllpyrimidine

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
EXAMPLE 69
2-(4-Hexyloxy-phenyl)-5-[4-(6-cyclopropyl-hexyloxy)phenyl]pyrimidine

Phase sequence: $\mathrm{X} 46 \mathrm{~S}_{\mathrm{c}} 66 \mathrm{~S}_{A} 67 \mathrm{~N} 69 \mathrm{I}$
EXAMPLE 73
40
5-(7-Cyclopropyl-heptyloxy)-2-[4-(5-oxa-nonyloxy)phenyllpyrimidine

Phase sequence: $\mathrm{X}\left[77 \mathrm{~S}_{4} 103\right] 110 \mathrm{~S}_{3} 129 \mathrm{~S}_{c} 189 \mathrm{~S}_{A} 198 \mathrm{I} \quad$ Phase sequence: $\mathrm{C} 43 \mathrm{~S}_{c} 73$ I
EXAMPLE 70
5-(4-Cyclopropyl-butyloxy)-2-[4-(5-oxa-nonyloxy)-
phenyllpyrimidine

EXAMPLE 74
5-Cyclopropylmethyloxy-2-(4-octyloxyphenyl)pyrimidine

Phase sequence: $\mathrm{C} 56 \mathrm{~S}_{c} 78 \mathrm{~S}_{A} 84 \mathrm{~N} 89$ I
EXAMPLE 78
2-[4-(7-Cyclopropyl-heptyloxy)phenyl]-5-octyl-pyri-

Phase sequence: C 63 N 64 I dine

EXAMPLE 75
5-Octyl-2-[4-(6-cyclopropyl-hexyloxy)phenyl]pyrimidine

20 Phase sequence: C $49 \mathrm{~S}_{2} 63 \mathrm{~S}_{c} 72$ I
EXAMPLE 79
2-[4-(11-Cyclopropyl-undecyloxy)phenyl]-5-octyl-pyri-

Phase sequence: C $37 \mathrm{~S}_{c} 46 \mathrm{~S}_{A} 50 \mathrm{~N} 59 \mathrm{I}$
dine

EXAMPLE 76
5-Octyloxy-2-[4-(6-cyclopropyl-hexyloxy)phenyl]pyrimidine

Phase sequence: C $57 \mathrm{~S}_{2} 63 \mathrm{~S}_{\boldsymbol{c}} 72$ I
EXAMPLE 80
2-(trans-4-Pentyl-cyclohexyl)-5-[4-(11-cyclopropyl-

Phase sequence: C $56 \mathrm{~S}_{c} 80 \mathrm{~S}_{A} 88 \mathrm{~N} 91 \mathrm{I}$
undecyloxy)phenyl]-1,3,4-thiadiazole

EXAMPLE 77
Phase sequence: C $111 \mathrm{~S}_{\boldsymbol{c}} 113 \mathrm{~S}_{A} 156 \mathrm{~N} 157 \mathrm{I}$
5-(6-Cyclopropyl-hexyloxy)-2-(4-octyloxyphenyl)- 60 pyrimidine

EXAMPLE 81
4-(5-Octyl-pyrimidin-2-yl)phenyl
7-cyclopropyl-heptanoate

EXAMPLE 89
A mixture comprising $57 \mathrm{~mol} \%$ of the compound of Example 43 and $43 \mathrm{~mol}-\%$ of the compound of Example

Phase sequence: C [$\left.36 S_{c} 40.5 S_{A} 44 \mathrm{~N} 46\right] 51$ I
EXAMPLE 82
4-(5-Decyl-pyrimidin-2-yl)phenyl 7-cyclopropyl-heptanoate

65 exhibited the phase sequence $C 36 S_{c} 90 S_{A} 92$ I.
EXAMPLE 90
15 A mixture comprising $60 \mathrm{~mol} \%$ of the compound of Example 27 and $40 \mathrm{~mol}-\%$ of the compound of Example

Phase sequence: C $48 \mathrm{~S}_{c} 57$ I
EXAMPLE 83
4-(5-Octyloxy-pyrimidin-2-yl)phenyl
7-cyclopropyl-heptanoate

47 exhibited the phase sequence $C 33 \mathrm{~S}_{c} 85 \mathrm{~S}_{A} 91$ I.
EXAMPLE 91
A mixture comprising $45 \mathrm{~mol}-\%$ of the compound of Example 24 and $55 \mathrm{~mol} \%$ of the compound of Example

I.

Phase sequence: $\mathrm{C} 62 \mathrm{~S}_{c} 77 \mathrm{~S}_{A} 84 \mathrm{~N} 84.3$ I
EXAMPLE 84
A mixture comprising $55 \mathrm{~mol}-\%$ of the compound of Example 6 and $45 \mathrm{~mol}-\%$ of the compound of Example 3 exhibited the phase sequence $C 31 S_{c} 58 S_{A} 64$ I.

EXAMPLE 85

A mixture comprising $67 \mathrm{~mol}-\%$ of the compound of Example 6 and $33 \mathrm{~mol}-\%$ of the compound of Example 11 exhibited the phase sequence C $35 \mathrm{~S}_{c} 74 \mathrm{~S}_{A} 78 \mathrm{I}$.

EXAMPLE 86

A mixture comprising $20 \mathrm{~mol} \%$ of the compound of Example $6,25.15 \mathrm{~mol}-\%$ of (the mixture components, each of which is known) 5-octyloxy-2-(4-decyloxy-phenyl)-pyrimidine, 11 mol-\% of 4-octyloxy-2-(4-octyloxy-phenyl)pyrimidine, $20 \mathrm{~mol} \%$ of 5-octyloxy-2-(4-hexyloxy-phenyl)pyrimidine and $23.85 \mathrm{~mol}-\%$ of 5-octyloxy-2-(4-butyloxy-phenyl)pyrimidine exhibited the phase sequence $\mathrm{C} 11.5 \mathrm{~S}_{c} 72 \mathrm{~S}_{A} 88 \mathrm{~N} 90 \mathrm{I}$.

EXAMPLE 87

A mixture comprising $60 \mathrm{~mol} \%$ of the compound of Example 56 and $40 \mathrm{~mol}-\%$ of the compound of Example 55 exhibited the phase sequence $\mathrm{C} 34 \mathrm{~S}_{c} 82 \mathrm{~S}_{A} 90 \mathrm{I}$.

EXAMPLE 88
A mixture comprising $62 \mathrm{~mol} \%$ of the compound of Example 43 and 38 mol \% of the compound of Example 37 exhibited the phase sequence $C 48 \mathrm{~S}_{c} 93 \mathrm{I}$.

EXAMPLE 92

40 A mixture comprising $30 \mathrm{~mol} \%$ of the compound of Example 65 and $70 \mathrm{~mol}-\%$ of the compound of Example 71 exhibited the phase sequence $\mathrm{C} 25 \mathrm{~S}_{c} 70 \mathrm{~S}_{A} 73 \mathrm{~N} 75$ I.

EXAMPLE 93

A mixture comprising $40 \mathrm{~mol} \%$ of the compound of Example 76 and $60 \mathrm{~mol}-\%$ of the compound of Example 56 exhibited the phase sequence $C 35 \mathrm{~S}_{c} 81 \mathrm{~S}_{A} 90 \mathrm{I}$.

EXAMPLE 94

A mixture comprising $65 \mathrm{~mol} \%$ of the compound of Example 71 and $35 \mathrm{~mol}-\%$ of the compound of Example 56 exhibited the phase sequence $C 17 S_{c} 69 S_{A} 73 \mathrm{~N} 74$ I.

Compared with a comparison mixture (binary mixture containing compounds of comparable chain lengths without a cyclopropyl radical) comprising $40 \mathrm{~mol}-\%$ of 5-octyloxy-2-(4- octyloxy-phenyl)pyrimidine and 60 mol-\% of 5-octyloxy-2-(4- hexyloxy-phenyl)pyrimidine 60 which had the phase sequence C $39 \mathrm{~S}_{c} 90 \mathrm{~S}_{A} 98 \mathrm{~N} 100 \mathrm{I}$, Examples 93 and 94 had both a lower melting point and a greater melting point depression.

EXAMPLE 95

65 A mixture comprising 50 mol-\% of 5-dodecyloxy-2(4octyloxyphenyl)pyrimidine and $50 \mathrm{~mol}-\%$ of the compound of Example 24 had the phase sequence $\mathrm{C} 33 \mathrm{~S}_{c} 96$ I. Compared with the comparison mixtures (binary
mixtures of comparable chain lengths without a cyclopropyl radical) comprising 39 mol \% of 5 -decyloxy-2-(4-octyloxy-phenyl)pyrimidine and $61 \mathrm{~mol} \%$ of 5-octyloxy-2-(4-decyloxyphenyl)pyrimidine which had the phase sequence C $39 \mathrm{~S}_{c} 94 \mathrm{~S}_{A} 100 \mathrm{I}$ or comprising 60 mol-\% of 5-octyloxy-2-(4-decyloxyphenyl)pyrimidine and 40 mol - \% of 5-octyloxy-2-(4-dodecyloxyphenyl)pyrimidine which had the phase sequence $C 40 S_{c} 86 S_{A}$ 97 I , the mixture according to the invention has both a lower melting point and a greater melting point depression.

EXAMPLE 96

A mixture comprising:
30 mol-\% of 5-octyloxy-2-(4-ethyloxy-phenyl)pyrimidine 6 mol -\% of 5-dodecyloxy-2-(4-butyloxyphenyl)pyrimidine 15 mol \% of the compound of Example $2419 \mathrm{~mol}-\%$ of the compound of Example 7120 $\mathrm{mol}-\%$ of the compound of Example $5610 \mathrm{~mol}-\%$ of the compound of Example 43 had the phase sequence C 8 $S_{c} 68 S_{A} 85 \mathrm{~N} 87$.

EXAMPLE 97

A ferroelectric multicomponent mixture containing $10 \mathrm{~mol}-\%$ of the compound of Example 62 in ${ }^{(R)}$ Felix 001^{*}) had the phase sequence $\mathrm{C}-5 \mathrm{~S}_{c} 72 \mathrm{~S}_{A}{ }^{*} 78 \mathrm{~N}^{*} 93$ I.
*) (C. Escher, H. R. Dübal, W. Hemmerling, I. Müller, D. Ohlendorf and R. Wingen, presented at "1st International Symposium on Ferroelectric Liquid Crystals, Arcachon, BOrdeaux-France, Sep. 21-23, 1987", commercially available mixture from Hoechst Aktiengesellschaft having the phase sequence C-7 $\mathrm{S}_{c} * 79 \mathrm{~S}_{A}{ }^{*}$ 83 N* 99 I)

The mixture can readily be oriented by conventional methods and is bistable. At $25^{\circ} \mathrm{C}$., the mixture exhibited a spontaneous polarization of $-5.8 \mathrm{nC} / \mathrm{cm}^{2}$ and had the following switching times:
$\tau 0-90=212 \mu \mathrm{~s}$
$\tau 10-90=90 \mu \mathrm{~s}$
The viscosity of the mixture was 65 mPas and the double effective tilt angle was 18°.

EXAMPLE 98

A ferroelectric mixture comprising:
$85.5 \mathrm{~mol} \%$ of the mixture from Example 96, 9.5 mol-\% of 4-(5-decyl-pyrimidin-2-yl)phenyl trans-4-pen-tyl-cyclohexanecarboxylate and $5 \mathrm{~mol}-\%$ of 4-[2-((S)-7-methyl-nonyloxy)pyrimidin-5-yl]-phenyl (2S, 3S)-2-chloro-3-methyl-pentanoate had the phase sequence C 550 $\mathrm{S}_{c^{*}} 72 \mathrm{~S}_{A^{*}} 83 \mathrm{~N}^{*} 88 \mathrm{I}$.

The mixture can readily be oriented by conventional methods and is bistable. At $25^{\circ} \mathrm{C}$., the mixture exhibited a spontaneous polarization of $-8.2 \mathrm{nC} / \mathrm{cm}^{2}$ and had the following switching times:
$\tau 0-90=139 \mu \mathrm{~s}$
$\tau 10-90=66 \mu \mathrm{~s}$
The viscosity of the mixture was 280 mPas and the double effective tilt angle was 17°.

EXAMPLE 100

4-(5-octyloxypyrimidin-2-yl)phenyl
4-(6-cyclopropylhexyloxy)-2,3-difluorobenzoate

EXAMPLE 101

38

2-(4-octyloxyphenyl)pyrimidin-5-yl
4-(6-cyclopropyl-hexyloxy)-2,3-difluorobenzoate

EXAMPLE 104

EXAMPLE 102

4-(2-octyloxypyrimidin-5-yl)phenyl
4-(6-cyclopropyl-hexyloxy)-2,3-difluorobenzoate

Phases:

EXAMPLE 106

55

EXAMPLE 103

(4-octyloxy)phenyl
4-(6-cyclopropylhexyloxy)-2,3-difluorobenzoate

40

4-(5-octyloxypyrimidin-2-yl)phenyl
4-(6-cyclopropyl-hexyloxy)-2,3-difluorobenzoate

Comparison example

EXAMPLE 109

(4-octyloxy)phenyl 4-octyloxy-2,3-difluorobenzoate

4-(5-octyloxyphenyl)pyrimidin-5-yl 4-(8-cyclopropyl-octyloxy)-2,3-difluorobenzoate

EXAMPLE 110

4-(5-dodecylpyrimidin-2-yl)phenyl 4-(8-cyclopropyl-octyloxy)-2,3-difluorobenzoate

EXAMPLE 107

Comparison of the substance from Example 106 according to the invention with the compound mentioned shows that the compound according to the invention had a lower melting point.

Replacement of the ethyl group by a cyclopropyl group reduced the melting point by about 1 degree.

Phases: X

EXAMPLE 111

4-(2-octyloxypyrimidin-5-yl)phenyl
4-(8-cyclopropyl-octyloxy)-2,3-difluorobenzoate

4-(5-octylpyrimidin-2-yl)phenyl
4-(6-cyclopropyl-hexyloxy)-2,3-difluorobenzoate

55

$$
\text { Phases: } \mathrm{X} \underset{75^{\circ}}{\stackrel{83.9^{\circ}}{\gtrless}} \mathrm{s}_{\mathrm{c}} \stackrel{146.4^{\circ}}{\underset{146.2^{\circ}}{\longrightarrow}} \mathrm{N} \stackrel{164.2^{\circ}}{\underset{164^{\circ}}{\gtrless}} \mathrm{I}
$$

EXAMPLE 112

EXAMPLE 108

4-(2-octylthiopyrimidin-5-yl)phenyl
4-(8-cyclopropyl-octyloxy)-2,3-difluorobenzoate

EXAMPLE 113

10 (4-decyloxy)phenyl 4-octyloxy-2,3-difluorobenzoate

15
The compound from Example 113 according to the invention had a melting point which was lower by about 5 degrees than that of the comparison compound. Replacement of an ethyl group by a cyclopropyl group
20 resulted in this lowering of the melting point which is favorable for practical applications.

EXAMPLE 114

4-(4-octyloxybenzoyloxy)phenyl 4-(8-cyclopropyloctyloxy)-2,3-difluorobenzoate
(4-octyloxy)phenyl
4-(8-cyclopropyloctyloxy)-2,3-difluorobenzoate

35

40

50

4-(5-octyloxypyrimidin-2-yl)phenyl
4-(4-cyclopropyl-butyloxy)-2,3-difluorobenzoate

EXAMPLE 116

4-(5-octyloxypyrimidin-2-yl)phenyl
4-(4-cyclopropyl-butyloxy)-2,3-difluorobenzoate

4- (2-octyloxypyrimidin-5-yl)phenyl 4-(4-cyclopropyl-butyloxy)-2,3-difluorobenzoate

EXAMPLE 117

4-(5-dodecylpyrimidin-2-yl)phenyl
4-(4-cyclopropyl-butyloxy)-2,3-difluorobenzoate

EXAMPLE 118
15

20 25

30

EXAMPLE 120
 4-(2-octylthiopyrimidin-5-yl)phenyl
4-(4-cyclopropyl-butyloxy)-2,3-difluorobenzoate

X_{1}

EXAMPLE 121

2- (4-octyloxyphenyl)pyrimidin-5-yl 4-(4-cyclopropyl-butyloxy)-2,3-difluorobenzoate

Phases: X

EXAMPLE 119

EXAMPLE 122

4-(5-octylpyrimidin-2-yl)phenyl
4-(8-cyclopropyl-octyloxy)-2,3-difluorobenzoate

EXAMPLE 126

10
9-Cyclopropylnonyl 4-(4-octyloxybenzyloxy)benzoate

EXAMPLE 123

4-(5-octyloxypyrimidin-2-yl)phenyl
4-(8-cyclopropyl-octyloxy)-2,3-difluorobenzoate

EXAMPLE 124

Phases:

S_{1}

EXAMPLE 127

25
7-Cyclopropylheptyloxy

2-(4-octyloxyphenyl)pyrimidin-5-yl
4-(8-cyclopropyl-octyloxy)-2,3-difluiorobenzoate

EXAMPLE 125

9-cyclopropylnonyl 4-(4-octyloxybenzoyloxy)phenyl
ether

Phases: $\mathrm{X}<48^{\circ} \mathrm{S}_{c} \xrightarrow[69.8^{\circ}]{\underset{~ 70^{\circ}}{<}} \mathrm{N} \xrightarrow[80.5^{\circ}]{80.7^{\circ}} \mathrm{I}$

40

45

EXAMPLE 128

50

4,4'-Bis(7-cyclopropylheptyloxy)-1,1'-biphenyl

Phases: $\mathrm{X} \xrightarrow[143.9^{\circ}]{\stackrel{148.5^{\circ}}{<}}$ I

EXAMPLE 129

trans-4-(cyclopropylmethyl)oxycyclohexyl-trans-4 propyl-cyclohexane

Extrapolated clear point $\sim 5^{\circ} \mathrm{C}$.
EXAMPLE 130

trans-4-(4-cyclopropylbutyl)oxycyclohexyl-trans-4-propyl-cyclohexane

$$
\text { Phases: } \mathrm{X} \underset{30.4^{\circ}}{\stackrel{45.4^{\circ}}{<}} \mathrm{S}_{x} \xrightarrow[55.3^{\circ}>]{\leftarrow}
$$

Extrapolated clear point $\sim 5^{\circ} \mathrm{C}$.

EXAMPLE 131

5-Cyclooropylmethyloxy-2-(4-trifluoromethoxyphenyl)pyrimidine

$$
\text { Phases: } \mathrm{X} \xrightarrow[89.9^{\circ}]{\stackrel{97.2^{\circ}}{>} \mathrm{I}}
$$

The clear point extrapolated from a mixture is $5^{\circ} \mathrm{C}$.
EXAMPLE 132

5-(4-Cyclopropylbutyl)oxy-2-(4-trifluoromethoxyphenyl)pyrimidine

$$
\text { Phases: } \mathrm{X} \xrightarrow[68.3^{\circ}]{\underset{\frac{71.1^{\circ}}{>}}{>}}
$$

The clear point extrapolated from a mixtures is $25^{\circ} \mathrm{C}$.

EXAMPLE 133

A binary mixture comprising:
$65 \mathrm{~mol}-\%$ of (4-hexyloxy)phenyl 4-octyloxybenzoate 65 and $35 \mathrm{~mol}-\%$ of (4-octyloxy)phenyl 4-(8-cyclo-propyloctyloxy)-2,3-difluorobenzoate (Example 113) exhibited the following phase sequence:

Phases: X 34 S $\mathrm{S}_{\boldsymbol{c}} 63 \mathrm{~N} 76$ I	
Comparison mixture:	
(4-Hexyloxy)phenyl 4-octyloxybenzoate	$65 \mathrm{~mol} \%$
(4-octyloxy)phenyl 4-decyloxy-2,3-	$35 \mathrm{~mol} \%$
difluorobenzoate	
Phases: X 37 S $\mathrm{S}_{\boldsymbol{c}} 69 \mathrm{~N} 81$ I	

Comparison of the mixture shows that the mixture according to the invention had a melting point which was lower than that of the comparison mixture. The cyclopropyl component is therefore particularly suitable for practical application.

Having thus described in detail preferred embodiments of the present invention, it is to be understood that the invention defined by the appended claims is not to be limited by particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope thereof.

What is claimed is:

1. A liquid-crystalline cyclopropylalkyl-heterocyclic compound of the formula (I)

in which
\mathbf{R}^{1} is straight-chain or branched (with or without an asymmetrical carbon atom) alkyl having 2 to 16 carbon atoms, it also being possible for one or two non-adjacent $-\mathrm{CH}_{2}$ - groups to be replaced by $-\mathrm{O}-,-\mathrm{S}-, \mathrm{CO}-\mathrm{O}-$ or $-\mathrm{O}-\mathrm{CO}-$, or R^{1} is one of the following radicals

$\mathrm{A}^{1}, \mathrm{~A}^{2}$ and A^{3} are identical or different 1,4-phenylene, trans-1,4-cyclohexylene, pyridazine-3,6-diyl, pyridine-2,5-diyl, pyrimidine-2,5-diyl or (1,3,4)-thiadiazole-2,5diyl,
M^{1} and M^{2} are identical or different $\mathrm{CO}-\mathrm{O}, \mathrm{O}-\mathrm{CO}$, $\mathrm{CH}_{2}-\mathrm{O}$ or $\mathrm{O}-\mathrm{CH}_{2}$,
G is straight-chain or branched alkylene having 1 to 16 carbon atoms, in which it is also possible for one or two non-adjacent $-\mathrm{CH}_{2}$ - groups to be replaced by - $\mathrm{O}-,-\mathrm{O}-\mathrm{CO}-$ or $-\mathrm{CO}-\mathrm{O}-$,
\mathbf{R}^{2} and R^{3} are H or straight-chain or branched alkyl having 1 to 16 carbon atoms and $j, k, 1, m$ and n are zero or 1 , with the following provisos: a) $j+1+n=2$ or 3 , and b) one of the groups A^{1}, A^{2} and \mathbf{A}^{3} is not 1,4 -phenylene or trans-1,4-cyclohexylene.
2. A liquid-crystalline cyclopropylalkyl-heterocyclic compound as claimed in claim 1, wherein, in the for-
mula (I), the $\left(-\mathbf{A}^{1}\right)_{k}\left(-\mathbf{M}^{1}\right)_{k}\left(-\mathbf{A}^{2}\right)\left(-\mathbf{M}^{2}\right)_{m}\left(-\mathbf{A}^{3}\right)_{n}-$ group is

3. A nematic liquid-crystalline mixture containing at least one cyclopropylalkyl heterocyclic compound of 50 the formula (I) as claimed in claim 1.
4. A nematic liquid-crystalline mixture containing at least one cyclopropylalkyl heterocyclic compound of the formula (I) as claimed in claim 2.
5. A smectic liquid-crystalline mixture containing at 55 least one cyclopropylalkyl heterocyclic compound of the formula (I) as claimed in claim 1.
6. A smectic liquid-crystalline mixture containing at least one cyclopropylalkyl heterocyclic compound of the formula (I) as claimed in claim 2.
7. An electro-optical component containing a liquidcrystalline mixture as claimed in claim 3.
8. An electro-optical component contining a liquidcrystalline mixture as claimed in claim 4.
9. An electro-optical component contining a liquid- 65 crystalline mixture as claimed in claim 5.
10. An electro-optical component contining a liquidcrystalline mixture as claimed in claim 6.

5
13. An embodiment as claimed in claim 12 wherein in the general formula (I), A^{1}, A^{2} and A^{3} have the following meaning:
$\mathrm{A}^{1}, \mathrm{~A}^{2}$ and A^{3} are identical or different mono-or difluoro-substituted 1,4-phenylene, unsubstituted difluoro-substituted 1,4-phenylene, unsubstituted diyl or pyrimidine-2,5-diyl.
14. A liquid-crystalline mixture containig at least one
cyclopropylalkyl compound of the general formula (I)
14. A liquid-crystalline mixture containig at least one
cyclopropylalkyl compound of the general formula (I) as claimed in claim 12.
15. An electrooptical component containing a liquidcrystaline mixture as claimed in claim 14.
16. A liquid-crystalline mixture as claimed in claim 15, wherein the liquid-crystalline mixture is nematic.
17. A liquid-crystalline mixture as claimed in claim 15, wherein the liquid-crystalline mixture is smectic.
18. A liquid-crystalline mixture as claimed in claim 15, wherein the liquid-crystalline mixture is chiral and smectic.
19. A liquid-crystalline mixture as claimed in claim 15, wherein the liquid-crystalline mixture is ferrolelectric.
in which
R^{1} is straight-chain or branched (with or without an asymmetric carbon atom) alkyl or alkenyl having 2 to 16 carbon atoms, it also being possible for one or two non-adjacent $-\mathrm{CH}_{2}$ - groups to be replaced by $-\mathrm{O}-,-\mathrm{S}-,-\mathrm{CO}-,-\mathrm{CO}-\mathrm{O}-,-\mathrm{O}-$ $\mathrm{CO}-$ or $-\mathrm{O}-\mathrm{CO}-\mathrm{O}-$ and it also being possible for H to be replaced by F , or is one of the following radicals

$\mathrm{CN}, \mathrm{OCF}_{3}, \mathrm{OCF}_{2} \mathrm{H}, \mathrm{F}$ or $\mathrm{CH}_{3} \mathrm{~A}^{1}, \mathrm{~A}^{2}$ and A^{3} are identical or different, unsubstituted or mono-or dihalo-substituted 1,4 -phenylene, unsubstituted or 1 - or $4-\mathrm{CN}$-substituted 1,4-cyclohexylene, pyridazine-3,6-diyl, pyri-dine-2,5-diyl, pyrimidine-2,5-diyl or (1,3,4,)-thiadiazole-2,5-diyl
M^{1} and M^{2} are identical or different $\mathrm{CO}-\mathrm{O}, \mathrm{O}-\mathrm{CO}$, $\mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}, \mathrm{C}=\mathrm{C}, \mathrm{CH}_{2}-\mathrm{CH}_{2}$ or a single bond
G is a straight-chain or branched alkylene having 1 to 16 carbon atoms in which it is also possible for one or two non-adjacent $-\mathrm{CH}_{2}$ - groups to be replaced by $-\mathrm{O}-,-\mathrm{O}-\mathrm{CO}-,-\mathrm{CO}-\mathrm{O}-$,
R^{2}, R^{3} and R^{4} are H or straight-chain or branched alkyl having 1 to 16 carbon atoms k and m are zero or 1 and $\mathrm{j}, 1$ and n are zero, 1 or 2 ; and $\mathrm{j}+1+\mathrm{n}$ is 2 or 3.
11. 5-(7-Cyclopropyl-heptyloxy)-2-pyrimidine.
12. A cyclopropylalkyl compound of the general formula (I)

