[54]	ELECTRO-OPTICAL SYSTEMS FOR CONTROL OF ROBOTS, MANIPULATOR ARMS AND COORDINATE MEASURING MACHINES	
[75]	Inventor:	Timothy R. Pryor, Tecumseh, Canada
[73]	Assignee:	Diffracto Ltd., Windsor, Canada
[21]	Appl. No.:	33,898
[22]	Filed:	Apr. 3, 1987

Related U.S. Application Data

[63] Continuation of Ser. No. 777,280, Sep. 18, 1985, abandoned, which is a continuation of Ser. No. 592,443, Mar. 22, 1984, Pat. No. 4,602,163, which is a continuation of Ser. No. 262,492, May 11, 1981, Pat. No. 4,453,085.
[51] Int. Cl. ${ }^{4}$ G01N 21/86
[52] U.S. Cl.

58] Field of Search \qquad 250/201, 202, 203, 561, - 250/548, 557; 356/399, 400, 401; 901/47

References Cited

U.S. PATENT DOCUMENTS

4,453,085 6/1984 Pryor 250/561 4,602,163 7/1986 Pryor 250/561

Primary Examiner—David C. Nelms Attorney, Agent, or Firm-Larson and Taylor

ABSTRACT

This application discloses systems for use in the accurate positioning of robot arms and and similar automation. It is adjunct or alternative to present methods utilizing digital coordinates transmitted from encoders based in the joints of the manipulator arms to provide control signals for motor actuators positioning said arms.

FIG. 1

FIG. $2 B$

. FIG. 3

FIG. 4

F/G. $7 b$

FIGS. $2 a$ and $2 b$ are schematic views of detectors

ELECTRO-OPTICAL SYSTEMS FOR CONTROL OF ROBOTS, MANIPULATOR ARMS AND COORDINATE MEASURING MACHINES

This application is a continuation of application Ser. No. 777,280 filed Sept. 18, 1985, now abandoned, which is a continuation of application Ser. No. 592,443 , filed Mar. 22, 1984, now U.S. Pat. No. 4,602,163, which is a continuation of application Ser. No. 262,492, filed May 11, 1981, now U.S. Pat. No. 4,453,085.

BACKGROUND OF THE INVENTION

A big problem in the implementation of robots and the like in manufacturing and particularly assembly has been their lack of precision in dimensional placement. Such lack of precision in their arm locations is not surprising considering that they must have multiple flexured joints each one of which has to move in precise manner and often with coordinate calculations corrected by computer in order to put the end of the arm at a given point in space. Such precisions have led to high prices for certain types of accurately positionable robots (still short of the mark in many cases), or conversely an inability to perform certain desired applications.
The problem is otherwise defined as the stack up of dimensional uncertainties due to encoder error and mechanical sag or deflection anywhere in the system. While such deflections can be statically compensated, the problem becomes enormous when varient parts of different weights are lifted and rapidly accelerated and de-accelerated.
All of these problems are obviated in large measure by the invention here disclosed.
The goal of the disclosed invention is increased accuracy of positioning as in assembly or parts transfer at decreased cost of the manipulator. Also universality to many different part groupings or manipulators is also attained since one optical guidance system can function on many different types of automation systems.
Disclosed herein are methods and apparatus to provide an accurate external reference coordinate system for the robot (or other machine) which the robot system can utilize rather than relying on mechanical axes. This then essentially allows mechanically bad robots to become accurately positionable. In the grid reference case, for example, it also projects onto the part a certain reference system on which a sensor on the robot can interact with as well. This then can be used to link up the relationships of the two to each other, namely the robot and the part.
Another goal of the invention is to provide means for correcting droop and deflection in robot or co-ordinate measuring machine axes to improve their accuracy at a given cost.

The disclosed invention basically concerns the projection of specialized grid networks, directed laser beams or other light beams in space to provide a coordinate network or homing type function for the robot arm.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic perspective view of an arm tracking device according to the present invention.
FIG. 2 is a perspective view of a grid projection device for monitoring the movement of an arm according to the present invention.
usable in the embodiment disclosed in FIG. 2.
FIG. 3 is a schematic plan view of grill lines which are usable with the present invention.
FIG. 4 is a schematic perspective view illustrating alternative projecting patterns of the present invention.

FIG. 5 is a schematic perspective view of still another projectable pattern according to the present invention.

FIG. 6 is a schematic perspective view of a spot tracking device according to the present invention, with FIG. $6 a$ illustrating a spot profile.

FIG. $6 b$ is a schematic plan view of an image scanner containing an encoded rotary mirror which can be used with the embodiment disclosed in FIG. 6.

FIG. $7 a$ is a schematic perspective view of a device for improving the accuracy of co-ordinate measuring systems according to the present invention.

FIG. $7 b$ is a schematic elevation view of the device depicted in FIG. 7a.

FIG. $7 c$ is a perspective elevation view of test points for the embodiment disclosed in FIG. $7 a$ which are light sources.

FIG. 8 is a schematic perspective view of a grid projecting system used as both a reference and to illuminate a part.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments to be described:
FIG. 1 illustrates a laser beam tracking embodiment utilizing two lasers in orthogonal planes each with two axis beam direction mirrors to direct beams at points in space where detectors on the robot 'hand' are, or are supposed to be. Dimensional data of actual hand location is taken off of laser beam direction encoders.
Optionally, position sensing detectors located on the robot hand or elsewhere (such as analog UDT SC-10 or matrix diode arrays) are used to generate position deviation signals of hand relative to beam position

It is noted that it is also within the realm of this invention to provide for sensing of a part in the above grid or laser beam envelope and compute the location of this sensed part relative to the robot hand.

FIG. 2 illustrates a grid projection embodiment employing a pattern, in this case a grid pattern projected into the robots work area from overhead or side. One version uses a simple, single, point detector or pair of detectors on the robot "hand". Optionally, the normal robot joint resolvers may be used to interpolate between grid lines.

The alternative version has photodiode array detector(s) on the "hand" to provide on-board interpolation between grid lines. Diffraction based or other variable projection can also be used to aid in the tracking or interpolation function.

FIG. 3 illustrates an embodiment wherein certain grill lines are coated to provide absolute reference point and a microcomputer is employed to track hand or arm position in the grid network.
FIG. 4 illustrates a further embodiment projecting other pattern forms.

FIG. 5 illustrates interchangeable pattern projections.
FIG. 6 illustrates a spot tracking embodiment utilizing at least one light source "zone" on the hand and one, two axes camera and a second one or two axes camera at 90° and to track the spot. Spot location sensed in the camera field of view gives $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ coordinates. A zoom
lens actuated by the predicted hand location maximizes sensitivity.

FIG. 7 illustrates an embodiment of the invention utilized for improving accuracy of coordinate measuring machines, cartesian robots and the like. Also shown in this application are multiple sensor based systems for use with this robot/CMM.
FIG. 8 is another embodiment of the invention using projected grid patterns.
By manner of reference, any or all of the following commonly owned applications may prove useful in practicing this invention:

1. Electro-optical sensor systems for thread and hole inspection: Ser. No. 64,867.
2. Method and apparatus electro-optically determin- 15 ing the dimension, attitude and location of objects: Ser. No. 34,278
3. Method and apparatus for determining physical characteristics of object and object surfaces: Ser. No. 15,792
4. New photodetector array based optical measurement systems: Ser. No. 163,290
5. Electro-optical inspection, Ser. No. 073,226
6. Co-ordinate measuring method and device, Ser No. 201,081
7. Electro-optical surface roughness measurement and control Ser. No. 240,459
8. Electro-optical sensors with fiber optic bundles, Ser. No. 173,370
9. Apparatus for determining dimensions, Ser. No. 30 134,465
10. High speed electro-optical inspection, Ser. No. 203,866
11. Fiber optic based robot controls, Ser. No. 200,401
12. Electro-optical sensors for machine tool and robotic inspection Ser. No. 247,399
Consider FIG. 1 showing a manipulator arm 1, with an optical sensor 2 at the end or after the last joint and an optical projector system 3, located above. In the optical projector system, in this particular case, there is an $x-y$ axis galvo drive system 4 capable of arc second resolution guiding the beam 5 from laser 6 to the given point in space over a solid angle γ. For the purpose of this example, let us consider an optional system 10 as shown, capable of collimating this light to provide a conversion from the angular to the cartesian axes. This is not necessarily required and it does add cost for such a lens particularly as the lens gets larger in diameter) but it makes the description herein simpler. The distance between the lens and robot ' h ', is typically much larger than shown in the diagram, for example 1 meter.
As can be seen, upon given commands to the $x-y$ galvos, which are encoded, the beam can be positioned everywhere in the $x-y$ plane. Let us say that the beam is positioned at the value of $x=3 \mathrm{~cm}, y=5 \mathrm{~cm}$ from the centerline of this optical system. One could simply direct the manipulator arm to go to the approximate value of that position, which it could do given its present positioning servos. However, as it got into the approximate area, the detector system 2, consisting of an $x-y$ analog spot position sensor such as a UDT SC10 and amplifiers 20 located remotely picks up the spot from the laser and converts it into signals which cause the robot microcomputer control 30 to home onto the centroid of the laser energy.
This homing function takes out the last little bit of positioning error of the robot and allows it to hit every time at the right location. The limitations of accuracy ander in this case, the beams are swept in angle and control microcomputer 35 is required to compute the desired trajectory of the beam, so to speak, in $x-y-z$ space or in robot polar co-ordinate space for any given angular input to the galvos.

FIG. 2 illustrates another version of the invention in which case a grid projection system 100 comprising light source 101, grid 102 and objective lens 103 is utilized to project a grid of lines 104 in space simultaneously. What is required then is a means to interpret the lines and to figure out where the robot arm 105 is in space from the characteristics of the grid network so created.

While additional sensing difficulties are encountered visavis FIG. 1, there is a big advantage in that the mechanical drive system is not present. In other words, there are no moving parts as in the galvanometer mirrors of the FIG. 1 unit. Those rotary mirrors with their accurate encoders, (which form the basis of accuracy of the system), can be quite expensive. The grid system, naturally, has no problem since it is an all-digital item, simply projected into space and can even be projected stroboscopically using a flashed light source. It does have a problem with grid line definition in space, however.

Let us consider now the case of using this system with the robot arm as above. In this case, the robot arm 105 may be positioned once again to the approximate location desired using its existing actuator and joint coordinate systems (although such positioning in this case is not actually required because using an enhanced version of the invention one can find ones way at all points in space).

However, let us consider the simplest case, that is 65 where the robot goes to a rough location (using its own central system) where the grid network characteristics in the location desired are known. For example, suppose it is desired that the robot is to go to a location which
happens to be halfway between two grid lines in space. These grid lines, for example, might be 1 mm apart at the point in question which means the sensing of the grid line spacing would have to be made to 1 part in 50 in order to get a 0.02 mm resolution of position-a desirable goal.

When the robot attempts to crudely position the hand to this location, let us say that it ends up two thirds of the way to one side of the line or the other (see FIG. 2a). In this case, a detector 120 comprised in this case by a photo detector array, for example a Reticon 256 C , simply reads out where it is in space relative to the grid lines near it and causes the hand to move accordingly until it is centered halfway between. The all digital photo diode array is a perfect sensor for this particular use although considerable digital circuitry such as 122 remotely connected via cable 121 is required to interpret the result.
Sensing is generally required in two axes and in this ase a square (matrix) photo diode array such as a GE TN2500 can be used to scan in 2 axes. As in FIG. 1, another projector and detector (eg. 130 and 131) may be used to give three dimensional location. In this case, only a vertically spaced grill projector is required rather than a grid.
FIG. $2 b$ illustrates the use of a single small detector 160 with narrow aperture (eg. $001^{\prime \prime}$ wide) 161 in place of the photo diode array 120. In this less expensive case, the grid is used simply to reference the robot at an exact position on a grid line 165 near the desired rest point ' p ' in question. This grid line is detected by the detector 160 as let's say the 102 nd line past the start point of the grid. The resolvers of the robot joints such as 105 then provide the high resolution (but often low accuracy) last step to reach ' p ' by moving in $x y$ from the grid line.
However, the resolver accuracy is diminished only from the grid line, not from the start point which would be the case if the robot resolvers were relied on for the whole motion.
The particular idea of utilizing a single detector in tracking through the grids of the pattern is quite appealing for simplicity. Indeed, if there were two projections orthogonally for three dimensional work, only two such simple detectors would be required. These could even be remoted by fiber optics such as 180 if desired, to a remote sensor unit 185. It is noted that all sensors utilized herein can be so remoted if desired, although it's obviously more difficult to remote a complete grid section or image than the simple fiber herein.
In order to make this simple system operate, it is 50 desirable to track the grids on the fly. One really doesn't want to stop on a grid for example. In this regard, one can utilize the microcomputer control system of the robot to keep receiving input grid data and plot the rate of motion of the robot as it crosses the grid lines. This can be very helpful simply in using the grid lines to control accelerations and velocities of the robot without relying on what might be relatively complicated polar coordinate resolvers.
In any case, one can predict the rate at which one will reach a point and therefore can begin deaccelerating and as the detector passes the last grid line before the point of stopping desired, the resolvers can be ready to take the data at a slower data rate. In other words, the robot can move through the grid lines much faster than the resolvers can actually feed data at very high resolutions but as the robot slows down through the grid line projection to its final resting place, the resolvers can
come into play to allow the interpolation between the grid lines.

Any programmed changes in direction of course are known to the robot control computer and can allow the incremental grid lines to be subtracted instead of added to the accumulated total indicative of position. If this information was also desired from the grid, a phase quadrature type grid detection having at least two detectors would be required.

While a constant spacing grid (in this case a uni-directional grille) of spacing ' S ' has been shown, it is desirable to have fiducial lines to lend a degree of absoluteness to the grid. This allows absolute tracking without losing counts as can be the case with the incremental grid. In other words, shown in FIG. 3, a grid in this case a grille 200 where every tenth line, let us say, such as 201, has a different character to it such as a group of closely spaced lines accumulating in binary code or the like. This allows one to form an absolute network in two axes (or in three case axis if two projectors are used). Any sort of reasonable coding scheme may be used.

It should be noted that other types of grids or patterns can be used besides just simply projections of orthogonal lines. For example, polar coordinate grids could be used with circular concentric rings. In addition, local grids can provide a very good analysis in the area desired. For example, if the robot is required to go first to location $x y$, obviously the rough positional capability of the robot can get it to a location $x y^{*}$ let us say within 0.5 mm in either axis. Thus the grid for that robot routine $\left({ }^{*}\right)$ would have a particularly good grid projection network in that particular area around xy . It wouldn't have to fill all of space with grids in any other area let us say, than that particular one. In fact the grids wouldn't even have to be contiguous and can only be provided in special zones.

In other words, one might use a very special grid with radial lines radiating from the exact projected point $x y$ which are then homed in on by the grid sensor on the robot. One can have many, many such homing radial line arrangements on any one grid in a projector.

FIG. 4 illustrates the above points. A projection source 210 projects discreet radial grid 215 and concentric ring grids 220 along specific lines in space from which suitable homing routines can also be provided. Detectors can be circular diode arrays, square arrays, points detectors, linear arrays and the like.
In the case shown, robot arm with one or more resolvers such as 226, is equipped with a circular diode array 730 (a Reticon 720C) composed of 720 elements. This array scans and instructs the robot to position centered on the centerline of radial grid 215 (center is present when all spacings between lines are equal) and oriented such that the axis x of the robot arm is along the axis of the wide line 740 of the projected radial grid. This wide line for example can be easily detected if it subtends $2 \times$ the number of detector elements as the others.

Thus both centering on an xy location as well as orientation have been achieved without reliance on the robots own axes.

The circular grid 220 is also useful for centering when an xy detector such as a linear or matrix array such as $\mathbf{7 5 0}$ is used. It also can be used for pitch or roll orientation (ie changes in γ or β) due to core shortening one or the other projected circular axes (ie. apparent
change into an eclipse) detectable by the array and its analysis circuit and microcomputer 755.

Grids made especially for a given operation or part could be used mounted in a changeable turret which could be, changed periodically from part to part etc. This gets to be rather interesting because what the grids are really storing could be actual data concerning the operation part and would be in effect an adjunct to the computer memory.

FIG. 5 is an embodiment of the invention illustrating the use of interchangeable grids or patterns of any sort. Illustrated too, is a pattern which actually guides the robot in the travel path to be taken. It is noted that this path can be flexibly and digitally generated in the FIG. 1 example via data fed to the galvo coordinate axes.

As shown, light source 270 projects through mask 271 containing the pattern desired which is imaged and projected by lens 272 into space. Grid 271 is one of several on a rotatable turret 273 which may be changed to suit different operations, parts or both.
Robot arm 302 with pattern detector 301 and associated analysis means has locked on to the pattern at the start location (dotted lines) and followed the projected image pattern arriving finally at point P as shown.

Again all actions are possible to better than 0.02 mm with no reliance on the robot's own positioning axes sensors (which may not be able to account for droop, etc.). It is also fast acting as the photodetectors have a very high response speed.

FIG. 6 illustrates an embodiment utilized for tracking one or more zones of light carried on the robot arm, gripper or any other suitable location. In this example, a single light source 400 preferably modulated, a LED, diode laser or flash lamp is mounted on robot arm 401. Its output is detected by image sensor 402, typically comprising a matrix array on whose face an image is formed by lens 404 of the light source 'spot'.

Microcomputer interrogates array 403 to determine the location of the spot image in two axes and hence the robot arm. Hardware processing such as described in the referenced applications is of value in finding the spot or zone locations.

To obtain three dimensions a second image scanner 430 is utilized either with source 400 or a second source 410 aimed in the direction of 430 .

Analog image sensors such as Vidicons or position sensing photo cells such as the UDT SC-10 can also be used but these don't have the dimensional stability of the diode arrays. However, the SC-10 can be used with modulated LEDs to provide low cost stray light rejec-tion-a desirable goal. This can also be done with diode laser sources and interference filters such as 431 (dotted lines) in conjunction with diode arrays.

The largest matrix arrays typically have 256×256 lines at this writing. If more resolution is required, the image scanner of FIG. $6 b$ can be used which uses an encoded rotary mirror 419 to sweep the image 420 formed by lens 421 past a large 2048 element linear array 422. Thus resolution can be 2048×2048, all digital and drift free.

Actually resolution can be $16 \times$ this using circuits disclosed in the referenced copending applications, yielding $32,000 \times 32,000$ resolution of field of view. This is crucial for high accuracy positioning over a large area.

Also shown in FIG. $6 b$ is a dual LED or laser produced zone in which the dark space between is de- 525 corrected
It is noted that sensor 525 can be replaced by a device for working material as well, ie. a welding head, rotat-
ing brush, paint sprayer or anything else whose position in space is critical.

FIG. $7 b$ illustrates a closeup of the unit illustrating means for correcting tilt Δx to horizontal arm extension in this case a penta prism 550 directs beam 517 vertically up the tower as determined by the prism axis set up at the carriage 515. Detector 560 notes any deflection of the tower 500 . This plus the x axis horizontal arm extension can be used to correct the vertical location y of the sensor 525, in this case also a function of rotary axis encoders 582 (angular movement in the yz plane) and 583 (angular movement in the xy plane). The same system can be used to correct tower tilts in the z direction by using a similar penta prism arrangement 551 to direct a beam 584 to detector 585 .

Let us now consider the usefulness of this system, where it is desired to inspect tank hull 600 during manufacture for numerous edge and hole locations in the side 601 such as 605 in the $y z$ plane, locations in x of various points on side 601, and various faces on side 601 (using an additional sensor or detector) for surface finish problems such as no clean-up etc.

Similar problems have been treated in several of the copending applications. Suffice it to say that sensor head 525 can contain one, two or more suitable sensor heads capable of inspecting such parameters by noncontact or contact means. Suitable sensors to incorporate into sensor unit $\mathbf{5 2 5}$ are:

Reference 2, (light source and image analyzer for a target on a part moving on a conveyor) FIG. 16; Reference 12, FIGS. 3-7 (electro-optical feeler gage for hole size and defects; light source and image analyzer for tool parts for breakage, wear, or defects; or light source and image analyzer for proper weld contours); Reference 7, (Light source and detector for reflected light or contact device with light source and detector to transduce movement to measure surface roughness) and 3.

A final note relative to the tank inspection example. The problem here is to build a fast, reasonably priced inspection machine. These two criteria defie excess rigidity of the inspection machine, particularly considering floor distortions caused by placing a 30 ton tank next to the machine. This explains why active correction of bending moments etc. and other distortions has been emphasized here.
Also in potential need of correction is the accuracy of the $x y$ and z encoder systems. This can be accomplished by locating one or more test points such as $\mathbf{6 5 0}$ and 660 along the length of the tank in zones where no pertinent information is desired from the tank hull. These points are masters layed out specifically to allow the unit to rezero on them at specific points along the z axis. The electro-optical sensor unit senses a reticle location on a plate which gives the $x y$ and z location.
If one rezeros at point 650 and 660 spaced in the z direction it is only necessary to use the z axis encoder 620 to provide data between the two zero points. If this is not good enough resolution, a special short range high resolution such as 660 z axis can be added to the sensor mount to move the sensor in \mathbf{z} a distance relative to a master point such as 650 .

It is noted that it may be desirable at the various measuring points along the tank in the z axis to lower the tower base down into granite pads such as 690 . This removes warpage in the z axis slide $\mathbf{5 0 1}$ from the answer. Pads 690 etc. can be anchored deep into the floor. At these red locations the reference posts such as 650 can logically be placed.

It is particularly easy to envision that the system here described is causing a reduction in price of such tricky coordinate measuring systems if one sets the vertical post support down onto the base pad such as 690 after movement. In other words, extremely crude movements can be used as long as one sets the unit down on an adequate base such as 690 .
It is noted relative to FIG. 1 showing the laser tracking mode of operation, that the method for employing this can be varient. For example, one may use the x and y galvos of the projection system to simply point the beam at the desired resting place of the robot. In this manner, the robot's own coordinate axes are utilized to move the robot through the desired path to the approximate point in question. Where near the approximate point, the detector on the robot is obviously in a position to pick up the spot and provide these z and y feedback signals to the robot's apparatus to home the robot in on the spot position.

The second mode of operation of the laser projection unit is the continuous path approach whereas the laser spot actually is directed right to the detector on the robot and then the spot moved in space according to the preprogrammed coordinate motion desired out of the robot arm. In this case, the active tracking signals are provided by the detector to cause the robot's axis to follow the spot. In short to robot's axes are not fed the control signal but it is instead fed to the laser.

It should be noted relative to the spot tracking version of FIG. 6, that this same spot tracking can be employed in the FIG. 7 arrangement as well. In this case, again the laser 510 or 540 is replaced with a imaging lens and detector with the spot now located on the coordinate arm. In this case the position of the spot is measured and deviations compared. The problem of course is that over short ranges this is quite workable but over long ranges the telephoto lenses etc. required to keep the high resolution of the spot in view on the sensing detector are too much for accurate measurement. It is much more convenient to do it with the laser beam shown. Therefore, it is considered that this method would work for the horizontal array 505 of the CMM machine as shown but not for the total length of travel direction.

FIG. 8 illustrates the case where the grid projection such as $\mathbf{8 2 0}$ of FIG. 3 etc., is employed to act as a reference to detector 821 located on the arm 822 of the robot as well as to illuminate a part, 823 and the gripper 824.
In this manner data on the way in which the grid lines intersect the part and gripper can be obtained by camera 825 comprising lens 830 and matrix detector array 831 and used by computer 840 to determine the arm to part or arm to gripper to part relationship. This is quite useful for dealing with arbitrary parts and locations, and/or in conjunction with nonencoded or interchangeable or damaged grippers (where gripper location is not precisely known).

It is noted that the word 'light' in this application can mean any wavelength of electro-magnetic radiation x -ray through infra red. Visible and near IR wavelengths are preferred, however.
As mentioned, this invention has a main goal; the provision of coordinate position and orientation of robots independent of the robots axes and/or the correction of those axes by updating axis encoder or resolver data in a local area (generally around the work in question).

Another attribute of the invention, particularly the grid or spot version, is simple calibration of the axes. For example, the robot can pass through 10 grid lines in a certain zone and determine its average error from the sensed data of the known grid spacing and use this to correct its own data.
The test points 650 need not be reticle plates but can be any means suitable to provide an update of calibration of the system and/or a designated point in space. For example, grids, spots etc. can be used. A remote light source with fibers in a plate can also be used as shown in FIG. 7C.

Here lamp 700 illuminates fibers 701, 702, 703, 704 whose ends 706-709 are mounted in plate 705. Sensor 800 , comprising lens 801 and photo diode array 802 is mounted on the end of arm 805 . The array finds the fiber end points desired to update its calibration. With the four points as shwon, spaced 5^{\prime} apart, total operation is possible over the range desired-independent of the robot's own axes, relying on the diode array as the measuring element for movements in z (or x or y or a combination thereof).

Such precisely positioned sources can be indeed located along the total length or a fraction thereof of the machine axes in the x, y, or z or any or all of said axes to allow actual measurement to be made using the diode array to interpolate between light source positions.

What is claimed is:

1. A method for controlling robots, and other machines to cause a movable part to travel a predetermined path or to arrive at a location in space, comprising the steps of:
optically projecting a pattern into space in a work area of the robot.
providing a detector on the movable portion of the robot,
detecting at least a portion of the pattern when the movable portion is in the work area,
determining a position of the movable part of the robot relative to the detected portion of the pattern, and
controlling the movement of the movable part of the robot based on the determined position.
2. A method according to claim 1 wherein said pattern is a grid of parallel lines.
3. A method according to claim 1 wherein two patterns are projected which pattern projections occur from two directions.
4. A method according to claim 1 in which the pattern is a grille composed of unidirectional parallel lines.
5. A method according to claim 1 wherein said pattern is composed of radial lines emanating from a center.
6. A method according to claim 1 wherein said pattern is composed of concentric rings.
7. A method according to claim 1 wherein said pattern is a path for said robot to follow.
8. A method according to claim 1 wherein said detector is a photo detector array and more than one line of said pattern is detected at any one time.
9. A method according to claim 1 wherein the pattern includes lines which are absolutely encoded using fiducial lines.
10. A method according to claim 1 wherein a single detector is utilized.
11. A method according to claim 1 wherein the controlling step includes the controlling of encoders of the 5 robot to move the movable part between detected portions of the pattern.
12. A method according to claim 1 wherein additional angular coordinates are obtained by detecting changes in spacing of lines of said pattern.
13. A method according to claim 3 wherein the two patterns are sequentially projected.
14. A method according to claim 1 and further including the sensing of the reflection of the projected pattern from objects by an image scanning device.
15. A method according to claim 1 wherein said pattern spacing is variable.
16. A method according to claim 15 wherein said pattern is a diffraction pattern of an aperture and said aperture spacing is varied.
17. A method for positioning robots and other machines comprising the steps of:
providing at least one optical beam position detector on a moving portion of said robot,
projecting a laser or other collimated beam into the work area of said robot with a beam projection unit external to said robot
sensing said beam with said detector and,
determining from said detector the correct position of said robot.
18. A method according to claim 17 including the further step of directing said beam to intersect a given co-ordinate in space and utilizing the output of said detector to cause the controller of said robot to correctly position the robot at said co-ordinates.
19. A method according to claim 17 including the further step of feeding back the signals from said detector to cause said beam to be directed so as to stay at a given point on said detector, and from said beam direction determining the location of said robot in space.
20. A method according to claim 17 wherein two beam directors and detectors are utilized, orthogonally positioned so as to provide 3 dimensional information.
21. A method for controlling robots and other machines comprising the steps of:
locating at least one source of light on a moving portion of said robot,
detecting the image of said source with an image detector,
determining the position of said image and from said image position the location of said source in space and,
feeding back the position of said source on said robot to the control computer of said robot in order to control said robot
22. A method according to claim 21 wherein said detector is a matrix photo detector array.
23. A method according to claim 21 wherein said detector is a linear photodetector array and said image is mechanically swept past said array.
24. A method according to claim 21 wherein a light source composed of multiple zones is employed and the center or other characteristic of said zones detected.
25. A method according to claim 22 wherein said light source is provided with light conveyed from a remote located source of light via fiber optical means.
