

US008164817B2

US 8,164,817 B2

Apr. 24, 2012

(12) United States Patent

Varaprasad et al.

(54) METHOD OF FORMING A MIRRORED BENT CUT GLASS SHAPE FOR VEHICULAR EXTERIOR REARVIEW MIRROR ASSEMBLY

(75) Inventors: Desaraju V. Varaprasad, Holland, MI

(US); Mingtang Zhao, Grand Rapids, MI (US); Craig A. Dornan, Grand Haven, MI (US); Anoop Agrawal, Tucson, AZ (US); Pierr-Marc Allemand, Tucson, AZ (US); Niall R. Lynam, Holland, MI (US)

(73) Assignee: **Donnelly Corporation**, Holland, MI

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 59 days.

(21) Appl. No.: 12/910,479

(22) Filed: Oct. 22, 2010

(65) **Prior Publication Data**

US 2011/0045172 A1 Feb. 24, 2011

Related U.S. Application Data

(63) Continuation of application No. 12/614,812, filed on Nov. 9, 2009, now Pat. No. 7,821,697, which is a continuation of application No. 12/061,795,

(Continued)

(51) Int. Cl.

 G02F 1/153
 (2006.01)

 C03B 23/023
 (2006.01)

 G02B 5/08
 (2006.01)

 G02B 7/182
 (2006.01)

- (52) **U.S. Cl.** **359/267**; 65/106; 359/844; 359/872

See application file for complete search history.

(10) Patent No.:

(56)

(45) Date of Patent:

References Cited U.S. PATENT DOCUMENTS

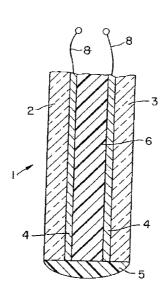
1,096,452 A 5/1914 Perrin (Continued)

FOREIGN PATENT DOCUMENTS

AU A-40317/95 2/1995 (Continued)

OTHER PUBLICATIONS

Stewart, James W.; HP SnapLED: LED Assemblies for Automotive Signal Applications; Nov. 1, 1998; Hewlett-Packard Journal; vol. 50, No. 1, www.hpl.hp.com/hpjournal/98nov/nov98al.pdf.


(Continued)

Primary Examiner — David N Spector (74) Attorney, Agent, or Firm — Gardner, Linn, Burkhart & Flory, LLP

(57) ABSTRACT

A method of forming a mirrored bent cut glass shape includes bending a flat sheet of glass to establish a curved sheet of glass. A machine vision system determines a surface profile of the curved sheet of glass, and a computer numerical controlled cutting tool is positioned at the curved sheet of glass and its cutting wheel is maintained at or close to 90 degrees to the tangential plane of the curved sheet of glass. At least one of (a) the cutting wheel and (b) the curved sheet of glass is controlled in three dimensions to cut a bent cut glass shape from the curved sheet of glass, and such controlling is, at least in part, responsive to the surface profile of the curved sheet of glass. A mirror reflector is established at a surface of the bent cut glass shape to form a mirrored bent cut glass shape.

29 Claims, 5 Drawing Sheets

Related U.S. Application Data

filed on Apr. 3, 2008, now Pat. No. 7,643,200, which is a continuation of application No. 11/957,755, filed on Dec. 17, 2007, now Pat. No. 7,589,883, which is a continuation of application No. 11/653,254, filed on Jan. 16, 2007, now Pat. No. 7,349,144, which is a continuation of application No. 10/954,233, filed on Oct. 1, 2004, now Pat. No. 7,202,987, which is a continuation of application No. 10/197,679, filed on Jul. 16, 2002, now Pat. No. 6,855,431, which is a continuation of application No. 09/381,856, filed as application No. PCT/US98/05570 on Mar. 26, 1998, now Pat. No. 6,420,036, which is a continuation-in-part of application No. 08/824,501, filed on Mar. 26, 1997, now Pat. No. 5,910,854, said application No. 11/653,254 is a continuation-in-part of application No. 11/244,182, filed on Oct. 6, 2005, now Pat. No. 7,543,947, which is a continuation of application No. 10/971,456, filed on Oct. 22,2004, now Pat. No. 7,004,592, which is a continuation of application No. 09/954,285, filed on Sep. 18, 2001, now abandoned, which is a continuation of application No. 08/957,027, filed on Oct. 24, 1997, now abandoned, which is a continuation of application No. 08/429,643, filed on Apr. 27, 1995, now Pat. No. 5,724,187, which is a continuation-in-part of application No. 08/238,521, filed on May 5, 1994, now Pat. No. 5,668,663.

(56) References Cited

U.S. PATENT DOCUMENTS

1,563,258	Α	11/1925	Cunningham
2,069,368	A	2/1937	Horinstein
2,166,303	A	7/1939	Hodney et al.
2,263,382	A	11/1941	Gotzinger
2,414,223	A	1/1947	DeVirgilis
2,457,348	A	12/1948	Chambers
2,561,582	A	7/1951	Marbel
2,580,014	A	12/1951	Gazda
3,004,473	A	10/1961	Arthur et al.
3,075,430	A	1/1963	Woodward et al.
3,141,393	Α	7/1964	Platt
3,152,216	Α	10/1964	Woodward
3,162,008	Α	12/1964	Berger et al.
3,185,020	A	5/1965	Thelen
3,266,016	A	8/1966	Maruyama et al.
3,280,701	A	10/1966	Donnelly et al.
3,432,225	A	3/1969	Rock
3,451,741	A	6/1969	Manos
3,453,038	A	7/1969	Kissa et al.
3,467,465	A	9/1969	Van Noord
3,473,867	A	10/1969	Byrnes
3,480,781	A	11/1969	Mandalakas
3,499,112	A	3/1970	Heilmeier et al.
3,499,702	A	3/1970	Goldmacher et al.
3,521,941	A	7/1970	Deb et al.
3,543,018	A	11/1970	Barcus et al.
3,557,265	A	1/1971	Chisholm et al.
3,565,985	A	2/1971	Schrenk et al.
3,612,654	A	10/1971	Klein
3,614,210	A	10/1971	Caplan
3,628,851	A	12/1971	Robertson
3,676,668	A	7/1972	Collins et al.
3,680,951	A	8/1972	Jordan et al.
3,689,695	A	9/1972	Rosenfield et al.
3,711,176	A	1/1973	Alfrey, Jr. et al.
3,712,710	A	1/1973	Castellion et al.
3,748,017	A	7/1973	Yamamura et al.
3,781,090	A	12/1973	Sumita
3,806,229	A	4/1974	Schoot et al.
3,807,832	A	4/1974	Castellion
3,807,833	A	4/1974	Graham et al.
3,821,590	A	6/1974	Kosman et al.

3,837,129 A	9/1974	Losell
3,860,847 A	1/1975	Carley
3,862,798 A	1/1975	Hopkins
3,870,404 A	3/1975	Wilson et al.
3,876,287 A	4/1975	Sprokel
3,932,024 A	1/1976	Yaguchi et al.
3,940,822 A	3/1976	Emerick et al.
3,956,017 A	5/1976	Shigemasa
3,978,190 A	8/1976	Kurz, Jr. et al.
3,985,424 A	10/1976	Steinacher
4,006,546 A	2/1977	Anderson et al.
4,035,681 A	7/1977	_
		Savage
4,040,727 A	8/1977	Ketchpel
4,052,712 A	10/1977	Ohama et al.
4,075,468 A	2/1978	Marcus
4,088,400 A	5/1978	Assouline et al.
4,093,364 A	6/1978	Miller
4,097,131 A	6/1978	Nishiyama
4,109,235 A	8/1978	Bouthors
4,139,234 A	2/1979	Morgan
4,159,866 A	7/1979	Wunsch et al.
4,161,653 A	7/1979	Bedini et al.
4,171,875 A		
	10/1979	Taylor et al.
4,174,152 A	11/1979	Gilia et al.
4,200,361 A	4/1980	Malvano et al.
4,202,607 A	5/1980	Washizuka et al.
4,211,955 A	7/1980	Ray
4,214,266 A	7/1980	Myers
4,219,760 A	8/1980	Ferro
4,221,955 A	9/1980	Joslyn
4,228,490 A	10/1980	Thillays
4,247,870 A	1/1981	Gabel et al.
4,257,703 A	3/1981	Goodrich
4,274,078 A	6/1981	Isobe et al.
4,277,804 A	7/1981	Robison
4,281,899 A	8/1981	Oskam
4,288,814 A	9/1981	Talley et al.
RE30,835 E	12/1981	Giglia
4,306,768 A	12/1981	Egging
4,310,851 A	1/1982	Pierrat
4,331,382 A	5/1982	Graff
4,338,000 A	7/1982	Kamimori et al.
4,377,613 A	3/1983	Gordon
4,398,805 A	8/1983	Cole
4,419,386 A	12/1983	Gordon
4,420,238 A	12/1983	Felix
4,425,717 A	1/1984	Marcus
4,435,042 A	3/1984	Wood et al.
4,435,048 A	3/1984	Kamimori et al.
	3/1984	Wood et al.
, ,		
4,438,348 A	3/1984	Casper et al.
4,443,057 A	4/1984	Bauer et al.
4,446,171 A	5/1984	Thomas
4,465,339 A	8/1984	Baucke et al.
4,473,695 A	9/1984	Wrighton et al.
4,490,227 A	12/1984	Bitter
	1/1985	
4,491,390 A		Tong-Shen
4,499,451 A	2/1985	Suzuki et al.
4,521,079 A	6/1985	Leenhouts et al.
4,524,941 A	6/1985	Wood et al.
4,538,063 A	8/1985	Bulat
4,546,551 A	10/1985	Franks
4,555,694 A	11/1985	Yanagishima et al.
4,561,625 A	12/1985	Weaver
4,572,619 A	2/1986	Reininger et al.
4,580,196 A	4/1986	Task
4,581,827 A	4/1986	Higashi
4,588,267 A	5/1986	Pastore
4,603,946 A	8/1986	Kato et al.
4,623,222 A	11/1986	Itoh et al.
4,625,210 A	11/1986	Sagl
4,626,850 A	12/1986	Chey
		·
4,630,040 A	12/1986	Haertling
4,630,109 A	12/1986	Barton
4,630,904 A	12/1986	Pastore
4,634,835 A	1/1987	Suzuki
4,635,033 A	1/1987	Inukai et al.
4,636,782 A	1/1987	Nakamura et al.
4 638 287 A	1/1027	Umobayachi et al

4,638,287 A

1/1987 Umebayashi et al.

US 8,164,817 B2 Page 3

4,646,210 A		Skogler et al.	4,948,242 A	8/1990	Desmond et al.
4,652,090 A	3/1987	Uchikawa et al.	4,953,305 A	9/1990	Van Lente et al.
4,655,549 A	4/1987	Suzuki et al.	4,956,591 A	9/1990	Schierbeek et al.
4,665,311 A	5/1987		4,957,349 A	9/1990	Clerc et al.
4,665,430 A		Hiroyasu	4,959,247 A	9/1990	Moser et al.
4,669,827 A				9/1990	
		Fukada et al.	4,959,865 A		Stettiner et al.
4,671,615 A		Fukada et al.	4,970,653 A	11/1990	
4,671,619 A	6/1987	Kamimori et al.	4,973,844 A	11/1990	O'Farrell et al.
4,678,281 A	7/1987	Bauer	4,974,122 A	11/1990	Shaw
4,679,906 A	7/1987	Brandenburg	4,978,196 A	12/1990	Suzuki et al.
4,682,083 A	7/1987	Alley	4,983,951 A	1/1991	Igarashi et al.
4,692,798 A	9/1987		4,985,809 A	1/1991	Matsui et al.
4,694,295 A		Miller et al.	4,987,357 A	1/1991	Masaki
4,697,883 A		Suzuki et al.	4,996,083 A	2/1991	Moser et al.
4,701,022 A	10/1987		5,001,386 A	3/1991	Sullivan et al.
4,702,566 A	10/1987	Tukude et al.	5,001,558 A	3/1991	Burley et al.
4,704,740 A	11/1987	McKee et al.	5,005,213 A	4/1991	Hanson et al.
4,711,544 A	12/1987	Iino et al.	5,006,971 A	4/1991	Jerkins
4,712,879 A		Lynam et al.	5,014,167 A		Roberts
4,713,685 A		Nishimura et al.	5,016,988 A	5/1991	Iimura
		Pastore			
RE32,576 E			5,016,996 A		Ueno
4,718,756 A		Lancaster	5,017,903 A		Krippelz, Sr.
4,721,364 A		Itoh et al.	5,018,839 A	5/1991	Yamamoto et al.
4,729,068 A	3/1988	Ohe	5,027,200 A	6/1991	Petrossian et al.
4.729.076 A	3/1988	Masami et al.	5.037.182 A	8/1991	Groves et al.
4,731,669 A		Hayashi et al.	5,038,255 A	8/1991	Nishihashi et al.
4,733,335 A		Serizawa et al.	5,052,163 A	10/1991	
/ /					
4,733,336 A		Skogler et al.	5,056,899 A	10/1991	Warszawski
4,740,838 A	4/1988		5,057,974 A	10/1991	Mizobe
4,761,061 A	8/1988	Nishiyama et al.	5,058,851 A	10/1991	Lawlor et al.
4,773,740 A	9/1988	Kawakami et al.	5,059,015 A	10/1991	Tran
4,780,752 A	10/1988	Angerstein et al.	5,066,108 A	11/1991	McDonald
4,781,436 A	11/1988		5,066,112 A	11/1991	Lynam et al.
4,789,904 A		Peterson	5,069,535 A	12/1991	Baucke et al.
4,793,690 A		Gahan et al.	5,070,323 A		Iino et al.
4,793,695 A		Wada et al.	5,073,012 A	12/1991	Lynam
4,794,261 A	12/1988	Rosen	5,076,673 A	12/1991	Lynam et al.
D299,491 S	1/1989	Masuda	5,076,674 A	12/1991	Lynam
4,799,768 A	1/1989	Gahan	5,078,480 A	1/1992	Warszawski
4,803,599 A	2/1989	Trine et al.	5,096,287 A	3/1992	Kakinami et al.
4,807,096 A	2/1989	Skogler et al.	5,100,095 A		Haan et al.
4,820,933 A		Hong et al.	5,101,139 A		Lechter
4,825,232 A	4/1989		5,105,127 A		Lavaud et al.
4,826,289 A	5/1989	Vandenbrink et al.	5,115,346 A	5/1992	Lynam
4,827,086 A	5/1989	Rockwell	5,117,346 A	5/1992	Gard
4,837,551 A	6/1989	Iino	5,119,220 A	6/1992	Narita et al.
4,842,378 A	6/1989	Flasck et al.	5,121,200 A	6/1992	Choi
4,845,402 A	7/1989	Smith	5,122,619 A	6/1992	Dlubak
	7/1989			6/1992	Endo et al.
4,847,772 A		Michalopoulos et al.	5,123,077 A		
4,855,161 A	8/1989	Moser et al.	5,124,845 A	6/1992	Shimojo
4,855,550 A	8/1989	Schultz, Jr.	5,124,890 A	6/1992	Choi et al.
4,859,813 A	8/1989	Rockwell	5,128,799 A	7/1992	Byker
4,859,867 A	8/1989	Larson et al.	5,130,898 A	7/1992	Akahane
4,860,171 A	8/1989	Kojima	5,131,154 A	7/1992	Schierbeek et al.
4,862,594 A	9/1989		5,134,507 A	7/1992	
4,871,917 A	10/1989	O'Farrell et al.	5,134,549 A	7/1992	Yokoyama
4,872,051 A	10/1989	Dye	5,135,298 A	8/1992	Feltman
4,882,466 A	11/1989		5,136,483 A	8/1992	Schöniger et al.
4,882,565 A	11/1989	Gallmeyer	5,140,455 A	8/1992	Varaprasad et al.
4,883,349 A	11/1989	Mittelhäuser	5,140,465 A	8/1992	Yasui et al.
4,884,135 A	11/1989	Schiffman	5,142,407 A	8/1992	Varaprasad et al.
4,886,960 A	12/1989	Molyneux et al.	5,145,609 A	9/1992	Varaprasad et al.
4,889,412 A	12/1989		5,150,232 A	9/1992	Gunkima et al.
				9/1992	
4,891,828 A		Kawazoe	5,151,816 A		Varaprasad et al.
4,892,345 A		Rachael, III	5,151,824 A	9/1992	O'Farrell
4,902,103 A	2/1990		5,154,617 A	10/1992	Suman et al.
4,902,108 A	2/1990	Byker	5,158,638 A	10/1992	Osanami et al.
4,906,085 A	3/1990		5,160,200 A	11/1992	Cheselske
4,909,606 A	3/1990	Wada et al.	5,160,201 A	11/1992	Wrobel
4,910,591 A	3/1990	Petrossian et al.	5,166,815 A	11/1992	Elderfield
, ,					
4,916,374 A	4/1990	Schierbeek et al.	5,168,378 A	12/1992	Black et al.
4,926,170 A	5/1990	Beggs et al.	5,173,881 A	12/1992	Sindle
4,930,742 A	6/1990	Schofield et al.	5,177,031 A	1/1993	Buchmann et al.
4,933,814 A	6/1990	Sanai	5,178,448 A	1/1993	Adams et al.
4,935,665 A	6/1990		5,179,471 A	1/1993	Caskey et al.
4,936,533 A	6/1990	Adams et al.	5,183,099 A	2/1993	Bechu
4,937,796 A	6/1990	Tendler	5,184,956 A	2/1993	Langlarais et al.
4,937,945 A	7/1990	Schofield et al.	5,189,537 A	2/1993	O'Farrell
4,943,796 A	7/1990		5,193,029 A	3/1993	Schofield et al.
7,273,170 A	1/1220	LCC	5,195,029 A	3/1773	benomena et al.

5,197,562 A	3/1993	Kakinami et al.	5,461,361 A	10/1995	Moore
5,202,950 A	4/1993	Arego et al.	D363,920 S	11/1995	Roberts et al.
5,207,492 A		Roberts	5,469,187 A	11/1995	Yaniv
5,210,967 A	5/1993			11/1995	Suman et al.
			5,469,298 A		
5,212,819 A	5/1993		5,475,366 A	12/1995	Van Lente et al.
5,214,408 A	5/1993	Asayama	5,475,494 A	12/1995	Nishida et al.
5,217,794 A	6/1993	Schrenk	5,481,409 A	1/1996	Roberts
5,223,814 A	6/1993	Suman	5,483,453 A	1/1996	Uemura et al.
5,223,844 A	6/1993	Mansell et al.	5,485,161 A	1/1996	Vaughn
5,229,975 A	7/1993	Truesdell et al.	5,485,378 A	1/1996	Franke et al.
5,230,400 A	7/1993	Kakinama et al.	5,487,522 A	1/1996	Hook
5,233,461 A	8/1993	Dornan et al.	5,488,496 A	1/1996	Pine
5,235,316 A	8/1993	Oualizza	5,497,305 A	3/1996	Pastrick et al.
5,239,405 A		Varaprasad et al.	5,497,306 A		Pastrick
5,239,406 A		Lynam	5,500,760 A		Varaprasad et al.
5,243,417 A		Pollard	5,506,701 A	4/1996	Ichikawa
5,245,422 A	9/1993	Borcherts et al.	5,509,606 A	4/1996	Breithaupt et al.
5,252,354 A	10/1993	Cronin et al.	5,510,983 A	4/1996	Iino
5,253,109 A	10/1993	O'Farrell et al.	5,515,448 A	5/1996	Nishitani
5,255,442 A		Schierbeek et al.	5,519,621 A	5/1996	Worthman
5,260,626 A	11/1993		5,521,744 A	5/1996	Mazurek
5,277,986 A		Cronin et al.	5,521,760 A	5/1996	DeYoung et al.
5,280,555 A		Ainsburg	5,523,811 A	6/1996	Wada et al.
5,285,060 A	2/1994	Larson et al.	5,523,877 A	6/1996	Lynam
5,289,321 A	2/1994	Secor	5,525,264 A	6/1996	Cronin et al.
5,296,924 A	3/1994		5,525,977 A	6/1996	Suman
5,303,075 A	4/1994		5,528,422 A	6/1996	Roberts
5,303,205 A		Gauthier et al.	5,528,474 A	6/1996	Roney et al.
5,304,980 A	4/1994	Maekawa	5,529,138 A	6/1996	Shaw et al.
5,305,012 A	4/1994	Faris	5,530,240 A	6/1996	Larson et al.
5,307,136 A	4/1994	Sanevoshi	5,530,420 A	6/1996	Tsuchiya et al.
5,313,335 A	5/1994		5,530,421 A	6/1996	Marshall et al.
5,325,096 A	6/1994		5,535,056 A	7/1996	Caskey et al.
5,325,386 A	6/1994	Jewell et al.	5,535,144 A	7/1996	Kise
5,327,288 A	7/1994	Wellington et al.	5,539,397 A	7/1996	Asanuma et al.
5,330,149 A	7/1994	Haan et al.	5,541,590 A	7/1996	Nishio
5,331,312 A	7/1994		5,550,677 A	8/1996	Schofield et al.
5,331,358 A			5,555,172 A	9/1996	
		Schurle et al.			
5,339,075 A		Abst et al.	5,561,333 A	10/1996	
5,339,529 A		Lindberg	5,566,224 A	10/1996	ul Azam et al.
5,341,437 A	8/1994	Nakayama	5,567,360 A	10/1996	Varaprasad et al.
D351,370 S	10/1994	Lawlor et al.	5,568,316 A	10/1996	Schrenck et al.
5,354,965 A	10/1994		5,570,127 A	10/1996	Schmidt
5,355,118 A		Fukuhara	5,572,354 A	11/1996	Desmond et al.
5,355,245 A	10/1994		5,574,426 A	11/1996	Shisgal et al.
5,355,284 A	10/1994	Roberts	5,574,443 A	11/1996	Hsieh
5,361,190 A	11/1994	Roberts et al.	5,575,552 A	11/1996	Faloon et al.
5,363,294 A	11/1994	Yamamoto et al.	5.576.687 A	11/1996	Blank et al.
5,371,659 A	12/1994	Pastrick et al.	5,576,854 A	11/1996	Schmidt et al.
5,373,482 A		Gauthier	5,576,975 A	11/1996	Sasaki et al.
		Defendini	, ,		
5,379,146 A			5,578,404 A	11/1996	Kliem
5,386,285 A	1/1995	Asayama	5,587,236 A	12/1996	Agrawal et al.
5,386,306 A		Gunjima et al.	5,587,699 A	12/1996	Faloon et al.
5,400,158 A	3/1995	Ohnishi et al.	5,593,221 A	1/1997	Evanicky et al.
5,402,103 A	3/1995	Tashiro	5,594,222 A	1/1997	Caldwell
5,406,395 A	4/1995	Wilson et al.	5,594,560 A	1/1997	Jelley et al.
5,406,414 A		O'Farrell et al.	5,594,615 A	1/1997	Spijkerman et al.
		Nichols et al.			
5,408,353 A			5,602,542 A	2/1997	Widmann et al.
5,408,357 A		Beukema	5,602,670 A	2/1997	Keegan
5,410,346 A		Saneyoshi et al.	5,603,104 A	2/1997	Phelps, III et al.
5,414,439 A		Groves et al.	5,608,550 A	3/1997	Epstein et al.
5,414,461 A	5/1995	Kishi et al.	5,609,652 A	3/1997	Yamada et al.
5,416,313 A	5/1995	Larson et al.	5,610,380 A	3/1997	Nicolaisen
5,416,478 A	5/1995	Morinaga	5,610,756 A	3/1997	Lynam et al.
5,418,610 A		Fischer	5,611,966 A	3/1997	Varaprasad et al.
5,422,756 A	6/1995		5,614,885 A	3/1997	Van Lente et al.
5,424,726 A	6/1995	Beymer	5,615,023 A	3/1997	Yang
5,424,865 A	6/1995	Lynam	5,615,857 A	4/1997	Hook
5,424,952 A	6/1995	Asayama	5,617,085 A	4/1997	Tsutsumi et al.
5,426,524 A	6/1995			4/1997	Roberts
			5,619,374 A		
5,430,431 A	7/1995		5,619,375 A	4/1997	Roberts
5,432,496 A	7/1995	Lin	5,626,800 A	5/1997	Williams et al.
5,432,626 A	7/1995		5,631,089 A	5/1997	Center, Jr. et al.
5,436,741 A	7/1995	C	5,631,638 A	5/1997	Kaspar et al.
5,437,931 A	8/1995	Tsai et al.	5,631,639 A	5/1997	Hibino et al.
5,439,305 A	8/1995	Santo	5,632,092 A	5/1997	Blank et al.
5,444,478 A		Lelong et al.	5,632,551 A	5/1997	Roney et al.
	8/1995	Leiong et al.	J.U.J.ZJ.J. /*		
5 446 576 A					
5,446,576 A	8/1995	Lynam et al.	5,634,709 A	6/1997	Iwama
5,446,576 A 5,455,716 A		Lynam et al.			

US 8,164,817 B2Page 5

5,642,238 A	6/1997		5,796,176 A		Kramer et al.
5,644,851 A		Blank et al.	5,798,057 A		Hikmet
5,646,614 A	7/1997	Abersfelder et al.	5,798,575 A	8/1998	O'Farrell et al.
5,649,756 A	7/1997	Adams et al.	5,798,688 A	8/1998	Schofield
5,649,758 A	7/1997	Dion	5,800,918 A	9/1998	Chartier et al.
5,650,765 A	7/1997	Park	5,802,727 A	9/1998	Blank et al.
5,650,929 A	7/1997	Potter et al.	5,803,579 A	9/1998	Turnbull et al.
5,661,455 A		Van Lente et al.	5,805,330 A	9/1998	Byker et al.
5,661,651 A		Geschke et al.	5,805,367 A	9/1998	Kanazawa
5,661,804 A		Dykema et al.	5,806,879 A	9/1998	Hamada et al.
5,662,375 A		Adams et al.	5,806,965 A	9/1998	Deese
5,666,157 A	9/1997		5,808,197 A		Dao
5,667,289 A	9/1997	Akahane et al.	5,808,566 A		Behr et al.
5,668,663 A		Varaprasad et al.	5,808,589 A		Fergason
5,668,675 A	9/1997	Fredricks	5,808,713 A	9/1998	Broer et al.
5,669,698 A	9/1997	Veldman et al.	5,808,777 A	9/1998	Lynam et al.
5,669,699 A	9/1997	Pastrick et al.	5,808,778 A	9/1998	Bauer et al.
5,669,704 A	9/1997	Pastrick	5,812,321 A	9/1998	Schierbeek et al.
5,669,705 A		Pastrick et al.	5,813,745 A		Fant, Jr. et al.
5,670,935 A	9/1997		5,818,625 A	10/1998	Forgette et al.
5,671,996 A		Bos et al.	5,820,097 A	10/1998	Spooner
5,673,994 A		Fant, Jr. et al.	5,820,245 A	10/1998	Desmond et al.
5,673,999 A	10/1997		5,822,023 A	10/1998	Suman et al.
5,677,598 A		De Hair et al.	5,823,654 A	10/1998	Pastrick et al.
5,679,283 A	10/1997	Tonar et al.	5,825,527 A	10/1998	Forgette et al.
5,680,123 A	10/1997		5,835,166 A	11/1998	Hall et al.
5,680,245 A	10/1997	Lynam	5,837,994 A	11/1998	Stam et al.
5,680,263 A	10/1997	Zimmermann et al.	5,844,505 A	12/1998	Van Ryzin
5,686,975 A	11/1997	Lipton	5,848,373 A	12/1998	DeLorme et al.
5,686,979 A		Weber et al.	5,850,176 A	12/1998	Kinoshita et al.
5,689,241 A		Clarke, Sr. et al.	5,850,205 A	12/1998	Blouin
5,689,370 A	11/1997	Tonar et al.	5,863,116 A	1/1999	Pastrick et al.
5,691,848 A		Van Lente et al.	5,864,419 A	1/1999	Lynam
/ /					
5,692,819 A	12/1997		5,867,801 A	2/1999	Denny
5,696,529 A		Evanicky et al.	5,871,275 A	2/1999	O'Farrell et al.
5,696,567 A		Wada et al.	5,871,843 A	2/1999	Yoneda et al.
5,699,044 A		Van Lente et al.	5,877,707 A	3/1999	Kowalick
5,699,188 A	12/1997	Gilbert et al.	5,877,897 A	3/1999	Schofield et al.
5,703,568 A	12/1997	Hegyi	5,878,353 A	3/1999	ul Azam et al.
5,708,410 A	1/1998	Blank et al.	5,878,370 A	3/1999	Olson
5,708,415 A	1/1998	Van Lente et al.	5,879,074 A	3/1999	Pastrick
5,708,857 A		Ishibashi	5,883,605 A	3/1999	Knapp
5,715,093 A	2/1998	Schierbeek et al.	5,883,739 A	3/1999	Ashihara et al.
5,724,187 A		Varaprasad et al.	5,888,431 A	3/1999	Tonar et al.
5,724,316 A	3/1998		5,894,196 A	4/1999	McDermott
5,729,194 A		Spears et al.	D409,540 S	5/1999	Muth
5,737,226 A		Olson et al.	5,899,551 A	5/1999	Neijzen et al.
5,741,966 A	4/1998	Handfield et al.	5,899,956 A	5/1999	Chan
5,744,227 A		Bright et al.	5,904,729 A	5/1999	Ruzicka
5,745,050 A	4/1998	Nakagawa	5,910,854 A	6/1999	Varaprasad et al.
5,745,266 A	4/1998	Smith	5,914,815 A	6/1999	Bos
5,748,172 A	5/1998	Song et al.	5,917,664 A	6/1999	O'Neill et al.
5,748,287 A		Takahashi et al.	5,918,180 A	6/1999	Dimino
5,751,211 A		Shirai et al.	5,922,176 A	7/1999	
5,751,246 A	5/1998		5,923,027 A	7/1999	Stam et al.
5,751,390 A		Crawford et al.	5,923,457 A	7/1999	Byker et al.
5,751,489 A		Caskey et al.	5,924,212 A	7/1999	Domanski
5,754,099 A		Nishimura et al.	5,926,087 A	7/1999	Busch et al.
D394,833 S	6/1998		5,927,792 A	7/1999	Welling et al.
5,760,828 A	6/1998		5,928,572 A	7/1999	Tonar et al.
5,760,931 A		Saburi et al.	5,929,786 A	7/1999	Schofield et al.
5,760,962 A		Schofield et al.	5,931,555 A	8/1999	Akahane et al.
5,761,094 A	6/1998	Olson et al.	5,935,702 A	8/1999	Macquart et al.
5,762,823 A	6/1998	Hikmet	5,936,774 A	8/1999	Street
5,764,139 A	6/1998	Nojima et al.	5,938,320 A	8/1999	Crandall
5,765,940 A		Levy et al.	5,938,321 A	8/1999	Bos et al.
5,767,793 A	6/1998	Agravante et al.	5,938,721 A	8/1999	Dussell et al.
5,768,020 A	6/1998		5,940,011 A	8/1999	Agravante et al.
5,775,762 A	7/1998		5,940,120 A	8/1999	Frankhouse et al.
5,777,779 A		Hashimoto et al.	5,940,201 A	8/1999	Ash et al.
5,780,160 A		Allemand et al.	5,942,895 A	8/1999	Popovic et al.
5,786,772 A		Schofield et al.	5,947,586 A	9/1999	Weber
5,788,357 A	8/1998	Muth et al.	5,949,331 A	9/1999	Schofield et al.
5,790,298 A	8/1998	Tonar	5,949,506 A	9/1999	Jones et al.
5,790,502 A	8/1998	Horinouchi et al.	5,956,079 A	9/1999	Ridgley
5,790,973 A		Blaker et al.	5,956,181 A	9/1999	Lin
5,793,308 A		Rosinski et al.	5,959,367 A	9/1999	O'Farrell et al.
5,793,420 A		Schmidt	5,959,555 A	9/1999	Furuta
5,796,094 A	8/1998	Schofield et al.	5,959,577 A	9/1999	Fan et al.

US 8,164,817 B2 Page 6

5,963,247 A	10/1999	Banitt	6,102,546 A	8/2000	Carter
5,963,284 A	10/1999	Jones et al.	6,102,559 A	8/2000	Nold et al.
	10/1999			8/2000	
5,965,247 A		Jonza et al.	6,104,552 A		Thau et al.
5,968,538 A	10/1999	Snyder, Jr.	6,106,121 A	8/2000	Buckley et al.
5,971,552 A	10/1999	O'Farrell et al.	6,111,498 A	8/2000	Jobes et al.
5,973,760 A		Dehmlow			
			6,111,683 A	8/2000	Cammenga et al.
5,975,715 A	11/1999	Bauder	6,111,684 A	8/2000	Forgette et al.
5.984.482 A	11/1999	Rumsey et al.	6,111,685 A	8/2000	Tench et al.
, ,					
5,986,730 A		Hansen et al.	6,111,696 A	8/2000	Allen et al.
5,990,469 A	11/1999	Bechtel et al.	6,115,086 A	9/2000	Rosen
5,990,625 A	11/1999		6,115,651 A	9/2000	Cruz
5,995,180 A	11/1999	Moriwaki et al.	6,116,743 A	9/2000	Hoek
5,998,617 A	12/1999	Srinivasa et al.	6,118,219 A	9/2000	Okigami et al.
5,998,929 A		Bechtel et al.	6,122,597 A	9/2000	Saneyoshi et al.
3,996,929 A					
6,000,823 A	12/1999	Desmond et al.	6,122,921 A	9/2000	Brezoczky et al.
6,001,486 A	12/1999	Varaprasad et al.	6,124,647 A	9/2000	Marcus et al.
6,002,511 A	12/1999	Varaprasad et al.	6,124,886 A	9/2000	DeLine et al.
6,002,544 A	12/1999	Yatsu	6,127,919 A	10/2000	Wylin
6,002,983 A	12/1999		6,127,945 A	10/2000	Mura-Smith
6,005,724 A	12/1999	Todd	6,128,576 A	10/2000	Nishimoto et al.
6,007,222 A	12/1999	Thau	6,130,421 A	10/2000	Bechtel et al.
					Bauer et al.
6,008,486 A	12/1999		6,130,448 A	10/2000	
6,008,871 A	12/1999	Okumura	6,132,072 A	10/2000	Turnbull et al.
6,009,359 A	12/1999	El-Hakim et al.	6,137,620 A	10/2000	Guarr et al.
					Waldmann
6,016,035 A		Eberspächer et al.	6,139,171 A	10/2000	
6,016,215 A	1/2000	Byker	6,139,172 A	10/2000	Bos et al.
6,019,411 A	2/2000	Carter et al.	6,140,933 A	10/2000	Bugno et al.
6,019,475 A		Lynam et al.	6,142,656 A	11/2000	
6,020,987 A	2/2000	Baumann et al.	6,146,003 A	11/2000	Thau
6,021,371 A	2/2000		6,147,934 A	11/2000	Arikawa et al.
6,023,229 A	2/2000	Bugno et al.	6,148,261 A	11/2000	Obradovich et al.
6,025,872 A	2/2000	Ozaki et al.	6,149,287 A	11/2000	Pastrick et al.
6,028,537 A		Suman et al.	6,150,014 A		Chu et al.
6,037,689 A	3/2000	Bingle et al.	6,151,065 A	11/2000	Steed et al.
6,040,939 A		Demiryont et al.	6,151,539 A	11/2000	Bergholz et al.
					- C
6,042,253 A	3/2000	Fant, Jr. et al.	6,152,551 A	11/2000	Annas
6,042,934 A	3/2000	Guiselin et al.	6,152,590 A	11/2000	Fürst et al.
6,045,243 A		Muth et al.	6,154,149 A	11/2000	Tyckowski et al.
6,045,643 A	4/2000	Byker et al.	6,154,306 A	11/2000	Varaprasad et al.
6,046,766 A	4/2000	Sakata	6,157,294 A	12/2000	Urai et al.
6,046,837 A		Yamamoto	6,157,418 A	12/2000	
6,049,171 A	4/2000	Stam et al.	6,157,424 A	12/2000	Eichenlaub
D425,466 S	5/2000	Todd et al.	6,157,480 A	12/2000	Anderson et al.
6,060,989 A	5/2000	Gehlot	6,158,655 A	12/2000	DeVries, Jr. et al.
6,061,002 A	5/2000	Weber et al.	6,161,865 A	12/2000	Rose et al.
		Jordan et al.			
6,062,920 A			6,164,564 A	12/2000	Franco et al.
6,064,508 A	5/2000	Forgette et al.	6,166,625 A	12/2000	Teowee et al.
6,065,840 A	5/2000	Caskey et al.	6.166.629 A	12/2000	Hamma et al.
			, ,		
6,066,920 A		Torihara et al.	6,166,834 A	12/2000	Taketomi et al.
6,067,111 A	5/2000	Hahn et al.	6,166,847 A	12/2000	Tench et al.
6,067,500 A	5/2000	Morimoto et al.	6,166,848 A	12/2000	Cammenga et al.
6,068,380 A	5/2000	Lynn et al.	6,167,755 B1	1/2001	Damson et al.
D426,506 S	6/2000	Todd et al.	6,169,955 B1	1/2001	Fultz
D426,507 S		Todd et al.	6,170,956 B1		Rumsey et al.
D427,128 S		Mathieu	6,172,600 B1	1/2001	Kakinami et al.
6,072,391 A	6/2000	Suzukie et al.	6,172,601 B1	1/2001	Wada et al.
6,074,077 A		Pastrick et al.	6,172,613 B1	1/2001	DeLine et al.
6,074,777 A		Reimers et al.	6,173,501 B1	1/2001	Blank et al.
6,076,948 A	6/2000	Bukosky et al.	6,175,164 B1	1/2001	O'Farrell et al.
6,078,355 A		Zengel	6,175,300 B1	1/2001	Kendrick
6,078,865 A	0/2000	Koyanagi		1/2001	Pastrick et al.
D428,372 S			6,176,602 B1		A 11 1 4 1
D428,373 S	7/2000	Todd et al.	6,178,034 B1	1/2001	Allemand et al.
	7/2000		6,178,034 B1	1/2001	
	7/2000 7/2000	Todd et al.	6,178,034 B1 6,178,377 B1	1/2001 1/2001	Ishihara et al.
6,082,881 A	7/2000 7/2000 7/2000	Todd et al. Hicks	6,178,034 B1 6,178,377 B1 6,181,387 B1	1/2001 1/2001 1/2001	Ishihara et al. Rosen
6,082,881 A	7/2000 7/2000 7/2000	Todd et al. Hicks	6,178,034 B1 6,178,377 B1	1/2001 1/2001 1/2001	Ishihara et al. Rosen
6,082,881 A 6,084,700 A	7/2000 7/2000 7/2000 7/2000	Todd et al. Hicks Knapp et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1	1/2001 1/2001 1/2001 1/2001	Ishihara et al. Rosen Meek
6,082,881 A 6,084,700 A 6,086,131 A	7/2000 7/2000 7/2000 7/2000 7/2000	Todd et al. Hicks Knapp et al. Bingle et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1	1/2001 1/2001 1/2001 1/2001 2/2001	Ishihara et al. Rosen Meek Desmond et al.
6,082,881 A 6,084,700 A	7/2000 7/2000 7/2000 7/2000 7/2000	Todd et al. Hicks Knapp et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1	1/2001 1/2001 1/2001 1/2001	Ishihara et al. Rosen Meek
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1	1/2001 1/2001 1/2001 1/2001 2/2001 2/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al.
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1	1/2001 1/2001 1/2001 1/2001 2/2001 2/2001 2/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A 6,087,953 A	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al. DeLine et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1 6,185,492 B1	1/2001 1/2001 1/2001 1/2001 2/2001 2/2001 2/2001 2/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan Kagawa et al.
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1	1/2001 1/2001 1/2001 1/2001 2/2001 2/2001 2/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A 6,087,953 A 6,091,343 A	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al. DeLine et al. Dykema et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1 6,185,492 B1 6,185,501 B1	1/2001 1/2001 1/2001 1/2001 2/2001 2/2001 2/2001 2/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan Kagawa et al. Smith et al.
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A 6,087,953 A 6,091,343 A 6,093,976 A	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al. DeLine et al. Dykema et al. Kramer et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1 6,185,492 B1 6,185,501 B1 6,188,505 B1	1/2001 1/2001 1/2001 1/2001 2/2001 2/2001 2/2001 2/2001 2/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan Kagawa et al. Smith et al. Lomprey et al.
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A 6,087,953 A 6,091,343 A	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al. DeLine et al. Dykema et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1 6,185,492 B1 6,185,501 B1	1/2001 1/2001 1/2001 1/2001 2/2001 2/2001 2/2001 2/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan Kagawa et al. Smith et al.
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A 6,087,953 A 6,091,343 A 6,093,976 A 6,094,618 A	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al. DeLine et al. Dykema et al. Kramer et al. Harada	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1 6,185,492 B1 6,185,501 B1 6,188,505 B1 6,191,704 B1	1/2001 1/2001 1/2001 1/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan Kagawa et al. Smith et al. Lomprey et al. Takenaga et al.
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A 6,087,953 A 6,091,343 A 6,093,976 A 6,094,618 A D428,842 S	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 8/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al. DeLine et al. Dykema et al. Kramer et al. Harada Todd et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1 6,185,492 B1 6,185,501 B1 6,188,505 B1 6,191,704 B1 6,193,912 B1	1/2001 1/2001 1/2001 1/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan Kagawa et al. Smith et al. Lomprey et al. Takenaga et al. Thieste et al.
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A 6,087,953 A 6,091,343 A 6,093,976 A 6,094,618 A	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 8/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al. DeLine et al. Dykema et al. Kramer et al. Harada	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1 6,185,492 B1 6,185,501 B1 6,188,505 B1 6,191,704 B1	1/2001 1/2001 1/2001 1/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan Kagawa et al. Smith et al. Lomprey et al. Takenaga et al.
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A 6,087,953 A 6,091,343 A 6,093,976 A 6,094,618 A D428,842 S D429,202 S	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 8/2000 8/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al. DeLine et al. Dykema et al. Kramer et al. Harada Todd et al. Todd et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1 6,185,492 B1 6,185,501 B1 6,188,505 B1 6,191,704 B1 6,193,912 B1 6,195,194 B1	1/2001 1/2001 1/2001 1/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan Kagawa et al. Smith et al. Lomprey et al. Takenaga et al. Thieste et al. Roberts et al.
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A 6,087,953 A 6,091,343 A 6,093,976 A 6,094,618 A D428,842 S D429,202 S D430,088 S	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 8/2000 8/2000 8/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al. DeLine et al. Dykema et al. Kramer et al. Harada Todd et al. Todd et al. Todd et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1 6,185,492 B1 6,185,501 B1 6,188,505 B1 6,191,704 B1 6,193,912 B1 6,195,194 B1 6,196,688 B1	1/2001 1/2001 1/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 3/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan Kagawa et al. Smith et al. Lomprey et al. Takenaga et al. Thieste et al. Roberts et al. Caskey et al.
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A 6,087,953 A 6,091,343 A 6,093,976 A 6,094,618 A D428,842 S D429,202 S	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 8/2000 8/2000 8/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al. DeLine et al. Dykema et al. Kramer et al. Harada Todd et al. Todd et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1 6,185,492 B1 6,185,501 B1 6,188,505 B1 6,191,704 B1 6,193,912 B1 6,195,194 B1	1/2001 1/2001 1/2001 1/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan Kagawa et al. Smith et al. Lomprey et al. Takenaga et al. Thieste et al. Roberts et al.
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A 6,087,953 A 6,091,343 A 6,093,976 A 6,094,618 A D428,842 S D429,202 S D430,088 S 6,097,023 A	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 8/2000 8/2000 8/2000 8/2000 8/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al. DeLine et al. Dykema et al. Kramer et al. Harada Todd et al. Todd et al. Todd et al. Schofield et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1 6,185,492 B1 6,185,501 B1 6,188,505 B1 6,191,704 B1 6,193,912 B1 6,195,194 B1 6,196,688 B1 6,198,409 B1	1/2001 1/2001 1/2001 1/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 3/2001 3/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan Kagawa et al. Smith et al. Lomprey et al. Takenaga et al. Thieste et al. Roberts et al. Caskey et al. Schofield et al.
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A 6,087,953 A 6,091,343 A 6,093,976 A 6,094,618 A D428,842 S D429,202 S D430,088 S 6,097,023 A 6,097,0316 A	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 8/2000 8/2000 8/2000 8/2000 8/2000 8/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al. DeLine et al. Dykema et al. Kramer et al. Harada Todd et al. Todd et al. Todd et al. Schofield et al. Liaw et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1 6,185,492 B1 6,185,501 B1 6,191,704 B1 6,193,912 B1 6,195,194 B1 6,196,688 B1 6,198,409 B1 6,198,409 B1 6,199,014 B1	1/2001 1/2001 1/2001 1/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 3/2001 3/2001 3/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan Kagawa et al. Smith et al. Lomprey et al. Takenaga et al. Thieste et al. Roberts et al. Caskey et al. Schofield et al. Walker et al.
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A 6,087,953 A 6,091,343 A 6,093,976 A 6,094,618 A D428,842 S D429,202 S D430,088 S 6,097,023 A 6,097,016 A 6,099,131 A	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 8/2000 8/2000 8/2000 8/2000 8/2000 8/2000 8/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al. DeLine et al. Dykema et al. Kramer et al. Harada Todd et al. Todd et al. Schofield et al. Liaw et al. Fletcher et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1 6,185,492 B1 6,185,501 B1 6,191,704 B1 6,193,912 B1 6,195,194 B1 6,196,688 B1 6,198,409 B1 6,199,014 B1 6,199,810 B1	1/2001 1/2001 1/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 3/2001 3/2001 3/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan Kagawa et al. Smith et al. Lomprey et al. Takenaga et al. Thieste et al. Roberts et al. Caskey et al. Schofield et al. Walker et al. Wu et al.
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A 6,087,953 A 6,091,343 A 6,093,976 A 6,094,618 A D428,842 S D429,202 S D430,088 S 6,097,023 A 6,097,0316 A	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 8/2000 8/2000 8/2000 8/2000 8/2000 8/2000 8/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al. DeLine et al. Dykema et al. Kramer et al. Harada Todd et al. Todd et al. Todd et al. Schofield et al. Liaw et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1 6,185,492 B1 6,185,501 B1 6,191,704 B1 6,193,912 B1 6,195,194 B1 6,196,688 B1 6,198,409 B1 6,198,409 B1 6,199,014 B1	1/2001 1/2001 1/2001 1/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 3/2001 3/2001 3/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan Kagawa et al. Smith et al. Lomprey et al. Takenaga et al. Thieste et al. Roberts et al. Caskey et al. Schofield et al. Walker et al. Wu et al.
6,082,881 A 6,084,700 A 6,086,131 A 6,086,229 A 6,087,012 A 6,087,953 A 6,091,343 A 6,093,976 A 6,094,618 A D428,842 S D429,202 S D430,088 S 6,097,023 A 6,097,016 A 6,099,131 A	7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 7/2000 8/2000 8/2000 8/2000 8/2000 8/2000 8/2000 8/2000	Todd et al. Hicks Knapp et al. Bingle et al. Pastrick Varaprasad et al. DeLine et al. Dykema et al. Kramer et al. Harada Todd et al. Todd et al. Schofield et al. Liaw et al. Fletcher et al.	6,178,034 B1 6,178,377 B1 6,181,387 B1 6,182,006 B1 6,183,119 B1 6,184,679 B1 6,184,781 B1 6,185,492 B1 6,185,501 B1 6,191,704 B1 6,193,912 B1 6,195,194 B1 6,196,688 B1 6,198,409 B1 6,199,014 B1 6,199,810 B1	1/2001 1/2001 1/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 2/2001 3/2001 3/2001 3/2001	Ishihara et al. Rosen Meek Desmond et al. Popovic et al. Ramakesavan Kagawa et al. Smith et al. Lomprey et al. Takenaga et al. Thieste et al. Roberts et al. Caskey et al. Schofield et al. Walker et al.

6,201,642 B1	3/2001		6,329,925		12/2001	Skiver et al.
6,206,553 B1	3/2001	Boddy et al.	6,330,511	B2	12/2001	Ogura et al.
6,207,083 B1	3/2001	Varaprasad et al.	6,331,066	B1	12/2001	Desmond et al.
6,210,008 B1		Hoekstra et al.	6,333,759	B1	12/2001	Mazzilli
6,210,012 B1	4/2001		6,335,680		1/2002	Matsuoka
6,212,470 B1		Seymour et al.	6,336,737		1/2002	Thau
6,217,181 B1		Lynam et al.	6,340,850		1/2002	
6,218,934 B1	4/2001		6,341,523		1/2002	
6,222,447 B1	4/2001	Schofield et al.	6,344,805	В1	2/2002	Yasui et al.
6,222,460 B1	4/2001	DeLine et al.	6,346,698	В1	2/2002	Turnbull
6,222,689 B1	4/2001	Higuchi et al.	6,347,880	B1	2/2002	Fürst et al.
6,227,689 B1	5/2001		6,348,858		2/2002	Weis et al.
6,232,937 B1	5/2001	Jacobsen et al.	6,351,708		2/2002	Takagi et al.
6,236,514 B1	5/2001		6,353,392		3/2002	Schofield et al.
6,239,851 B1		Hatazawa et al.	6,356,206		3/2002	Takenaga et al.
6,239,898 B1	5/2001	Byker et al.	6,356,376		3/2002	Tonar et al.
6,239,899 B1	5/2001	DeVries et al.	6,356,389	В1	3/2002	Nilsen et al.
6,243,003 B1	6/2001	DeLine et al.	6,357,883	B1	3/2002	Strumolo et al.
6,244,716 B1	6/2001	Steenwyk et al.	6,362,121		3/2002	Chopin et al.
6,245,262 B1		Varaprasad et al.	6,362,548			Bingle et al.
		Van Order			3/2002	
6,247,820 B1			6,363,326			
6,249,214 B1		Kashiwazaki	6,366,013			Leenders et al.
6,249,310 B1		Lefkowitz	6,366,213	B2	4/2002	
6,249,369 B1	6/2001	Theiste et al.	6,370,329	В1	4/2002	Teuchert
6.250.148 B1	6/2001	Lynam	6,371,636	B1	4/2002	Wesson
6,250,766 B1		Strumolo et al.	6,379,013		4/2002	Bechtel et al.
6,250,783 B1		Stidham et al.	6,379,788		4/2002	Choi et al.
6,255,639 B1		Stam et al.	6,382,805		5/2002	Miyabukuro
6,257,746 B1	7/2001	Todd et al.	6,385,139		5/2002	Arikawa et al.
6,259,412 B1	7/2001	Duroux	6,386,742	В1	5/2002	DeLine et al.
6,259,475 B1	7/2001	Ramachandran et al.	6,390,529	B1	5/2002	Bingle et al.
6,260,608 B1	7/2001	Kim	6,390,626		5/2002	Knox
6,262,842 B1		Ouderkirk et al.	6,390,635		5/2002	Whitehead et al.
6,264,353 B1		Caraher et al.	6,396,397		5/2002	
		Betzitza et al.				
6,265,968 B1			6,396,408			Drummond et al.
6,268,803 B1		Gunderson et al.	6,396,637			Roest et al.
6,268,837 B1	7/2001	Kobayashi et al.	6,407,468	В1	6/2002	LeVesque et al.
6,269,308 B1	7/2001	Kodaka et al.	6,407,847	В1	6/2002	Poll et al.
6,271,901 B1	8/2001	Ide et al.	6,408,247	В1	6/2002	Ichikawa et al.
6,274,221 B2	8/2001		6,411,204		6/2002	
6,276,821 B1		Pastrick et al.	6,412,959		7/2002	Tseng
6,276,822 B1		Bedrosian et al.	6,412,973		7/2002	Bos et al.
6,277,471 B1	8/2001	Tang	6,414,910		7/2002	Kaneko et al.
6,278,271 B1	8/2001		6,415,230		7/2002	Maruko et al.
6,278,377 B1	8/2001	DeLine et al.	6,416,208	B2	7/2002	Pastrick et al.
6,278,941 B1	8/2001	Yokoyama	6,417,786	B2	7/2002	Learman et al.
6,280,068 B1	8/2001	Mertens et al.	6,418,376		7/2002	
6,280,069 B1		Pastrick et al.	6,419,300		7/2002	Pavao et al.
		Haller et al.			7/2002	
6,281,804 B1			6,420,036			Varaprasad et al.
6,286,965 B1		Caskey et al.	6,420,800		7/2002	1
6,286,984 B1	9/2001	Berg	6,420,975			DeLine et al.
6,289,332 B2	9/2001	Menig et al.	6,421,081	В1	7/2002	Markus
6,290,378 B1	9/2001	Buchalla et al.	6,424,272	В1	7/2002	Gutta et al.
6,291,905 B1	9/2001	Drummond et al.	6,424,273		7/2002	Gutta et al.
6,291,906 B1		Marcus et al.	6,424,786			Beeson et al.
6,294,989 B1	9/2001	Schofield et al.	6.424.892		7/2002	
6,296,379 B1		Pastrick	6,426,492			Bos et al.
6,297,781 B1	10/2001	Turnbull et al.	6,426,568		7/2002	
6,299,333 B1		Pastrick et al.	6,427,349			Blank et al.
6,300,879 B1	10/2001	Ragan et al.	6,428,172		8/2002	Hutzel et al.
6,301,039 B1	10/2001	Tench	6,433,676	B2	8/2002	DeLine et al.
6,304,173 B2	10/2001	Pala et al.	6,433,680	В1	8/2002	Но
6,305,807 B1		Schierbeek	6,433,914			Lomprey et al.
6,310,611 B1		Caldwell	6,437,688		8/2002	Kobayashi
6,310,714 B1		Lomprey et al.	6,438,491		8/2002	Farmer
6,310,738 B1	10/2001		6,439,755		8/2002	
6,313,454 B1		Bos et al.	6,441,872		8/2002	Но
6,314,295 B1	11/2001	Kawamoto	6,441,943	B1	8/2002	Roberts et al.
6,315,440 B1	11/2001	Satoh	6,441,963	B2	8/2002	Murakami et al.
6,317,057 B1	11/2001		6,441,964		8/2002	Chu et al.
6,317,180 B1		Kuroiwa et al.	6,445,287		9/2002	Schofield et al.
6,317,248 B1	11/2001		6,447,128		9/2002	Lang et al.
6,318,870 B1	11/2001	Spooner et al.	6,449,082	В1	9/2002	Agrawal et al.
6,320,176 B1	11/2001	Schofield et al.	6,452,533	В1	9/2002	Yamabuchi et al.
6,320,282 B1		Caldwell	6,452,572			Fan et al.
6,320,612 B1	11/2001		6,462,795		10/2002	
6,324,295 B1		Valery et al.	6,463,369		10/2002	Sadano et al.
6,326,613 B1	12/2001	Heslin et al.	6,466,701	B1	10/2002	Ejiri et al.
6,326,900 B2	12/2001	DeLine et al.	6,471,362	B1	10/2002	Carter et al.
	_		, .,		_	

US 8,164,817 B2 Page 8

6,472,977 B1	10/2002	Pöchmüller	6,621,616 B	1 9/2003	Bauer et al.
6,472,979 B2		Schofield et al.	6,624,936 B		Kotchick et al.
6,473,001 B1	10/2002		6,627,918 B		
6,474,853 B2	11/2002	Pastrick et al.	6,630,888 B		Lang et al.
6,476,731 B1	11/2002	Miki et al.	6,636,190 B		Hirakata et al.
6,477,460 B2	11/2002	Kepler	6,636,258 B		Strumolo
6,477,464 B2	11/2002	McCarthy et al.	6,638,582 B	1 10/2003	Uchiyama et al.
6,483,429 B1	11/2002	Yasui et al.	6,639,360 B		
6,483,438 B2		DeLine et al.	6,642,840 B		Lang et al.
6,483,613 B1		Woodgate et al.	6,642,851 B		DeLine et al.
6,487,500 B2		Lemelson et al.	6,646,697 B		Sekiguchi et al.
6,494,602 B2		Pastrick et al.	6,648,477 B		
6,498,620 B2		Schofield et al.	6,650,457 B		Busscher et al.
6,501,387 B2		Skiver et al.	6,657,607 B		Evanicky et al.
6,512,203 B2		Jones et al.	6,661,482 B		
6,512,624 B2		Tonar et al.	6,661,830 B		Reed et al.
6,513,252 B1		Schierbeek et al.	6,665,592 B		Kodama
6,515,581 B1	2/2003	Teowee	6,669,109 B		Ivanov et al. Park et al.
6,515,582 B1 6,515,597 B1		Wada et al.	6,669,285 B 6,670,207 B		
6,516,664 B2		Lynam	6,670,910 B		Delcheccolo et al.
6,518,691 B1	2/2003		6,670,941 B		Albu et al.
6,519,209 B1		Arikawa et al.	6,671,080 B		Poll et al.
6,520,667 B1		Mousseau	6,672,731 B		Schnell et al.
6,522,451 B1		Lynam	6,672,734 B		Lammers
6,522,969 B2		Kannonji	6,672,744 B		DeLine et al.
6,525,707 B1		Kaneko et al.	6,672,745 B		
6,534,884 B2		Marcus et al.	6,674,370 B		
6,538,709 B1		Kurihara et al.	6,675,075 B		
6,539,306 B2		Turnbull et al.	6,678,083 B		Anstee
6,542,085 B1	4/2003		6,678,614 B		
6,542,182 B1		Chautorash	6,679,608 B		Bechtel et al.
6,543,163 B1		Ginsberg	6,683,539 B		Trajkovic et al.
6,545,598 B1		de Villeroche	6,683,969 B		
6,549,253 B1		Robbie et al.	6,685,348 B		Pastrick et al.
6,549,335 B1		Trapani et al.	6,690,262 B		
6,550,949 B1		Bauer et al.	6,690,268 B		
6,552,326 B2		Turnbull	6,690,413 B		
6,553,308 B1		Uhlmann et al.	6,690,438 B		
6,559,902 B1					
		K usuna er ar	- 6 693 517 B	2 2/2004	Vict aithy et al
		Kusuda et al. Theiste et al.	6,693,517 B:		
6,560,004 B2	5/2003	Theiste et al.	6,693,518 B	2 2/2004	Kumata et al.
6,560,004 B2 6,560,027 B2	5/2003 5/2003	Theiste et al. Meine	6,693,518 B 6,693,519 B	2 2/2004 2 2/2004	Kumata et al. Keirstead
6,560,004 B2 6,560,027 B2 6,566,821 B2	5/2003 5/2003 5/2003	Theiste et al. Meine Nakatsuka et al.	6,693,518 B 6,693,519 B 6,693,524 B	2 2/2004 2 2/2004 1 2/2004	Kumata et al. Keirstead Payne
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1	5/2003 5/2003 5/2003 5/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi	6,693,518 B 6,693,519 B 6,693,524 B 6,700,692 B	2 2/2004 2 2/2004 1 2/2004 2 3/2004	Kumata et al. Keirstead Payne Tonar et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1	5/2003 5/2003 5/2003 5/2003 5/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al.	6,693,518 B 6,693,519 B 6,693,524 B 6,700,692 B 6,709,136 B	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1	5/2003 5/2003 5/2003 5/2003 5/2003 5/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi	6,693,518 B 6,693,519 B 6,693,524 B 6,700,692 B 6,709,136 B 6,713,783 B	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1	5/2003 5/2003 5/2003 5/2003 5/2003 5/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al.	6,693,518 B 6,693,519 B 6,693,524 B 6,700,692 B 6,709,136 B 6,713,783 B 6,717,109 B	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1	5/2003 5/2003 5/2003 5/2003 5/2003 5/2003 6/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al.	6,693,518 B 6,693,519 B 6,693,524 B 6,700,692 B 6,709,136 B 6,717,109 B 6,717,610 B 6,717,712 B	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,068 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,957 B1	5/2003 5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al.	6,693,518 B 6,693,519 B 6,693,524 B 6,700,692 B 6,709,136 B 6,717,109 B 6,717,610 B 6,717,712 B	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,957 B1 6,573,963 B2	5/2003 5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki	6,693,518 B 6,693,519 B 6,693,524 B 6,700,692 B 6,709,136 B 6,713,783 B 6,717,109 B 6,717,610 B	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,957 B1 6,573,963 B2 6,575,582 B2	5/2003 5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo	6,693,518 B 6,693,519 B 6,693,524 B 6,700,692 B 6,709,136 B 6,717,109 B 6,717,610 B 6,717,712 B 6,717,9215 B 6,724,446 B 6,726,337 B	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,608 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,957 B1 6,573,963 B2 6,575,543 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1	5/2003 5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi	6,693,518 B 6,693,519 B 6,693,524 B 6,700,692 B 6,709,136 B 6,717,109 B 6,717,610 B 6,717,712 B 6,717,9215 B 6,724,446 B 6,724,446 B 6,726,337 B 6,727,807 B	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,572,233 B1 6,573,957 B1 6,573,963 B2 6,575,543 B2 6,575,643 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1	5/2003 5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al.	6,693,518 B 6,693,519 B 6,693,524 B 6,700,692 B 6,709,136 B 6,713,783 B 6,717,109 B 6,717,610 B 6,717,712 B 6,719,215 B 6,724,446 B 6,724,446 B 6,727,807 B 6,727,808 B	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,572,233 B1 6,573,957 B1 6,573,953 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,479 B1 6,580,462 B2	5/2003 5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al.	6,693,518 B 6,693,519 B 6,693,524 B 6,700,692 B 6,709,136 B 6,717,109 B 6,717,610 B 6,717,610 B 6,717,612 B 6,724,446 B 6,726,337 B 6,727,807 B 6,727,808 B 6,727,804 B	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al.
6,560,004 B2 6,560,027 B2 6,566,21 B2 6,567,060 B1 6,567,708 B1 6,572,233 B1 6,573,963 B2 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,479 B1 6,580,479 B1 6,580,479 B1 6,580,562 B2 6,581,007 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Hasegawa et al.	6,693,518 B. 6,693,519 B. 6,693,524 B. 6,700,692 B. 6,709,136 B. 6,717,610 B. 6,717,712 B. 6,717,712 B. 6,719,215 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,808 B. 6,727,808 B. 6,727,808 B. 6,727,808 B.	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 4/2004 1 4/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uzimann et al. Zimmermann et al. Yasui et al.
6,560,004 B2 6,560,027 B2 6,566,027 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,957 B1 6,573,957 B2 6,575,582 B2 6,575,643 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,479 B1 6,580,562 B2 6,581,007 B2 6,583,730 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Hasegawa et al. Lang et al.	6,693,518 B. 6,693,519 B. 6,693,524 B. 6,700,692 B. 6,709,136 B. 6,717,7109 B. 6,717,712 B. 6,717,712 B. 6,717,712 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,808 B. 6,727,808 B. 6,727,848 B. 6,731,332 B. 6,734,807 B.	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Yasui et al. King
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,573,957 B1 6,573,957 B1 6,573,958 B2 6,575,582 B2 6,575,5643 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,562 B2 6,581,007 B2 6,581,730 B2 6,591,192 B2	5/2003 5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Lang et al. Lang et al. Okamura et al.	6,693,518 B 6,693,519 B 6,693,524 B 6,700,692 B 6,709,136 B 6,717,109 B 6,717,610 B 6,717,610 B 6,717,712 B 6,717,610 B 6,724,446 B 6,726,337 B 6,727,807 B 6,727,808 B 6,727,808 B 6,727,848 B 6,727,848 B 6,734,807 B 6,734,807 B 6,736,526 B	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 5/2004 1 5/2004 2 5/2004 2 5/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. King Matsuba et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,963 B2 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,562 B2 6,581,007 B2 6,583,730 B2 6,592,230 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Hasegawa et al. Lang et al. Okamura et al. Dupay	6,693,518 B 6,693,519 B 6,693,524 B 6,700,692 B 6,709,136 B 6,713,783 B 6,717,109 B 6,717,610 B 6,717,610 B 6,717,915 B 6,724,446 B 6,726,337 B 6,727,807 B 6,727,808 B 6,727,808 B 6,727,808 B 6,727,808 B 6,731,332 B 6,731,332 B 6,736,526 B 6,736,526 B	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Yasui et al. King Matsuba et al. Nixon et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,957 B1 6,573,953 B2 6,575,582 B2 6,575,643 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,479 B1 6,580,479 B2 6,581,007 B2 6,581,007 B2 6,581,007 B2 6,581,007 B2 6,591,192 B2 6,591,192 B2 6,592,230 B2 6,592,230 B2 6,593,565 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al.	6,693,518 B. 6,693,519 B. 6,693,524 B. 6,700,692 B. 6,709,136 B. 6,717,109 B. 6,717,610 B. 6,717,612 B. 6,712,15 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,808 B. 6,727,808 B. 6,734,807 B. 6,736,526 B. 6,737,630 B.	2 2/2004 2 2/2004 1 2/2004 1 3/2004 1 3/2004 1 3/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 4/2004 1 4/2004 1 5/2004 5/2004 2 5/2004 2 5/2004 2 5/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. King Matsuba et al. Nixon et al. Turnbull
6,560,004 B2 6,560,027 B2 6,566,027 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,963 B2 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,479 B1 6,580,479 B2 6,581,007 B2 6,581,007 B2 6,581,007 B2 6,591,192 B2 6,592,230 B2 6,592,230 B2 6,593,565 B2 6,593,984 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003 7/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al.	6,693,518 B. 6,693,519 B 6,693,519 B 6,700,692 B 6,709,136 B 6,717,610 B 6,717,610 B 6,717,610 B 6,724,446 B 6,726,337 B 6,727,807 B 6,727,804 B 6,731,332 B 6,734,807 B 6,736,526 B 6,737,639 B 6,737,630 B 6,737,964 B	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. King Matsuba et al. Nixon et al. Turnbull Samman et al.
6,560,004 B2 6,560,027 B2 6,566,027 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,573,967 B1 6,573,967 B2 6,575,582 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,479 B1 6,580,562 B2 6,581,007 B2 6,581,007 B2 6,591,192 B2 6,591,384 B2 6,593,984 B2 6,594,065 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003 7/2003 7/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al.	6,693,518 B. 6,693,519 B. 6,693,524 B. 6,700,692 B. 6,709,136 B. 6,717,7109 B. 6,717,712 B. 6,717,712 B. 6,717,712 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,808 B. 6,731,332 B. 6,731,332 B. 6,731,630 B. 6,737,629 B. 6,737,630 B. 6,737,630 B. 6,737,638 B.	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 1 5/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Yasui et al. King Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,963 B2 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,562 B2 6,581,007 B2 6,581,007 B2 6,591,192 B2 6,591,192 B2 6,593,565 B2 6,593,984 B2 6,593,984 B2 6,594,065 B2 6,594,067 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003 7/2003 7/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Lang et al. Ukamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Poll et al.	6,693,518 B. 6,693,519 B. 6,693,524 B. 6,690,692 B. 6,709,136 B. 6,717,109 B. 6,717,610 B. 6,717,712 B. 6,717,712 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,808 B. 6,727,808 B. 6,737,630 B. 6,737,630 B. 6,737,630 B. 6,737,964 B. 6,737,964 B. 6,737,964 B. 6,737,964 B.	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. King Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al. Uskolovsky et al. Bechtel et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,963 B2 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,562 B2 6,581,007 B2 6,581,007 B2 6,581,192 B2 6,591,192 B2 6,592,230 B2 6,593,565 B2 6,593,984 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003 7/2003 7/2003 7/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Poll et al. Kruschwitz et al. Kruschwitz et al.	6,693,518 B. 6,693,519 B. 6,693,524 B. 6,709,136 B. 6,713,783 B. 6,717,109 B. 6,717,610 B. 6,717,612 B. 6,717,612 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,808 B. 6,727,808 B. 6,731,332 B. 6,734,807 B. 6,734,807 B. 6,737,629 B. 6,737,630 B. 6,737,630 B. 6,737,640 B. 6,737,964 B. 6,737,964 B. 6,737,964 B. 6,737,964 B. 6,734,807 B. 6,737,964 B. 6,734,808 B.	2 2/2004 2 2/2004 1 2/2004 2 3/2004 1 3/2004 1 3/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 4/2004 1 5/2004 2 6/2004 2 6/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Xing Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al. Bechtel et al. Sjönell
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,963 B2 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,479 B1 6,580,479 B2 6,581,007 B2 6,581,007 B2 6,591,192 B2 6,591,192 B2 6,591,984 B2 6,593,984 B2 6,593,984 B2 6,594,065 B2 6,594,067 B2 6,594,090 B2 6,594,090 B2 6,594,090 B2 6,594,583 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Poll et al. Kruschwitz et al. Ogura et al. Ogura et al.	6,693,518 B. 6,693,519 B. 6,693,529 B. 6,690,692 B. 6,709,136 B. 6,717,109 B. 6,717,610 B. 6,717,610 B. 6,717,712 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,808 B. 6,734,807 B. 6,736,526 B. 6,737,630 B. 6,744,904 B. 6,744,904 B.	2 2/2004 2 2/2004 1 2/2004 1 2/2004 1 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 4/2004 1 4/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 6/2004 1 6/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. King Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al. Bechtel et al. Sjönell Boire et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,963 B2 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,479 B1 6,580,562 B2 6,581,007 B2 6,581,007 B2 6,581,007 B2 6,591,192 B2 6,592,230 B2 6,592,230 B2 6,593,565 B2 6,594,065 B2 6,594,065 B2 6,594,065 B2 6,594,065 B2 6,594,090 B2 6,594,090 B2 6,594,583 B2 6,594,614 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Poll et al. Kruschwitz et al. Ogura et al. Ogura et al. Ogura et al. Studt et al.	6,693,518 B. 6,693,519 B. 6,693,524 B. 6,700,692 B. 6,700,692 B. 6,713,783 B. 6,717,109 B. 6,717,712 B. 6,717,712 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,807 B. 6,737,844 B. 6,731,332 B. 6,734,807 B. 6,737,630 B. 6,744,353 B. 6,744,353 B. 6,744,716 B.	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 6/2004 1 6/2004 1 6/2004 2 6/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. King Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al. Bechtel et al. Sjönell Boire et al. Kuroiwa et al. Kuroiwa et al.
6,560,004 B2 6,560,027 B2 6,566,027 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,573,963 B2 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,479 B2 6,591,192 B2 6,591,192 B2 6,592,230 B2 6,592,30 B2 6,593,984 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,068 B2 6,594,069 B2 6,594,614 B2 6,594,614 B2 6,595,649 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Poll et al. Kruschwitz et al. Ogura et al. Studt et al. Hoekstra et al.	6,693,518 B. 6,693,519 B. 6,693,524 B. 6,700,692 B. 6,709,136 B. 6,717,7109 B. 6,717,712 B. 6,717,712 B. 6,717,712 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,808 B. 6,737,630 B. 6,744,353 B. 6,744,353 B. 6,744,353 B. 6,744,716 B. 6,748,211 B	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 6/2004 1 6/2004 1 6/2004 1 6/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Yasui et al. King Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al. Bechtel et al. Sjönell Boire et al. Kuroiwa et al. Isaac et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,562 B2 6,581,007 B2 6,581,007 B2 6,581,192 B2 6,591,192 B2 6,591,192 B2 6,593,565 B2 6,593,984 B2 6,594,067 B2 6,594,614 B2 6,595,649 B2 6,595,649 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Poll et al. Kruschwitz et al. Ogura et al. Studt et al. Hoekstra et al. Guarr et al. Guarr et al. Guarr et al.	6,693,518 B. 6,693,519 B. 6,693,519 B. 6,693,524 B. 6,709,136 B. 6,713,783 B. 6,717,109 B. 6,717,610 B. 6,717,610 B. 6,717,612 B. 6,724,446 B. 6,727,807 B. 6,727,807 B. 6,727,808 B. 6,737,629 B. 6,737,630 B. 6,737,630 B. 6,737,640 B. 6,737,640 B. 6,737,630 B. 6,737,641 B. 6,744,353 B. 6,744,716 B. 6,744,716 B. 6,744,353 B. 6,744,716 B. 6,744,716 B. 6,744,318 B.	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 6/2004 1 6/2004 1 6/2004 1 6/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Yasui et al. King Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al. Bechtel et al. Sjönell Boire et al. Kuroiwa et al. Isaac et al. Niendorf et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,573,957 B1 6,573,957 B1 6,573,953 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,562 B2 6,581,007 B2 6,581,007 B2 6,581,007 B2 6,591,192 B2 6,592,230 B2 6,591,192 B2 6,593,565 B2 6,593,984 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,068 B2 6,594,068 B2 6,594,614 B2 6,595,649 B2 6,597,489 B1 6,606,183 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Kruschwitz et al. Cogura et al. Studt et al. Hoekstra et al. Guarr et al. Guarr et al. Guarr et al. Ikai et al.	6,693,518 B. 6,693,519 B. 6,693,519 B. 6,693,519 B. 6,709,136 B. 6,709,136 B. 6,717,109 B. 6,717,610 B. 6,717,610 B. 6,717,612 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,808 B. 6,737,630 B. 6,747,716 B. 6,744,313 B. 6,744,313 B. 6,749,308 B. 6,755,542 B.	2 2/2004 2 2/2004 2 2/2004 1 2/2004 2 3/2004 1 3/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 6/2004 1 6/2004 1 6/2004 1 6/2004 1 6/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Visumermann et al. Visumermann et al. King Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al. Bechtel et al. Sjönell Boire et al. Kuroiwa et al. Kuroiwa et al. Isaac et al. Niendorf et al. Bechtel et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,963 B2 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,479 B1 6,580,479 B2 6,591,192 B2 6,591,192 B2 6,591,192 B2 6,591,4067 B2 6,593,984 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,061 B2 6,594,614 B2 6,594,614 B2 6,595,649 B2 6,597,489 B1 6,606,183 B2 6,611,202 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Foll et al. Kruschwitz et al. Ogura et al. Studt et al. Hoekstra et al. Guarr et al. Hoekstra et al. Guarr et al. Ikai et al. Schofield et al.	6,693,518 B. 6,693,519 B. 6,693,519 B. 6,693,524 B. 6,700,692 B. 6,709,136 B. 6,717,109 B. 6,717,610 B. 6,717,610 B. 6,717,612 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,808 B. 6,727,808 B. 6,734,807 B. 6,737,630 B. 6,744,904 B. 6,744,904 B. 6,744,904 B. 6,744,353 B. 6,746,755 B. 6,747,716 B. 6,744,308 B. 6,749,308 B. 6,749,308 B.	2 2/2004 2 2/2004 1 2/2004 1 2/2004 1 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 6/2004 1 6/2004 1 6/2004 1 6/2004 1 6/2004 2 6/2004 2 6/2004 2 6/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. King Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al. Bechtel et al. Sjönell Boire et al. Kuroiwa et al. Isaac et al. Niendorf et al. Bechtel et al. Skiver et al.
6,560,004 B2 6,560,027 B2 6,566,21 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,963 B2 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,479 B1 6,580,479 B2 6,591,192 B2 6,591,192 B2 6,591,962 B2 6,591,962 B2 6,591,963 B2 6,594,065 B2 6,594,066 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,614 B2 6,594,614 B2 6,594,614 B2 6,595,649 B2 6,597,489 B1 6,606,183 B2 6,611,202 B2 6,611,202 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 7/2003 8/2003 8/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Hasegawa et al. Lang et al. Okamura et al. Ouapay Heslin et al. Arakawa et al. Byker et al. Poll et al. Kruschwitz et al. Ogura et al. Studt et al. Hoekstra et al. Guarr et al. Isude et al. Guarr et al. Studt et al. Hoekstra et al. Guarr et al. Schofield et al. Nebiyeloul-Kifle et al.	6,693,518 B. 6,693,519 B. 6,693,519 B. 6,693,524 B. 6,700,692 B. 6,709,136 B. 6,717,109 B. 6,717,110 B. 6,717,712 B. 6,717,712 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,807 B. 6,737,844 B. 6,731,332 B. 6,734,807 B. 6,737,630 B. 6,737,630 B. 6,737,630 B. 6,737,630 B. 6,737,630 B. 6,737,630 B. 6,744,353 B. 6,744,353 B. 6,744,716 B. 6,744,308 B. 6,744,716 B. 6,748,211 B. 6,749,308 B. 6,749,308 B. 6,755,542 B. 6,755,542 B. 6,755,542 B.	2 2/2004 2 2/2004 1 2/2004 1 2/2004 1 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 4/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 6/2004 1 6/2004 1 6/2004 1 6/2004 1 6/2004 2 6/2004 2 6/2004 2 6/2004 2 6/2004 2 6/2004 2 6/2004 2 6/2004 2 6/2004 2 6/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Ximg Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al. Bechtel et al. Sjönell Boire et al. Kuroiwa et al. Kuroiwa et al. Niendorf et al. Bechtel et al. Skiver et al. Skiver et al.
6,560,004 B2 6,560,027 B2 6,566,21 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,963 B2 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,479 B1 6,580,479 B1 6,580,562 B2 6,581,007 B2 6,581,007 B2 6,581,007 B2 6,591,192 B2 6,592,230 B2 6,592,230 B2 6,593,565 B2 6,594,065 B2 6,594,067 B2 6,594,067 B2 6,594,069 B2 6,594,069 B2 6,594,069 B2 6,594,614 B2 6,594,614 B2 6,597,489 B1 6,661,183 B2 6,611,202 B2 6,611,202 B2 6,611,202 B2 6,611,202 B2	5/2003 5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003 8/2003 8/2003 8/2003 8/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Poll et al. Kruschwitz et al. Ogura et al. Studt et al. Hoekstra et al. Guarr et al. Ikai et al. Schofield et al. Nebiyeloul-Kifle et al. Brosche	6,693,518 B. 6,693,519 B. 6,693,524 B. 6,700,692 B. 6,700,692 B. 6,713,783 B. 6,717,109 B. 6,717,610 B. 6,717,610 B. 6,719,215 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,808 B. 6,737,630 B. 6,744,353 B. 6,744,353 B. 6,744,353 B. 6,744,353 B. 6,744,353 B. 6,746,775 B. 6,747,716 B. 6,749,308 B. 6,749,308 B. 6,749,308 B. 6,755,542 B. 6,755,542 B. 6,755,542 B. 6,757,039 B. 6,757,039 B.	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 6/2004 1 6/2004 1 6/2004 1 6/2004 2 6/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Zimmermann et al. King Matsuba et al. Nixon et al. Uskolovsky et al. Bechtel et al. Sjönell Boire et al. Kuroiwa et al. Kuroiwa et al. Niendorf et al. Bechtel et al. Sjönell Soire et al. Kuroiwa et al. Siendorf et al. Sechtel et al. Sjönell Soire et al. Kuroiwa et al. Skiver et al. Ma
6,560,004 B2 6,560,027 B2 6,560,027 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,573,963 B2 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B2 6,580,470 B2 6,581,007 B2 6,581,007 B2 6,581,007 B2 6,591,192 B2 6,592,230 B2 6,592,230 B2 6,592,30 B2 6,594,065 B2 6,594,065 B2 6,594,067 B2 6,594,067 B2 6,594,064 B2 6,594,064 B2 6,594,065 B2 6,594,065 B2 6,594,064 B2 6,594,064 B2 6,594,067 B2 6,594,068 B2 6,594,069 B2 6,594,061 B2 6,611,227 B1 6,611,227 B1 6,611,227 B1 6,611,227 B1 6,611,759 B2 6,611,387 B1	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Poll et al. Kruschwitz et al. Guarr et al. Hoekstra et al. Guarr et al. Ikai et al. Schofield et al. Nebiyeloul-Kifle et al. Brosche Deadman	6,693,518 B. 6,693,519 B. 6,693,524 B. 6,700,692 B. 6,700,692 B. 6,713,783 B. 6,717,109 B. 6,717,712 B. 6,717,712 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,808 B. 6,737,630 B. 6,744,353 B. 6,742,904 B. 6,744,353 B. 6,744,353 B. 6,747,716 B. 6,747,716 B. 6,747,716 B. 6,749,308 B. 6,755,542 B. 6,755,6912 B. 6,755,6912 B. 6,757,039 B. 6,757,039 B. 6,757,039 B. 6,757,109 B.	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 6/2004 1 6/2004 1 6/2004 1 6/2004 2 6/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Ximg Matsuba et al. Nixon et al. Uskolovsky et al. Bechtel et al. Sjönell Boire et al. Kuroiwa et al. Isaac et al. Niendorf et al. Bechtel et al. Skiver et al. Skiver et al. Ma Bos Lawlor et al.
6,560,004 B2 6,560,027 B2 6,560,027 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,573,963 B2 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B2 6,580,470 B2 6,581,007 B2 6,581,007 B2 6,581,007 B2 6,591,192 B2 6,592,230 B2 6,592,230 B2 6,592,30 B2 6,594,065 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,068 B2 6,594,069 B2 6,594,614 B2 6,594,614 B2 6,597,489 B1 6,606,183 B2 6,611,202 B2 6,611,227 B1 6,611,759 B2 6,614,387 B1 6,614,419 B1	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Poll et al. Kruschwitz et al. Ogura et al. Studt et al. Hoekstra et al. Guarr et al. Ikai et al. Schofield et al. Nebiyeloul-Kifle et al. Brosche Deadman May	6,693,518 B. 6,693,519 B. 6,693,524 B. 6,700,692 B. 6,700,692 B. 6,713,783 B. 6,717,109 B. 6,717,712 B. 6,717,712 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,808 B. 6,737,629 B. 6,737,629 B. 6,737,630 B. 6,755,542 B. 6,755,542 B. 6,757,039 B. 6,757,039 B. 6,757,039 B. 6,757,039 B. 6,757,109 B. D493,131 S. D493,394 S.	2 2/2004 2 2/2004 1 2/2004 2 3/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 6/2004 1 6/2004 1 6/2004 2 6/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Yasui et al. King Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al. Bechtel et al. Sjönell Boire et al. Kingodif et al. Isaac et al. Niendorf et al. Bechtel et al. Skiver et al. Ma Bos Lawlor et al. Lawlor et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,573,953 B2 6,573,953 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,562 B2 6,581,007 B2 6,581,007 B2 6,581,192 B2 6,591,192 B2 6,593,956 B2 6,594,067 B2 6,594,081 B2 6,594,081 B2 6,594,081 B2 6,594,081 B2 6,611,202 B2 6,611,202 B2 6,611,387 B1 6,611,379 B2 6,614,387 B1 6,614,419 B1 6,614,579 B2	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Foll et al. Kruschwitz et al. Ogura et al. Guarr et al. Ikai et al. Guarr et al. Ikai et al. Schofield et al. Nebiyeloul-Kifle et al. Brosche Deadman May Roberts et al.	6,693,518 B 6,693,519 B 6,693,519 B 6,693,519 B 6,709,136 B 6,709,136 B 6,717,109 B 6,717,610 B 6,717,610 B 6,717,612 B 6,724,446 B 6,726,337 B 6,727,807 B 6,727,807 B 6,737,630 B 6,747,716 B 6,747,710 B 6,757,039 B	2 2/2004 2 2/2004 1 2/2004 1 2/2004 2 3/2004 1 3/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 6/2004 2 6/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Zimmermann et al. Vasui et al. King Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al. Bechtel et al. Sjönell Boire et al. Kuroiwa et al. Nixon et al. Skiver et al. Bechtel et al. Skiver et al. Lawlor et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,957 B1 6,573,957 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,479 B1 6,580,479 B2 6,581,007 B2 6,581,007 B2 6,581,007 B2 6,591,192 B2 6,591,192 B2 6,591,406 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,614 B2 6,594,614 B2 6,594,614 B2 6,594,614 B2 6,594,614 B2 6,594,614 B2 6,597,489 B1 6,606,183 B2 6,611,202 B2 6,611,202 B2 6,611,207 B1 6,611,419 B1 6,614,419 B1 6,614,419 B1 6,614,419 B1 6,614,419 B1 6,614,419 B1 6,614,419 B1 6,614,579 B2 6,615,438 B1	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Foll et al. Kruschwitz et al. Ogura et al. Studt et al. Hoekstra et al. Guarr et al. Ikai et al. Risei et al. Schofield et al. Nebiyeloul-Kifle et al. Brosche Deadman May Roberts et al. Franco et al.	6,693,518 B. 6,693,519 B. 6,693,519 B. 6,693,524 B. 6,700,692 B. 6,700,692 B. 6,717,109 B. 6,717,610 B. 6,717,610 B. 6,717,610 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,808 B. 6,727,808 B. 6,731,332 B. 6,734,807 B. 6,736,526 B. 6,737,630 B. 6,740,308 B. 6,740,308 B. 6,740,308 B. 6,740,308 B. 6,755,542 B. 6,755,912 B. 6,757,109 B. D493,131 S. D493,394 S. 6,759,113 B. 6,759,113 B. 6,759,113 B. 6,759,113 B.	2 2/2004 2 2/2004 2 2/2004 1 2/2004 1 3/2004 1 3/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 6/2004 2 6/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Xing Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al. Bechtel et al. Sjönell Boire et al. Kuroiwa et al. Kuroiwa et al. Skiver et al. Bechtel et al. Skiver et al. Lawlor et al. Tang Richard
6,560,004 B2 6,560,027 B2 6,566,21 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,963 B2 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,462 B2 6,581,007 B2 6,591,192 B2 6,591,492 B2 6,591,492 B2 6,594,065 B2 6,594,066 B2 6,594,067 B2 6,594,067 B2 6,594,068 B2 6,594,069 B2 6,594,069 B2 6,594,069 B2 6,594,069 B2 6,594,061 B2 6,611,202 B2 6,611,202 B2 6,611,202 B2 6,611,202 B2 6,611,202 B2 6,611,419 B1 6,614,419 B1 6,614,479 B2 6,614,479 B2 6,614,4579 B2 6,614,4579 B2 6,616,4313 B1 6,616,4313 B1	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Poll et al. Kruschwitz et al. Ogura et al. Studt et al. Hoekstra et al. Guarr et al. Ikai et al. Schofield et al. Nebiyeloul-Kifle et al. Brosche Deadman May Roberts et al. Firanco et al. Fürst et al.	6,693,518 B. 6,693,519 B. 6,693,519 B. 6,693,524 B. 6,700,692 B. 6,709,136 B. 6,717,109 B. 6,717,610 B. 6,717,610 B. 6,717,612 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,807 B. 6,727,808 B. 6,734,807 B. 6,736,526 B. 6,737,630 B. 6,740,308 B. 6,740,308 B. 6,750,912 B. 6,750,913 B. 6,750,913 B. 6,750,915 B. 6,750,945 B. 6,750,945 B. 6,760,157 B.	2 2/2004 2 2/2004 2 2/2004 1 2/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 6/2004 2 6/2004 2 6/2004 2 6/2004 2 6/2004 1 6/2004 2 6/2004 1 6/2004 2 6/2004 2 6/2004 1 6/2004 1 6/2004 1 6/2004 1 6/2004 1 6/2004 1 7/2004 1 7/2004 1 7/2004 1 7/2004 1 7/2004 1 7/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Ximg Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al. Bechtel et al. Sjönell Boire et al. Kuroiwa et al. Niendorf et al. Bechtel et al. Skiver et al. Ma Bos Lawlor et al. Lawlor et al. Lawlor et al. Tang Richard Allen et al.
6,560,004 B2 6,560,027 B2 6,566,821 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,957 B1 6,573,957 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,479 B1 6,580,479 B2 6,581,007 B2 6,581,007 B2 6,581,007 B2 6,591,192 B2 6,591,192 B2 6,591,406 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,067 B2 6,594,614 B2 6,594,614 B2 6,594,614 B2 6,594,614 B2 6,594,614 B2 6,594,614 B2 6,597,489 B1 6,606,183 B2 6,611,202 B2 6,611,202 B2 6,611,207 B1 6,611,419 B1 6,614,419 B1 6,614,419 B1 6,614,419 B1 6,614,419 B1 6,614,419 B1 6,614,419 B1 6,614,579 B2 6,615,438 B1	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Foll et al. Kruschwitz et al. Ogura et al. Studt et al. Hoekstra et al. Guarr et al. Ikai et al. Risei et al. Schofield et al. Nebiyeloul-Kifle et al. Brosche Deadman May Roberts et al. Franco et al.	6,693,518 B. 6,693,519 B. 6,693,519 B. 6,693,524 B. 6,700,692 B. 6,700,692 B. 6,717,109 B. 6,717,610 B. 6,717,610 B. 6,717,610 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,808 B. 6,727,808 B. 6,731,332 B. 6,734,807 B. 6,736,526 B. 6,737,630 B. 6,740,308 B. 6,740,308 B. 6,740,308 B. 6,740,308 B. 6,755,542 B. 6,755,912 B. 6,757,109 B. D493,131 S. D493,394 S. 6,759,113 B. 6,759,113 B. 6,759,113 B. 6,759,113 B.	2 2/2004 2 2/2004 2 2/2004 1 2/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 6/2004 2 6/2004 2 6/2004 2 6/2004 2 6/2004 1 6/2004 2 6/2004 1 6/2004 2 6/2004 2 6/2004 1 6/2004 1 6/2004 1 6/2004 1 6/2004 1 6/2004 1 7/2004 1 7/2004 1 7/2004 1 7/2004 1 7/2004 1 7/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Xing Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al. Bechtel et al. Sjönell Boire et al. Kuroiwa et al. Kuroiwa et al. Skiver et al. Bechtel et al. Skiver et al. Lawlor et al. Tang Richard
6,560,004 B2 6,560,027 B2 6,566,21 B2 6,567,060 B1 6,567,708 B1 6,568,839 B1 6,572,233 B1 6,573,963 B2 6,573,963 B2 6,575,582 B2 6,575,643 B2 6,578,989 B2 6,580,373 B1 6,580,479 B1 6,580,462 B2 6,581,007 B2 6,591,192 B2 6,591,492 B2 6,591,492 B2 6,594,065 B2 6,594,066 B2 6,594,067 B2 6,594,067 B2 6,594,068 B2 6,594,069 B2 6,594,069 B2 6,594,069 B2 6,594,069 B2 6,594,061 B2 6,611,202 B2 6,611,202 B2 6,611,202 B2 6,611,202 B2 6,611,202 B2 6,611,419 B1 6,614,419 B1 6,614,479 B2 6,614,479 B2 6,614,4579 B2 6,614,4579 B2 6,616,4313 B1 6,616,4313 B1	5/2003 5/2003 5/2003 5/2003 5/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 6/2003 7/2003	Theiste et al. Meine Nakatsuka et al. Sekiguchi Bechtel et al. Pastrick et al. Northman et al. Suzuki Ouderkirk et al. Tenmyo Takahashi Osumi et al. Ohashi Sekiguchi et al. Aoki et al. Hasegawa et al. Lang et al. Okamura et al. Dupay Heslin et al. Arakawa et al. Byker et al. Poll et al. Kruschwitz et al. Ogura et al. Studt et al. Hoekstra et al. Guarr et al. Ikai et al. Schofield et al. Nebiyeloul-Kifle et al. Brosche Deadman May Roberts et al. Firanco et al. Fürst et al.	6,693,518 B. 6,693,519 B. 6,693,519 B. 6,693,524 B. 6,700,692 B. 6,709,136 B. 6,717,109 B. 6,717,610 B. 6,717,610 B. 6,717,612 B. 6,724,446 B. 6,726,337 B. 6,727,807 B. 6,727,807 B. 6,727,808 B. 6,734,807 B. 6,736,526 B. 6,737,630 B. 6,740,308 B. 6,740,308 B. 6,750,912 B. 6,750,913 B. 6,750,913 B. 6,750,915 B. 6,750,945 B. 6,750,945 B. 6,760,157 B.	2 2/2004 2 2/2004 1 2/2004 1 2/2004 2 3/2004 1 3/2004 1 4/2004 1 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 2 4/2004 1 4/2004 1 4/2004 1 5/2004 2 5/2004 2 5/2004 2 5/2004 2 5/2004 2 6/2004 1 6/2004 1 6/2004 2 6/2004 1 6/2004 2 6/2004 1 6/2004 2 6/2004 1 6/2004 1 6/2004 1 6/2004 2 6/2004 1 6/2004 1 6/2004 1 6/2004 1 6/2004 1 6/2004 2 6/2004 1 7/2004 1 7/2004 1 7/2004 1 7/2004 1 7/2004 1 7/2004 1 7/2004 2 7/2004 2 7/2004 2 7/2004 3 8/2004	Kumata et al. Keirstead Payne Tonar et al. Pastrick et al. Mase et al. Macher et al. Bos et al. Lynam et al. Droulliard Motomura et al. Whitehead et al. Trajkovic et al. Uselmann et al. Zimmermann et al. Ximg Matsuba et al. Nixon et al. Turnbull Samman et al. Uskolovsky et al. Bechtel et al. Sjönell Boire et al. Kuroiwa et al. Niendorf et al. Bechtel et al. Skiver et al. Ma Bos Lawlor et al. Lawlor et al. Lawlor et al. Tang Richard Allen et al.

US 8,164,817 B2Page 9

6,774,810 B2 8/2004 DeLine et al. 7,057,681 B2 6/2006 Hinat 6,778,904 B2 8/2004 Iwami et al. 7,063,893 B2 6/2006 Hoffi 6,779,900 B1 8/2004 Nolan-Brown 7,064,882 B2 6/2006 Tonat 6,784,129 B2 8/2004 Seto et al. 7,074,486 B2 7/2006 Boire 6,797,396 B1 9/2004 Liu et al. 7,081,810 B2 7/2006 Hend 6,800,871 B2 10/2004 Matsuda et al. 7,092,052 B2 8/2006 Okan 6,801,283 B2 10/2004 Koyama et al. 7,095,567 B2 8/2006 Troxe 6,805,474 B2 10/2004 Walser et al. 7,106,213 B2 9/2006 White 6,806,452 B2 10/2004 Bos et al. 7,106,392 B2 9/2006 You	a et al.
6,778,904 B2 8/2004 Iwami et al. 7,063,893 B2 6/2006 Hoffi 6,779,900 B1 8/2004 Nolan-Brown 7,064,882 B2 6/2006 Tonal 6,784,129 B2 8/2004 Seto et al. 7,074,486 B2 7/2006 Boire 6,797,396 B1 9/2004 Liu et al. 7,081,810 B2 7/2006 Hend 6,800,871 B2 10/2004 Matsuda et al. 7,092,052 B2 8/2006 Okan 6,801,283 B2 10/2004 Koyama et al. 7,106,213 B2 9/2006 White 6,805,474 B2 10/2004 Walser et al. 7,106,213 B2 9/2006 White 6,806,452 B2 10/2004 Bos et al. 7,106,392 B2 9/2006 You	
6,779,900 B1 8/2004 Nolan-Brown 7,064,882 B2 6/2006 Tonal Control	
6,784,129 B2 8/2004 Seto et al. 7,074,486 B2 7/2006 Boire 6,797,396 B1 9/2004 Liu et al. 7,081,810 B2 7/2006 Hend 6,800,871 B2 10/2004 Matsuda et al. 7,092,052 B2 8/2006 Okan 6,801,283 B2 10/2004 Koyama et al. 7,095,567 B2 8/2006 Troxe 6,805,474 B2 10/2004 Walser et al. 7,106,213 B2 9/2006 White 6,806,452 B2 10/2004 Bos et al. 7,106,392 B2 9/2006 You	
6,797,396 B1 9/2004 Liu et al. 7,081,810 B2 7/2006 Hend 6,800,871 B2 10/2004 Matsuda et al. 7,092,052 B2 8/2006 Okan 6,801,283 B2 10/2004 Koyama et al. 7,095,567 B2 8/2006 Troxe 6,805,474 B2 10/2004 Walser et al. 7,106,213 B2 9/2006 White 6,806,452 B2 10/2004 Bos et al. 7,106,392 B2 9/2006 You	
6,797,396 B1 9/2004 Liu et al. 7,081,810 B2 7/2006 Hend 6,800,871 B2 10/2004 Matsuda et al. 7,092,052 B2 8/2006 Okan 6,801,283 B2 10/2004 Koyama et al. 7,095,567 B2 8/2006 Troxe 6,805,474 B2 10/2004 Walser et al. 7,106,213 B2 9/2006 White 6,806,452 B2 10/2004 Bos et al. 7,106,392 B2 9/2006 You	et al.
6,800,871 B2 10/2004 Matsuda et al. 7,092,052 B2 8/2006 Okan 6,801,283 B2 10/2004 Koyama et al. 7,095,567 B2 8/2006 Troxe 6,805,474 B2 10/2004 Walser et al. 7,106,213 B2 9/2006 White 6,806,452 B2 10/2004 Bos et al. 7,106,392 B2 9/2006 You	
6,801,283 B2 10/2004 Koyama et al. 7,095,567 B2 8/2006 Troxe 6,805,474 B2 10/2004 Walser et al. 7,106,213 B2 9/2006 White 6,806,452 B2 10/2004 Bos et al. 7,106,392 B2 9/2006 You	
6,805,474 B2 10/2004 Walser et al. 7,106,213 B2 9/2006 White 6,806,452 B2 10/2004 Bos et al. 7,106,392 B2 9/2006 You	
6,805,474 B2 10/2004 Walser et al. 7,106,213 B2 9/2006 White 6,806,452 B2 10/2004 Bos et al. 7,106,392 B2 9/2006 You	ell et al.
6,806,452 B2 10/2004 Bos et al. 7,106,392 B2 9/2006 You	
	3
5005000 TO 400004 THE 1	
6,806,922 B2 10/2004 Ishitaka 7,108,409 B2 9/2006 DeLi:	ne et al.
6,810,323 B1 10/2004 Bullock et al. 7,114,554 B2 10/2006 Bergi	
6,812,907 B1 11/2004 Gennetten et al. 7,121,028 B2 10/2006 Shoet	n et al.
6,819,231 B2 11/2004 Berberich et al. 7,125,131 B2 10/2006 Olcza	ık
6,824,281 B2 11/2004 Schofield et al. 7,130,727 B2 10/2006 Liu e	
6,831,268 B2 12/2004 Bechtel et al. 7,132,064 B2 11/2006 Li et	al.
-,,	
6,834,969 B2 12/2004 Bade et al. 7,138,974 B2 11/2006 Hirak	ata et al.
6,836,725 B2 12/2004 Millington et al. 7,149,613 B2 12/2006 Stam	et al
6,842,276 B2 1/2005 Poll et al. 7,151,515 B2 12/2006 Kim	
6,845,805 B1 1/2005 Köster 7,151,997 B2 12/2006 Uhlm	ann et al.
6,846,098 B2 1/2005 Bourdelais et al. 7,153,588 B2 12/2006 McM	
6,847,424 B2 1/2005 Gotoh et al. 7,154,657 B2 12/2006 Poll et	
6,847,487 B2 1/2005 Burgner 7,158,881 B2 1/2007 McCi	arthy et al.
6,848,817 B2 2/2005 Bos et al. 7,160,017 B2 1/2007 Lee e	
6,849,165 B2 2/2005 Klöppel et al. 7,161,567 B2 1/2007 Hom	na et al.
6,853,491 B1 2/2005 Ruhle et al. 7,167,796 B2 1/2007 Taylo	r et al.
6,861,789 B2 3/2005 Wei 7,168,830 B2 1/2007 Pastri	ck et al.
6,870,655 B1 3/2005 Northman et al. 7,175,291 B1 2/2007 Li	
6,870,656 B2 3/2005 Tonar et al. 7,176,790 B2 2/2007 Yama	zoki
6,871,982 B2 3/2005 Holman et al. 7,184,190 B2 2/2007 McCa	abe et al.
6,877,888 B2 4/2005 DeLine et al. 7,185,995 B2 3/2007 Hatar	naka et al
	oechea et al.
6,889,064 B2 5/2005 Baratono et al. 7,188,963 B2 3/2007 Schot	field et al.
6,891,563 B2 5/2005 Schofield et al. 7,193,764 B2 3/2007 Lin e	t al
6,891,677 B2 5/2005 Nilsen et al. 7,195,381 B2 3/2007 Lyna	
6,902,284 B2 6/2005 Hutzel et al. 7,199,767 B2 4/2007 Sperd)
6,904,348 B2 6/2005 Drummond et al. 7,206,697 B2 4/2007 Olnes	
6,906,632 B2 6/2005 DeLine et al. 7,209,277 B2 4/2007 Tonal	et al.
6,909,486 B2 6/2005 Wang et al. 7,215,238 B2 5/2007 Buck	et al.
6,912,396 B2 6/2005 Sziraki et al. 7,221,363 B2 5/2007 Robe	rts et al.
6,916,099 B2 7/2005 Su et al. 7,224,324 B2 5/2007 Quist	et al.
	Ct thi.
6,922,902 B2 8/2005 Schierbeek et al. 7,227,472 B1 6/2007 Roe	
6,928,180 B2 8/2005 Stam et al. 7,230,523 B2 6/2007 Harte	r, Jr. et al.
6,928,366 B2 8/2005 Ockerse et al. 7,232,231 B2 6/2007 Shih	
6,930,737 B2 8/2005 Weindorf et al. 7,233,304 B1 6/2007 Arata	ni et al.
6,934,067 B2 8/2005 Ash et al. 7,235,918 B2 6/2007 McCo	ıllough et al.
6,946,978 B2 9/2005 Schofield 7,241,030 B2 7/2007 Mok	
6,947,576 B2 9/2005 Stam et al. 7,241,037 B2 7/2007 Math	
6,947,577 B2 9/2005 Stam et al. 7,245,207 B1 7/2007 Daya	n et al.
	r et al.
6,951,410 B2 10/2005 Parsons 7,245,336 B2 7/2007 Hiyar	na et al.
6,951,681 B2 10/2005 Hartley et al. 7,248,305 B2 7/2007 Ootst	ıta et al.
	ldo ot al
6,952,312 B2 10/2005 Weber et al. 7,251,079 B2 7/2007 Capa	ido et al.
6,958,495 B2 10/2005 Nishijima et al. 7,255,451 B2 8/2007 McCa	abe et al.
6,958,683 B2 10/2005 Mills et al. 7,255,465 B2 8/2007 DeLi:	
, , , , , , , , , , , , , , , , , , ,	
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla	n et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli	
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli	et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Kao of the state of	
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Kao of Standard Bank 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli	n et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Kao of Standard Bank 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli	
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Kao of Standard Stand	n et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Kao of 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Tenmyo 7,268,841 B2 9/2007 Kasaj 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang	n et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Kao o 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Tenmyo 7,268,841 B2 9/2007 Kasaj 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang	n et al. ima et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Kao of 7,269,342 B2 9/2007 Hesli 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Tenmyo 7,268,841 B2 9/2007 Kasaj 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang	n et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Kao of 8,2007 Hesli 6,974,236 B2 12/2005 Tenmyo 7,268,342 B2 9/2007 Hesli 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe	n et al. ima et al. er et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Kao ockerse 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Tenmyo 7,268,841 B2 9/2007 Kasa 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 McCs	n et al. ima et al. er et al. abe et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Hesli 7,262,916 B2 8/2007 Hesli 8/2007 Kao 6 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 8/2007 Hesli 8/2007 Hesli 9/2007 Hesli 9/2007 </td <td>n et al. ima et al. er et al. abe et al. aru</td>	n et al. ima et al. er et al. abe et al. aru
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Hesli 7,262,916 B2 8/2007 Hesli 8/2007 Kao 6 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 8/2007 Hesli 8/2007 Hesli 9/2007 Hesli 9/2007 </td <td>n et al. ima et al. er et al. abe et al. aru</td>	n et al. ima et al. er et al. abe et al. aru
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Hesli 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Temmyo 7,268,841 B2 9/2007 Kasag 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 MCC 6,992,718 B1 1/2006 Takahara 7,281,491 B2 10/2007 White	n et al. ima et al. er et al. abe et al. aru ehead et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Hesli 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Tenmyo 7,268,841 B2 9/2007 Kasaj 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 Iwam 7,001,058 B2 1/2006 Iwam 7,001,058 B2 1/2007 Whit 7,004,592 B2 2/2006 Inditsky 7,286,280 B2 10/2007 Carte	n et al. ima et al. er et al. abe et al. aru ehead et al. r et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Kao of 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Tenmyo 7,268,841 B2 9/2007 Kasaj 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 McCa 6,992,718 B1 1/2006 Takahara 7,281,491 B2 10/2007 White 7,004,592 B2 10/2007 White 7,004,593 B2 2/2006 Weller et al. 7,287,868 B2 10/2007	n et al. ima et al. or et al. abe et al. aru chead et al. or et al. et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Kao of 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Tenmyo 7,268,841 B2 9/2007 Kasaj 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 McCa 6,992,718 B1 1/2006 Takahara 7,281,491 B2 10/2007 White 7,004,592 B2 10/2007 White 7,004,593 B2 2/2006 Weller et al. 7,287,868 B2 10/2007	n et al. ima et al. or et al. abe et al. aru chead et al. or et al. et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Kao of 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Tenmyo 7,268,841 B2 9/2007 Kasaj 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 McCc 6,992,718 B1 1/2006 Takahara 7,281,491 B2 10/2007 Witt 7,001,058 B2 2/2006 Inditsky 7,286,280 B2 10/2007 White 7,004,593 B2 2/2006 Weller et al. 7,287,868 B2 10/2007 Uken 7,004,593 B2 2/2006 Weller et al. 7,289,037 B2 10/2007 Uken 7,006,173 B1 2/2006 Hiyama et al. 7,290,919 B2 11/2007 Pan et	n et al. ima et al. or et al. abe et al. aru shead et al. r et al. et al. et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Kao of 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Tenmyo 7,268,841 B2 9/2007 Kasaj 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 McCa 6,992,718 B1 1/2006 Takahara 7,281,491 B2 10/2007 White 7,004,592 B2 10/2007 White 7,004,593 B2 2/2006 Weller et al. 7,287,868 B2 10/2007	n et al. ima et al. or et al. abe et al. aru shead et al. r et al. et al. et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Kao 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Schofield et al. 7,268,841 B2 9/2007 Kasaj 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 Webe 6,985,291 B1 1/2006 Takahara 7,281,491 B2 10/2007 Iwam 7,001,058 B2 2/2006 Inditsky 7,286,280 B2 10/2007 White 7,004,592 B2 2/2006 Varaprasad et al. 7,287,868 B2 10/2007 Uken 7,004,593 B2 2/2006 Weller et al. 7,289,037 B2 10/2007 Uken 7,006,173 B1 2/2006 Hiyama et al. 7,299,919 B2 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,919 B2 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Pane 7,009,751 B2 3/2006 Pane 7,009,75	n et al. ima et al. or et al. abe et al. aru shead et al. et al. et al. et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Hesli 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Temmyo 7,268,841 B2 9/2007 Kasa 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 Mec 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 Mec 6,992,718 B1 1/2006 Takahara 7,281,491 B2 10/2007 Iwam 7,001,058 B2 2/2006 Inditsky 7,286,280 B2 10/2007 White 7,004,592 B2 2/2006 Weller et al. 7,287,868 B2 10/2007 Carte 7,004,593 B2 2/2006 Weller et al. 7,289,037 B2 10/2007 Uken 7,006,173 B1 2/2006 Hiyama et al. 7,290,919 B2 11/2007 Pank 7,009,751 B2 3/2006 Tonar et al. 7,290,208 B1 11/2007 Pank 7,002,543 B2 3/2006 DeLine et al. 7,290,918 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Kiyon 7,012,543	n et al. ima et al. er et al. abe et al. aru shead et al. r et al. et al. et al. et al. moto et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Hesli 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Temmyo 7,268,841 B2 9/2007 Kasag 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 McCa 6,992,718 B1 1/2006 Takahara 7,281,491 B2 10/2007 White 7,001,058 B2 2/2006 Inditsky 7,286,280 B2 10/2007 White 7,004,592 B2 2/2006 Weller et al. 7,287,868 B2 10/2007 Uken 7,004,593 B2 2/2006 Weller et al. 7,289,037 B2 10/2007 Uken 7,006,173 B1 2/2006 Tonar et al. 7,290,919 B2 11/2007 Park 7,009,751 B2 3/2006 Tonar et al. 7,390,183 B2 11/2007 Park 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Olney 7,029,156 B2 4/2006 Suehiro et al. 7,302,344 B2 11/2007 Olney 7,029,156 B2 4/2006 Suehiro et al. 7,302,344 B2 11/2007 Olney	n et al. ima et al. er et al. abe et al. aru ehead et al. r et al. et al. et al. t al. et al. moto et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Hesli 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Temmyo 7,268,841 B2 9/2007 Kasag 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 McCa 6,992,718 B1 1/2006 Takahara 7,281,491 B2 10/2007 White 7,001,058 B2 2/2006 Inditsky 7,286,280 B2 10/2007 White 7,004,592 B2 2/2006 Weller et al. 7,287,868 B2 10/2007 Uken 7,004,593 B2 2/2006 Weller et al. 7,289,037 B2 10/2007 Uken 7,006,173 B1 2/2006 Tonar et al. 7,290,919 B2 11/2007 Park 7,009,751 B2 3/2006 Tonar et al. 7,390,183 B2 11/2007 Park 7,012,543 B2 3/2006 DeLine et al. 7,300,183 B2 11/2007 Olney 7,029,156 B2 4/2006 Suehiro et al. 7,302,344 B2 11/2007 Olney 7,029,156 B2 4/2006 Suehiro et al. 7,302,344 B2 11/2007 Olney	n et al. ima et al. er et al. abe et al. aru ehead et al. r et al. et al. et al. t al. et al. moto et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Hesli 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Temmyo 7,268,841 B2 9/2007 Tang 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 Webe 6,985,291 B2 1/2006 Takahara 7,281,491 B2 10/2007 Webe 7,001,058 B2 2/2006 Inditsky 7,286,280 B2 10/2007 White 7,004,592 B2 2/2006 Watson et al. 7,287,868 B2 10/2007 Webe 7,004,593 B2 2/2006 Weller et al. 7,289,037 B2 10/2007 Uken 7,006,173 B1 2/2006 Hiyama et al. 7,289,037 B2 10/2007 Uken 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Park 7,012,543 B2 3/2006 Tonar et al. 7,390,183 B2 11/2007 Olney 7,029,156 B2 4/2006 Suehiro et al. 7,302,344 B2 11/2007 Olney 7,038,577 B2 5/2006 Pawlicki et al. 7,308,341 B2 12/2007 Schol	n et al. ima et al. ar et al. aru shead et al. r et al. et al. et al. et al. moto et al. r et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Kas of 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Temmyo 7,268,841 B2 9/2007 Kas aj 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Turnbull et al. 7,269,327 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Takahara 7,281,491 B2 10/2007 Webe 6,985,291 B2 1/2006 Takahara 7,281,491 B2 10/2007 Webe 7,004,592 B2 2/2006 Inditsky 7,286,280 B2 10/2007 White 7,004,593 B2 2/2006 Weller et al. 7,287,868 B2 10/2007 Uken 7,006,173 B1 2/2006 Hiyama et al. 7,289,037 B2 10/2007 Uken 7,009,751 B2 3/2006 Tonar et al. 7,290,919 B2 11/2007 Park 7,012,543 B2 3/2006 DeLine et al. 7,302,344 B2 11/2007 Conte 7,038,577 B2 5/2006 Pawlicki et al. 7,308,341 B2 12/2007 Schol 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7,310,177 B2 12/2007 McCand 7,041,965 B2 5/2006 Heslin et al. 7	n et al. ima et al. are et al. aru et al. r et al. r et al. r et al. t al. et al. t al. et al. / et al. field et al. abe et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Hesli 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Temmyo 7,268,841 B2 9/2007 Tang 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 Webe 6,985,291 B2 1/2006 Takahara 7,281,491 B2 10/2007 Webe 7,001,058 B2 2/2006 Inditsky 7,286,280 B2 10/2007 White 7,004,592 B2 2/2006 Watson et al. 7,287,868 B2 10/2007 Webe 7,004,593 B2 2/2006 Weller et al. 7,289,037 B2 10/2007 Uken 7,006,173 B1 2/2006 Hiyama et al. 7,289,037 B2 10/2007 Uken 7,009,751 B2 3/2006 Tonar et al. 7,299,208 B1 11/2007 Park 7,012,543 B2 3/2006 Tonar et al. 7,390,183 B2 11/2007 Olney 7,029,156 B2 4/2006 Suehiro et al. 7,302,344 B2 11/2007 Olney 7,038,577 B2 5/2006 Pawlicki et al. 7,308,341 B2 12/2007 Schol	n et al. ima et al. are et al. aru et al. r et al. r et al. r et al. t al. et al. t al. et al. / et al. field et al. abe et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Hesli 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Temmyo 7,268,841 B2 9/2007 Kasaj 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Turnbull et al. 7,269,327 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Takahara 7,281,491 B2 10/2007 Webe 7,004,592 B2 2/2006 Inditsky 7,286,280 B2 10/2007 White 7,004,592 B2 2/2006 Weller et al. 7,287,868 B2 10/2007 White 7,004,593 B2 2/2006 Weller et al. 7,289,037 B2 10/2007 Uken 7,006,173 B1 2/2006 Hiyama et al. 7,290,919 B2 11/2007 Park 7,012,543 B2 3/2006 DeLine et al. 7,309,344 B2 11/2007 Park 7,029,156 B2 4/2006 Suehiro et al. 7,302,344 B2 11/2007 Olney 7,038,577 B2 5/2006 Pawlicki et al. 7,308,341 B2 12/2007 Schot 7,041,965 B2 5/2006 Heslin et al. 7,311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12	r et al. ima et al. er et al. abe et al. aru et al. r et al. r et al. t al. et al. t al. et al. foliated et al. foliated et al. foliated et al. foliated et al. abe et al. he et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Ockerse et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Poll et al. 7,268,841 B2 9/2007 Kasa 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 Webe 6,992,718 B1 1/2006 Takahara 7,281,491 B2 10/2007 White 7,001,058 B2 2/2006 Inditsky 7,286,280 B2 10/2007 White 7,004,592 B2 2/2006 Weller et al. 7,287,868 B2 10/2007 Uken 7,004,592 B2 2/2006 Hiyama et al. 7,289,037 B2 11/2007 Ocarte 7,004,593 B2 2/2006 Hiyama et al. 7,290,919 B2 11/2007 Pan e 7,009,751 B2 3/2006 DeLine et al. 7,290,919 B2 11/2007 Pan e 7,038,577 B2 5/2006 Pawlicki et al. 7,310,177 B2 12/2007 MeCa 7,044,965 B2 5/2006 Heslin et al. 7,311,428 B2 12/2007 DeLine et al. 7,311,428 B2 12/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 12/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 Roos	n et al. ima et al. are et al. abe et al. aru chead et al. et al. et al. et al. y et al. field et al. abe et al. ne et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,262,916 B2 8/2007 Hesli 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Temmyo 7,268,841 B2 9/2007 Kasaj 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Turnbull et al. 7,269,327 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Takahara 7,281,491 B2 10/2007 Webe 7,004,592 B2 2/2006 Inditsky 7,286,280 B2 10/2007 White 7,004,592 B2 2/2006 Weller et al. 7,287,868 B2 10/2007 White 7,004,593 B2 2/2006 Weller et al. 7,289,037 B2 10/2007 Uken 7,006,173 B1 2/2006 Hiyama et al. 7,290,919 B2 11/2007 Park 7,012,543 B2 3/2006 DeLine et al. 7,309,344 B2 11/2007 Park 7,029,156 B2 4/2006 Suehiro et al. 7,302,344 B2 11/2007 Olney 7,038,577 B2 5/2006 Pawlicki et al. 7,308,341 B2 12/2007 Schot 7,041,965 B2 5/2006 Heslin et al. 7,311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12/2007 DeLic 7,042,616 B2 5/2006 Tonar et al. 7,3311,428 B2 12	n et al. ima et al. are et al. abe et al. aru chead et al. et al. et al. et al. y et al. field et al. abe et al. ne et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Busscher et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,265,342 B2 9/2007 Hesli 6,972,888 B2 12/2005 Poll et al. 7,265,342 B2 9/2007 Kasa 6,975,215 B2 12/2005 Schofield et al. 7,268,841 B2 9/2007 Tang 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Turnbull et al. 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 McCa 6,992,718 B1 1/2006 Takahara 7,281,491 B2 10/2007 Iwam 7,001,058 B2 2/2006 Inditsky 7,286,280 B2 10/2007 White 7,004,592 B2 2/2006 Weller et al. 7,287,868 B2 10/2007 Carte 7,004,593 B2 2/2006 Weller et al. 7,289,037 B2 11/2007 Pan et 7,006,173 B1 2/2006 Hiyama et al. 7,290,919 B2 11/2007 Pan et 7,009,751 B2 3/2006 Tonar et al. 7,290,919 B2 11/2007 Pan et 7,092,156 B2 4/2006 Suehiro et al. 7,300,183 B2 11/2007 Olney 7,038,577 B2 5/2006 Pawlicki et al. 7,311,428 B2 12/2007 Schot 7,044,965 B2 5/2006 Heslin et al. 7,311,428 B2 12/2007 DeLit 7,046,418 B2 5/2006 Lin et al. 7,316,485 B2 1/2008 Roos 7,046,448 B2 5/2006 Burgner 7,317,386 B2 1/2008 Leng	ret al. ima et al. aret al. abe et al. aru shead et al. et al. et al. to al. field et al. ifield et al. abe et al. abe et al. et al. field et al. abe et al. et al. abe et al. abe et al.
6,961,178 B2 11/2005 Sugino et al. 7,259,036 B2 8/2007 Borla 6,963,438 B2 11/2005 Ockerse et al. 7,262,406 B2 8/2007 Hesli 6,968,273 B2 11/2005 Ockerse et al. 7,265,342 B2 9/2007 Hesli 6,974,236 B2 12/2005 Poll et al. 7,268,841 B2 9/2007 Kasa 6,975,215 B2 12/2005 Schofield et al. 7,269,327 B2 9/2007 Tang 6,977,702 B2 12/2005 Wu 7,269,328 B2 9/2007 Tang 6,980,092 B2 12/2005 Turnbull et al. 7,271,951 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 Webe 6,985,291 B2 1/2006 Watson et al. 7,274,501 B2 9/2007 Webe 6,992,718 B1 1/2006 Takahara 7,281,491 B2 10/2007 White 7,001,058 B2 2/2006 Inditsky 7,286,280 B2 10/2007 White 7,004,592 B2 2/2006 Weller et al. 7,287,868 B2 10/2007 Uken 7,004,592 B2 2/2006 Hiyama et al. 7,289,037 B2 11/2007 Ocarte 7,004,593 B2 2/2006 Hiyama et al. 7,290,919 B2 11/2007 Pan e 7,009,751 B2 3/2006 DeLine et al. 7,290,919 B2 11/2007 Pan e 7,038,577 B2 5/2006 Pawlicki et al. 7,310,177 B2 12/2007 MeCa 7,044,965 B2 5/2006 Heslin et al. 7,311,428 B2 12/2007 DeLine et al. 7,311,428 B2 12/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 12/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 DeLine 7,046,418 B2 5/2006 Line et al. 7,311,428 B2 11/2007 Roos	ret al. ima et al. aret al. abe et al. aru shead et al. et al. et al. to al. field et al. ifield et al. abe et al. abe et al. et al. field et al. abe et al. et al. abe et al. abe et al.

7,323,819 B2	1/2008	Hong et al.	7,571,042 B2	8/2009	Taylor et al.
7,324,043 B2		Purden et al.	7,572,490 B2		Park et al.
		Yamazaki et al.			
7,324,172 B2			7,579,939 B2	8/2009	
7,324,174 B2		Hafuka et al.	7,579,940 B2	8/2009	Schofield et al.
7,324,261 B2	1/2008	Tonar et al.	7,580,795 B2	8/2009	McCarthy et al.
7,327,225 B2		Nicholas et al.	7,581,859 B2	9/2009	Lynam
7,327,226 B2		Turnbull et al.	7,581,867 B2		Lee et al.
7,327,855 B1	2/2008	Chen	7,583,184 B2	9/2009	Schofield et al.
7,328,103 B2	2/2008	McCarthy et al.	7,586,566 B2	9/2009	Nelson et al.
7,329,013 B2		Blank et al.	7,586,666 B2		McCabe et al.
7,329,850 B2	2/2008	Drummond et al.	7,589,893 B2	9/2009	Rottcher
7,331,415 B2	2/2008	Hawes et al.	7,600,878 B2	10/2009	Blank et al.
7,338,177 B2		Lynam	7,605,883 B2		Yamaki et al.
, , , , , , , , , , , , , , , , , , ,					
7,344,284 B2	3/2008	Lynam et al.	7,619,508 B2	11/2009	Lynam et al.
7,349,143 B2		Tonar et al.	7,623,202 B2	11/2009	Araki et al.
7,349,582 B2		Takeda et al.	7,626,749 B2		Baur et al.
7,355,524 B2	4/2008	Schofield	7,633,567 B2	12/2009	Yamada et al.
7,360,932 B2	4/2008	Uken et al.	7,636,188 B2	12/2009	Baur et al.
7,362,505 B2		Hikmet et al.	7,636,195 B2		Nieuwkerk et al.
7,368,714 B2		Remillard et al.	7,636,930 B2	12/2009	
7,370,983 B2	5/2008	DeWind et al.	7,643,200 B2	1/2010	Varaprasad et al.
7,372,611 B2	5/2008	Tonar et al.	7,643,927 B2	1/2010	
7,375,895 B2		Brynielsson	7,651,228 B2		Skiver et al.
7,379,224 B2	5/2008	Tonar et al.	7,658,521 B2	2/2010	DeLine et al.
7,379,225 B2	5/2008	Tonar et al.	7,663,798 B2	2/2010	Tonar et al.
7,379,243 B2		Horsten et al.	7,667,579 B2		DeLine et al.
7,379,814 B2		Ockerse et al.	7,670,016 B2		Weller et al.
7,379,817 B1	5/2008	Tyson et al.	7,688,495 B2	3/2010	Tonar et al.
7,380,633 B2		Shen et al.	7,695,174 B2	4/2010	Takayanagi et al.
7,389,171 B2	6/2008		7,696,964 B2		Lankhorst et al.
7.391.563 B2	6/2008	McCabe et al.	7,706,046 B2	4/2010	Bauer et al.
7,396,147 B2	7/2008		7,710,631 B2		McCabe et al.
7,411,732 B2		Kao et al.	7,711,479 B2		Taylor et al.
7,412,328 B2	8/2008	Uhlmann et al.	7,726,822 B2	6/2010	Blank et al.
7,417,781 B2		Tonar et al.	7,728,276 B2		Drummond et al.
/ /					
7,420,159 B2		Heslin et al.	7,728,721 B2		Schofield et al.
7,446,462 B2	11/2008	Lim et al.	7,728,927 B2	6/2010	Nieuwkerk et al.
7,446,650 B2	11/2008	Schofield et al.	7,734,392 B2	6/2010	Schofield et al.
7,446,924 B2		Schofield et al.	7,746,534 B2		Tonar et al.
7,448,776 B2	11/2008	lang	7,787,077 B2	8/2010	Kondoh et al.
7,452,090 B2	11/2008	Weller et al.	7,791,694 B2	9/2010	Molsen et al.
7,452,090 B2 7,453,057 B2	11/2008 11/2008	Weller et al. Drummond et al.	7,791,694 B2 7,795,675 B2	9/2010 9/2010	Molsen et al. Darwish et al.
7,452,090 B2	11/2008 11/2008	Weller et al.	7,791,694 B2	9/2010 9/2010	Molsen et al.
7,452,090 B2 7,453,057 B2 7,455,412 B2	11/2008 11/2008 11/2008	Weller et al. Drummond et al. Rottcher	7,791,694 B2 7,795,675 B2 7,830,583 B2	9/2010 9/2010 11/2010	Molsen et al. Darwish et al. Neuman et al.
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2	11/2008 11/2008 11/2008 12/2008	Weller et al. Drummond et al. Rottcher Schofield et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2	9/2010 9/2010 11/2010 11/2010	Molsen et al. Darwish et al. Neuman et al. Lynam
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2	11/2008 11/2008 11/2008 12/2008 12/2008	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2	9/2010 9/2010 11/2010 11/2010 * 1/2011	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2	9/2010 9/2010 11/2010 11/2010 * 1/2011	Molsen et al. Darwish et al. Neuman et al. Lynam
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2008	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al. 65/287 Boisselle et al. 65/104 Takeda et al.
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,963 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2008 1/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0022616 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 9/2001	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al. Boisselle et al. Takeda et al. Rademacher et al.
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,963 B2 7,477,439 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2008 1/2009 1/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0022616 A1 2001/0026215 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 9/2001 10/2001	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al. Takeda et al. Rademacher et al. Nakaho et al.
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,963 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2008 1/2009 1/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0022616 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 9/2001 10/2001	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al. Boisselle et al. Takeda et al. Rademacher et al.
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,963 B2 7,477,439 B2 7,480,149 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2008 1/2009 1/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0022616 A1 2001/0026316 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 9/2001 10/2001	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,963 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2008 1/2009 1/2009 1/2009 2/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0030857 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 10/2001	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al. 65/287 Boisselle et al. 65/104 Takeda et al. Rademacher et al. Nakaho et al. Senatore Futhey et al.
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,963 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2008 1/2009 1/2009 2/2009 2/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0022616 A1 2001/0026215 A1 2001/0026316 A1 2001/0030857 A1 2001/0035853 A1	9/2010 9/2010 11/2010 * 1/2011 * 7/2011 9/2001 9/2001 10/2001 10/2001 11/2001	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al. Takeda et al. Rademacher et al. Nakaho et al. Senatore Futhey et al. Hoelen et al.
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,488,074 B2	11/2008 11/2008 11/2008 11/2008 12/2008 12/2008 12/2009 1/2009 1/2009 2/2009 2/2009 2/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0030857 A1 2001/0035853 A1 2001/0045981 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,488,074 B2	11/2008 11/2008 11/2008 11/2008 12/2008 12/2008 12/2009 1/2009 1/2009 2/2009 2/2009 2/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0022616 A1 2001/0026215 A1 2001/0026316 A1 2001/0030857 A1 2001/0035853 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,963 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 1/2009 1/2009 1/2009 2/2009 2/2009 2/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Utsumi et al. Taylor et al. Tong et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0030857 A1 2001/0035853 A1 2001/0045981 A1 2002/0036828 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 3/2002	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,090 B2 7,489,374 B2 7,490,007 B2 7,490,043 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0030857 A1 2001/0035853 A1 2001/0035853 A1 2001/00358828 A1 2002/0036828 A1	9/2010 9/2010 11/2010 * 1/2011 * 7/2011 9/2001 9/2001 10/2001 10/2001 11/2001 11/2001 3/2002 4/2002	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,944 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0035853 A1 2001/0035853 A1 2001/0036828 A1 2002/00344065 A1 2002/0044965 A1	9/2010 9/2010 11/2010 * 1/2011 * 7/2011 9/2001 9/2001 10/2001 10/2001 11/2001 11/2001 11/2001 4/2002 4/2002	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,944 B2 7,490,944 B2 7,494,231 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0035853 A1 2001/003857 A1 2002/0036828 A1 2002/0044965 A1 2002/00449535 A1 2002/00485155 A1	9/2010 9/2010 11/2010 * 1/2011 * 7/2011 9/2001 9/2001 10/2001 10/2001 11/2001 11/2001 11/2001 3/2002 4/2002 4/2002 7/2002	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,943 B2 7,490,944 B2 7,490,944 B2 7,494,231 B2 7,495,719 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0035853 A1 2001/0035853 A1 2001/0036828 A1 2002/00344065 A1 2002/0044965 A1	9/2010 9/2010 11/2010 * 1/2011 * 7/2011 9/2001 9/2001 10/2001 10/2001 11/2001 11/2001 11/2001 3/2002 4/2002 4/2002 7/2002	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,943 B2 7,490,944 B2 7,490,944 B2 7,494,231 B2 7,495,719 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0022616 A1 2001/0026316 A1 2001/0035853 A1 2001/0035853 A1 2001/0035853 A1 2002/0036828 A1 2002/0044065 A1 2002/00449535 A1 2002/00485155 A1 2002/0092958 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2001 3/2002 4/2002 4/2002 7/2002 7/2002	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,944 B2 7,490,944 B2 7,494,231 B2 7,495,719 B2 7,496,439 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. DeLine et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026316 A1 2001/0026316 A1 2001/0030857 A1 2001/0036828 A1 2002/0036828 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2001 3/2002 4/2002 4/2002 7/2002 8/2002	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,080 B2 7,488,080 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,496,439 B2 7,496,439 B2 7,502,156 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0030857 A1 2001/00308583 A1 2001/0036828 A1 2002/0036828 A1 2002/0049535 A1 2002/0049535 A1 2002/0092958 A1 2002/0092958 A1 2002/0118321 A1 2002/01133144 A1	9/2010 9/2010 11/2010 * 1/2011 * 7/2011 9/2001 9/2001 10/2001 10/2001 11/2001 11/2001 11/2001 23/2002 4/2002 4/2002 7/2002 8/2002 9/2002	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,944 B2 7,494,231 B2 7,496,439 B2 7,496,439 B2 7,502,156 B2 7,503,189 B2*	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Fukuyama et al. Fukuyama et al. Fukuyama et al. Mother the services and the services all. Fukuyama et al. Fukuyama et al. Mother the services all. Mother the services all t	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0036857 A1 2001/0036828 A1 2002/0044065 A1 2002/0049535 A1	9/2010 9/2010 11/2010 * 1/2011 * 7/2011 9/2001 9/2001 10/2001 10/2001 11/2001 11/2001 11/2001 2/2002 4/2002 4/2002 7/2002 7/2002 8/2002 9/2002 10/2002	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,080 B2 7,488,080 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,496,439 B2 7,496,439 B2 7,502,156 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0030857 A1 2001/00308583 A1 2001/0036828 A1 2002/0036828 A1 2002/0049535 A1 2002/0049535 A1 2002/0092958 A1 2002/0092958 A1 2002/0118321 A1 2002/01133144 A1	9/2010 9/2010 11/2010 * 1/2011 * 7/2011 9/2001 9/2001 10/2001 10/2001 11/2001 11/2001 11/2001 2/2002 4/2002 4/2002 7/2002 7/2002 8/2002 9/2002 10/2002	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,907 B2 7,490,944 B2 7,490,944 B2 7,494,231 B2 7,494,231 B2 7,495,719 B2 7,496,439 B2 7,502,156 B2 7,503,189 B2 * 7,505,188 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2008 1/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Blank et al. Varaprasad et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Fusiyama et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0035853 A1 2001/0035853 A1 2002/00345981 A1 2002/0044065 A1 2002/0044065 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/00349537 A1 2002/0133144 A1 2002/0133144 A1 2002/0133144 A1	9/2010 9/2010 11/2010 * 1/2011 * 7/2011 9/2001 9/2001 10/2001 10/2001 11/2001 11/2001 11/2001 2/2002 4/2002 4/2002 4/2002 7/2002 8/2002 9/2002 10/2002 10/2002 10/2002	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,907 B2 7,490,944 B2 7,490,944 B2 7,494,231 B2 7,494,231 B2 7,496,439 B2 7,502,156 B2 7,503,189 B2 7,505,188 B2 7,505,188 B2 7,511,607 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Hubbard et al. Hubbard et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0022616 A1 2001/0026215 A1 2001/0030857 A1 2001/0036853 A1 2001/0045981 A1 2002/00465828 A1 2002/0044965 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/0049727 A1 2002/0154007 A1 2002/015639 A1	9/2010 9/2010 11/2010 11/2011 * 1/2011 9/2001 9/2001 10/2001 10/2001 11/2001 11/2001 11/2001 11/2002 4/2002 4/2002 7/2002 8/2002 9/2002 10/2002 10/2002 10/2002 10/2002	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,944 B2 7,490,943 B2 7,490,943 B2 7,490,943 B2 7,490,943 B2 7,490,944 B2 7,490,943 B2 7,505,18 B2 7,503,189 B2 7,503,189 B2 7,505,188 B2 7,511,607 B2 7,511,607 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Fukuyama et al. Hubbard et al. Tonar et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026316 A1 2001/0030857 A1 2001/0036858 A1 2001/0045981 A1 2002/0036828 A1 2002/0049535 A1	9/2010 9/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 4/2002 7/2002 8/2002 9/2002 10/2002 10/2002 10/2002 10/2002 1/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,488,080 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,943 B2 7,490,943 B2 7,490,943 B2 7,490,943 B2 7,490,943 B2 7,505,188 B2 7,505,188 B2 7,505,188 B2 7,511,607 B2 7,511,872 B2 7,525,715 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 4/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. DeLine et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Fukuyama et al. Hubbard et al. Tonar et al. Hubbard et al. Tonar et al. Tonar et al. Tonar et al. Hubbard et al. Tonar et al. Tonar et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0030857 A1 2001/0030857 A1 2001/0036828 A1 2002/0036828 A1 2002/0044065 A1 2002/0036828 A1 2002/0049535 A1 2002/0149727 A1 2002/0118321 A1 2002/01196639 A1 2002/0196639 A1 2003/0002165 A1 2003/0002179 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 7/2002 7/2002 8/2002 9/2002 10/2002 10/2002 12/2002 1/2003 1/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,488,080 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,943 B2 7,490,943 B2 7,490,943 B2 7,490,943 B2 7,490,943 B2 7,505,188 B2 7,505,188 B2 7,505,188 B2 7,511,607 B2 7,511,872 B2 7,525,715 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 4/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. DeLine et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Fukuyama et al. Hubbard et al. Tonar et al. Hubbard et al. Tonar et al. Tonar et al. Tonar et al. Hubbard et al. Tonar et al. Tonar et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0030857 A1 2001/0030857 A1 2001/0036828 A1 2002/0036828 A1 2002/0044065 A1 2002/0036828 A1 2002/0049535 A1 2002/0149727 A1 2002/0118321 A1 2002/01196639 A1 2002/0196639 A1 2003/0002165 A1 2003/0002179 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 7/2002 7/2002 8/2002 9/2002 10/2002 10/2002 12/2002 1/2003 1/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,480,149 B2 7,480,374 B2 7,490,007 B2 7,490,943 B2 7,490,944 B2 7,494,231 B2 7,494,231 B2 7,496,439 B2 7,505,188 B2 7,503,189 B2 7,505,188 B2 7,511,607 B2 7,511,607 B2 7,525,715 B2 7,525,715 B2 7,526,103 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2008 1/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 4/2009 4/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Fukuyama et al. Hubbard et al. Tonar et al. Tonar et al. McCabe et al. Schofield et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0036857 A1 2001/0036828 A1 2002/0036828 A1 2002/0044065 A1 2002/003681 55 A1 2002/0049535 A1 2002/01656 A1 2002/0165639 A1 2002/0154007 A1 2002/0165639 A1 2003/0002165 A1 2003/0002165 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 4/2002 7/2002 7/2002 8/2002 10/2002 10/2002 12/2002 12/2003 1/2003 1/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,944 B2 7,490,944 B2 7,494,231 B2 7,496,719 B2 7,496,439 B2 7,502,156 B2 7,503,189 B2 7,503,189 B2 7,511,607 B2 7,511,607 B2 7,511,872 B2 7,525,715 B2 7,526,103 B2 7,526,103 B2 7,533,998 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2008 1/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 4/2009 5/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Fukuyama et al. Hubbard et al. McCabe et al. Schofield et al. Schofield et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0035853 A1 2001/0035853 A1 2002/0036828 A1 2002/0044065 A1 2002/0049535 A1 2002/0196639 A1 2002/0154007 A1 2002/0196639 A1 2003/0002179 A1 2003/0002179 A1 2003/0002179 A1 2003/0002185 A1 2003/0002185 A1	9/2010 9/2010 11/2010 * 1/2011 * 7/2011 9/2001 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 4/2002 7/2002 8/2002 9/2002 10/2002 10/2002 1/2003 1/2003 1/2003 1/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,471,438 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,944 B2 7,490,944 B2 7,494,231 B2 7,494,231 B2 7,496,439 B2 7,502,156 B2 7,503,189 B2 7,503,188 B2 7,511,607 B2 7,511,872 B2 7,525,715 B2 7,525,715 B2 7,526,103 B2 7,533,998 B2 7,533,998 B2 7,533,998 B2 7,538,316 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 4/2009 4/2009 5/2009 5/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Hubbard et al. Hubbard et al. Schofield et al. Schofield et al. Heslin et al. Heslin et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0035853 A1 2001/003857 A1 2002/0036828 A1 2002/0044965 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/0149727 A1 2003/0002165 A1 2003/0002165 A1 2003/0007261 A1 2003/0007261 A1 2003/00016542 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 4/2002 7/2002 8/2002 9/2002 10/2002 10/2002 12/2002 1/2003 1/2003 1/2003 1/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,944 B2 7,490,944 B2 7,494,231 B2 7,496,719 B2 7,496,439 B2 7,502,156 B2 7,503,189 B2 7,503,189 B2 7,511,607 B2 7,511,607 B2 7,511,872 B2 7,525,715 B2 7,526,103 B2 7,526,103 B2 7,533,998 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 4/2009 4/2009 5/2009 5/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Fukuyama et al. Hubbard et al. McCabe et al. Schofield et al. Schofield et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0035853 A1 2001/003857 A1 2002/0036828 A1 2002/0044965 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/0149727 A1 2003/0002165 A1 2003/0002165 A1 2003/0007261 A1 2003/0007261 A1 2003/00016542 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 4/2002 7/2002 8/2002 9/2002 10/2002 10/2002 12/2002 1/2003 1/2003 1/2003 1/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,494,231 B2 7,495,719 B2 7,496,439 B2 7,503,189 B2 7,503,189 B2 7,503,189 B2 7,511,607 B2 7,511,607 B2 7,525,715 B2 7,525,715 B2 7,525,715 B2 7,526,103 B2 7,533,998 B2 7,533,998 B2 7,538,316 B2 7,540,620 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 3/2009 4/2009 4/2009 5/2009 5/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Hubbard et al. Tonar et al. Tonar et al. Cochofield et al. Schofield et al. Heslin et al. Weller et al. Weller et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026316 A1 2001/0026316 A1 2001/0030857 A1 2001/00368583 A1 2002/0036828 A1 2002/0044965 A1 2002/0049535 A1 2002/019639 A1 2002/019639 A1 2003/0002165 A1 2003/0002165 A1 2003/0016287 A1 2003/0016542 A1 2003/0016542 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2002 4/2002 4/2002 4/2002 7/2002 8/2002 10/2002 10/2002 11/2003 1/2003 1/2003 1/2003 1/2003 2/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,439 B2 7,488,080 B2 7,488,080 B2 7,488,080 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,943 B2 7,490,943 B2 7,495,719 B2 7,505,188 B2 7,505,188 B2 7,505,156 B2 7,505,188 B2 7,511,607 B2 7,511,872 B2 7,525,715 B2 7,526,103 B2 7,533,988 B2 7,533,988 B2 7,538,316 B2 7,538,316 B2 7,538,316 B2 7,538,316 B2 7,538,316 B2 7,534,570 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 4/2009 4/2009 5/2009 5/2009 6/2009 6/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Tonar et al. Hubbard et al. McCabe et al. Schofield et al. Schofield et al. Heslin et al. Weller et al. Drummond et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0030857 A1 2001/0036858 A1 2002/0036828 A1 2002/0049535 A1 2002/0036828 A1 2002/0049535 A1 2002/018321 A1 2002/0196639 A1 2002/0196639 A1 2003/0002165 A1 2003/0016542 A1 2003/0016542 A1 2003/0016542 A1 2003/0016542 A1 2003/0016542 A1 2003/0016542 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 7/2002 7/2002 7/2002 10/2002 10/2002 11/2003 1/2003 1/2003 1/2003 1/2003 2/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,494,231 B2 7,495,719 B2 7,496,439 B2 7,503,189 B2 7,503,189 B2 7,503,189 B2 7,511,607 B2 7,511,607 B2 7,525,715 B2 7,525,715 B2 7,525,715 B2 7,526,103 B2 7,533,998 B2 7,533,998 B2 7,538,316 B2 7,540,620 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 4/2009 4/2009 5/2009 5/2009 6/2009 6/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Hubbard et al. Tonar et al. Tonar et al. Cochofield et al. Schofield et al. Heslin et al. Weller et al. Weller et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026316 A1 2001/0026316 A1 2001/0030857 A1 2001/00368583 A1 2002/0036828 A1 2002/0044965 A1 2002/0049535 A1 2002/019639 A1 2002/019639 A1 2003/0002165 A1 2003/0002165 A1 2003/0016287 A1 2003/0016542 A1 2003/0016542 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 7/2002 7/2002 7/2002 10/2002 10/2002 11/2003 1/2003 1/2003 1/2003 1/2003 2/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,439 B2 7,488,080 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,943 B2 7,490,944 B2 7,494,231 B2 7,496,439 B2 7,505,188 B2 7,505,188 B2 7,505,188 B2 7,511,607 B2 7,511,607 B2 7,511,872 B2 7,525,715 B2 7,526,103 B2 7,533,998 B2 7,533,998 B2 7,533,998 B2 7,5340,620 B2 7,541,570 B2 7,541,570 B2 7,541,570 B2 7,541,570 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 3/2009 3/2009 5/2009 6/2009 6/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Fukuyama et al. Hubbard et al. McCabe et al. Schofield et al. Heslin et al. Weller et al. Drummond et al. McCabe et al. Drummond et al. McCabe et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026316 A1 2001/0026316 A1 2001/0030857 A1 2001/0036828 A1 2002/0036828 A1 2002/0044065 A1 2002/0036828 A1 2002/0044065 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/0036828 A1 2002/0049535 A1 2002/0036828 A1 2002/0049535 A1 2002/00365155 A1 2002/0118321 A1 2002/0118321 A1 2002/0118321 A1 2002/0118321 A1 2002/0196639 A1 2003/0002165 A1 2003/0002165 A1 2003/00025696 A1 2003/0016542 A1 2003/0035596 A1 2003/0035596 A1 2003/0030544 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 4/2002 7/2002 8/2002 10/2002 10/2002 11/2003 1/2003 1/2003 1/2003 1/2003 2/2003 2/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,480,149 B2 7,480,007 B2 7,490,007 B2 7,490,904 B2 7,490,944 B2 7,490,943 B2 7,490,944 B2 7,490,948 B2 7,505,188 B2 7,505,188 B2 7,505,188 B2 7,505,188 B2 7,511,607 B2 7,525,715 B2 7,525,715 B2 7,525,715 B2 7,525,715 B2 7,525,715 B2 7,526,103 B2 7,533,998 B2 7,533,998 B2 7,533,998 B2 7,540,620 B2 7,541,570 B2 7,541,570 B2 7,541,570 B2 7,542,193 B2 7,543,947 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 3/2009 5/2009 5/2009 6/2009 6/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Fukuyama et al. Hubbard et al. Tonar et al. Schofield et al. Schofield et al. Heslin et al. Weller et al. Drummond et al. McCabe et al. Drummond et al. McCabe et al. Drummond et al. McCabe et al. Varaprasad et al. McCabe et al. Varaprasad et al. Varaprasad et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0036857 A1 2001/0036858 A1 2002/0036828 A1 2002/0044065 A1 2002/003681 A1 2002/00499535 A1 2002/0049535 A1 2002/004965 A1 2002/004965 A1 2002/004965 A1 2002/0118321 A1 2002/0118321 A1 2002/0116639 A1 2002/0196639 A1 2003/0002165 A1 2003/0002165 A1 2003/0002165 A1 2003/000564 A1 2003/0016542 A1 2003/0036546 A1 2003/0035559 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 4/2002 4/2002 10/2002 10/2002 10/2002 12/2002 1/2003 1/2003 1/2003 1/2003 1/2003 2/2003 2/2003 2/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,480,149 B2 7,480,99 B2 7,489,374 B2 7,490,007 B2 7,490,944 B2 7,490,944 B2 7,494,231 B2 7,496,439 B2 7,502,156 B2 7,503,189 B2 7,505,188 B2 7,511,607 B2 7,541,570 B2 7,540,620 B2 7,541,570 B2 7,542,193 B2 7,542,193 B2 7,542,193 B2 7,542,193 B2 7,544,467 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 5/2009 5/2009 6/2009 6/2009 6/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Hubbard et al. Tonar et al. Schofield et al. Schofield et al. Heslin et al. Weller et al. Drummond et al. McCabe et al. Drummond et al. Varaprasad et al. Varaprasad et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0035853 A1 2001/003857 A1 2002/0036828 A1 2002/0044065 A1 2002/0044065 A1 2002/0049535 A1 2002/0049535 A1 2002/0118321 A1 2002/0133144 A1 2002/0133144 A1 2002/0133144 A1 2002/0154007 A1 2003/0002179 A1 2003/0002179 A1 2003/0002179 A1 2003/0002179 A1 2003/0002179 A1 2003/0005596 A1 2003/0035050 A1 2003/0035050 A1 2003/0035050 A1 2003/0035050 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 4/2002 7/2002 8/2002 10/2002 10/2002 11/2003 1/2003 1/2003 1/2003 2/2003 2/2003 3/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,480,149 B2 7,480,007 B2 7,490,007 B2 7,490,904 B2 7,490,944 B2 7,490,943 B2 7,490,944 B2 7,490,948 B2 7,505,188 B2 7,505,188 B2 7,505,188 B2 7,505,188 B2 7,511,607 B2 7,525,715 B2 7,525,715 B2 7,525,715 B2 7,525,715 B2 7,525,715 B2 7,526,103 B2 7,533,998 B2 7,533,998 B2 7,533,998 B2 7,540,620 B2 7,541,570 B2 7,541,570 B2 7,541,570 B2 7,542,193 B2 7,543,947 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 5/2009 5/2009 6/2009 6/2009 6/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Fukuyama et al. Hubbard et al. Tonar et al. Schofield et al. Schofield et al. Heslin et al. Weller et al. Drummond et al. McCabe et al. Drummond et al. McCabe et al. Drummond et al. McCabe et al. Varaprasad et al. McCabe et al. Varaprasad et al. Varaprasad et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0036857 A1 2001/0036858 A1 2002/0036828 A1 2002/0044065 A1 2002/003681 A1 2002/00499535 A1 2002/0049535 A1 2002/004965 A1 2002/004965 A1 2002/004965 A1 2002/0118321 A1 2002/0118321 A1 2002/0116639 A1 2002/0196639 A1 2003/0002165 A1 2003/0002165 A1 2003/0002165 A1 2003/000564 A1 2003/0016542 A1 2003/0036546 A1 2003/0035559 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 4/2002 7/2002 8/2002 10/2002 10/2002 11/2003 1/2003 1/2003 1/2003 2/2003 2/2003 3/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,944 B2 7,490,943 B2 7,490,944 B2 7,494,231 B2 7,496,719 B2 7,502,156 B2 7,503,189 B2 7,503,189 B2 7,503,189 B2 7,511,607 B2 7,511,607 B2 7,511,872 B2 7,525,715 B2 7,525,715 B2 7,526,103 B2 7,533,998 B2 7,533,998 B2 7,533,998 B2 7,534,947 B2 7,542,193 B2 7,542,193 B2 7,543,947 B2 7,543,947 B2 7,544,291 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2008 1/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 5/2009 6/2009 6/2009 6/2009 6/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Hubbard et al. Hubbard et al. Schofield et al. Schofield et al. Heslin et al. Weller et al. Drummond et al. McCabe et al. Varaprasad et al. Olson et al. Lee et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0035853 A1 2001/003857 A1 2002/0036828 A1 2002/0044965 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/0133144 A1 2002/0133144 A1 2002/0149727 A1 2002/0154007 A1 2002/0154007 A1 2002/016639 A1 2003/0002179 A1 2003/0002179 A1 2003/0002165 A1 2003/00025596 A1 2003/0035596 A1 2003/0035596 A1 2003/0035050 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2002 4/2002 4/2002 4/2002 7/2002 8/2002 9/2002 10/2002 11/2003 1/2003 1/2003 2/2003 2/2003 3/2003 3/2003 3/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,943 B2 7,490,51 B2 7,503,189 B2 7,541,670 B2 7,542,193 B2 7,543,947 B2 7,547,467 B2 7,548,291 B2 7,548,291 B2 7,545,354 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 3/2009 6/2009 6/2009 6/2009 6/2009 6/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Hubbard et al. Tonar et al. Schofield et al. Schofield et al. Heslin et al. Weller et al. Drummond et al. Weller et al. Drummond et al. Varaprasad et al. Olson et al. Lee et al. Lee et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026316 A1 2001/0026316 A1 2001/0030857 A1 2001/0036858 A1 2002/0045981 A1 2002/0036828 A1 2002/0049535 A1 2002/0036828 A1 2002/0049535 A1 2002/0036828 A1 2002/0049535 A1 2002/0036828 A1 2002/0159072 A1 2003/0030727 A1 2003/00016287 A1 2003/0016287 A1 2003/0016542 A1 2003/0036546 A1 2003/00305566 A1 2003/00305569 A1 2003/0035050 A1 2003/0035050 A1 2003/0048589 A1 2003/0048639 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2002 4/2002 4/2002 4/2002 7/2002 8/2002 10/2002 10/2002 11/2003 1/2003 1/2003 1/2003 2/2003 2/2003 2/2003 3/2003 3/2003 3/2003 3/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,439 B2 7,480,149 B2 7,488,080 B2 7,488,080 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,943 B2 7,490,943 B2 7,490,5719 B2 7,503,189 B2 7,503,189 B2 7,505,156 B2 7,501,1607 B2 7,511,607 B2 7,511,872 B2 7,526,103 B2 7,533,998 B2 7,533,998 B2 7,533,998 B2 7,533,918 B2 7,543,947 B2 7,548,291 B2 7,548,291 B2 7,548,291 B2 7,5548,291 B2 7,5548,291 B2 7,5548,291 B2 7,5548,291 B2 7,5548,291 B2 7,5541,818	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 4/2009 4/2009 6/2009 6/2009 6/2009 6/2009 6/2009 6/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. DeLine et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Lukuyama et al. McCabe et al. Schofield et al. Schofield et al. Drummond et al. McCabe et al. Orummond et al. McCabe et al. Orummond et al. McCabe et al. Colson et al. Lee et al. Horsten et al. Lee et al. Horsten et al. Schofield et al. Schofield et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026316 A1 2001/0026316 A1 2001/0030857 A1 2001/0036828 A1 2002/0036828 A1 2002/0049535 A1 2002/0036828 A1 2002/0049535 A1 2002/018321 A1 2002/0196639 A1 2002/0196639 A1 2003/0002165 A1 2003/0002165 A1 2003/0016287 A1 2003/0016542 A1 2003/00305266 A1 2003/00305266 A1 2003/00305269 A1 2003/0048639 A1 2003/0048639 A1 2003/0048639 A1 2003/0048639 A1 2003/0048639 A1 2003/0048639 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 7/2002 7/2002 10/2002 10/2002 11/2003 1/2003 1/2003 1/2003 2/2003 2/2003 2/2003 3/2003 3/2003 3/2003 3/2003 3/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,943 B2 7,490,51 B2 7,503,189 B2 7,541,670 B2 7,542,193 B2 7,543,947 B2 7,547,467 B2 7,548,291 B2 7,548,291 B2 7,545,354 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 4/2009 4/2009 6/2009 6/2009 6/2009 6/2009 6/2009 6/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Kikuchi et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Hubbard et al. Tonar et al. Schofield et al. Schofield et al. Heslin et al. Weller et al. Drummond et al. Weller et al. Drummond et al. Varaprasad et al. Olson et al. Lee et al. Lee et al.	7,791,694 B2 7,795,675 B2 7,830,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026316 A1 2001/0026316 A1 2001/0030857 A1 2001/0036858 A1 2002/0045981 A1 2002/0036828 A1 2002/0049535 A1 2002/0036828 A1 2002/0049535 A1 2002/0036828 A1 2002/0049535 A1 2002/0036828 A1 2002/0159072 A1 2003/0030727 A1 2003/00016287 A1 2003/0016287 A1 2003/0016542 A1 2003/0036546 A1 2003/00305566 A1 2003/00305569 A1 2003/0035050 A1 2003/0035050 A1 2003/0048589 A1 2003/0048639 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 7/2002 7/2002 10/2002 10/2002 11/2003 1/2003 1/2003 1/2003 2/2003 2/2003 2/2003 3/2003 3/2003 3/2003 3/2003 3/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,439 B2 7,488,080 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,943 B2 7,490,944 B2 7,494,231 B2 7,496,439 B2 7,505,188 B2 7,505,188 B2 7,505,188 B2 7,511,607 B2 7,511,607 B2 7,511,872 B2 7,525,715 B2 7,526,103 B2 7,533,998 B2 7,533,998 B2 7,533,998 B2 7,540,620 B2 7,541,570 B2 7,541,570 B2 7,542,193 B2 7,543,947 B2 7,547,467 B2 7,543,947 B2 7,541,570 B2 7,543,947 B2 7,543,947 B2 7,541,570 B2 7,543,947 B2 7,543,947 B2 7,541,570 B2 7,543,947 B2 7,541,570 B2 7,541,570 B2 7,541,570 B2 7,543,947 B2 7,541,570 B2 7,543,947 B2 7,541,570 B2 7,541,570 B2 7,543,947 B2 7,541,570 B2 7,542,193 B2 7,541,570 B2 7,543,947 B2 7,543,947 B2 7,541,5181 B2 7,561,181 B2 7,561,181 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 3/2009 6/2009 6/2009 6/2009 6/2009 6/2009 6/2009 6/2009 7/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Fogg et al. Utsumi et al. Eal. Blank et al. Varaprasad et al. Adachi et al. Fukuyama et al. Fukuyama et al. Fukuyama et al. Fukuyama et al. Hubbard et al. Schofield et al. Schofield et al. Heslin et al. Drummond et al. McCabe et al. Drummond et al. McCabe et al. Lee et al. Horsten et al. Lee et al. Horsten et al. Schofield et al. Lee et al. Horsten et al. Schofield et al. Cortenraad et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0036857 A1 2001/0036858 A1 2002/0036828 A1 2002/0044065 A1 2002/0036828 A1 2002/0044065 A1 2002/0049535 A1 2002/0036828 A1 2002/0049535 A1 2002/003654 A1 2003/0045981 A1 2003/002165 A1 2003/0007261 A1 2003/0007261 A1 2003/0016584 A1 2003/0035596 A1 2003/0035596 A1 2003/0035596 A1 2003/0035596 A1 2003/0035269 A1 2003/0043589 A1 2003/0043589 A1 2003/0045969 A1 2003/0045969 A1 2003/0045969 A1 2003/0045969 A1 2003/0045969 A1 2003/0045969 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 4/2002 7/2002 8/2002 10/2002 10/2002 11/2003 1/2003 1/2003 1/2003 2/2003 2/2003 2/2003 3/2003 3/2003 3/2003 3/2003 3/2003 3/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,477,439 B2 7,480,149 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,007 B2 7,490,943 B2 7,490,944 B2 7,490,943 B2 7,495,719 B2 7,505,188 B2 7,505,188 B2 7,505,188 B2 7,511,607 B2 7,511,607 B2 7,511,607 B2 7,511,872 B2 7,511,872 B2 7,511,872 B2 7,525,715 B2 7,525,715 B2 7,525,715 B2 7,525,715 B2 7,533,998 B2 7,533,998 B2 7,534,6620 B2 7,541,570 B2 7,541,570 B2 7,542,193 B2 7,543,947 B2 7,543,947 B2 7,547,467 B2 7,548,291 B2 7,548,291 B2 7,551,354 B2 7,561,181 B2 7,562,985 B2 7,567,291 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 3/2009 6/2009 6/2009 6/2009 6/2009 6/2009 6/2009 7/2009 7/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Tonar et al. DeWard et al. Skiver et al. Fogg et al. Utsumi et al. Taylor et al. Blank et al. Varaprasad et al. Adachi et al. McCormick Tonar et al. Fukuyama et al. Fukuyama et al. Hubbard et al. Schofield et al. Schofield et al. Heslin et al. Weller et al. Drummond et al. McCabe et al. Schofield et al. Horsten et al. Schofield et al. Cortenraad et al. Cortenraad et al. Bechtel et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0030857 A1 2001/0035853 A1 2001/0036828 A1 2002/0044065 A1 2002/00368155 A1 2002/0049535 A1 2002/0049535 A1 2002/0049535 A1 2002/0036155 A1 2002/00118321 A1 2002/0118321 A1 2002/0118321 A1 2002/0118321 A1 2002/0154007 A1 2002/0156407 A1 2003/0002165 A1 2003/0002165 A1 2003/0002165 A1 2003/00025596 A1 2003/0035506 A1 2003/0035506 A1 2003/0035506 A1 2003/0035506 A1 2003/0035506 A1 2003/0035506 A1 2003/0035509 A1 2003/0043269 A1 2003/0043269 A1 2003/00452969 A1 2003/00452969 A1 2003/00452969 A1 2003/0045838 A1 2003/0058338 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 4/2002 4/2002 10/2002 10/2002 12/2003 1/2003 1/2003 1/2003 2/2003 2/2003 3/2003 3/2003 3/2003 3/2003 3/2003 3/2003 4/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al
7,452,090 B2 7,453,057 B2 7,455,412 B2 7,460,007 B2 7,467,883 B2 7,468,651 B2 7,471,438 B2 7,474,439 B2 7,488,080 B2 7,488,080 B2 7,488,099 B2 7,489,374 B2 7,490,007 B2 7,490,943 B2 7,490,943 B2 7,490,944 B2 7,494,231 B2 7,496,439 B2 7,505,188 B2 7,505,188 B2 7,505,188 B2 7,511,607 B2 7,511,607 B2 7,511,872 B2 7,525,715 B2 7,526,103 B2 7,533,998 B2 7,533,998 B2 7,533,998 B2 7,540,620 B2 7,541,570 B2 7,541,570 B2 7,542,193 B2 7,543,947 B2 7,547,467 B2 7,543,947 B2 7,541,570 B2 7,543,947 B2 7,543,947 B2 7,541,570 B2 7,543,947 B2 7,543,947 B2 7,541,570 B2 7,543,947 B2 7,541,570 B2 7,541,570 B2 7,541,570 B2 7,543,947 B2 7,541,570 B2 7,543,947 B2 7,541,570 B2 7,541,570 B2 7,543,947 B2 7,541,570 B2 7,542,193 B2 7,541,570 B2 7,543,947 B2 7,543,947 B2 7,541,5181 B2 7,561,181 B2 7,561,181 B2	11/2008 11/2008 11/2008 12/2008 12/2008 12/2008 12/2009 1/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 2/2009 3/2009 3/2009 3/2009 3/2009 3/2009 3/2009 6/2009 6/2009 6/2009 6/2009 6/2009 6/2009 7/2009 7/2009	Weller et al. Drummond et al. Rottcher Schofield et al. DeLine et al. DeLine et al. DeLine et al. McCabe et al. Taylor et al. Fogg et al. Utsumi et al. Eal. Blank et al. Varaprasad et al. Adachi et al. Fukuyama et al. Fukuyama et al. Fukuyama et al. Fukuyama et al. Hubbard et al. Schofield et al. Schofield et al. Heslin et al. Drummond et al. McCabe et al. Drummond et al. McCabe et al. Lee et al. Horsten et al. Lee et al. Horsten et al. Schofield et al. Lee et al. Horsten et al. Schofield et al. Cortenraad et al.	7,791,694 B2 7,795,675 B2 7,836,583 B2 7,842,154 B2 7,866,187 B2 7,975,509 B2 2001/0019356 A1 2001/0026215 A1 2001/0026316 A1 2001/0036857 A1 2001/0036858 A1 2002/0036828 A1 2002/0044065 A1 2002/0036828 A1 2002/0044065 A1 2002/0049535 A1 2002/0036828 A1 2002/0049535 A1 2002/003654 A1 2003/0045981 A1 2003/002165 A1 2003/0007261 A1 2003/0007261 A1 2003/0016584 A1 2003/0035596 A1 2003/0035596 A1 2003/0035596 A1 2003/0035596 A1 2003/0035269 A1 2003/0043589 A1 2003/0043589 A1 2003/0045969 A1 2003/0045969 A1 2003/0045969 A1 2003/0045969 A1 2003/0045969 A1 2003/0045969 A1	9/2010 9/2010 11/2010 11/2010 * 1/2011 * 7/2011 9/2001 10/2001 10/2001 11/2001 11/2001 11/2002 4/2002 4/2002 4/2002 4/2002 10/2002 10/2002 12/2003 1/2003 1/2003 1/2003 2/2003 2/2003 3/2003 3/2003 3/2003 3/2003 3/2003 3/2003 4/2003	Molsen et al. Darwish et al. Neuman et al. Lynam Boisselle et al

2003/0088361 A1		Sekiguchi	2006/0187378			Bong et al.
2003/0090568 A1	5/2003		2006/0274218		12/2006	
2003/0090569 A1	5/2003	Poechmueller	2006/0279522		12/2006	Kurihara
2003/0090570 A1	5/2003	Takagi et al.	2007/0041096	A1	2/2007	Nieuwkerk et al.
2003/0095331 A1	5/2003	Bengoechea et al.	2007/0058257	A1	3/2007	Lynam
2003/0098908 A1	5/2003	Misaiji et al.	2007/0064108	A1	3/2007	Haler
2003/0101749 A1		Lingle et al.	2007/0080585		4/2007	
2003/0103142 A1		Hitomi et al.	2007/0118287		5/2007	Taylor et al.
2003/0103142 A1		Okada	2007/0183037		8/2007	De Boer et al.
	7/2003	Minaudo et al.				
2003/0122929 A1			2007/0183066		8/2007	Varaprasad et al.
2003/0133014 A1		Mendoza	2007/0184284			Varaprasad et al.
2003/0137586 A1		Lewellen	2007/0201122		8/2007	Dozeman et al.
2003/0141965 A1		Gunderson et al.	2007/0262732		11/2007	Shen
2003/0146831 A1	8/2003	Berberich et al.	2008/0002106	A1	1/2008	Van De Witte et al.
2003/0156193 A1	8/2003	Nakamura	2008/0030311	A1	2/2008	Dayan et al.
2003/0169158 A1	9/2003	Paul, Jr.	2008/0068520	A1	3/2008	Minikey, Jr. et al.
2003/0179293 A1	9/2003	Oizumi	2008/0077882	A1		Kramer et al.
2003/0202096 A1	10/2003		2008/0094685			Varaprasad et al.
2003/0206256 A1		Drain et al.	2008/0180529		7/2008	Taylor et al.
2003/0200230 A1 2003/0214576 A1			2008/0180781			Varaprasad et al.
	11/2003					
2003/0214584 A1		Ross, Jr.	2008/0212189			Baur et al.
2003/0214733 A1		Fujikawa et al.	2008/0225538			Lynam et al.
2003/0222793 A1	12/2003	Tanaka et al.	2008/0231704			Schofield et al.
2003/0222983 A1	12/2003	Nobori et al.	2008/0266389	A1	10/2008	DeWind et al.
2003/0227546 A1	12/2003	Hilborn et al.	2008/0291522	A1	11/2008	Varaprasad et al.
2004/0004541 A1	1/2004	Hong	2009/0002491	A1	1/2009	Haler
2004/0027695 A1	2/2004		2009/0015736	A1	1/2009	Weller et al.
2004/0032321 A1	2/2004	McMahon et al.	2009/0033837		2/2009	
2004/0032655 A1	2/2004	Kikuchi et al.	2009/0040465		2/2009	
2004/0032676 A1		Drummond et al.			2/2009	
			2009/0040588			
2004/0036768 A1	2/2004		2009/0040778		2/2009	
2004/0046870 A1	3/2004	Leigh Travis	2009/0052003		2/2009	Schofield et al.
2004/0051634 A1	3/2004	Schofield et al.	2009/0067032		3/2009	Varaprasad et al.
2004/0056955 A1	3/2004	Berberich et al.	2009/0080055	A1	3/2009	Baur et al.
2004/0057131 A1	3/2004	Hutzel et al.	2009/0085729	A1	4/2009	Nakamura et al.
2004/0064241 A1	4/2004	Sekiguchi	2009/0096937		4/2009	Bauer et al.
2004/0066285 A1	4/2004	Sekiguchi	2009/0141331		6/2009	Skiver et al.
2004/0075603 A1		Kodama				
2004/0077359 A1	4/2004	Bernas et al.	2009/0174776		7/2009	Taylor et al.
			2009/0184904	Αl	7/2009	S. et al.
2004/0080404 A1	4/2004	White	2009/0201137	A1	8/2009	Weller et al.
2004/0085196 A1	5/2004	Miller et al.	2009/0219394	A1	9/2009	Heslin et al.
2004/0085499 A1	5/2004		2009/0231741			Weller et al.
2004/0090314 A1	5/2004	Iwamoto	2009/0237820		9/2009	
2004/0090317 A1	5/2004	Rothkop				
2004/0096082 A1	5/2004	Nakai et al.	2009/0243824			Hook et al.
2004/0098196 A1	5/2004	Sekiguchi	2009/0244740		10/2009	Takayanagi et al.
2004/0105614 A1	6/2004	Kobayashi et al.	2009/0262192	A1	10/2009	Schofield et al.
2004/0107030 A1	6/2004	Nishira et al.	2009/0262422	A1	10/2009	Cross et al.
2004/0109060 A1	6/2004	Ishii	2009/0290369	A 1	11/2009	Schofield et al.
2004/0103000 A1 2004/0114039 A1	6/2004		2009/0296190		12/2009	Anderson et al.
		Ishikura				
2004/0170008 A1	9/2004	Tenmyo	2010/0033797		2/2010	Schofield et al.
2004/0202001 A1	10/2004	Roberts et al.	2010/0045790		2/2010	Lynam et al.
2004/0239243 A1	12/2004	Roberts et al.	2010/0045899	A1	2/2010	Ockerse
2004/0239849 A1	12/2004		2010/0046059	A1	2/2010	McCabe et al.
2004/0243303 A1		Padmanabhan	2010/0053723	A1	3/2010	Varaprasad et al.
2004/0264011 A1	12/2004		2010/0085645			Skiver et al.
2005/0018738 A1	1/2005	Duan et al.	2010/0003519			DeLine et al.
2005/0024591 A1		Lian et al.				
2005/0024729 A1		Ockerse et al.	2010/0110523			Varaprasad et al.
2005/0078389 A1		Kulas et al.	2010/0110553			Anderson et al.
2005/0079326 A1		Varaprasad et al.	2010/0117815	A1		Deline et al.
2005/00/9520 A1 2005/0099559 A1		Lee et al.	2010/0126030	A1	5/2010	Weller et al.
		Schofield et al.	2010/0165437		7/2010	Tonar et al.
2005/0099693 A1			2010/0172008			McCabe et al.
2005/0111070 A1		Lin et al.	2010/0172008		7/2010	
2005/0117095 A1	6/2005					,
2005/0134983 A1		Lynam	2010/0194890			Weller et al.
2005/0140855 A1		Utsumi et al.	2010/0195226			Heslin et al.
2005/0168995 A1	8/2005	Kittelmann et al.	2010/0201896	A1		Ostreko et al.
2005/0169003 A1		Lindahl et al.	2010/0202075	A1	8/2010	Blank et al.
2005/0172504 A1		Ohm et al.	2010/0207013			Drummond et al.
2005/0237440 A1		Sugimura et al.	2010/0214662			Takayanagi et al.
2005/0270766 A1		Kung et al.	2010/0219985			Schofield et al.
2006/0001641 A1		Degwekar et al.	2010/0222963		9/2010	
2006/0050018 A1		Hutzel et al.	2010/0245701		9/2010	
2006/0061008 A1	3/2006	Karner et al.	2010/0246017	A1	9/2010	Tonar et al.
2006/0076860 A1	4/2006	Hoss	2010/0277786			Anderson et al.
2006/0139953 A1		Chou et al.	2010/0289995			Hwang et al.
2006/0164230 A1		DeWind et al.	2011/0109746		5/2011	Schofield et al.
2006/0171704 A1	8/2006	Bingle et al.	2011/0141543	Αl	6/2011	Uken et al.

	FOREIGN PATEN	T DOCUMENTS	JР	64-14700	1/1989
CN	1189224	7/1998	JР JР	01-123587 01130578	5/1989 5/1989
DE	941408	4/1956	JР	02-122844	10/1990
DE	944531	7/1956	JР	03-28947	3/1991
DE DE	7323996 3248511 A1	11/1973 7/1984	JР	03-052097	3/1991
DE	3301945	7/1984	JР	30-061192	3/1991
DE	3614882	11/1987	ЈР ЈР	328947 03-110855	3/1991 5/1991
DE	3720848	1/1989	JР	03198026	8/1991
DE DE	9306989.8 U1 4329983	7/1993 8/1995	JP	03-243914	10/1991
DE	4329983 4444443 A1	6/1996	JP	04-114587	4/1992
DE	29703084 U1	6/1997	JР JР	04-245886 05080716	9/1992 4/1993
DE	29805142 U1	5/1998	JP	05183194	7/1993
DE	19741896	4/1999	JР	05-213113	8/1993
DE DE	19755008 29902344 U1	7/1999 7/1999	JP	05-257142	10/1993
DE	19934999	2/2001	JP	60-80953 A	3/1994
DE	19943355	3/2001	JР JP	61-07035 A 62-27318 A	4/1994 8/1994
DE	20118868	3/2002	JР	06318734	11/1994
DE EP	10131459 0299509 A2	1/2003 1/1989	JР	07146467	6/1995
EP	0299309 A2 0513476 A1	11/1992	JР	07-175035	7/1995
EP	0524766	1/1993	ЈР ЈР	07191311 07-266928	7/1995 10/1995
EP	0729864 A1	12/1995	JP	07-200928	10/1995
EP	0728618 A2	8/1996	JP	07-281185	10/1995
EP EP	0825477 0830985	2/1998 3/1998	JP	07267002	10/1995
EP	0928723 A2	7/1999	JP	07281150 08-008083	10/1995
EP	937601 A2	8/1999	ЈР ЈР	08-083581	1/1996 3/1996
EP	1075986	2/2001	JР	08-216789	8/1996
EP EP	1097848 A 1152285 A2	5/2001 11/2001	JP	08227769	9/1996
EP	1192773 AZ	3/2002	JP	09033886	2/1997
EP	1256833	11/2002	JР JP	09-260074 05-077657	3/1997 7/1997
EP	0899157	10/2004	JP	09-220976	8/1997
EP	1315639	2/2006	JР	09230827	9/1997
FR FR	1021987 A 1461419	2/1953 12/1966	JP	09-266078	10/1997
FR	2585991	2/1987	JP	09-288262	11/1997
FR	2672857 A1	8/1992	ЈР ЈР	10-076880 10-199480	3/1998 7/1998
FR	2673499 A1	9/1992	JР	10190960	7/1998
FR GB	2759045 810010	8/1998 3/1959	JP	10-206643	8/1998
GB	934037	8/1963	JP	10221692	8/1998
GB	1008411	10/1965	JР JP	10239659 10276298	9/1998 10/1998
GB	1136134	12/1968	JР	11-038381	2/1999
GB GB	1553376 2137573 A	9/1979 10/1984	JР	11-067485	3/1999
GB GB	2157575 A 2161440	1/1986	JР	11-078693	3/1999
GB	2192370	1/1988	ЈР ЈР	11-109337 11-160539	4/1999 6/1999
GB	2222991	3/1990	JP	11-212073	8/1999
GB	2255539 A	11/1992	JР	11-283759	10/1999
GB GB	2351055 A 2362494	12/2000 11/2001	JР	11-298058	10/1999
JР	50-000638 A	1/1975	ЈР ЈР	11-305197 2000-131681	11/1999 5/2000
JР	52-146988	11/1977	JP	2000-151081	6/2000
JР	55-039843	3/1980	JР	2000-159014	6/2000
JP JP	57-30639 57-208530	2/1982 12/1982	JP	2000-255321	9/2000
ĴР	58-030729	2/1983	JP	2000-330107	11/2000
JР	58020954	2/1983	JР JP	2001-083509 2001-222005	3/2001 8/2001
JР	58-110334	6/1983	ĴР	200272901	3/2002
JP JP	58-180347 58-209635	10/1983 12/1983	JP	2002-120649	4/2002
JР	59-114139	7/1984	JР	2002-122860	4/2002
JP	60-212730	10/1985	ЈР ЈР	2002162626 2002-352611	6/2002 12/2002
JP	60-261275	12/1985	JP JP	2002-332011	9/2003
JP JP	61127186 61-260217	6/1986 11/1986	JP	2004-182156	7/2004
JP JP	62-043543	2/1987	JP	2005-148119	6/2005
JР	62-075619	4/1987	JP.	2005-327600	11/2005
JP	62-122487	6/1987	JP	38-46073	11/2006
JР	62131232	6/1987	JP KR	2008083657 20060038856	4/2008 5/2006
JP JP	63-02753 63085525	1/1988 4/1988	KR KR	100663930	1/2007
JP	63-106730	5/1988	WO	WO 82/02448	7/1982
JP	63-106731	5/1988	WO	WO8606179	10/1986
JP	63-274286	11/1988	WO	WO 94/19212	9/1994

WO	WO 96/21581	7/1996
WO	WO 98/14974	4/1998
WO	WO 98/38547	9/1998
WO	WO 99/15360	4/1999
WO	WO 00/23826	4/2000
WO	WO 00/52661	9/2000
WO	WO 00/55685	9/2000
WO	WO 01/01192	1/2001
WO	WO 02/18174	3/2002
WO	WO 02/49881	6/2002
WO	WO 03/021343	3/2003
WO	WO03078941	9/2003

OTHER PUBLICATIONS

Edgar, Julian; Goodbye 12 Volts . . . Hello 42 Volts!; Oct. 5, 1999; Autospeed 50; Issue 50; www.autospeed.co.nz/cms/A_0319/article. html.

Kobe, Gerry; 42 Volts Goes Underhood; Mar. 2000; Automotive Industries; Cahners Publishing Company; www.findarticles.com/p/articles/mi_m3012/is_3_180/ai_61361677.

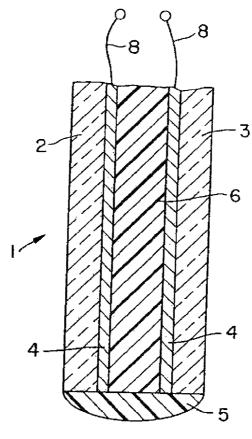
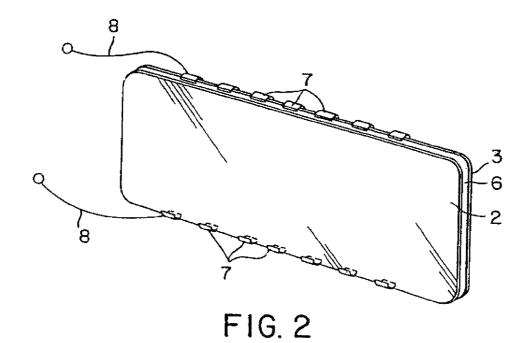
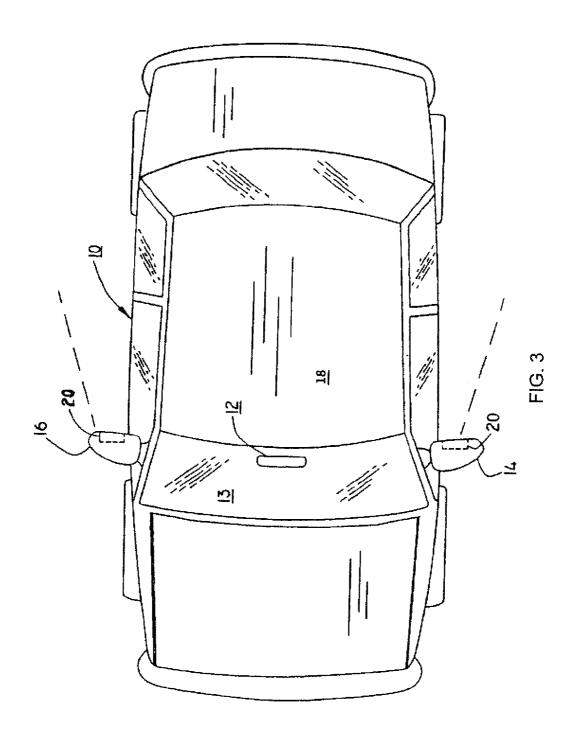
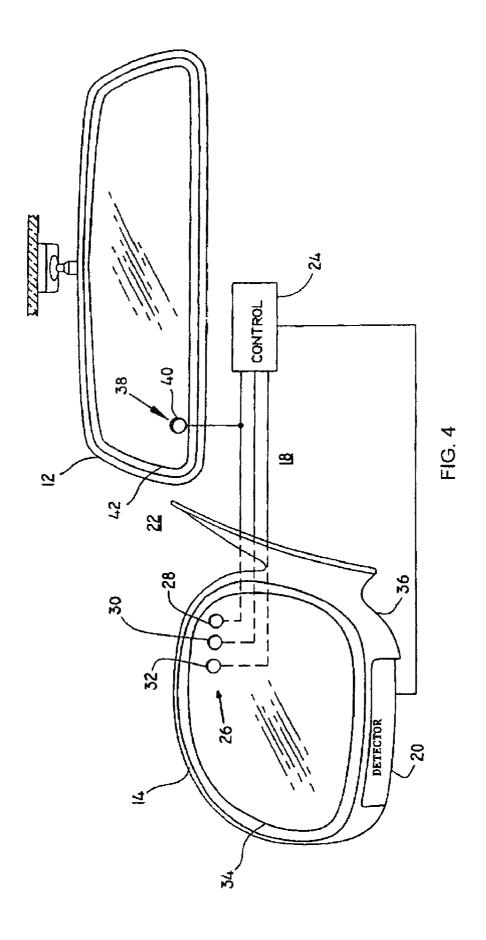
Jewett, Dale; Aug. 2000; Automotive Industries; Cahners Publishing Company; www.findarticles.com/p/articles/mi_m3012/is_8_180ai_64341779.

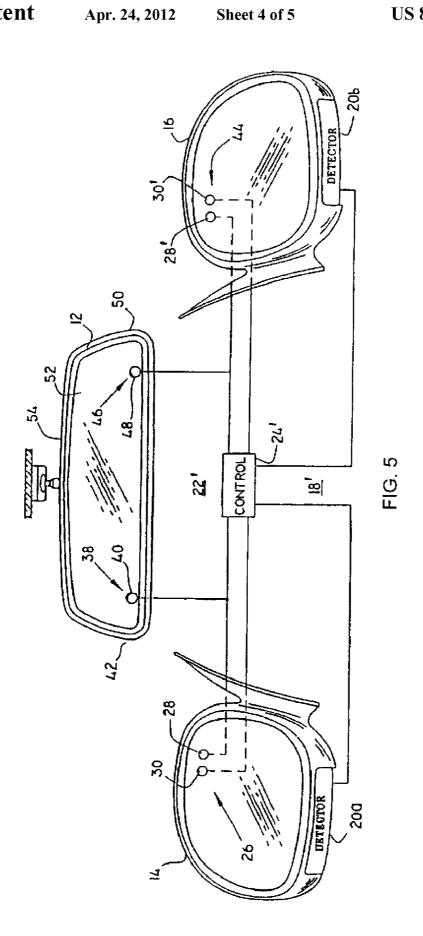
National Semicondictor, LM78S40, Universal Switching Regulator Subsystem, National Semiconductor Corporation, Apr. 1996, p. 6. Dana H. Ballard and Christopher M. Brown, Computer Vision, article, 4 pages Prentice-Hall, Englewood Cliffs, New Jersey. believed to be published more than one year prior to the filing date of the present application.

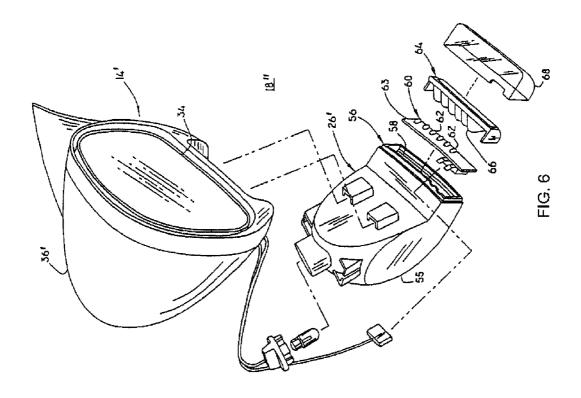
G. Wang, D. Renshaw, P.B. Denyer and M. Lu, CMOS Video Cameras, article, 1991, 4 pages, University of Edinburgh, UK.

^{*} cited by examiner

Apr. 24, 2012


FIG. I



Apr. 24, 2012

METHOD OF FORMING A MIRRORED BENT CUT GLASS SHAPE FOR VEHICULAR EXTERIOR REARVIEW MIRROR ASSEMBLY

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/614,812, filed Nov. 9, 2009, now U.S. Pat. No. 7,821, 697, which is a continuation of U.S. application Ser. No. 12/061,795, filed Apr. 3, 2008, now U.S. Pat. No. 7,643,200, which is a continuation of U.S. application Ser. No. 11/957, 755, filed Dec. 17, 2007, now U.S. Pat. No. 7,589,883, which is a continuation of U.S. application Ser. No. 11/653,254, 15 filed Jan. 16, 2007, now U.S. Pat. No. 7,349,144, which is a continuation application of U.S. application Ser. No. 10/954, 233 filed on Oct. 1, 2004, now U.S. Pat. No. 7,202,987, which is a continuation of U.S. application Ser. No. 10/197,679 filed Jul. 16, 2002, now U.S. Pat. No. 6,855,431, which is a continuation of U.S. application Ser. No. 09/381,856, filed Jan. 27, 2000, now U.S. Pat. No. 6,420,036, which is a 35 U.S.C. Section 371 of PCT/US98/05570, filed Mar. 26, 1998, which is a continuation-in-part of U.S. application Ser. No. 08/824, 501, filed Mar. 26, 1997, now U.S. Pat. No. 5,910,854; and 25 application Ser. No. 11/653,254 is a continuation-in-part of U.S. application Ser. No. 11/244,182, filed Oct. 6, 2005, now U.S. Pat. No. 7,543,947, which is a continuation of U.S. application Ser. No. 10/971,456, filed Oct. 22, 2004, now U.S. Pat. No. 7,004,592, which is a continuation of U.S. 30 application Ser. No. 09/954,285, filed Sep. 18, 2001, abandoned, which is a continuation of U.S. application Ser. No. 08/957,027; filed Oct. 24, 1997, abandoned, which is a continuation of U.S. application Ser. No. 08/429,643, filed Apr. 27, 1995, now U.S. Pat. No. 5,724,187, which is a continua- 35 tion-in-part of U.S. application Ser. No. 08/238,521, filed May 5, 1994, now U.S. Pat. No. 5,668,663.

BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

The present invention relates to reversibly variable electrochromic devices for varying the transmittance to light, such as electrochromic rearview mirrors, windows and sun roofs for motor vehicles, reversibly variable electrochromic elements 45 therefor and processes for making such devices and elements.

2. Brief Description of the Related Technology

Reversibly variable electrochromic devices are known in the art. In such devices, the intensity of light (e.g., visible, infrared, ultraviolet or other distinct or overlapping electromagnetic radiation) is modulated by passing the light through an electrochromic medium. The electrochromic medium is disposed between two conductive electrodes, at least one of which is typically transparent, which causes the medium to undergo reversible electrochemical reactions when potential differences are applied across the two electrodes. Some examples of these prior art devices are described in U.S. Pat. Nos. 3,280,701 (Donnelly); 3,451,741 (Manos); 3,806,229 (Schoot); 4,712,879 (Lynam) ("Lynam I");

U.S. Pat. No. 4,902,108 (Byker) ("Byker I"); and I. F. 60 Chang, "Electrochromic and Electrochemichromic Materials and Phenomena", in Nonemissive Electrooptic Displays, 155-96, A. R. Kmetz and F. K. von Willisen, eds., Plenum Press, New York (1976).

Reversibly variable electrochromic media include those 65 wherein the electrochemical reaction takes place in a solid film or occurs entirely in a liquid solution. See e.g., Chang.

2

Numerous devices using an electrochromic medium, wherein the electrochemical reaction takes place entirely in a solution, are known in the art. Some examples are described in U.S. Pat. Nos. 3,453,038 (Kissa); 5,128,799 (Byker) ("Byker II"); Donnelly; Manos; Schoot; Byker I; and commonly assigned U.S. Pat. Nos. 5,073,012 (Lynam) ("Lynam II"); 5,115,346 (Lynam) ("Lynam III"); 5,140,455 (Varaprasad) ("Varaprasad I"); 5,142,407 (Varaprasad) ("Varaprasad II"); 5,151,816 (Varaprasad) ("Varaprasad III") and 5,239,405 (Varaprasad) ("Varaprasad IV"); and commonly assigned U.S. patent application Ser. No. 07/935,784 (filed Aug. 27, 1992), now U.S. Pat. No. 5,500,760. Typically, these electrochromic devices, sometimes referred to as electrochemichromic devices, are single-compartment, self-erasing, solution-phase electrochromic devices. See e.g., Manos, Byker I and Byker II.

In single-compartment, self-erasing, solution-phase electrochromic devices, the intensity of the electromagnetic radiation is modulated by passing through a solution held in a compartment. The solution often includes a solvent, at least one anodic compound and at least one cathodic compound. During operation of such devices, the solution is fluid, although it may be gelled or made highly viscous with a thickening agent, and the solution components, including the anodic compounds and cathodic compounds, do not precipitate. See e.g., Byker I and Byker II.

Certain of these electrochemichromic devices have presented drawbacks. First, a susceptibility exists for distinct bands of color to form adjacent the bus bars after having retained a colored state over a prolonged period of time. This undesirable event is known as segregation. Second, processing and manufacturing limitations are presented with electrochemichromic devices containing electrochemichromic solutions. For instance, in the case of electrochemichromic devices which contain an electrochemichromic solution within a compartment or cavity thereof; the size and shape of the electrochemichromic device is limited by the bulges and non-uniformities which often form in such large area electrochemichromic devices because of the hydrostatic nature of the liquid solution. Third, from a safety standpoint, in the event an electrochemichromic device should break or become damaged through fracture or rupture, it is important for the device to maintain its integrity so that, if the substrates of the device are shattered, an electrochemichromic solution does not escape therefrom and that shards of glass and the like are retained and do not scatter about. In the known electrochromic devices, measures to reduce breakage or broken glass scattering include the use of tempered glass and/or a laminate assembly comprising at least two panels affixed to one another by an adhesive. Such measures control the scattering of glass shards in the event of breakage or damage due, for instance, to the impact caused by an accident.

Numerous devices using an electrochromic medium, wherein the electrochemical reaction takes place in a solid layer, are known in the art. Typically, these devices employ electrochromic solid-state thin film technology [see e.g., N. R. Lynam, "Electrochromic Automotive Day/Night Mirrors", SAE Technical Paper Series, 870636 (1987); N. R. Lynam, "Smart Windows for Automobiles", SAE Technical Paper Series, 900419 (1990); N. R. Lynam and A. Agrawal, "Automotive Applications of Chromogenic Materials", Large Area Chromogenics: Materials & Devices for Transmittance Control, C. M. Lampert and C. G. Granquist, eds., Optical Eng'g Press, Washington (1990); C. M. Lampert, "Electrochromic Devices and Devices for Energy Efficient Windows", Solar Enercry Materials, 11, 1-27 (1984); U.S. Pat. Nos. 3,521,941 (Deb); 4,174,152 (Giglia); Re. 30,835 (Giglia); 4,338,000

(Kamimori); 4,652,090 (Uchikawa); 4,671,619 (Kamimori); Lynam I; and commonly assigned U.S. Pat. Nos. 5,066,112 (Lynam) ("Lynam IV") and 5,076,674 (Lynam) ("Lynam V")I.

In solid-state thin film electrochromic devices, an anodic 5 electrochromic layer and a cathodic electrochromic layer, each layer usually made from inorganic metal oxides, are typically separate and distinct from one another and assembled in a spaced-apart relationship. The solid-state thin films are often formed using techniques such as chemical 10 vapor deposition or physical vapor deposition. Such techniques are not attractive economically, however, as they involve cost. In another type of solid-state thin film electrochromic device, two substrates are coated separately with compositions of photo- or thermo-setting monomers or oli- 15 gomers to form on one of the substrates an electrochromic layer, with the electrochromic material present within the layer being predominantly an inorganic material, and on the other substrate a redox layer. [See Japanese Patent Document JP 63-262,624].

Attempts have been made to prepare electrochromic media from polymers. For example, it has been reported that electrochromic polymer layers may be prepared by dissolving in a solvent organic polymers, which contain no functionality capable of further polymerization, together with an electro- 25 chromic compound, and thereafter casting or coating the resulting solution onto an electrode. It has been reported further that electrochromic polymer layers are created upon evaporation of the solvent by pressure reduction and/or temperature elevation. [See e.g., U.S. Pat. Nos. 3,652,149 (Rog- 30 ers), 3,774,988 (Rogers) and 3,873,185 (Rogers); 4,550,982 (Hirai); Japanese Patent Document JP 52-10,745; and Y. Hirai and C. Tani, "Electrochromism for Organic Materials in Polymeric All-Solid State Systems", Appl. Phys. Lett., 43(7), 704-05 (1983)]. Use of such polymer solution casting sys- 35 tems has disadvantages, however, including the need to evaporate the solvent prior to assembling devices to form polymer electrochromic layers. This additional processing step adds to the cost of manufacture through increased capital expenditures and energy requirements, involves potential 40 exposure to hazardous chemical vapors and constrains the type of device to be manufactured.

A thermally cured polymer gel film containing a single organic electrochromic compound has also been reported for use in display devices. [See H. Tsutsumi et al., "Polymer Gel 45 Films with Simple Organic Electrochromics for Single-Film Electrochromic Devices", J. Polym. Sci., 30, 1725-29 (1992) and H. Tsutsumi et al., "Single Polymer Gel Film Electrochromic Device", Electrochemica Acta, 37, 369-70 (1992)]. The gel film reported therein was said to possess a solvent-like environment around the electrochromic compounds of that film. This gel film was reported to turn brown, and ceased to perform color-bleach cycles, after only 35,200 color-bleach cycles.

SUMMARY OF THE INVENTION

The present invention also provides novel electrochromic monomer compositions comprising anodic electrochromic compounds, cathodic electrochromic compounds, a monomer component and a plasticizer that are useful in the formation of such polychromic solid films. More specifically, each of the electrochromic compounds are organic or organometallic compounds. Electrochromic monomer compositions may also include, but are not limited to, either individually or in combination, cross-linking agents, photoinitiators, photosensitizers, ultraviolet stabilizing agents, electrolytic materi-

4

als, coloring agents, spacers, anti-oxidizing agents, flame retarding agents, heat stabilizing agents, compatibilizing agents, adhesion promoting agents, coupling agents, humectants and lubricating agents.

The present invention further provides novel processes for making polychromic solid films by transforming such novel electrochromic monomer compositions into polychromic solid films through exposure to electromagnetic radiation for a time sufficient to effect an M situ cure.

The present invention still further provides electrochromic devices, such as those referred to above, particularly rearview mirrors, windows and sun roofs for automobiles, which devices are stable to outdoor weathering, particularly weathering observed due to prolonged exposure to ultraviolet radiation from the sun, and are safety protected against impact from an accident. Such outdoor weathering and safety benefits are achieved by manufacturing these devices using as a medium of varying transmittance to light the polychromic solid films prepared by the in situ cure of an electrochromic monomer composition containing a monomer component that is capable of further polymerization.

The present invention provides for the first time, among other things (1) polychromic solid films that may be transformed from electrochromic monomer compositions by an in situ curing process through exposure to electromagnetic radiation, such as ultraviolet radiation; (2) a transformation during the in situ curing process from the low viscosity, typically liquid, electrochromic monomer compositions to polychromic solid films that occurs with minimum shrinkage and with good adhesion to the contacting surfaces; (3) polychromic solid films that (a) may be manufactured to be selfsupporting and subsequently laminated between conductive substrates, (b) perform well under prolonged coloration, (c) demonstrate a resistance to degradation caused by environmental conditions, such as outdoor weathering and all-climate exposure, particularly demonstrating ultraviolet stability when exposed to the sun, and (d) demonstrate a broad spectrum of color under an applied potential; (4) polychromic solid films that may be manufactured economically and are amenable to commercial processing; (5) polychromic solid films that provide inherent safety protection not known to electrochromic media heretofore; and (6) electrochromic monomer compositions that comprise anodic electrochromic compounds and cathodic electrochromic compounds, which compounds are organic or organometallic.

The self-supporting nature of polychromic solid films provides many benefits to the electrochromic devices manufactured therewith, including the elimination of a compartmentalization means, such as a sealing means, since no such means is required to confine or contain a polychromic solid film within an electrochromic device. That polychromic solid films may be manufactured to be self-supporting also enhances processibility, and vitiates obstacles well-recognized in the manufacturing of electrochromic devices containing known electrochromic media, especially those that are to be vertically mounted in their intended use.

Moreover, since the electrochromic compounds are not free to migrate within polychromic solid films, in contrast to electrochromic compounds present within a liquid solution-phase environment, polychromic solid films do not pose the segregation concern as do solution-phase electrochemichromic devices; rather, polychromic solid films perform well under prolonged coloration.

Further, from a safety perspective, in the event that electrochromic devices manufactured with polychromic solid films should break or become damaged due to the impact from an accident, no liquid is present to seep therefrom since

the polychromic solid films of the present invention are indeed solid. Also, the need to manufacture electrochromic devices with tempered glass, or with at least one of the substrates being of a laminate assembly, to reduce potential lacerative injuries is obviated since polychromic solid films, positioned between, and in abutting relationship with, the conductive surface of the two substrates, exhibit good adhesion to the contacting surfaces. Thus, polychromic solid films should retain any glass shards that may be created and prevent them from scattering. Therefore, a safety protection feature inherent to polychromic solid films is also provided herein, making polychromic solid films particularly attractive for use in connection with electrochromic devices, such as mirrors, windows, sun roofs, shade bands, eye glass and the like.

Polychromic solid films embody a novel and useful technology within the electrochromic art, whose utility will become more readily apparent and more greatly appreciated by those of skill in the art through a study of the detailed description taken in conjunction with the figures which follow hereinafter.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 depicts a sectional view of an electrochromic device employing an electrochromic polymeric solid film according 25 to the present invention.

FIG. 2 depicts a perspective view of an electrochromic glazing assembly according to the present invention.

FIG. 3 is a top plan view of a vehicle having a blind spot detection system.

FIG. 4 is a block diagram and partial schematic diagram of a blind spot detection display system, as viewed by a vehicle operator.

FIG. 5 is the same view as FIG. 3 of an alternative embodiment of a blind spot detection display system.

FIG. 6 is a perspective view of another alternative embodiment of a blind spot detection display system.

The depictions in these figures are for illustrative purposes and thus are not drawn to scale.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the teaching of the present invention, polychromic solid films may be prepared by exposing an electrochromic monomer composition to electromagnetic 45 radiation for a time sufficient to transform the electrochromic monomer composition into a polychromic solid film. This in situ curing process initiates polymerization of, and typically completely polymerizes, an electrochromic monomer composition, normally in a liquid state, by exposure to electromagnetic radiation to form a polychromic solid film, whose surface and cross-sections are substantially tack-free.

The electrochromic monomer compositions are comprised of anodic electrochromic compounds, cathodic electrochromic compounds, each of which are organic or organometallic 55 compounds, a monomer component and a plasticizer. In addition, cross-linking agents, photoinitiators, photosensitizers, ultraviolet stabilizing agents, electrolytic materials, coloring agents, spacers, anti-oxidizing agents, flame retarding agents, heat stabilizing agents, compatibilizing agents, adhesion promoting agents, coupling agents, humectants and lubricating agents and combinations thereof may also be added. In the preferred electrochromic monomer compositions, the chosen monomer component may be a polyfunctional monomer, such as a difunctional monomer, trifunctional monomer, or a 65 higher functional monomer, or a combination of monofunctional monomer and difunctional monomer or monofunc-

6

tional monomer and cross-linking agent. Those of ordinary skill in the art may choose a particular monomer component or combination of monomer components from those recited in view of the intended application so as to impart the desired beneficial properties and characteristics to the polychromic solid film.

An anodic electrochromic compound suitable for use in the present invention may be selected from the class of chemical compounds represented by the following formulae:

wherein A is O, S or NRR₁;

wherein R and R_1 may be the same or different, and each may be selected from the group consisting of H or any straight- or branched-chain alkyl constituent having from about one carbon atom to about eight carbon atoms, such as CH_3 , CH_2CH_3 , CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$ and the like; provided that when A is NRR_1 , Q is H, OH or NRR_1 ; further provided that when A is NRR_1 a salt may be associated therewith; still further provided that when both A and Q are NRR_1 , A and Q need not, but may, be the same functional group;

D is O, S, NR₁ or Se;

E is R_1 , COOH or CONH₂; or, E and T, when taken together, represent an aromatic ring structure having six ring carbon atoms when viewed in conjunction with the ring carbon atoms to which they are attached;

G is H;

J is H, any straight- or branched-chain alkyl constituent having from about one carbon atom to about eight carbon atoms, such as CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, C(CH₃)₃ and the like, NRR₁,

OR₁ phenyl, 2,4-dihydroxyphenyl or any halogen; or, G and J, when taken together, represent an aromatic ring structure having six ring carbon atoms when viewed in conjunction with the ring carbon atoms to which they are attached;

L is H or OH;

M is H or any halogen;

T is R_1 , phenyl or 2,4-dihydroxyphenyl; and

Q is H, OH or NRR₁;

provided that when L and/or Q are OH, L and/or Q may also be salts thereof; further provided that in order to render it electrochemically active in the present context, anodic electrochromic compound I has been previously contacted with a redox agent;

III

45

50

V

60

$$0 = \bigvee_{Y}^{X} N - \bigvee_{Z}^{N}$$

wherein X and Y may be the same or different, and each may be selected from the group consisting of H, any halogen or NRR $_1$, wherein R and R $_1$ may be the same or different, and are as defined supra; or, X and Y, when taken together, represent an aromatic ring structure having six ring carbon atoms when viewed in conjunction with the ring carbon atoms to which they are attached; and

Z is OH or NRR₁ or salts thereof; provided that in order to render it electrochemically active in the present context, anodic electrochromic compound II has been previously contacted with a redox agent;

$$\bigcap_{N \in \mathbb{N}} \mathbb{R}_{1}$$

Derivatives of 5,10-dihydrophenazine

wherein R and R_1 may be the same or different, and are 35 defined supra;

Derivatives of 1,4-phenylenediamine

wherein R and R_1 may be the same or different, and are defined supra;

$$\bigcap_{R_i} \bigcap_{N_i} \bigcap_{N$$

Derivatives of Benzidine

wherein R and R_1 may be the same or different, and are defined supra;

Metallocenes suitable for use as a component of the electrochromic monomer composition include, but are not limited to the following:

$$\begin{array}{c} VI \\ \hline \\ M_e \\ \hline \\ R_1 \end{array}$$

Metallocenes and their Derivatives

wherein R and R₁ may be the same or different, and each may be selected from the group consisting of H; any straightor branched-chain alkyl constituent having from about 1 carbon atom to about 8 carbon atoms, such as CH₃, CH₂CH₃, CH(CH₃)₂, C(CH₃)₃ and the like; acetyl; vinyl;
 allyl; —(CH₂)_n—OH, wherein n may be an integer in the range of 0 to abot 20;

$$\begin{array}{c|ccccc} CH_3 & O & & H & O \\ & & & & & & H & O \\ & & & & & & & & \\ CH_2 = C - C - (CH_2)_n - & \text{or } & CH_2 = C - C - (CH_2)_n - \\ \end{array}$$

wherein n may be an integer in the range of 0 to about 20; — (CH_2) — $COOR_2$, wherein n may be an integer in the range of 0 to about 20 and R_2 may be any straight- or branched-chain alkyl constituent having from about 1 carbon atom to about 20 carbon atoms, hydrogen, lithium, sodium,

wherein n may be an integer from 0 to about 20, — $(CH_2)_n$ — OR_3 , wherein n' may be an integer in the range of 1 to about 12 and R_3 may be any straight- or branched-chain alkyl constituent having from about 1 carbon atom to about 8 carbon atoms.

and
$$-(CH_2)-N^+(CH_3)_3X$$
,

wherein n' may be an integer in the range of 1 to about 12; X may be Cl⁻, Br⁻, I⁻, PF6⁻, ClO₄⁻BF₄⁻; and wherein M_C , is Fe, Ni, Ru, Co, Ti, Cr, W, Mo and the like;

25

30

35

40

45

and combinations thereof.

Phenothiazines suitable for use as a component of the electrochromic monomer composition include, but are not limited to, those represented by the following structures:

$$\begin{array}{c} R_{15} \\ R_{15} \\ R_{14} \\ R_{13} \end{array}$$

where R_9 may be selected from the group consisting of H; any straight- or branched-chain alkyl constituent having from about 1 carbon atom to about 10 carbon atoms; phenyl; benzyl; —(CH₂)₂—CN; —(CH₂)₂—COOH;

allyl;

wherein m' may be an integer in the range of 1 to about 8;

$$-$$
 (CH₂)₂ $-$ C $-$ O $-$ R₁₈,

wherein R_{18} may be any straight- or branched-chain alkyl constituent having from about 1 carbon atom to about 8 carbon atoms; and

 $\rm R_{10},\,12_{11},\,R_{12},\,R_{13},\,R_{14},\,Ro,\,R_{16},$ and $\rm R_{17}$ may be selected from H, Cl, Br, CF₃, CH₃, NO₂, COOH, OH, SCH₃, OCH₃, O₂CCH₃ or

and

 R_9 and R_{17} , when taken together, form a ring with six atoms (five of which being carbon) having a carbonyl substituent on

one of the carbon atoms. Preferred among phenothiazines 1-A is phenothiazines 2-A to 4-A as depicted in the following structure:

3-acetoxy-methyl-10h-phenothiazone ("AMPT")

2,3-dihydro-3-keto-1H-pyrido[3,2,1-k1] phenothiazone ("C-PT")

An example of a desirable quinone for use as component in the electrochromic monomer composition include, but is not limited to the following structure:

2-hydroxy-naphthoquinone

Combinations of components in the electrochromic monomer composition may be selectively chosen to achieve a desired substantially non-spectral selectivity when the electrochromic element (and the mirror in which the electrochromic element is to function) is dimmed to a colored state.

To render anodic electrochromic compounds I and II electrochemically active in the context of the present invention, a redox pre-contacting procedure must be used. Such a redox pre-contacting procedure is described in the context of preparing anodic compounds for electrochemichromic solutions in Varaprasad IV and commonly assigned U.S. patent application Ser. No. 07/935,784 (filed Aug. 27, 1992), now U.S. Pat. No. 5,500,760.

Preferably, anodic electrochromic compound I may be selected from the group consisting of the class of chemical compounds represented by the following formulae:

-continued

Gallocyanine

HO OH OH
$$_{\rm H_2N}$$
 OH $_{\rm Lacmoid}$ (NH₂)

HO OH OH Lacmoid (OH)
$$\begin{array}{c} X \\ 25 \\ OH \\ OH \end{array}$$

$$\begin{array}{c} \text{XII} \\ \text{H}_2\text{N} \longrightarrow \text{C} \\ \text{HO} & \\ \text{OH} & \\ \end{array}$$

Resorufin

Celestine Blue

55

$$\begin{array}{c} O \\ C \\ OH \\ OH \end{array}$$

$$(CH_3)_2N \xrightarrow{N} S$$

$$Methylene\ Violet$$

$$(Bernthsen)\ ("MVTB")$$

$$\begin{array}{c} \text{XVII} \\ \\ \text{S} \end{array}$$

2-methyl-4-bromophenothiazin-3-one ("BMPT")

10

15

20

25

30

35

40

XXI

XXII

XXIII

XXIV

XXV

XXVI

XXVII

60

65

13

-continued

2-acetylaminophenoxazin-3-one ("AAPOZ")

2-methylphenoxazin-3-one ("MPOZ")

1,2-benzo-phenoxazin-3-one ("BPOZ")

2-hydroxy-phenoxazin-3-one ("HPOZ")

2-keto-N-ethyl_ phenazine ("KEPA")

$$\underset{H_2N}{ \longrightarrow} \underset{S}{ \longrightarrow} \underset{NHCH_3}{ \longrightarrow}$$

Azure A ("AA")

Azure B ("AB") 14

-continued

$$\begin{array}{c} \text{XXVIII} \\ \\ \text{N} \\ \text{NHCH}_3 \end{array}$$
 Azure C ("AC")

 $(CH_3)_2N \xrightarrow{N} \\ N \\ K \\ N(CH_3)_2$ Methylene Blue ("MB")

$$\begin{array}{c} \text{XXX} \\ \text{N} \\ \text{N} \\ \text{S} \\ \text{Thionin} \\ \text{("TH")} \end{array}$$

CI N—OH

2,6-dichloro-indophenol

and combinations thereof.

Among the especially preferred anodic electrochromic compounds I are MVTB (XV), PT (XVI), MPT (XVII), and POZ (XIX), with MVTB and MPT being most preferred.

50 Also preferred is the reduced form of MPT which results from the redox pre-contacting procedure referred to above, and has been thereafter isolated. This reduced and isolated form of MPT—RMPT [XVII(a)]—is believed to be 2-methyl-3-hydroxyphenathiazine, which is represented by the following chemical formula

("DCI")

$$\begin{array}{c} H \\ N \\ N \\ \end{array}$$

and salts thereof.

In addition, a preferred anodic electrochromic compound II is

Likewise, preferred among anodic electrochromic compound III are 5,10-dihydro-5,10-dimethylphenazine ("DMPA") and 5.10-dihydro-5.10-diethylphenazine 15 ("DEPA"), with DMPA being particularly preferred.

As a preferred anodic electrochromic compound VI, metallocenes, such as ferrocene, wherein M_e is iron and R and R₁ are each hydrogen, and alkyl derivatives thereof, may also be used advantageously in the context of the present invention. 20

The salts referred to in connection with the anodic electrochromic compounds include, but are not limited to, alkali metal salts, such as lithium, sodium, potassium and the like. In addition, when A is NRR₁, tetrafluoroborate ("BF₄"), perchlorate ("ClO₄"), trifluoromethane sulfonate ("CF₃SO₃"), 25 hexafluorophosphate ("PF₆-"), acetate ("Ac-") and any halogen may be associated therewith. Moreover, the ring nitrogen atom in anodic electrochromic compound I may also appear as an N-oxide.

Any one or more of anodic electrochromic compounds I, II, 30 III, IV, V, VI or VII may also be advantageously combined; in any proportion, within an electrochromic monomer composition and thereafter transformed into a polychromic solid film to achieve the results so stated herein. Of course, as regards anodic electrochromic compounds I and II, it is nec- 35 essary to contact those compounds with a redox agent prior to use so as to render them electrochemically active in the present invention. Upon the application of a potential thereto, such combinations of anodic electrochromic compounds within a polychromic solid film may often generate color 40 distinct from the color observed from polychromic solid films containing individual anodic electrochromic compounds. A preferred combination of anodic electrochromic compounds in this invention is the combination of anodic electrochromic compounds III and VI. Nonetheless, those of ordinary skill in 45 the art may make appropriate choices among individual anodic electrochromic compounds and combinations thereof, to prepare a polychromic solid film capable of generating a color suitable for a particular application.

A choice of a cathodic electrochromic compound for use 50 herein should also be made. The cathodic electrochromic compound may be selected from the class of chemical compounds represented by the following formulae:

$$R_{23}$$
 R_{21}
 R_{3}
 R_{24}
 R_{22}
 R_{22}
 R_{22}
 R_{22}

derivatives of viologen -continued

$$\bigcap_{i=1}^{N} \mathbb{R}_3$$

derivatives of anthraquinone

HO—
$$(CH_2)_p$$
— ^+N
 N^+ — $(CH_2)_p$ —OH $(X^-)_2$

Dihydroxyalkyl Viologen Salt ("DHAVS")

HO—
$$(CH_2)_p$$
— ^+N — N^+ — R_3 $(X^*)_2$

Monohydroxy Viologen Salt ("MHVS")

HO
$$\stackrel{\text{O}}{=}_{\text{OH}}^{\text{O}}$$
 (CH₂)_p $\stackrel{\text{+}}{=}_{\text{N}}^{\text{+}}$ (CH₂)_p $\stackrel{\text{O}}{=}_{\text{P}}^{\text{+}}$ OH (X⁻)₂

Diphosphoryldihydroxyalkyl Viologen Salt ("DPDHAVS")

9-A
HO
$$-\frac{0}{P}$$
 (CH₂)_p $-^{+}$ N $^{+}$ (CH₂)_p $-$ CH₃ (X)₂

Phosphoryldihydoxyalkyl Viologen Salt

("PDHAVS")

wherein R₃, R₄, R₂₁, R₂₂, R₂₃ and R₂₄ may be the same or different and each may be selected from the group consisting

of H, any straight- or branched-chain alkyl constituent having from about one carbon atom to about eight carbon atoms, or any straight- or branched-chain alkyl- or alkoxy-phenyl, wherein the alkyl or alkoxy constituent contains from about one carbon atom to about eight carbon atoms;

25

$$CH_3$$
= CH - $(CH_2)_{n'}$ - \cdot

wherein n' may be an integer in the range-of 1 to 12;

wherein R_5 may be H or CH_3 , and n' may be an integer in the range of 1 to 12; $HO\longrightarrow (CH_2)_n$, wherein n' may be an $_{15}$ integer in the range of 1 to 12; and $HOOC\longrightarrow (CH_2)n'$, wherein n' may be an integer in the range of 1 to 12;

wherein q may be an integer in the range of 0 to 12; wherein each p is independently an integer from 1 to 12; and wherein X is selected from the group consisting of BF
$$_4$$
, ClO $_4$; Cf $_3$ SO $_3$, styrylsulfonate ("SS""), 2-acrylamido-2-methylpropane-sulfonate, acrylate, methacrylate, 3-sulfopropylacrylate, 3-sulfopropylmethacrylate, PF $_6$, Ac $_1$, HO—(R $_2$ 5)—SO $_3$ and HOOC—(R $_2$ 5)—SO $_3$ wherein R $_2$ 5 can be any straight- or branched-chain alkyl constituent having from about I carbon atom to about 8 carbon atoms, an aryl or a functionalized aryl, an alkyl or aryl amide, a branched or linear chain polymer, such as polyvinyls, polyethers and polyesters bearing at least one and preferably multiple, hydroxyl and sulphonate functionalities and any halide; and combinations thereof.

In one preferred embodiment R_{25} can be:

$$(CH_2)_q$$
 $(CH_2)_q$
 $(CH_2)_q$
 $(CH_2)_q$
 $(CH_2)_q$
and
 $(CH_2)_q$
 $(CH_2)_q$
 $(CH_2)_q$
 $(CH_2)_q$

or the copolymer derived from acrylamidomethylpropanesulfonic acid (AMPS) and caprolactone acrylate.

Specific cathodic electrochromic compounds useful in the context of the present invention include:

XXXIV
$$CH_3(CH_2)_6 - N - (CH_2)_6 CH_3$$

$$2 SS^-$$

$$Heptylviologen \\ Styrylsulfonate \\ ("HVSS")$$

CH₂=CH
$$_2$$
—CH₂—N $_+$ —CH₂—CH=CH₂

Distyrylmethylviologen Perchlorate (mixed isomers) ("DSMVClO₄")

Ethylhydroxypropylviologen Perchlorate ("EHPVCIO₄")

$$HO - (CH_2)_{11} - {}^+N - (CH_2)_{11} - OH \quad (PF_6)_2 \qquad HO - (CH_2)_{11} - {}^+N - CH_2 - CH_3 \quad (CIO_4)_2 - (CH_2)_{11} - (C$$

Hydroxyundecyl Viologen Hexafluorophospohate ("HUVPF6")

19

$$HO-(CH_2)_6-N$$
 $N^+-(CH_2)_6-OH$ $(PF_6)_2$

Hydroxyhcxyl Viologen Hexafluorophospohate ("HHVPF6")

$$\label{eq:hooc-charge} \text{Hooc-}(\text{CH}_2)_{14} - {}^+\text{N} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad \qquad N^+ - (\text{CH}_2)_{14} - \text{COOH } (\text{PF}_6\bar{}^-)_2} \\ \\ \boxed{\qquad$$

Divalericacid Viologen Hexafluorophosphate ("DVAVPF6")

$$C_6H_5CH_2CH_2CH_2 - N - (CH_2)_{11} - OH$$

$$(CIO_4)$$

Hydroxyundecylphenylpropyl Viologen diperchlorate ("HUPPVCLO4")

$$C_6H_5CH_2CH_2CH_2-N \\ (ClO_4) \\ (ClO_4)$$

Diphenylpropyl Viologen diperchlorate ("PPVCLO₄")

Preferably, R_3 and R_4 are ethyl, n-heptyl, hydroxyhexyl or hydroxyundecyl. Thus, when X is PF_6^- , ClO_4^- or BF_4^- , preferred cathodic electrochromic compounds are ethylviologen perchlorate ("EVClO₄"), heptylviologen tetrafluoroborate ("HVBF₄"), hydroxyundecyl viologen hexafluorophosphate ("HUVPF6"), ethylhydroxyundecyl viologen perclorate ("EHUVClO₄"), hydroxyhexyl viologen hexafluorophosphate ("HHVPF₆"), divalericacid viologen hexafluorophosphate ("DVAVPF₆"), hydroxyundecylphenylpropyl viologen diperchlorate ("HUPPVCLO₄"), and diphenylpropyl viologen diperchlorate ("PPVCLO4").

The above anodic electrochromic compounds and cathodic electrochromic compounds may be chosen so as to achieve a desired color, when the polychromic solid film in which they are present (and the device in which the polychromic solid film is contained) is colored to a dimmed state. For example, 50 electrochromic automotive mirrors manufactured with polychromic solid films should preferably bear a blue or substantially neutral color when colored to a dimmed state. And, electrochromic optically attenuating contrast filters, such as contrast enhancement filters, manufactured with polychromic solid films should preferably bear a substantially neutral color when colored to a dimmed state.

The plasticizer chosen for use in the present invention should maintain the homogeneity of the electrochromic monomer compositions while being prepared, used and 60 stored, and prior to, during and after exposure to electromagnetic radiation. As a result of its combination within the electrochromic monomer composition or its exposure to electromagnetic radiation, the plasticizer of choice should not form by-products that are capable of hindering, or interfering 65 with, the homogeneity and the electrochemical efficacy of the resulting polychromic solid film. The occurrence of any of

these undesirable events during the in situ curing process, whether at the pre-cure, cure or post-cure phase of the process for preparing polychromic solid films, may interfere with the process itself; and may affect the appearance and effectiveness of the resulting polychromic solid films, and the electrochromic devices manufactured with the same. The plasticizer also may play a role in defining the physical properties and characteristics of the polychromic solid films of the present invention, such as toughness, flex modulus, coefficient of thermal expansion, elasticity, elongation and the like.

Suitable plasticizers for use in the present invention include, but are not limited to, triglyme, tetraglyme, acetonitrile, benzylacetone, 3-hydroxypropionitrile, methoxypropionitrile, 3-ethoxypropionitrile, butylene carbonate, propylene carbonate, ethylene carbonate, glycerine carbonate, 2-acetylbutyrolactone, cyanoethyl sucrose, γ-butyrolactone, 2-methylglutaronitrile, N,N'-dimethylformamide, 3-methylsulfolane, methylethyl ketone, cyclopentanone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, acetophenone, glutaronitrile, 3,3'-oxydipropionitrile, 2-methoxyethyl ether, triethylene glycol dimethyl ether and combinations thereof. Particularly preferred plasticizers among that group are benzylacetone, 3-hydroxypropionitrile, propylene carbonate, ethylene carbonate, 2-acetylbutyrolactone, cyanoethyl sucrose, triethylene glycol dimethyl ether, 3-methylsulfolane and combinations thereof.

To prepare a polychromic solid film, a monomer should be chosen as a monomer component that is capable of in situ curing through exposure to electromagnetic radiation, and that is compatible with the other components of the electrochromic monomer composition at the various stages of the in situ, curing process. The combination of a plasticizer with a monomer component (with or without the addition of a

22

difunctional monomer or a cross-linking agent) should preferably be in an equivalent ratio of between about 75:25 to about 10:90 to prepare polychromic solid films with superior properties and characteristics, Of course, the art-skilled should bear in mind that the intended application of a polychromic solid film will often dictate its particular properties and characteristics, and that the choice and equivalent ratio of the components within the electrochromic monomer composition may need to be varied to attain a polychromic solid film with the desired properties and characteristics.

Among the monomer components that may be advantageously employed in the present invention are monomers having at least one reactive functionality rendering the compound capable of polymerization or further polymerization by an addition mechanism, such as vinyl polymerization or ring opening polymerization. Included among such monomers are oligomers and polymers that are capable of further polymerization. For monomers suitable for use herein, see generally those commercially available from Monomer-Polymer Labs, Inc., Philadelphia, Pa.; Sartomer Co., Exton, Pa.; and Polysciences, Inc., Warrington, Pa.

Monomers capable of vinyl polymerization, suitable for use herein, have as a commonality the ethylene functionality, as represented below:

$$\begin{array}{c}
R_7 \\
R_6CH = C \\
R_9
\end{array}$$

wherein R_6 , R_7 and R_8 may be the same or different, and are each selected from a member of the group consisting of 35 hydrogen; halogen; alkyl, cycloalkyl, poly-cycloalkyl, heterocycloalkyl and alkyl and alkenyl derivatives thereof; alkenyl, cycloalkenyl, cycloalkadienyl, poly-cycloalkadienyl and alkyl and alkenyl derivatives thereof; hydroxyalkyl; hydroxyalkenyl; alkoxyalkyl; alkoxyalkenyl; cyano; amido; phenyl; benzyl and carboxylate, and derivatives thereof.

Preferred among these vinyl monomers are the ethylene carboxylate derivatives known as acrylates—i.e., wherein at least one of R_6 , R_7 and R_8 are carboxylate groups or derivatives thereof. Suitable carboxylate derivatives include, but are not limited to alkyl, cycloalkyl, poly-cycloalkyl, heterocycloalkyl and alkyl and alkenyl derivatives thereof; alkenyl, cycloalkenyl, poly-cycloalkenyl and alkyl and alkenyl derivatives thereof; mono- and poly-hydroxyalkyl; mono- and polyhydroxyalkenyl; alkoxyalkyl; alkoxyalkenyl and cyano.

Among the acrylates that may be advantageously employed herein are mono- and poly-acrylates (bearing in mind that poly-acrylates function as cross-linking agents as 55 well, see infra), such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, methylene glycol monoacrylate, diethylene glycol monomethacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl methacrylate, dipropylene glycol monomethacrylate, 2,3-dihydroxypropyl methacrylate, methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, s-butyl acrylate, n-pentyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacry- 65 late, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, s-butyl methacrylate, n-pentyl methacrylate,

s-pentyl methacrylate, methoxyethyl acrylate, methoxyethyl methacrylate, triethylene glycol monoacrylate, glycerol monoacrylate, glycerol monomethacrylate, allyl methacrylate, benzyl acrylate, caprolactone acrylate, cyclohexyl acrylate, cyclohexyl methacrylate, 2-ethoxyethyl acrylate, 2-ethoxyethyl methacrylate, 2-(2-ethoxyethoxy)ethylacrylate, glycidyl methacrylate, n-hexyl acrylate, n-hexyl methacrylate, isobornyl acrylate, isobornyl methacrylate, i-decyl acrylate, decyl methacrylate, i-octyl acrylate, lauryl acrylate, lauryl methacrylate, 2-methoxyethyl acrylate, n-octyl acrylate, 2-phenoxyethyl acrylate, 2-phenoxyethyl methacrylate, stearyl acrylate, stearyl methacrylate, tetrahydrofurfuryl acrylate, tetrahydrofurfuryl methacrylate, tridecyl methacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, 1,3-butylene glycol diacrylate, 1,3-butylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, ethylene glycol diacrylate, ethoxylated bisphenol A dimethacrylate, ethylene glycol dimethacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, tetraethylene glycol diacrylate, tetraethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, tripropylene glycol diacrylate, dipentaerythritol pentaerylate, ethoxylated pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, trimethylolpropane triacrylate, trimethyloipropane trimethacrylate, tris(2-hydroxyethyl)-isocyanurate triacrylate, tris(2-hydroxyethyl)-isocyanurate trimethacrylate, polyethylene glycol monoacrylate, polyethylene glycol monomethacrylate, polypropylene glycol monoacrylate, polypropylene glycol monomethacrylate, hydroxyethyl cellulose acrylate, hydroxyethyl cellulose methacrylate, methoxy poly(ethyleneoxy)ethylacrylate, methoxy poly(ethyleneoxy)ethylmethacrylate and combinations thereof. For a further recitation of suitable acrylates for use herein, see those acrylates available commercially from Monomer-Polymer Labs, Inc.; Polysciences, Inc. and Sartomer Co. Also, those of ordinary skill in the art will appreciate that derivatized acrylates in general should provide beneficial properties and characteristics to the resulting polychromic solid film.

Other monomers suitable for use herein include styrenes, unsaturated polyesters, vinyl ethers, acrylamides, methyl acrylamides and the like.

Other monomers capable of addition polymerization include isocyanates, polyols, amines, polyamines, amides, polyamides, acids, polyacids, compounds comprising an active methylene group, ureas, thiols, etc. Preferably, such monomers have a functionality of 2 or greater. For example, the monomer composition can include isocyanates such as hexamethylene diisocyanate (HDI); toluene diisocyanate (TDI including 2, 4 and 2, 6 isomers); diphenylmethane diisocyanate (MDI); isocyanate tipped prepolymers such as those prepared from a diisocyanate and a polyol; condensates produced from hexamethylene diisocyanate including biuret type and trimer type (also known as isocyanurate), as is known in the urethane chemical art. A recitation of various monomers suitable to use in the electrochromic monomer composition is given in the following Table 1.

TABLE 1

Monomers suitable to use in the electrochromic-monomer composition						
Туре	Tradename	Product No:	Supplier	Location		
Isocyanate	Tolonate	HDT	Rhone-Poulenc Inc.	Princeton, NJ		
T	T-1	(Isocyanurate)	Diama Dandana Ina	Dula antoni NII		
Isocyanate	Tolonate ISONATE	HDB (Biuret) modified MDI	Rhone-Poulenc Inc. Dow Chemical	Princeton, NJ		
Isocyanate				Midland, MI		
Isocyanate	PAPI	polymeric MDI	Dow Chemical	Midland, MI		
Isocyanate	RUBINATE	9043 MDI	ICI	Sterling		
Ŧ .	DEGLIODID	3T 100	3.611	Heights, MI		
Isocyanate	DESMODUR	N-, 100	Miles	Pittsburgh, PA		
Isocyanate	TYCEL	7351	Liofol Co.	Cary, NC		
Polyol	VORANOL	polyether polyols	Dow Chemical	Midland, MI		
Polyol	VORANOL	copolymer polyols	Dow Chemical	Midland, MI		
Polyol	ARCOL	E-786	Arco Chemical	Hinsdale, IL		
Polyol	ARCOL	LHT-112	Arco Chemical	Hinsdale, IL		
Polyol	ARCOL	E-351	Arco Chemical	Hinsdale, IL		
Polyol	LEXOREZ	1931-50	Inolex Chemical Co.	Philadelphia,		
•				PA		
Polyol	LEXOREZ	1842-90	Inolex Chemical Co.	Philadelphia, PA		
Polyol	LEXOREZ	1405-65	Inolex Chemical Co.	Philadelphia,		
101,01	ELMORELE	1103 03	moren chemical co.	PA		
Polyol	LEXOREZ	1150-110	Inolex Chemical Co.	Philadelphia,		
				PA,		
Polyol	DESMOPHEN	1700	Miles	Pittsburgh, PA		
Tin Catalyst	DABCO	T-9	Air Products and Chemical	Allentown, PA		
·			Inc.			
Tin Catalyst	DABCO	T-1	Air Products and Chemical	Allentown, PA		
			Inc.	,		
Tin Catalyst	DABCO	T-120	Air Products and Chemical Inc.	Allentown, PA		

In situ cure can be facilitated by inclusion of organometallic catalysts in the electrochromic monomer composition. Examples of such catalysts include dibutyl tin dilaurate, dibutyl tin diacetate, and dibutyl tin dioctoate. Other catalysts can include organometallic compounds of bismuth, iron, tin, titanium, cobalt, nickel, antimony, vanadium, cadmium, mercury, aluminum, lead, zinc, barium, and thorium. Also, amines such as tertiary amines can be used.

Monomers capable of ring opening polymerization suitable for use herein include epoxides, lactones, lactams, dioxepanes, Spiro orthocarbonates, unsaturated spiro orthoesters and the like.

Preferred among these ring opening polymerizable monomers are epoxides and lactones. Of the epoxides suitable for use herein, preferred are cyclohexene oxide, cyclopentene oxide, glycidyl i-propyl ether, glycidyl acrylate, furfuryl glycidyl ether, styrene oxide, ethyl-3-phenyl glycidate, 1,4-butanediol glycidyl ether, 2,3-epoxypropyl-4-(2,3-epoxypropoxy)benzoate, 4,4'-bis-(2,3-epoxypropoxy)biphenyl and the like.

Also, particularly preferred are the cycloalkyl epoxides sold under the "CYRACURE" tradename by Union Carbide Chemicals and Plastics Co., Inc., Danbury, Conn., such as the 55 "CYRACURE" resins UVR-6100 (mixed cycloalkyl epoxides), UVR-6105 (3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate), UVR-6110 (3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate) and UVR-[bis-(3,4-epoxycyclohexyl)adipate], 6128 and the 60 "CYRACURE" diluents UVR-6200 (mixed cycloalkyl epoxides) and UVR-6216 (1,2-epoxyhexadecane); those epoxides commercially available from Dow Chemical Co., Midland, Mich., such as D.E.R. 736 epoxy resin (epichlorohydrin-polyglycol reaction product), D.E.R. 755 epoxy resin 65 (diglycidyl ether of bisphenol A-diglycidyl ether of polyglycol) and D.E.R. 732 epoxy resin (epichlorohydrin-polyglycol

reaction product), and the NOVOLAC epoxy resins such as D.E.N. 431, D.E.N. 438 and D.E.N. 439 (phenolic epoxides), and those epoxides commercially available from Shell Chemical Co., Oak Brook, Ill., like the "EPON" resins 825 and 1001F (epichlorohydrin-bisphenol A type epoxy resins).

Other commercially available epoxide monomers that are particularly well-suited for use herein include those commercially available under the "ENVIBAR" tradename from Union Carbide Chemicals and Plastics Co., Inc., Danbury, Conn., such as "ENVIBAR" UV 1244 (cycloalkyl epoxides).

In addition, derivatized urethanes, such as acrylated (e.g., mono- or poly-acrylated) urethanes; derivatized heterocycles, such as acrylated (e.g., mono- or poly-acrylated) heterocycles, like acrylated epoxides, acrylated lactones, acrylated lactams; and combinations thereof, capable of undergoing addition polymerizations, such as vinyl polymerizations and ring opening polymerizations, are also well-suited for use herein.

Many commercially available ultraviolet curable formulations are well-suited for use herein as a monomer component in the electrochromic monomer composition. Among those commercially available ultraviolet curable formulations are acrylated urethanes, such as the acrylated alkyl urethane formulations commercially available from Sartomer Co., including Low Viscosity Urethane Acrylate (Flexible) (CN 965), Low Viscosity Urethane Acrylate (Resilient) (CN 964), Urethane Acrylate (CN 980), Urethane Acrylate/TPGDA (CN 966 A80), Urethane Acrylate/IBOA (CN 966 J75), Urethane Acrylate/EOEOEA (CN 966 H90), Urethane Acrylate/ TPGDA (CN 965 A80), Urethane Acrylate/EOTMPTA (CN 964 E75), Urethane Acrylate/EOEOEA (CN 966 H90), Urethane Acrylate/TPGDA (CN 963 A80), Urethane Acrylate/ EOTMPTA (CN 963 E75), Urethane Acrylate (Flexible) (CN 962), Urethane Acrylate/EOTMPTA (CN 961 E75), Urethane Acrylate/EOEOEA (CN 961 H90), Urethane Acrylate (Hard)

(CN 955), Urethane Acrylate (Hard) (CN 960) and Urethane Acrylate (Soft) (CN 953), and acrylated aromatic urethane formulations, such as those sold by Sartomer Co., may also be used herein, including Hydrophobic Urethane Methacrylate (CN 974), Urethane Acrylate/TPGDA (CN 973 A80), Urethane Acrylate/IBOA (CN 973 J75), Urethane Am/late/EMMA (CN 973 H90), Urethane Acrylate (Flexible) (CN 972), Urethrane Acrylate (Resilient) (CN 971), Urethane Acrylate/TPGDA (CN 971 A80), Urethane Acrylate/TPGDA (CN 970 A60), Urethane Acrylate/EOTMPTA (CN 970 E60) 10 and Urethane Acrylate/EOEOEA (CN 974 H75). Other acrylated urethane formulations suitable for use herein may be obtained commercially from Monomer-Polymer Labs, Inc. and Polysciences, Inc.

Other ultraviolet curable formulations that may be used 15 herein are the ultraviolet curable acrylated epoxide formulations commercially available from Sartomer Co., such as Epoxidized Soy Bean, Oil Acrylate (CN 111), Epoxy Acrylate (CN 120), Epoxy Acrylate/TPGDA (CN 120 A75), Epoxy Acrylate/HDDA (CN 120 B80), Epoxy Acrylate/ 20 TMPTA (CN 120 C80), Epoxy Acrylate/GPTA (CN 120 D80), Epoxy Acrylate/Styrene (CN 120 S85), Epoxy Acrylate (CN 104), Epoxy Acrylate/GPTA (CN 104 D80), Epoxy Acrylate/HDDA (CN 104 B80), Epoxy Acrylate/TPGDA (CN 104 A80), Epoxy Acrylate/TMPTA (CN 104 C75), 25 Epoxy Novolac Acrylate/TMPTA (CN 112 C60), Low Viscosity Epoxy Acrylate (CN 114), Low Viscosity Epoxy Acrylate/EOTMPTA (CN 114 E80), Low Viscosity Epoxy Acrylate/GPTA (CN 114 D75) and Low Viscosity EpoxyAcrylate/ TPGDA CN 114 A80).

In addition, "SARBOX" acrylate resins, commercially available from Sartomer Co., like Carboxylated Acid Terminated (SB 400), Carboxylated Acid Terminated (SB 401), Carboxylated Acid Terminated (SB 500E50), Carboxylated Acid Terminated (SB 500E50), Carboxylated Acid Terminated (SB 500K60), Carboxylated Acid Terminated (SB 510E35), Carboxylated Acid Terminated (SB 520E35) and Carboxylated Acid Terminated (SB 520E35) and Carboxylated Acid Terminated (SB 500) may also be advantageously employed herein.

Also well-suited for use herein are ultraviolet curable for- 40 mulations like the ultraviolet curable conformational coating formulations commercially available under the "QUICK CURE" trademark from the Specialty Coating Systems subsidiary of Union Carbide Chemicals & Plastics Technology Corp., Indianapolis, Ind., and sold under the product desig- 45 nations B-565, B-566, B-576 and BT-5376; ultraviolet curing adhesive formulations commercially available from Loctite Corp., Newington, Conn. under the product names UV OPTI-CALLY CLEAR ADH, MULTI PURPOSE UV ADHESIVE, "IMPRUV" LV POTTING COMPOUND and "LOCQUIC" 50 ACTIVATOR707; ultraviolet curable urethane formulations commercially available from Norland Products, Inc., New Brunswick, N.J., and sold under the product designations "NORLAND NOA 61", "NORLAND NOA 65" and "NOR-LAND NOA 68"; and ultraviolet curable acrylic formulations 55 commercially available from Dymax Corp., Torrington, Conn., including "DYMAX LIGHT-WELD 478"

By employing polyfunctional monomers, like difunctional monomers, or cross-linking agents, cross-linked polychromic solid films may be advantageously prepared.

Such cross-linking tends to improve the physical properties and characteristics (e.g., mechanical strength) of the resulting polychromic solid films. Cross-linking during cure to transform the electrochromic monomer composition into a polychromic solid film may be achieved by means of free 65 radical ionic initiation by the exposure to electromagnetic radiation. This may be accomplished by combining together

all the components of the particular electrochromic monomer composition and thereafter effecting cure. Alternatively, cross-links may be achieved by exposing to electromagnetic radiation the electrochromic monomer composition for a time sufficient to effect a partial cure, whereupon further electromagnetic radiation and/or a thermal influence may be employed to effect a more complete in situ cure and transformation into the polychromic solid film.

26

Suitable polyfunctional monomers for use in preparing polychromic films should have at least two reactive functionalities, and may be selected from, among others, ethylene glycol diacrylate, ethylene glycol dimethacrylate, 1,2-butylene dimethacrylate, 1,3-butylene dimethacrylate, 1,4-butylene dimethacrylate, propylene glycol diacrylate, propylene glycol dimethacrylate, diethylene glycol diacrylate, dipropylene glycol diacrylate, divinyl benzene, divinyl toluene, diallyl tartrate, allyl maleate, divinyl tartrate, triallyl melamine, glycerine trimethacrylate, diallyl maleate, divinyl ether, diallyl monomethylene glycol citrate, ethylene glycol vinyl allyl citrate, allyl vinyl maleate, diallyl itaconate, ethylene glycol diester of itaconic acid, polyester of maleic anhydride with triethylene glycol, polyallyl glucoses (e.g., triallyl glucose), polyallyl sucroses (e.g., pentaallyl sucrose diacrylate), glucose dimethacrylate, pentaerythritol tetraacrylate, sorbitol dimethacrylate, diallyl aconitate, divinyl citrasonate, diallyl fumarate, allyl methacrylate and polyethylene glycol diacry-

Ultraviolet radiation absorbing monomers may also be advantageously employed herein. Preferred among such monomers are 1,3-bis-(4-benzoyl-3-hydroxyphenoxy)-2-propylacrylate, 2-hydroxy-4-acryloxyethoxybenzophenone, 2-hydroxy-4-octoxybenzophenone and 4-methacryloxy-2-hydroxybenzophenone, as they perform the dual function of acting as a monomer component, or a portion thereof, and as an ultraviolet stabilizing agent.

Further, ultraviolet absorbing layers may be coated onto, or adhered to, the first substrate and/or second substrate, and preferably the substrate closest to the source of UV radiation, to assist in shielding the electrochromic device from the degradative effect of ultraviolet radiation. Suitable ultraviolet absorbing layers include those recited in U.S. Pat. No. 5,073, 012 entitled "Anti-scatter, Ultraviolet Protected, Anti-misting Electro-optical Assemblies", filed Mar. 20, 1990, or as disclosed in U.S. patent application Ser. No. 08/547,578 filed Oct. 24, 1995, now U.S. Pat. No. 5,729,379, the disclosures of which are hereby incorporated by reference herein.

Examples of such layers include a layer of DuPont BE1028D which is a polyvinylbutyral/polyester composite available from E.I. DuPont de Nemours and Company, Wilmington, Del., and SORBALITE™ polymeric UV blockers (available from Monsanto Company, St. Louis, Mo.) which comprise a clear thin polymer film, with UV absorbing chromophores incorporated, such as by covalent bonding, in a polymer backbone. The SORBALITETM clear thin polymer film when placed on a surface of the substrate closest to the source of UV radiation (such as the sun), efficiently absorbs UV light below about 370 nm with minimal effect on the visible region. Thickness of the SORBALITE™ film is desirably in the range of about 0.1 microns to 1000 microns (or thicker); preferably less than 100 microns; more preferably less than about 25 microns, and most preferably less than about 10 microns. Also, UV absorbing thin films or additives such as cerium oxide, iron oxide, nickel oxide and titanium oxide or such oxides with dopants can be used to protect the electrochromic device from UV degradation. Further as described above, UV absorbing chromophores can be incorporated, such as by covalent bonding, into the solid polymer

matrix to impart enhanced resilience to UV radiation. Also near-infrared radiation absorbing species may be incorporated into the solid polymer matrix.

The density of the cross-link within the resulting polychromic solid film tends to increase with the amount and/or the 5 degree of functionality of polyfunctional monomer present in the electrochromic monomer composition. Cross-linking density within a polychromic solid film may be achieved or further increased by adding to the electrochromic monomer composition cross-linking agents, which themselves are incapable of undergoing further polymerization. In addition to increasing the degree of cross-linking within the resulting polychromic solid film, the use of such cross-linking agents in the electrochromic monomer composition may enhance the prolonged coloration performance of the resulting polychromic solid film. Included among such cross-linking agents are polyfunctional hydroxy compounds, such as glycols and glycerol, polyfunctional primary or secondary amino compounds and polyfunctional mercapto compounds. Among the preferred cross-linking agents are pentaerythritol, 2-ethyl-2- 20 (hydroxymethyl)-1,3-propanediol, the poly(caprolactone) diols having molecular weights of 1,250, 2,000 and 3,000, and polycarbonate diol available from Polysciences, Inc. and the polyfunctional hydroxy compounds commercially available under the "TONE" tradename from Union Carbide 25 Chemicals and Plastics Co. Inc., Danbury, Conn., such as ∈-caprolactone triols (known as "TONE" 0301, "TONE" 0305 and "TONE" 0310). Among the preferred glycols are the polyethylene glycols), like those sold under the "CAR-BOWAX" tradename by the Industrial Chemical division of 30 Union Carbide Corp., Danbury, Conn. such as "CARBO-WAX" PEG 200, PEG 300, PEG 400, PEG 540 Blend, PEG 600, PEG 900, PEG 1000, PEG 1450, PEG 3350, PEG 4600, and PEG 8000, with "CARBOWAX" PEG 1450 being the most preferred among this group, and those available from 35 Polysciences, Inc.

Polychromic solid films that perform well under prolonged coloration may be prepared from electrochromic monomer compositions that contain as a monomer component at least some portion of a polyfunctional monomer—e.g., a difunctional monomer. By preferably using polyfunctional monomers having their functional groups spaced apart to such an extent so as to enhance the flexibility of the resulting polychromic solid film, polychromic films may be prepared with a minimum of shrinkage during the transformation process 45 and that also perform well under prolonged coloration.

While it is preferable to have electrochromic monomer compositions which contain a monomer component having polyfunctionality in preparing polychromic solid films that perform well under prolonged coloration, electrochromic 50 monomer compositions that exhibit enhanced resistance to shrinkage when transformed into polychromic solid films preferably contain certain monofunctional monomers. In this regard, depending on the specific application, some physical properties and characteristics of polychromic solid films may 55 be deemed of greater import than others. Thus, superior performance in terms of resistance to shrinkage during in situ, curing of the electrochromic monomer composition to the polychromic solid film may be balanced with the prolonged coloration performance of the resulting polychromic solid 60 film to achieve the properties and characteristics desirable of that polychromic solid film.

Those of ordinary skill in the art may make appropriate choices among the herein described monomers—monofunctional and polyfunctional, such as difunctional—and cross-65 linking agents to prepare a polychromic solid film having beneficial properties and characteristics for the specific appli-

28

cation by choosing such combinations of a monofunctional monomer to a polyfunctional monomer or a monofunctional monomer to a cross-linking agent in an equivalent ratio of about 1:1 or greater.

In the preferred electrochromic monomer compositions, photoinitiators or photosensitizers may also be added to assist the initiation of the in situ curing process. Such photoinitiators or photsensitizers enhance the rapidity of the curing process when the electrochromic monomer compositions are exposed to electromagnetic radiation. These materials include, but are not limited to, radical initiation type and cationic initiation type polymerization initiators such as benzoin derivatives, like the n-butyl, i-butyl and ethyl benzoin alkyl ethers, and those commercially available products sold under the "ESACURE" tradename by Sartomer Co., such as "ESACURE" TZT (trimethyl benzophenone blend), KB 1 (benzildimethyl ketal), KB60 (60% solution of benzildimethyl ketal), EB3 (mixture of benzoin n-butyl ethers), KIP 100F (α -hydroxy ketone), KT37 (TZT and α -hydroxy ketone blend), ITX (i-propylthioxanthone), X15 (ITX and TZT blend), and EDB [ethyl-4-(dimethylamino)-benzoate]; those commercially available products sold under the "IRGA-CURE" and "DAROCURE" tradenames by Ciba Geigy Corp., Hawthorne, N.Y., specifically "IRGACURE" 184, 907, 369, 500, 651, 261, 784 and "DAROCURE" 1173 and 4265, respectively; the photoinitiators commercially available from Union Carbide Chemicals and Plastics Co. Inc., Danbury, Conn., under the "CYRACURE" tradename, such as "CYRACURE" UVI-6974 (mixed triaryl sulfonium hexafluoroantimonate salts) and UVI-6990 (mixed triaryl sulfonium hexafluorophosphate salts); and the visible light [blue] photoinitiator, dl-camphorquinone.

Of course, when those of ordinary skill in the art choose a commercially available ultraviolet curable formulation, it may no longer be desirable to include as a component within the electrochromic monomer composition an additional monomer to that monomer component already present in the commercial formulation. And, as many of such commercially available ultraviolet curable formulations contain a photoinitiator or photosensitizer, it may no longer be desirable to include this optional component in the electrochromic monomer composition. Nevertheless, a monomer, or a photoinitiator or a photosensitizer, may still be added to the electrochromic monomer composition to achieve beneficial results, and particularly when specific properties and characteristics are desired of the resulting polychromic solid film.

With an eye toward maintaining the homogeneity of the electrochromic monomer composition and the polychromic solid film which results after in situ cure, those of ordinary skill in the art should choose the particular components dispersed throughout, and their relative quantities, appropriately. One or more compatibilizing agents may be optionally added to the electrochromic monomer composition so as to accomplish this goal. Such compatibilizing agents include, among others, combinations of plasticizers recited herein, a monomer component having polyfunctionality and cross-linking agents that provide flexible cross-links. See supra.

Further, monomer compositions can be formed comprising both organic and inorganic monomers. For example, inorganic monomers such as tetraethylorthosilicate, titanium isopropoxide, metal alkoxides, and the like may be included in the monomer composition, and formation of the solid matrix (be it an organic polymer matrix, an inorganic polymer matrix or an organic/inorganic polymer matrix) can proceed via a variety of reaction mechanisms, including hydrolysis/condensation reactions. Also, transition metal-peroxy acid products (such as tungsten peroxy acid product) can be reacted

29 with alcohol to form a peroxy-transition metal derivative

functional lifetime of the resulting polychromic solid film. Such ultraviolet stabilizing agents (and/or self-screening plasticizers) should be substantially transparent in the visible region and function to absorb ultraviolet radiation, quench degradative free radical reaction formation and prevent degradative oxidative reactions.

As those of ordinary skill in the art will readily appreciate.

30

(such as peroxytungstic ester derivative), with a recitation of such species being found in U.S. Pat. No. 5,457,218 entitled "Precursor and Related Method of Forming Electrochromic Coatings", invented by J. Cronin et al and issued Oct. 10, 5 1995, the disclosure of which is hereby incorporated by reference herein, and can be used as a component of the electrochromic monomer composition. Also, the polychromic solid films may optionally be combined with inorganic and organic films such as those of metal oxides (e.g., W0₃, NiO, IrO₂, etc.) and organic films such a polyaniline. Examples of such films are found in U.S. patent application Ser. No. 08/429,643 filed Apr. 27, 1995, now U.S. Pat. No. 5,724,187, U.S. patent application Ser. No. 08/547,578 filed Oct. 24, 1995, now U.S. Pat. No. 5,729,379, and U.S. patent application Ser. No. 15 08/330,090 filed Oct. 26, 1994, now U.S. Pat. No. 5,780,160, the disclosures of which are hereby incorporated by reference herein. Also, the devices of this present invention can benefit from the use of elemental semiconductors layers or stacks, PRM, anti-wetting adaption, synchronous manufacturing, 20 multi-layer transparent conducting stacks incorporating a thin metal layer overcoated with a conducting metal oxide (such as a high reflectivity reflector comprising around 1000 Å of silver metal or aluminum metal, overcoated with about 1500 Å of ITO and with a reflectivity greater than 70% R and 25 a sheet resistance below 5 ohms/square), conducting seals, variable intensity band pass filters, isolation valve vacuum backfilling, cover sheets and on demand displays such as are disclosed in U.S. patent application Ser. No. 08/429,643 filed Apr. 27, 1995, now U.S. Pat. No. 5,724,187, the disclosure of 30 which is hereby incorporated by reference herein. Also, as further disclosed in U.S. patent application Ser. No. 08/429, 643, now U.S. Pat. No. 5,724,187, the solid polymer films of this present invention may comprise within their structure electrochromatically active phthalocyanine-based and/or 35 phthalocyanine-derived moieties including transition metal phthalocyanines such as zirconium phthalocyanine and molybdenum phthalocyanine. Also, the solid polymer films of this invention can be combined with an electron donor (e.g., TiO₂)—spacer (salicylic acid or phosphoric acid bound 40 to the TiO₂)—electron acceptor (a viologen bound to the salicylic acid or to the phosphoric acid) heterodyad such as described also in U.S. patent application Ser. No. 08/429,643, now U.S. Pat. No. 5,724,187. Such donor-spacer-acceptor solid films can function as an electrochromic solid film in 45 combination with the polychromic solid films of the present invention. Further, such as described in U.S. patent application Ser. No. 08/429,643, now U.S. Pat. No. 5,724,187, such chemically modified nanoporous-nanocrystalline films, such as of TiO₂ with absorbed redox chromophores, can be used in 50 a variety of electrochromic devices and device constructions, including rearview mirrors, glazings, architectural and

As those of ordinary skill in the art will readily appreciate, the preferred ultraviolet stabilizing agents, which are usually employed on a by-weight basis, should be selected so as to be compatible with the other components of the electrochromic monomer composition, and so that the physical, chemical or electrochemical performance of, as well as the transformation into, the resulting polychromic solid film is not adversely affected.

Although many materials known to absorb ultraviolet radiation may be employed herein, preferred ultraviolet stabilizing agents include "UVINUL" 400 [2,4-dihydroxybenzophenone (manufactured by BASF Corp., Wyandotte, Mich.)], "UVINUL" D 49 [2,2'-dihydroxy-4,4'-dimethoxybenzophenone (BASF Corp.)], "UVINUL" N 35 [ethyl-2cyano-3,3-diphenylacrylate (BASF Corp.)], "UVINUL" N 539 [2-ethylhexyl-2-cyano-3,3'diphenylacrylate (BASF Corp.)], "UVINUL" M 40 [2-hydroxy-4-methoxybenzophenone (BASF Corp.)], "UVINUL" M 408 [2-hydroxy-4-octoxybenzophenone (BASF Corp.)], "TINUVIN" P [2-(2'-hydroxy-5'-methylphenyl)-triazole (Ciba Geigy Corp.)], "TINUVIN" 327 [2-(3',5'-di-t-butyl-2'-hydroxyphenyl)-5chloro-benzotriazole (Ciba Geigy Corp.)], "TINUVIN" 328 [2-(3',5'-di-n-pentyl-2'-hydroxyphenyl)-benzotriazole (Ciba Geigy Corp.)] and "CYASORB UV" 24 [2,2'-dihydroxy-4methoxy-benzophenone (manufactured by American Cyanamid Co., Wayne, N.J.)], with "UVINUL" M 40, "UVINUL" M 408, "UVINUL" N 35 and "UVINUL" N 539 being the most preferred ultraviolet stabilizing agents when used in a by-weight range of about 0.1%, to about 15%, with about 4% to about 10% being preferred.

Since solar radiation includes an ultraviolet region only between about 290 nm and 400 nm, the cure wave length of the electrochromic monomer composition, the peak intensity of the source of electromagnetic radiation, and the principle absorbance maxima of the ultraviolet stability agents should be selected to provide a rapid and efficient transformation of the electrochromic monomer compositions into the polychromic solid films, while optimizing the continued long-term post-cure stability to outdoor weathering and all-climate exposure of polychromic solid films.

An electrolytic material may also be employed in the electrochromic monomer composition to assist or enhance the conductivity of the electrical current passing through the resulting polychromic solid film. The electrolytic material may be selected from a host of known materials, preferred of which are tetraethylammonium perchlorate, tetrabutylammonium tetrafluoroborate, tetrabutylammonium hexafluorophosphate, tetrabutylammonium trifluoromethane sulfonate, lithium salts and combinations thereof; with tetrabutylammonium hexafluorophosphate and tetraethylammonium perchlorate being the most preferred.

In addition, adhesion promoting agents or coupling agents may be used in the preferred electrochromic monomer compositions to further enhance the degree to which the resulting polychromic solid films adhere to the contacting surfaces. Adhesion promoting or coupling agents, which promote such enhanced adhesion, include silane coupling agents, and commercially available adhesion promoting agents like those sold by Sartomer Co., such as Alkoxylated Trifunctional Acrylate (9008), Trifunctional Methacrylate Ester (9010 and 9011), Trifunctional Acrylate Ester (9012), Aliphatic Monofunc-

Many electrochromic compounds absorb electromagnetic 55 radiation in the about 290 nm to about 400 nm ultraviolet region. Because solar radiation includes an ultraviolet region between about 290 nm to about 400 nm, it is often desirable to shield such electrochromic compounds from ultraviolet radiation in that region. By so doing, the longevity and stability of the electrochromic compounds may be improved. Also, it is desirable that the polychromic solid film itself be stable to electromagnetic radiation, particularly in that region. This may be accomplished by adding to the electrochromic monomer composition an ultraviolet stabilizing 65 agent (and/or a self-screening plasticizer which may act to block or screen such ultraviolet radiation) so as to extend the

vehicular glazings, displays, filters, contrast enhancement

filters and the like.

tional Ester (9013 and 9015) and Aliphatic Difunctional Ester (9014). Moreover, carboxylated vinyl monomers, such as methacrylic acid, vinyl carboxylic acid and the like may be used to further assist the development of good adhesion to the contacting surfaces.

And, coloring agents, spacers, anti-oxidizing agents, flame retarding agents, heat stabilizing agents and combinations thereof may be added to the electrochromic monomer compositions, choosing of course those materials in appropriate quantities depending upon the specific application of the resulting polychromic solid film. For instance, a blue-tinted electrochromic automotive mirror, such as described herein, may be prepared by dispersing within the electrochromic monomer composition a suitable ultraviolet stable coloring agent, such as "NEOZAPON" BLUE TM 807 (a phthalocyanine blue dye, available commercially from BASF Corp., Parsippany, N.J.) and "NEOPEN" 808 (a phthalocyanine blue dye, available commercially from BASF Corp.).

Polychromic solid films may be prepared within an elec- 20 trochromic device by introducing an electrochromic monomer composition to a film forming means, such as the vacuum backfilling technique, which fills a cavity of an assembly by withdrawing into the cavity the electrochromic monomer composition while the assembly is in an environment of 25 reduced atmospheric pressure [see e.g., Varaprasad II], the two hole filling technique, where the electrochromic monomer composition is dispensed under pressure into the assembly through one hole while a gentle vacuum is applied at the other hole [see e.g., Varaprasad III], or with the sandwich 30 lamination technique, which contemporaneously creates and fills a cavity of an assembly by placing on one or both substrates either a thermoplastic sealing means to act as a spacing means [see commonly assigned U.S. Pat. No. 5,233,461 (Dornan)] or glass beads of nominal diameter, and then 35 exposing to electromagnetic radiation at least one clear substrate of the assembly constructed by any of the above manufacturing techniques (containing the low viscosity electrochromic monomer composition) for a time sufficient to transform the electrochromic monomer composition into a 40 polychromic solid film.

In connection with such film forming means, spacers, such as glass beads, may be dispensed across the conductive surface of one or both substrates, or dispersed throughout the electrochromic monomer composition which may then be 45 dispensed onto the conductive surface of one or both substrates, to assist in preparing a polychromic solid film which contacts, in abutting relationship, the conductive surface of the two substrates. Similarly, a pre-established spacing means of solid material, such as tape, pillars, walls, ridges and the 50 like, may also be employed to assist in determining the interpane distance between the substrates in which a polychromic solid film may be prepared to contact, in abutting relationship with, the conductive surface of the two substrates.

Polychromic solid films may also be prepared separately 55 from the electrochromic device, and thereafter placed between, and in abutting relationship with, the conductive surface of the two substrates used in constructing the device. Many known film manufacturing processes may be employed as a film forming means to manufacture polychromic solid 60 films. Included among these processes are calendering, casting, rolling, dispensing, coating, extrusion and thermoforming. For a non-exhaustive description of such processes, see Modern Plastics Encyclopedia 1988, 203-300, McGraw-Hill Inc., New York (1988). For instance, the electrochromic 65 monomer composition may be dispensed or coated onto the conductive surface of a substrate, using conventional tech-

32

niques, such as curtain coating, spray coating, dip coating, spin coating, roller coating, brush coating or transfer coating.

As described above, polychromic solid films may be prepared as a self-supporting solid film which may thereafter be contacted with conductive substrates.

For instance, an electrochromic monomer composition may be continuously cast or dispensed onto a surface, such as a fluorocarbon surface and the like, to which the polychromic solid film, transformed therefrom by exposure to electromagnetic radiation, does not adhere. In this way, polychromic solid films may be continuously prepared, and, for example, reeled onto a take-up roller and stored for future use. Thus, when a particular electrochromic device is desired, an appropriately shaped portion of the stored polychromic solid film may be cut from the roll using a die, laser, hot wire, blade or other cutting means. This now custom-cut portion of polychromic solid film may be contacted with the conductive substrates to form an electrochromic device.

For example, the custom-cut portion of the polychromic solid film may be laminated between the conductive surface of two transparent conductive coated substrates, such as ITO or tin oxide coated glass substrates, two ITO or tin oxide coated "MYLAR" [polyethylene terephthalate film (commercially available from E.I. du Pont de Nemours and Co., Wilmington, Del.)] substrates or one ITO or tin oxide coated glass substrate and one ITO or tin oxide coated "MYLAR" substrate. To this end, it may be desirable to allow for residual cure in the stored polychromic solid film so that adhesion to the conductive substrates in the laminate to be formed is facilitated and optimized.

In this regard, a polychromic solid film may be prepared by the film forming means of extrusion or calendaring wherein the electrochromic monomer composition is transformed into the polychromic solid film by exposure to electromagnetic radiation prior to, contemporaneously with, or, if the electrochromic monomer composition is sufficiently viscous, after passing through the extruder or calendar. Thereafter, the polychromic solid film may be placed between, and in abutting relationship with, the conductive surface of the substrates, and then construction of the electrochromic device may be completed.

While preparing polychromic solid films, the viscosity of the electrochromic monomer composition may be controlled to optimize its dispensibility by adjusting the temperature of (1) the electrochromic monomer composition itself, (2) the substrates on which the electrochromic monomer composition may be placed to assemble the electrochromic device or (3) the processing equipment used to prepare polychromic solid films (if the polychromic film is to be prepared independently from the substrates of the electrochromic devices). For example, the temperature of the electrochromic monomer composition, the substrates or the equipment or combinations thereof may be elevated to decrease the viscosity of the electrochromic monomer composition. Similarly, the uniformity on the substrate of the dispensed electrochromic monomer composition may be enhanced using lamination techniques, centrifuge techniques, pressure applied from the atmosphere (such as with vacuum bagging), pressure applied from a weighted object, rollers and the like.

The substrates employed in the electrochromic devices of the present invention may be constructed from materials that are substantially inflexible as well as flexible depending on the application to which they are to be used. In this regard, the substrates may be constructed from substantially inflexible substrates, such as glass, laminated glass, tempered glass, optical plastics, such as polycarbonate, acrylic and polystyrene, and flexible substrates, such as "MYLAR" film. Also,

the glass substrates suitable for use herein may be tinted specialized glass which is known to significantly reduce ultraviolet radiation transmission while maintaining high visible light transmission. Such glass, often bearing a blue colored tint provides a commercially acceptable silvery reflection to 5 electrochromic automotive mirrors even when the polychromic solid film is prepared containing an ultraviolet stabilizing agent or other component which may have a tendency to imbue a yellowish appearance to the polychromic solid film. Preferably, blue tinted specialized glass may be obtained 10 commercially from Pittsburgh Plate Glass Industries, Pittsburgh, Pa. as "SOLEXTRA" 7010; Ford Glass Co., Detroit, Mich. as "SUNGLAS" Blue; or Asahi Glass Co., Tokyo, Japan under the "SUNBLUE" tradename.

Whether the chosen substrate is substantially inflexible or 15 flexible, a transparent conductive coating, such as indium tin oxide ("ITO") or doped-tin oxide, is coated on a surface of the substrate making that surface suitable for placement in abutting relationship with a polychromic solid film.

The choice of substrate may influence the choice of pro- 20 cessing techniques used to prepare the polychromic solid film or the type of electrochromic device assembled. For example, when assembling an electrochromic device from flexible substrates, an electrochromic monomer composition may be advantageously applied to such flexible substrates using a 25 the electrochromic monomer composition may be transroll-to-roll system where the flexible substrates are released from rolls (that are aligned and rotate in directions opposite to one another), and brought toward one another in a spacedapart relationship. In this way, the electrochromic monomer composition may be dispensed or injected onto one of the 30 flexible substrates at the point where the two flexible substrates are released from their respective rolls and brought toward one another, while being contemporaneously exposed to electromagnetic radiation for a time sufficient to transform the electrochromic monomer composition into a polychromic 35

The dispensing of the electrochromic monomer composition may be effected through a first injection nozzle positioned over one of the rolls of flexible substrate. A weathering barrier forming material, such as a curing epoxide like an 40 ultraviolet curing epoxide, may be dispensed in an alternating and synchronized manner onto that flexible substrate through a second injection nozzle positioned adjacent to the first injection nozzle. By passing in the path of these nozzles as a continuously moving ribbon, a flexible substrate may be con- 45 tacted with the separate polymerizable compositions in appropriate amounts and positions on the flexible substrate.

In manufacturing flexible electrochromic assemblies having a dimension the full width of the roll of flexible substrate, a weathering barrier forming material may be dispensed from 50 the second injection nozzle which may be positioned inboard (typically about 2 mm to about 25 mm) from the leftmost edge of the roll of flexible substrate. The first injection nozzle, positioned adjacent to the second injection nozzle, may dispense the electrochromic monomer composition onto most of 55 the full width of the roll of flexible substrate. A third injection nozzle, also dispensing weathering barrier forming material, may be positioned adjacent to, but inboard from, the rightmost edge of that roll of flexible substrate (typically about 2 mm to about 25 mm). In this manner, and as described above, 60 a continuous ribbon of a flexible electrochromic assembly may be formed (upon exposure to electromagnetic radiation) which, in turn, may be taken up onto a take-up roller. By so doing, a flexible electrochromic assembly having the width of the roll of flexible substrate, but of a particular length, may be obtained by unrolling and cutting to length an electrochromic assembly of a particular size.

34

Should it be desirable to have multiple flexible electrochromic assemblies positioned in the same take-up roll, multiple nozzles may be placed appropriately at positions throughout the width of one of the rolls of flexible substrate, and the dispensing process carried out accordingly.

In that regard, a small gap (e.g., about 5 mm to about 50 mm) should be maintained where no dispensing occurs during the introduction of the electrochromic monomer composition and the weathering barrier forming material onto the substrate so that a dead zone is created where neither the electrochromic monomer composition nor the weathering barrier forming material is present. Once the weathering barrier and polychromic solid film have formed (see infra), the electrochromic assembly may be isolated by cutting along the newly created dead zones of the flexible assemblies. This zone serves conveniently as a cutting area to form electrochromic assemblies of desired sizes.

And, the zones outboard of the respective weathering barriers serve as convenient edges for attachment of a means for introducing an applied potential to the flexible electrochromic assemblies, such as bus bars. Similarly, the bisection of the dead zones establishes a convenient position onto which the bus bars may be Affixed.

While each of the weathering barrier forming material and formed into a weathering barrier and a polychromic solid film, respectively, by exposure to electromagnetic radiation, the required exposures to complete the respective transformations may be independent from one another. The weathering barrier forming material may also be thermally cured to form the weathering barrier.

The choice of a particular electromagnetic radiation region to effect in situ cure may depend on the particular electrochromic monomer composition to be cured. In this regard, typical sources of electromagnetic radiation, such as ultraviolet radiation, include: mercury vapor lamps; xenon arc lamps; "H", "D", "X", "M", "V" and "A" fusion lamps (such as those commercially available from Fusion UV Curing Systems, Buffalo Grove, Ill.); microwave generated ultraviolet radiation; solar power and fluorescent light sources. Any of these electromagnetic radiation sources may use in conjunction therewith reflectors and filters, so as to focus the emitted radiation within a particular electromagnetic region. Similarly, the electromagnetic radiation may be generated directly in a steady fashion or in an intermittent fashion so as to minimize the degree of heat build-up. Although the region of electromagnetic radiation employed to in situ cure the electrochromic monomer compositions into polychromic solid films is often referred to herein as being in the ultraviolet region, that is not to say that other regions of radiation within the electromagnetic spectrum may not also be suitable. For instance, in certain situations, visible radiation may also be advantageously employed.

Bearing in mind that some or all of the components of the electrochromic monomer composition may inhibit, retard or suppress the in situ curing process, a given source of electromagnetic radiation should have a sufficient intensity to overcome the inhibitive effects of those components so as to enable to proceed successfully the transformation of the electrochromic monomer composition into the polychromic solid film. By choosing a lamp with a reflector and, optionally, a filter, a source which itself produces a less advantageous intensity of electromagnetic radiation may suffice. In any event, the chosen lamp preferably has a power rating of at least about 100 watts per inch (about 40 watts per cm), with a power rating of at least about 300 watts per inch (about 120 watts per cm) being particularly preferred. Most preferably,

the wavelength of the lamp and its output intensity should be chosen to accommodate the presence of ultraviolet stabilizing agents incorporated into electrochromic monomer compositions. Also, a photoinitiator or photosensitizer, if used, may increase the rate of in situ, curing or shift the wavelength within the electromagnetic radiation spectrum at which in situ curing will occur in the transformation process.

During the in situ curing process, the electrochromic monomer composition will be exposed to a source of electromagnetic radiation that emits an amount of energy, measured in KJ/m², determined by parameters including: the size, type and geometry of the source; the duration of the exposure to electromagnetic radiation; the intensity of the radiation (and that portion of radiation emitted within the region appropriate to effect curing); the absorbance of electromagnetic radiation by any intervening materials, such as substrates, conductive coatings and the like; and the distance the electrochromic monomer composition lies from the source of radiation. Those of ordinary skill in the art will readily appreciate that the polychromic solid film transformation may be optimized by choosing appropriate values for these parameters in view of the particular electrochromic monomer composition.

The source of electromagnetic radiation may remain stationary while the electrochromic monomer composition passes through its path. Alternatively, the electrochromic 25 monomer composition may remain stationary while the source of electromagnetic radiation passes thereover or therearound to complete the transformation into a polychromic solid film. Still alternatively, both may traverse one another, or for that matter remain stationary, provided that the electrochromic monomer composition is exposed to the electrochromic radiation for a time sufficient to effect such in situ curing.

Commercially available curing systems, such as the Fusion UV Curing Systems F-300 B [Fusion UV Curing Systems, Buffalo Grove, Ill.], Hanovia UV Curing System [Hanovia 35 Corp., Newark, N.J.] and RC-500 A Pulsed UV Curing System [Xenon Corp., Woburn, Mass.], are well-suited to accomplish the transformation. Also, a Sunlighter UV chamber fitted with low intensity mercury vapor lamps and a turntable may accomplish the transformation.

Electromagnetic radiation in the near-infrared and far-infrared (including short and long wavelengths from 3 microns to 30 microns and beyond) regions of the electromagnetic spectrum can be used, as can radiation in other regions such as microwave radiation. Thus, for electrochromic monomer 45 compositions responsive to energy input that includes thermal energy, radiant heaters that emit in the infrared region and couple energy into the monomer composition can be used. For compositions responsive to microwave energy, a microwave generator can be used. Also, for systems that respond, 50 for example, to a combination of energy inputs from different regions of the electromagnetic spectrum, a combined energy radiator can be used. For example, the Fusion UV Curing System, Sunlight UV Chamber, Hanovia UV Curing System, and RC-500A Pulsed UV Curing System described above 55 emit energy efficiently in both the ultraviolet region and the infrared region, and thus effect a cure both by photoinitiation and thermally. For systems responsive to thermal influences, ovens, lehrs, converyorized ovens, induction ovens, heater banks and the like can be used to couple energy into the 60 electrochromic monomer composition by convection, conduction and/or radiation. Also, chemical initiators and catalysts, photo initiators, latent curing agents (such as are described in U.S. patent application Ser. No. 08/429,643, now U.S. Pat. No. 5,724,187, the disclosure of which is hereby 65 incorporated by reference herein) and similar chemical accelerants can be used to assist conversion of the electro-

chromic monomer composition into a cross-linked solid polymer matrix. By customizing and selecting the components of the electrochromic monomer composition, cure can be retarded/suppressed until after the composition is applied within the cavity of the electrochromic cell. Thereafter, by exposure to electromagnetic radiation or thermal influence. cure to the solid polymer matrix polychromic film can be accelerated. Since devices will not typically be consumer used until at least days (often weeks or months) after initial application of the monomer composition within the interpane cell cavity, electrochromic monomer compositions can be composed that in situ cure at room temperature (typically 15° to 30° C.) over time once established within the interpane cavity (for example, within 24 hours). Alternately, electrochromic devices can be thermally in situ cured in an oven at a temperature, for example, of 60° C. or higher for a time period of, for example, five minutes or longer with the particular oven temperature and oven dwell time being readily established by experimentation for any given electrochromic monomer composition. For example, we find good results by exposure of the tin catalyzed compositions of the Examples to about 80° C. in an oven for about two hours. If faster curing systems are desired, then the monomer composition can be appropriately adjusted, particularly by appropriate selection of the type and concentration of initiators, curing agents, catalysts, cross-linking agents, accelerants, etc.

36

The required amount of energy may be delivered by exposing the electrochromic monomer composition to a less powerful source of electromagnetic radiation for a longer period of time, through for example multiple passes, or conversely, by exposing it to a more powerful source of electromagnetic radiation for a shorter period of time. In addition, each of those multiple passes may occur with a source at different energy intensities. In any event, those of ordinary skill in the art should choose an appropriate source of electromagnetic radiation depending on the particular electrochromic monomer composition, and place that source at a suitable distance therefrom which, together with the length of exposure, optimizes the transformation process. Generally, a slower controlled cure, such as that achieved by multiple passes using a less intense energy source, may be preferable over a rapid cure using a more intense energy source, for example, to minimize shrinkage during the transformation process. Also, it is desirable to use a source of electromagnetic radiation that is delivered in an intermittent fashion, such as by pulsing or strobing, so as to ensure a thorough and complete cure without causing excessive heat build-up.

In transforming electrochromic monomer compositions into polychromic solid films, shrinkage may be observed during and after the transformation process of the electrochromic monomer composition into a polychromic solid film. This undesirable event may be controlled or lessened to a large extent by making appropriate choices among the components of the electrochromic monomer composition. For instance, appropriately chosen polyfunctional monomers or cross-linking agents may enhance resistance to shrinkage during the transformation process. In addition, a conscious control of the type and amount of plasticizer used in the electrochromic monomer composition may also tend to enhance resistance to shrinkage. While shrinkage may also be observed with polychromic solid films that have been subjected to environmental conditions, especially conditions of environmental accelerated aging, such as thermal cycling and low temperature soak, a conscious choice of components used in the electrochromic monomer composition may tend to minimize this event as well. In general, shrinkage may be

decreased as the molecular weight of the monomer employed is increased, and by using index matched inert fillers, such as glass beads or fibres.

Electrochromic devices may be manufactured with polychromic solid films of a particular thickness by preparing 5 partially-cured polychromic solid films between the glass substrates of electrochromic assemblies with spacers or a thermoplastic spacing means having been placed on one or both of the substrates. This partially-cured polychromic solid film should have a thickness slightly greater than that which the resulting polychromic solid film will desirably assume in the completed device. The electrochromic assemblies should then be subjected to compression, such as that provided by an autoclave/vacuum bagging process, and thereafter be exposed to electromagnetic radiation to complete the transformation into a polychromic solid film with the desired film thickness

FIGS. 1 and 2 show an electrochromic device assembled from the polychromic solid films of the present invention. The electrochromic assembly 1 includes two substantially planar 20 substrates 2, 3 positioned substantially parallel to one another. It is preferable that these substrates 2, 3 be positioned as close to parallel to one another as possible so as to avoid double imaging, which is particularly noticeable in mirrors, especially when the electrochromic media—i.e., the polychromic solid film—is colored to a dimmed state.

A source of an applied potential need be introduced to the electrochromic assembly 1 so that polychromic solid film 6 may color in a rapid, intense and uniform manner. That source may be connected by electrical leads 8 to conducting strips, 30 such as bus bars 7. The bus bars 7 may be constructed of a metal, such as copper, stainless steel, aluminum or solder, or of conductive fits and epoxides, and should be affixed to a conductive coating 4, coated on a surface of each of the substrates 2, 3. An exposed portion of the conductive coating 35 4 should be provided for the bus bars 7 to adhere by the displacement of the coated substrates 2, 3 in opposite directions relative to each other—lateral from, but parallel to—, with polychromic solid film 6 positioned between, and in abutting relationship with, the conductive surface of the two 40 substrates.

As noted above, coated on a surface of each of these substrates 2, 3 is a substantially transparent conductive coating 4. The conductive coating 4 is generally from about 300 Å to about 10,000 Å in thickness, having a refractive index in the 45 range of about 1.6 to about 2.2. Preferably, a conductive coating 4 with a thickness of about 1,200 Å to about 2,300 Å, having a refractive index of about 1.7 to about 1.9, is chosen depending on the desired appearance of the substrate when the polychromic solid film situated therebetween is colored. 50

The conductive coating 4 should also be highly and uniformly conductive in each direction to provide a substantially uniform response as to film coloring once a potential is applied. The sheet resistance of these transparent conductive substrates 2, 3 may be below about 100 ohms per square, with 55 about 6 ohms per square to about 20 ohms per square being preferred. Such substrates 2, 3 may be selected from among those commercially available as glass substrates, coated with indium tin oxide ("ITO") from Donnelly Corporation, Holland, Mich., or tin oxide-coated glass substrates sold by the 60 LOF Glass division of Libbey-Owens-Ford Co., Toledo, Ohio under the tradename of "TEC-Glass" products, such as "TEC 10" (10 ohms per square sheet resistance), "TEC 12" (12 ohms per square sheet resistance), "TEC 15" (15 ohms per square sheet resistance) and "TEC 20" (20 ohms per square 65 sheet resistance) tin oxide-coated glass. Moreover, tin oxide coated glass substrates, commercially available from Pitts38

burgh Plate Glass Industries, Pittsburgh, Pa. under the "SUN-GATE" tradename, may be advantageously employed herein. Also, substantially transparent conductive coated flexible substrates, such as ITO deposited onto substantially clear or tinted "MYLAR", may be used. Such flexible substrates are commercially available from Southwall Corp., Palo Alto, Calif.

The conductive coating 4 coated on each of substrates 2, 3 may be constructed from the same material or different materials, including tin oxide, ITO, ITO-FW, ITO-HW, ITO-HWG, doped tin oxide, such as antimony-doped tin oxide and fluorine-doped tin oxide, doped zinc oxide, such as antimony-doped zinc oxide and aluminum-doped zinc oxide, with ITO being preferred.

The substantially transparent conductive coated substrates 2, 3 may be of the full-wave length-type ("FW") (about 6 ohms per square to about 8 ohms per square sheet resistance), the half-wave length-type ("HW") (about 12 ohms per square to about 15 ohms per square sheet resistance) or the half-wave length green-type ("HWG") (about 12 ohms per square to about 15 ohms per square sheet resistance). The thickness of FW is about 3,000 Å in thickness, HW is about 1,500 Å in thickness and HWG is about 1,960 Å in thickness, bearing in mind that these substantially transparent conductive coated substrates 2, 3 may vary as much as about 100 to about 200 Å. HWG has a refractive index of about 1.7 to about 1.8, and has an optical thickness of about five-eighths wave to about twothirds wave. HWG is generally chosen for electrochromic devices, especially reflective devices, such as mirrors, whose desired appearance has a greenish hue in color when a potential is applied.

Optionally, and for some applications desirably, the spaced-apart substantially transparent conductive coated substrates 2, 3 may have a weather barrier 5 placed therebetween or therearound. The use of a weather barrier 5 in the electrochromic devices of the present invention is for the purpose of preventing environmental contaminants from entering the device during long-term use under harsh environmental conditions rather than to prevent escape of electrochromic media, such as with an electrochemichromic device. Weather barrier "5 may be made from many known materials, with epoxy resins coupled with spacers, plasticized polyvinyl butyral (available commercially under the "SAFLEX" tradename from Monsanto Co., St. Louis, Mo.), ionomer resins (available commercially under the "SURLYN" tradename from E.I. du Pont de Nemours and Co., Wilmington, Del.) and "KAPTON" high temperature polyamide tape (available commercially from E.I. du Pont de Nemours and Co., Wilmington, Del.) being preferred. In general, it may be desirable to use within the electrochromic device, and particularly for weather barrier 5, materials such as nitrile containing polymers and butyl rubbers that form a good barrier against oxygen permeation from environmental exposure.

A further recitation of weather barrier materials and types (including single and double weather barrier constructions) is found in U.S. patent application Ser. No. 08/429,643 filed Apr. 27, 1995, now U.S. Pat. No. 5,724,187, the disclosure of which is hereby incorporated by reference herein, including flexible weather barrier materials that are beneficial when the polychromic solid film devices of this invention are exposed to wide and rapid oscillation between temperature extremes, such as the thermal shocks experienced during normal use in or on a vehicle in regions of climate extremes. Also, devices, such as electrochromic rearview mirrors utilizing a polychromic solid film, can be constructed suitable for use on automobiles, and suitable to withstand accelerated aging testing such as boiling in water for an extended period (such as 96

hours or longer); exposure to high temperature/high humidity for an extended period (for example, 85° C./85% relative humidity for 720 hours or longer); exposure within a steam autoclave for extended periods (for example, 121° C.; 15-18 psi steam for 144 hours or longer).

In the sandwich lamination technique, see supra, it is the thickness of the polychromic solid film itself, especially when a highly viscous electrochromic monomer composition is used, optionally coupled with either spacers or a thermoplastic spacing means, assembled within the electrochromic 10 devices of the present invention that determines the interpane distance of the spaced-apart relationship at which the substrates are positioned. This interpane distance may be influenced by the addition of spacers to the electrochromic monomer composition, which spacers, when added to an 15 electrochromic monomer composition, assist in defining the film thickness of the resulting polychromic solid film. And, the thickness of the polychromic solid film may be about 10 μm to about 1000 μm , with about 20 μm to about 200 μm being preferred, a film thickness of about 37 µm to about 74 20 um being particularly preferred, and a film thickness of about 53 μm being most preferred depending of course on the chosen electrochromic monomer composition and the intended application.

By taking appropriate measures, electrochromic devices 25 manufactured with polychromic solid films may operate so that, upon application of a potential thereto, only selected portions of the device—i.e., through the polychromic solid film—will color in preference to the remaining portions of the device. In such segmented electrochromic devices, lines may be scored or etched onto the conductive surface of either one or both of substrates 2, 3, in linear alignment so as to cause a break in electrical continuity between regions immediately adjacent to the break, by means such as chemical etching, mechanical scribing, laser etching, sand blasting and other 35 equivalent means. By so doing, an addressable pixel may be created by the break of electrical continuity when a potential is applied to a pre-determined portion of the electrochromic device. The electrochromic device colors in only that predetermined portion demonstrating utility, for example, as an 40 electrochromic mirror, where only a selected portion of the mirror advantageously colors to assist in reducing locally reflected glare or as an electrochromic information display device.

To prepare an electrochromic device containing a polychromic solid film, the electrochromic monomer composition may be dispensed onto the conductive surface of one of the substrates 2 or 3. The conductive surface of the other substrate may then be placed thereover so that the electrochromic monomer composition is dispersed uniformly onto and 50 between the conductive surface of substrates 2, 3.

This assembly may then be exposed, either in a continuous or intermittent manner, to electromagnetic radiation, such as ultraviolet radiation in the region between about 200 nm to about 400 nm for a period of about 2 seconds to about 10 55 seconds, so that the electrochromic monomer composition is transformed by in situ curing into polychromic solid film 6. The intermittent manner may include multiple exposures to such energy.

Once the electrochromic device is assembled with polychromic solid film **6**, a potential may be applied to the bus bars 7 in order to induce film coloring. The applied potential may be supplied from a variety of sources including, but not limited to, any source of alternating current ("AC") or direct current ("DC") known in the art, provided that, if an AC 65 source is chosen, control elements, such as diodes, should be placed between the source and each of the conductive coat40

ings 4 to ensure that the potential difference between the conductive coatings 4 does not change polarity with variations in polarity of the applied potential from the source. Suitable DC sources are storage batteries, solar thermal cells, photovoltaic cells or photoelectrochemical cells.

An electrochromic device, such as an electrochromic shade band where a gradient opacity panel may be constructed by positioning the bus bars 7 along the edges of the substrates in such a way so that only a portion—e.g., the same portion—of each of the substrates 2, 3 have the bus bars 7 affixed thereto. Thus, where the bus bars 7 are aligned with one another on opposite substrates 2, 3, the introduction of an applied potential to the electrochromic device will cause intense color to be observed in only that region of the device onto which an electric field has been created—i.e., only that region of the device having the bus bars 7 so aligned. A portion of the remaining bleached region will also exhibit color extending from the intensely colored region at the bus bar/non-bus bar transition gradually dissipating into the remaining bleached region of the device.

The applied potential generated from any of these sources may be introduced to the polychromic solid film of the electrochromic device in the range of about 0.001 volts to about 5.0 volts. Typically, however, a potential of about 0.2 volts to about 2.0 volts is preferred, with about 1 volt to about 1.5 volts particularly preferred, to permit the current to flow across and color the polychromic solid film 6 so as to lessen the amount of light transmitted therethrough. The extent of coloring—i.e., high transmittance, low transmittance and intermediate transmittance levels—at steady state in a particular device will often depend on the potential difference between the conductive surface of the substrates 2, 3, which relationship permits the electrochromic devices of the present invention to be used as "gray-scale" devices, as that term is used by those of ordinary skill in the art.

A zero potential or a potential of negative polarity (i.e., a bleaching potential) may be applied to the bus bars 7 in order to induce high light transmittance through polychromic solid film 6. A zero potential to about -0.2 volts will typically provide an acceptable response time for bleaching; nevertheless, increasing the magnitude of the negative potential to about -0.7 volts will often enhance response times. And, a further increase in the magnitude of that potential to about -0.8 volts to about -0.9 volts, or a magnitude of even more negative polarity as the art-skilled should readily appreciate, may permit polychromic solid film 6 to form a light-colored tint while colored to a partial- or fully-dimmed state.

In electrochromic devices where the polychromic solid film is formed within the assembly by exposure to electromagnetic radiation, the performance of the device may be enhanced by applying the positive polarity of the potential to the substrate that faced the electromagnetic radiation during the transformation process. Thus, in the case of electrochromic mirrors manufactured in such a manner, the positive polarity of the potential should be applied to the conductive surface of the clear, front glass substrate, and the negative polarity of the potential applied to the conductive surface of the silvered, rear glass substrate, to observe such a beneficial effect.

In the context of an electrochromic mirror assembly, a reflective coating, having a thickness in the range of 250 Å to about 2,000 Å, preferably about 1,000 Å, should thereafter be applied to one of the transparent Conductive coated glass substrates 2 or 3 in order to form a mirror. Suitable materials for this layer are aluminum, pladium, platinum, titanium, gold, chromium, silver and stainless steel, with silver being preferred. As an alternative to such metal reflectors, multi-

coated thin film stacks of dielectric materials or a high index single dielectric thin film coating may be used as a reflector.

Alternatively, one of the conductive coatings 4 may be a metallic reflective layer which serves not only as an electrode, driv

It is clear from the teaching herein that should a window, sun roof or the like be desirably constructed, the reflective coating need only be omitted from the assembly so that the light which is transmitted through the transparent panel is not further assisted in reflecting back therethrough.

but also as a mirror.

Similarly, an electrochromic optically attenuating contrast filter may be manufactured in the manner described above, optionally incorporating into the electrochromic assembly an anti-reflective means, such as a coating, on the front surface of the outermost substrate as viewed by an observer (see e.g., 15 Lynam V); an anti-static means, such as a conductive coating, particularly a transparent conductive coating of ITO, tin oxide and the like; index matching means to reduce internal and interfacial reflections, such as thin films of an appropriately selected optical path length; and/or light absorbing glass, 20 such as glass tinted to a neutral density, such as "GRAYLITE" gray tinted glass (commercially available from Pittsburgh Plate Glass Industries, Pittsburgh, Pa.) and "SUNGLAS" Gray gray tinted glass (commercially available from Ford Glass Co., Detroit, Mich.), to augment contrast enhancement. 25 Moreover, polymer interlayers, which may be tinted gray, such as those used in electrochromic constructions as described in Lynam III, may be incorporated into such electrochromic optically attenuating contrast filters.

Electrochromic optical attenuating contrast filters may be 30 an integral part of a device or may be affixed to an already constructed device, such as cathode ray tube monitors. For instance, an optical attenuating contrast filter may be manufactured from a polychromic solid film and then affixed, using a suitable optical adhesive, to a device that should benefit 35 from the properties and characteristics exhibited by the polychromic solid film. Such optical adhesives maximize optical quality and optical matching, and minimize interfacial reflection, and include plasticized polyvinyl butyral, various silicones, polyurethanes such as "NORLAND NOA 65" and 40 "NORLAND NOA 68", and acrylics such as "DYMAX LIGHT-WELD 478". In such contrast filters, the electrochromic, compounds are chosen for use in the polychromic solid film so that the electrochromic assembly may color to a suitable level upon the introduction of an applied potential 45 thereto, and no undesirable spectral bias is exhibited. Preferably, the polychromic solid film should dim through a substantially neutral colored partial transmission state, to a substantially neutral colored full transmission state.

Polychromic solid films may be used in electrochromic 50 devices, particularly glazings and mirrors, whose functional surface is substantially planar or flat, or that are curved with a convex curvature, a compound curvature, a multi-radius curvature, a spherical curvature, an aspheric curvature, or combinations of such curvature. For example, flat electrochromic 55 automotive mirrors may be manufactured using the polychromic solid films of the present invention. Also, convex electrochromic automotive mirrors may be manufactured, with radii of curvature typically in the range of about 25" to about 250"; preferably in the range of about 35" to about 100", as are 60 conventionally known. In addition, multi-radius automotive mirrors, such as those described in U.S. Pat. No. 4,449,786 (McCord), may be manufactured using the polychromic solid films of the present invention. Multi-radius automotive mirrors may be used typically on the driver-side exterior of an 65 automobile to extend the driver's field of view and to enable the driver to safely see rearward and to avoid blind-spots in

42

the rearward field of view. Generally, such mirrors comprise a higher radius (even flat) region closer to the driver and a lower radius (i.e., more curved) region outboard from the driver that serves principally as the blind-spot detection zone in the mirror.

Indeed, such polychromic solid film-containing electrochromic multi-radius automotive mirrors may benefit from the prolonged coloration performance of polychromic solid films and/or from the ability to address individual segments in such mirrors.

Often, a demarcation means, such as a silk-screened or otherwise applied line of black epoxy, may be used to separate the more curved, outboard blind-spot region from the less curved, inboard region of such mirrors. The demarcation means may also include an etching of a deletion line or an otherwise established break in the electrical continuity of the transparent conductors used in such mirrors so that either one or both regions may be individually or mutually addressed. Optionally, this deletion line may itself be colored black. Thus, the outboard, more curved region may operate independently from the inboard, less curved region to provide an electrochromic mirror that operates in a segmented arrangement. Upon the introduction of an applied potential, either of such regions may color to a dimmed intermediate reflectance level, independent of the other region, or, if desired, both regions may operate together in tandem.

An insulating demarcation means, such as demarcation lines, dots and/or spots, may be placed within electrochromic devices, such as mirrors, glazings, optically attenuating contrast filters and the like, to assist in creating the interpane distance of the device and to enhance overall performance, in particular the uniformity of coloration across large area devices. Such insulating demarcation means, constructed from, for example, epoxy coupled with glass spacer beads, plastic tape or die cut from plastic tape, may be placed onto the conductive surface of one or more substrates by silkscreening or other suitable technique prior to assembling the device. The insulating demarcation means may be geometrically positioned across the panel, such as in a series of parallel, uniformly spaced-apart lines, and may be clear, opaque, tinted or colorless and appropriate combinations thereof, so as to appeal to the automotive stylist.

If the interpane distance between the substrates is to be, for example, about 250 µm then the insulating demarcation means (being substantially non-deformable) may be screened, acted or adhered to the conductive surface of a substrate at a lesser thickness, for example, about 150 µm to about 225 µm. Of course, if substantially deformable materials are used as such demarcation means, a greater thickness, for example, about 275 µm to about 325 µm may be appropriate as well. Alternatively, the insulating demarcation means may have a thickness about equal to that of the interpane distance of the device, and actually assist in bonding together the two substrates of the device.

In any event, the insulating demarcation means should prevent the conductive surfaces of the two substrates (facing one another in the assembled device) from contacting locally one another to avoid short-circuiting the electrochromic system. Similarly, should the electrochromic device be touched, pushed, impacted and the like at some position, the insulating demarcation means, present within the interpane distance between the substrates, should prevent one of the conductive surfaces from touching, and thereby short-circuiting, the other conductive surface. This may be particularly advantageous when flexible substrates, such as ITO-coated "MYLAR", are used in the electrochromic device.

Although spacers may be added to the electrochromic monomer composition and/or distributed across the conductive surface of one of the substrates prior to assembling the device, such random distribution provides a degree of uncertainty as to their ultimate location within the electrochromic 5 device. By using such a screen-on technique as described above, a more defined and predictable layout of the insulating demarcation means may be achieved. Further, such spacers may be a rigid insoluble spacer material such as glass or be rigid soluble spacer material (such as a polymer such as polycarbonate, polymethylmethacrylate, polystyrene and the like) capable of dissolving in the plasticizer of the monomer composition. For example, rigid, soluble polymer spacer beads can be sprinkled across the conductive surface of a substrate and so help define an interpane spacing when the 15 device is first assembled. Then, when the monomer composition is dispensed into the interpane spacing (after the establishment of the interpane spacing with the assistance of soluble polymer spacers), then over time the soluble spacer beads dissolve in the plasticizer, preferably prior to in situ 20 conversion to the solid polychromic film.

Using such insulating demarcation means, one or both of the substrates, either prior to or after assembly in the device, may be divided into separate regions with openings or voids within the insulating demarcation means interconnecting 25 adjacent regions so as to permit a ready introduction of the electrochromic monomer composition into the assembly.

A demarcation means may be used that is conductive as well, provided that it is of a smaller thickness than the interpane distance and/or a layer of an insulating material, such as 30 a non-conductive epoxy, urethane or acrylic, is applied thereover so as to prevent conductive surfaces from contacting one another and thus short-circuiting the electrochromic assem-

Such conductive demarcation means include conductive 35 fits, such as silver frits like the #7713 silver conductive frit available commercially from E.I. de Pont de Nemours and Co., Wilmington, Del., conductive paint or ink and/or metal films, such as those disclosed in Lynam IV. Use of a conducconductive frit, having a width of about 0.09375" and a thickness of about 50 µm, placed on the conductive surface of one of the substrates of the electrochromic device may provide the added benefit of enhancing electrochromic performance by reducing bus bar-to-bus bar overall resistance and thus 45 enhancing uniformity of coloration, as well as rapidity of response, particularly over large area devices.

Fabrication of electrochromic multi-radius/aspheric or spherical/convex mirrors can benefit from single or tandem bending such as is described in U.S. patent application Ser. 50 No. 08/429,643, now U.S. Pat. No. 5,724,187, the disclosure of which is hereby incorporated by reference herein. Convex or multi-radius minilites/shapes can, for example, be individually bent [and thereafter ITO coated or metal reflector coated (such as with a chromium metal reflector, a chromium 55 undercoat, rhodium overcoat metal reflector, a chromium undercoat/aluminum overcoat reflector, or their like, such as is described in U.S. patent application Ser. No. 08/429,643, now U.S. Pat. No. 5,724,187, and then the individual bent minilites/shapes can be selectively sorted so that the best 60 matched pairs from a production batch can be selected. For example, bent convex or aspheric minilites/shapes can be bent in production lots such as of 100 pieces or thereabouts. Thereafter, each individual bent minilite/shape is placed in a vision system where the reflection of a pattern of dots, 65 squares, lines, circles, ovals (or the like) is photographed using a digital camera and the position of individual dots, etc.,

in the pattern, as reflected off the individual minilite/shape being measured, is captured and stared digitally in a computer storage. Each individual minilite/shape, in turn, is similarly measured and a digital image of the reflected image of each part's pattern is also computer stored. An identifier is allocated to each minilite/shape and to its corresponding computer stored record of the reflected image of the pattern. Next, a computer program finds which combination of two minilites/shapes have most closely matched reflected images of the fixed pattern (which typically is a dot matrix or the like). This is achieved, for example, by finding how close the center of one reflected dot on a given part is located apart from its corresponding dot on another part. For perfectly matched parts, corresponding dots coincide; when they are located apart, then a local mismatch is occurring. Thus, by using a dot matrix of, for example, 10 to 100 dots reflected off a given part, and forming the sum of the squares of the absolute inter-dot distances to give a figure of merit for each putative from match, then minilites/shapes can be selectively sorted by selecting the matched pairs with the lowest inter-dot distances as indicated by the smallest figure of merit. Alternately, a pattern with a measured, pre-established distortion can be designed such that, upon reflection off the convex (or concave) surface of a bent minilite/shape, the pattern is reflected as straight, parallel lines. The equipment suitable to use in a vision system is conventional in the machine vision art and includes a digital camera (such as a charge coupled device (CCD) camera or a video microchip camera (CMOS camera)), a frame grabber/video computer interface, and a computer. Typically the camera is mounted above (typically 1 foot to 4 feet above, or even farther above) the subject minilite/ shape, and the camera views through the pattern (that typically is an illuminated light box with the pattern incorporated therein) to view the pattern's reflection off the convex (or, if desired, the concave) surface of the bent part. If desired, optical calculations can be made that allow determination of the actual profile of the bent glass based upon measurements taken and calculated from the pattern's reflection.

Also, an aspheric electrochromic (or a convex electrochrotive demarcation means, such as a line of the #7713 silver 40 mic) mirror can be used as an interior rearview mirror, and can be packaged as a clip-on to an existing vehicular rearview mirror in a manner that is similar to aftermarket wide angle mirrors conventionally known. Such interior aspheric/convex electrochromic mirrors can optionally be solar powered or be powered by a battery pack, for ease of installation in the vehicular aftermarket. Should it be desirable to minimize weight for convex or aspheric inside or outside mirrors, then thin glass (in the thickness range of about 1 mm to about 1.8 mm, or even thinner) can be used for one or both of the substrates used in a laminate electrochromic assembly. Use of such thin glass is described in U.S. patent application Ser. No. 08/429,643 filed Apr. 27, 1995, now U.S. Pat. No. 5,724,187, the disclosure of which is hereby incorporated by reference herein. Also, cutting of convex and especially aspheric glass can benefit from computer numerical controlled (CNC) cutting where a cutting head is moved under digital computer control. In this regard, a multi-axis CNC cutter is preferred where the cutting head (which may be a diamond tool or wheel, a laser beam, a water jet, an abrasive water jet, or the like) can be moved in three dimensions. Most preferably, and especially for cutting aspheric bent glass, a cutter that moves in three dimensions but that keeps the cutting tool (such as a diamond wheel) normal (i.e., with a cutting wheel axis at or close to 90° to the tangential plane of the bent glass surface) is preferred. For example, a cutting machine such as available from LASER Maschlnenbau GmbH & Company KG, Grossbetlingen, Germany can be used to cut aspheric glass. In such

a system, the bent glass lite/minilite from which the shape is to be cut is mounted on a support arm that is movable in three dimensions and that generally moves in three dimensions either CNC driven, or by following a cam, along the threedimensional profile of the aspheric shape being cut. Also, the 5 cutting wheel can be adjusted so that its angle relative to a tangent to the glass at point of cut is close to 90° (and not less than about 70°; not less than about 80° more preferred and not less than about 85° most preferred). In this manner, movement of the cutting support under the cutting wheel, in combination with adjustment of the pitch of the cutting wheel itself, maintains as close to normal (i.e., 90°) the cutting angle as possible, and thus achievement of a clean, efficient cut and breakout of the shape. While particularly beneficial for aspheric shapes where the radius can change from about 2000 15 mm to below 600 mm, and smaller, across the surface of the shape, cutting of convex glass can also benefit from maintenance of a near normal cutting angle for the cutting tool (i.e., cutting wheel).

Optionally, a machine vision system can be utilized to 20 determine the surface profile of the glass to be cut and the data, as to the profile is fed back to the cutter's CNC controller to properly orientate the glass under the cutting head. Use of a vision system, such as is described above, to scan and measure the system profile of the glass to be cut can be thus 25 used to determine how much offset there is on the radius of the glass relative to the cutting head. CNC controlled sensors can be automatically adjusted on every cutting cycle based on the information received from the vision system. A five-axis shape cutter that allows the cutting head to remain approxi- 30 mately perpendicular to the surface of the glass regardless of the radius of curvature is commercially available, such as from LASER Maschlnenbau GmbH & Company KG, Grossbetlingen, Germany. Also, if desired and particularly for thin glass substrates, the front substrate and/or rear substrate can 35 be toughened or tempered (such as by, for example, chemical tempering or contact tempering) such as described in U.S. Pat. No. 5,239,405 entitled "Near-Infrared Reflecting, Ultraviolet Protected, Safety Protected Vehicular Glazing" invented by N. Lynam and issued Aug. 24, 1993, the disclosure of which is hereby incorporated by reference herein. Also, an exterior mirror of this invention can be attached to the backplate commonly used to mount to the actuator used in an exterior complete mirror assembly (as is commonly known in automotive mirror art) by use of a double-sticky tape such 45 as is described in U.S. Pat. No. 5,572,384 (see supra) or can be attached using a hot melt adhesive that is applied to the rearmost surface of the laminate glass assembly (i.e., the rear surface of the rear glass substrate, often referred to as the fourth surface of the laminate assembly). Preferably, such hot 50 melt adhesive, when cured, is flexible, provides an anti-scatter function meeting automotive safety specification and most preferably, is electrically conductive (such as by inclusion of conductive carbon or conductive metal flakes or fibrils, such as copper, brass, aluminum or steel fibrils). Also, a heater can 55 be attached to the rearmost surface of the laminate construction formed by sandwiching the electrochromic medium between the first and second (i.e., front and rear) substrates of an electrochromic rearview mirror device. Such heater can be directly applied to the rearmost glass surface, or can be a 60 separate heater pad, such as is disclosed in U.S. patent application Ser. No. 08/429,643 filed Apr. 27, 1995, now U.S. Pat. No. 5,724,187, the disclosure of which is hereby incorporated by reference herein. Preferably, the heater is combined with the mirror reflector mounting plate (also known in the auto- 65 motive mirror art as the mirror backing plate or the mirror backplate). More preferably, the heater and/or the mirror

46

backing plate is formed (such as by injection molding, extrusion and the like) of a conductive polymer material such as a polymer resin incorporating conductive carbon or conductive metal flakes or fibrils (such as of copper, brass, aluminum, steel or equivalent metal). Most preferably, the heater and the mirror backing plate are formed and attached to the mirror element in an integral molding operation as follows. The mirror reflector glass (that preferably is an electrochromic mirror cell but that, optionally, can be a conventional mirror reflector such as chromed glass) is placed in a mold. A heater (such as a positive temperature coefficient heater pad, or a pad formed from a conductive polymer resin that incorporates metal or carbon conducting particles, or a pad formed from a resin that is intrinsically self-conducting in its resin structure such as a polyaniline resin), is either injection molded onto the rearmost glass surface of the glass reflector element (optionally, with an adhesion promoting primer already applied to the rearmost glass surface and/or with a heat transfer agent applied to the rearmost glass surface), or is attached to the rearmost glass surface (or is already pre-attached to the rearmost glass surface) using a double-sticky tape or a hot melt adhesive (preferably, also conducting and/or of high heat transfer efficiency such as aluminum foil). Finally, a plastic resin is injection molded to form the mirror backing plate (and, optionally, the bezel around the outer perimeter of an electrochromic sideview mirror sub-assembly as is commonly known in the electrochromic rearview mirror art). The backing plate for the mirror element is the means for attachment to the electrical or manually operated actuator within the complete outside sideview mirror assembly that enables the driver to change the orientation of the mirror reflector when mounted on the vehicle and to select the mirror's alignment relative to the driver and thus select the rearward view that suits that particular driver's needs for field of view rearward. By integral molding, the conventionally separate steps of separately attaching a heater pad to the mirror glass and then attaching a separately formed backing plate can be reduced to a single integral molding step where components, including the mirror glass, are loaded into a mold, plastic resin is injected or plastic resins are co-injected, and a complete sub-assembly (including heater, connectors, bus bars, wire leads/wire harnesses, heat distributors, thermistors, thermal cut-off switches, backing plate, bezel, etc.) is unloaded from the tool after completion of the integral molding step.

Further, vehicle warning indicia such as the familiar "OBJECTS MAY BE CLOSER THAN THEY APPEAR" can be created (such as by silk-screening, dispensing, printing, etc.) using a conductive material (such as a conductive ink, conductive paint, conductive polymer and the like). In this way, electrical conductivity is maintained across the full surface of the inward facing surface of the rear substrate (frequently called the third surface). Where a metal reflector (such as a chromium layer or an underlayer of chromium overcoated with a higher reflecting metal layer such as of silver, aluminum or rhodium) is used as a third surface reflector, the metal reflector can first be deposited (such as by sputter deposition utilizing planar magnetron or rotary magnetron cathodes) onto the conductive surface of TEC glass (or any other transparent conductive coated surface). Next, the metal reflector can be selectively removed to form the desired indicia (i.e., a "HEATED" symbol, a manufacturer's date code and ID, a hazard warning indicia such is commonly found on signal mirrors such as are available on MY97 Ford Bronco and Ford Expedition vehicles available from Ford Motor Company, Detroit, Mich. and as described in U.S. Pat. No. 5,207,492 invented by Roberts and issued May 1993, the disclosure of which is hereby incorporated by reference

herein). The metal reflector can be removed using chemical etching through a mask or directly using laser scribing (such as with a YAG laser), by controlled sandblasting, and the like. By selectively removing the overlayering metal reflector but leaving the underlying transparent conductor largely intact, 5 electrical conductivity across the third surface (i.e., the inward facing surface of the rear substrate) is largely undistributed, and electrochromic coloration is correspondingly uniform. Should it be desired to read an indicia on a third surface, then backlighting can be provided on the fourth surface (i.e., the non-inward facing surface of the rear substrate) that can be viewed by reading through the indicia created on the third surface by removing a third surface metal reflector. Also, optionally, a conductive indicia of a non-dark color (such as brilliant white) could be created on the surface (i.e., 15 the inward facing surface of the front substrate) of the laminate electrochromic assembly. Thus, when the electrochromic medium colors, the indicia remains visible as a color contrast against the colored dimmed state of the electrochromic medium. Preferably, and as stated above, the indicia is 20 created from conducting or at least partially conducting material (such as can be achieved using conductive carbon fillers). Alternately, non-conducting non-dark colored indicia can be used on the second surface of the laminate assembly. Preferably, such non-dark colored indicia are bright and somewhat 25 reflecting so that they maintain good color contrast in the dimmed state of the electrochromic mirror.

Once constructed, any of the electrochromic devices described herein may have a molded easing placed therearound. This molded casing may be pre-formed and then 30 placed about the periphery of the assembly or, for that matter, injection molded therearound using conventional techniques, including injection molding of thermoplastic materials, such as polyvinyl chloride [see e.g., U.S. Pat. No. 4,139,234 (Morgan)], or reaction injection molding of thermosetting materials, such as polyurethane or other thermosets [see e.g., U.S. Pat. No. 4,561,625 (Weaver)]. Thus, modular automotive glazings incorporating polychromic solid films may be manufactured.

Also, optionally and preferably when a thin glass (less than 0.191 cm) front (first) substrate is used in an automotive mirror, the front substrate 2 that would first be impacted by an impinging object can be toughened and/or tempered such as is disclosed in U.S. Pat. No. 5,115,346 and U.S. patent application Ser. No. 08/866,764 filed May 30, 1997 to a "Method 45 and Apparatus for Tempering and Bending Glass", now U.S. Pat. No. 5,938,810, the disclosures of which are hereby incorporated by reference herein. Such toughening/tempering can be achieved by chemical tempering/strengthening, by air tempering, by contact tempering or by bladder bending/tempering as disclosed in the '764 application above.

Polychromic solid films may be used in a variety of automotive rearview mirror assemblies including those assemblies described in U.S. patent application Ser. No. 08/799,734 entitled "Vehicle Blind Spot Detection Display System", 55 invented by Schofield et al. and filed Feb. 12, 1997, now U.S. Pat. No. 5,786,772, the disclosure of which is hereby incorporated herein by reference.

As disclosed in the U.S. patent application Ser. No. 08/799, 734 (now U.S. Pat. No. 5,786,772), a vehicle 10 includes an 60 interior rearview mirror 12 positioned within passenger compartment 13 of vehicle 10, a driver's side exterior rearview mirror 14 and a passenger's side exterior rearview mirror 16 (FIG. 3). Vehicle 10 further includes a blind spot detection system 18 made up of a blind spot detector 20 and a blind spot detector may be an infrared blind spot detection system of the type

disclosed in U.S. provisional application Ser. No. 60/013, 941, filed Mar. 22, 1996, by Kenneth Schofield entitled PROXIMITY DETECTION OF OBJECTS IN AND AROUND A VEHICLE, the disclosure of which is hereby incorporated by reference, or International Patent Application No. WO 9525322 A1, published Sep. 21, 1995, by Patchell et al., entitled VEHICLE-MOUNTED DETECTOR TO SENSE MOVING VEHICLE IN BLIND SPOT; an optical blind spot detection system of the type disclosed in U.S. Pat. No. 5,424,952 (Asayama); a radar-based blind spot detection system of the type disclosed in U.S. Pat. No. 5,325,096 (Pakett); an ultrasonic blind spot detection system of the type disclosed in U.S. Pat. No. 4,694,295 (Miller et al.); or any other of the known types of blind spot detection systems. As is common, blind spot detector 20 may be incorporated in exterior mirrors 14, 16, but may, alternatively, be independently positioned on the side of the vehicle being protected by the blind spot detector, as is known in the art. Blind spot detector 20 may include a separate control 24 or may incorporate the control function in the same housing with the blind spot detector 20.

48

Blind spot detection display system 22 includes a first indicator assembly 26 positioned on vehicle 10 in the vicinity of driver's side exterior mirror 14. First indicator assembly 26 includes a first indicator 28 to produce a visual indication to the driver of the presence of an object, such as an overtaking vehicle, adjacent the driver's side of the vehicle. First indicator assembly 26 may include second indicator 30 that the blind spot detector is operational. First indicator assembly 26 may additionally include a third indicator 32 which provides an indication that an object in the blind spot on the driver's side of the vehicle is receding from that blind spot. In order to provide additional visual clues to the driver of the meaning of each of the indicators, the first indicator 28 is most preferably a red indicator, the second indicator 30 is a green indicator and third indicator 32 is an amber indicator. In the illustrated embodiment, first indicator assembly 26 is positioned on passenger's side exterior mirror 14 and, more specifically, includes a plurality of LED indicators positioned behind the reflective element 34 of the exterior mirror. Alternatively, the first indicator assembly 26 may be positioned on the face of housing 36 for reflective element 34. Alternatively, first indicator assembly 26 may be positioned in the pillar (not shown) located on the driver's side of the vehicle. Although not on the driver's side exterior mirror, such location on the pillar is adjacent on the driver's side exterior mirror.

Blind spot detection display system 22 includes a second indicator assembly 38 positioned on interior mirror assembly 12. Second indicator assembly 38 includes a first indicator 40 to provide an indication of the presence of an object adjacent the driver's side of the vehicle. As such, first indicator 40 is illuminated concurrently with first indicator 28 of first indicator assembly 26. Although not shown, second indicator assembly 38 may, optionally, include second and third indicators which are illuminated concurrently with second and third indicators 30, 32 of first indicator assembly 26. Preferably, only a single indicator is provided in order to provide an awareness to the driver of the primary indication produced by a blind spot detector; namely, the presence of a vehicle adjacent the associated side of the vehicle. In order to increase the cognitive association by the driver between the indication and the event being indicated, second indicator assembly 38 is positioned at a portion 42 of interior mirror 12 which is toward the driver's side of vehicle 10.

In a second embodiment, as illustrated in FIG. 5, a blind spot detection system 18' includes a first blind spot detector 20a detecting the presence of objects in the blind spot on the

ence. In particular, if the indicator assembly is behind a variable reflective element, the intensity of the indicator assembly is adjusted as a function of the reflectance level of the variable reflective element as disclosed in the '060 patent.

In an alternative embodiment, a blind spot detection sys-

50

driver's side of the vehicle and a second blind spot detector 20b detecting the presence of objects in the blind spot on the passenger's side of the vehicle. Blind spot detection system 18' includes a blind spot detection display system 22' which includes a third indicator assembly 44 positioned on vehicle 5 10 adjacent passenger's side exterior mirror 16. Blind spot detection display system 22' additionally includes a fourth indicator assembly 46 on interior mirror assembly 12. Both the third and fourth indicator assemblies are adapted to producing an indication at least of the presence of an object 10 adjacent the passenger's side of vehicle 10. fourth indicator assembly 46 includes a first indicator 48 which is illuminated concurrently with a first indicator 28' of third indicator assembly 44. Third indicator assembly 44 may include a second indicator 30' to indicate that blind spot detector 20b is opera- 15 tional. In the illustrated embodiment, blind spot detection system 18' does not include an indication of the presence of a vehicle in the blind spot that is receding from the respective side of the vehicle. However, such third indicator may optionally be provided. First indicator 48 of fourth indicator assem- 20 bly 46 is positioned at a portion 50 of exterior mirror 12 which is toward the passenger's side of the vehicle. In this manner, additional cognitive association is provided for the purpose of association by the driver between the indication and the event being indicated.

tem 18" includes an exterior mirror 14' having a reflective element 34' and a housing 36' for the reflective element (FIG. 6). A first indicator assembly 26' is composed of a sealed module mounted to housing 36' in a manner which completes the overall slope of the exterior mirror. Such module is generally constructed according to the principles described in U.S. Pat. No. 5,497,306 issued to Todd W. Pastrick for an EXTERIOR VEHICLE SECURITY LIGHT, the disclosure of which is incorporated herein by reference. First indicator assembly 26' includes a module 56 made up of a case 55 having an opening 58 and an optionally transmitting cover or lens 68 closing the opening in a manner which provides a sealed enclosure. A lamp assembly 60 is positioned within opening 58 and includes a plurality of indicators, such as light-emitting diodes (LEDs) 62 physically supported by and electrically actuated through a printed circuit board 63. A lower assembly 64 provides a plurality of louvers 66 which separate the LEDs and direct the light generated by the LEDs in the direction of a driver seated in vehicle 10.

In use, first and second indicator assemblies 26, 38 will provide an indication to the driver of the presence of a vehicle, or other object, in the driver's blind spot on the driver's side of the vehicle and third and fourth indicator assemblies 44, 46 will provide an indication to the driver of the presence of a 30 vehicle, or other object, in the driver's blind spot on the passenger's side of the vehicle. When the driver performs a premaneuver evaluation, the driver is immediately apprised of the presence of a vehicle on the passenger's and/or driver's side of the vehicle upon the driver's viewing of the interior 35 rearview mirror 12, which research indicates is the first step taken by most drivers in initiating the premaneuver evaluation prior to making a lane change or the like. During subsequent portions of the premaneuver evaluation, the driver may initially be apprised of the presence of a vehicle in the driver's 40 side blind spot by first indicator assembly 26 or in the passenger's side blind spot by the third indicator assembly 44 when viewing the respective exterior mirror assembly 14, 16. Thus, it is seen that a natural and intuitive blind spot detection display system is provided. Blind spot detection display sys- 45 tem 22, 22' not only provides indications to the driver of the presence of a vehicle in a blind spot during more portions of the premaneuver evaluation, but additionally provides indications to the driver should dew, frost, or road dirt mask the indication associated with the exterior rearview mirrors.

In operation, the plurality of indicators making up indicator assembly 26' are cumulatively progressively energized in a manner which indicates that another vehicle is approaching the detected blind spot of vehicle 10 and is actually within the blind spot of the vehicle. For example, a progressively greater number of indicators can be energized as another vehicle approaches the blind spot of vehicle 10, with the number of energized indicators increasing as the other vehicle gets closer to the blind spot of vehicle 10. When the other vehicle is actually within the blind spot of vehicle 10, all of the indicators would be actuated. As the other vehicle moves out of the blind spot of vehicle 10, the number of energized indicators will decrease the further the other vehicle moves from the blind spot.

Control 24, 24' may modulate the intensity of the indication provided by the first, second, third and fourth indicator assemblies primarily as a function of light levels surrounding vehicle 10. This may be in response to light levels sensed by light sensors (not shown) associated with a drive circuit (not shown) for establishing the partial reflectance level of interior rearview mirrors 12 and/or exterior rearview mirrors 14, 16 or may be a separate light sensor provided for the purpose of establishing an input to control 24, 24'.

The indicator assemblies may perform multiple display functions such as providing indication of an additional vehicle function, such as a compass mirror display function, a temperature display function, a passenger air bag disable display function, an automatic rain sensor operation display function, or the like. Such automatic rain sensor operation display function may include a display function related to both a windshield-contacting and a non-windshield-contacting rain sensor, including, for example, where the circuitry to control the rain sensor, electrochromic dimming of a variable reflectance electrochromic mirror, and any other mirrormounted electronic feature are commonly housed in a rearview mirror assembly and wholly or partially share components on a common circuit board. The blind spot detection display or the automatic rain sensor operation display may alternate with the other display function by a display toggle which may be manually operated, time-shared, voice-actuated, or under the control of some other sensed function, such as a change in direction of the vehicle or the like. For example, if the through-the-cell display described in the Larson et al. '060 patent is used, it would be desirable to minimize the size of the display because the display generally takes away from the viewing area of the mirror. Multiple parameters, such as temperature, vehicle heading, and one or more icons, can all be indicated without increasing the size of the display by, for example, having the one or more icons coming on for a particular interval followed by display of the temperature and vehicle heading. For example, the temperature and heading displays can be time-shared by alternatingly displaying tem-

In the illustrative embodiment, interior rearview mirror 12 60 includes a reflective element 52 and a housing 54 for reflective element 52. Second and fourth indicator assemblies 38, 46 may be positioned on reflective element 52 and provide a through-the-cell display such as of the type disclosed in U.S. Pat. No. 5,285,060 issued to Mark L. Larson et al. for a 65 DISPLAY FOR AUTOMATIC REARVIEW MIRROR, the disclosure of which is hereby incorporated herein by refer-

perature and heading with the cycle of alternation selected from a range of from approximately one (1) second to approximately 25 seconds. Alternatively, the driver can be provided with an input reflective element, such as a switch, to allow the driver to choose which parameter to display. In yet 5 an additional alternative, one of the parameters can be normally displayed with the driver being provided with an override function to allow display of the other parameter. Other variations will be apparent to those skilled in the art.

Also, they may be used in association with rain sensor 10 interior mirror assemblies wherein a rain sensor functionality, as is commonly known in the automotive art, is provided in association with an interior rearview mirror assembly. Such association includes utilizing an element of the rearview mirror assembly (such as a plastic housing attached, for example, 15 to the mirror channel mount that conventionally attaches the mirror assembly to a windshield button slug) to cover a windshield-contacting rain sensor (such as is described in U.S. Pat. No. 4,973,844 titled "Vehicular Moisture Sensor and Mounting Apparatus Therefor", invented by O'Farrell et al. and 20 issued Nov. 27, 1990, the disclosure of which is hereby incorporated herein by reference), or it may include a non-windshield-contacting rain sensor (such as is described in PCT International Application. PCT/US94/05093 entitled "Multi-Function Light Sensor for Vehicle" invented by Dennis J. 25 Hegyl, published as WO 94/27262 on Nov. 24, 1994, the disclosure of which is hereby incorporated by reference herein). The rearview mirror assembly can include a display function (or multiple display functions).

These displays may perform a single display function or 30 multiple display functions such as providing indication of an additional vehicle function, such as a compass mirror display function, a temperature display function, status of inflation of tires display function, a passenger air bag disable display function, an automatic rain sensor operation display function, 35 telephone dial information display function, highway status information display function, blind spot indicator display function, or the like. Such display may be an alpha-numerical display or a multi-pixel display, and maybe fixed or scrolling. Such an automatic rain sensor operation display function may 40 include a display function related to both a windshield-contacting and a non-windshield-contacting rain sensor, including, for example, where the circuitry to control the rain sensor, electrochromic dimming of a variable reflectance electrochromic mirror, and any other mirror-mounted elec- 45 tronic feature are commonly housed in or on a rearview mirror assembly and wholly or partially share components on a common circuit board. The blind spot detection display or the automatic rain sensor operation display may alternate with other display functions by a display toggle which may be 50 manually operated, time-shared, voice-actuated, or under the control of some other sensed function, such as a change in direction of the vehicle or the like. Should a rain sensor control be associated with, incorporated in, or coupled to the interior rearview mirror assembly, the rain sensor circuitry, in 55 addition to, providing automatic or semi-automatic control over operation of the windshield wipers (on the front and/or rear windshield of the vehicle), can control the defogger function to defog condensed vapor on an inner cabin surface of a vehicle glazing (such as the inside surface of the front 60 windshield, such as by operating a blower fan, heater function, air conditioning function, or their like), or the rain sensor control can close a sunroof or any other movable glazing should rain conditions be detected. As stated above, it may be advantageous for the rain sensor control (or any other feature 65 such as a head-lamp controller, a remote keyless entry receiver, a cellular phone including its microphone, a vehicle

status indicator and the like) to share components and circuitry with the electrochromic mirror function control circuitry and electrochromic mirror assembly itself. Also, a convenient way to mount a non-windshield-contacting rain sensor such as described by Hegyl is by attachment, such as by snap-on attachment, as a module to the mirror channel mount such as is described in U.S. Pat. No. 5,576,678 entitled "Mirror Support Bracket," invented by R. Hook et al. and issued Nov. 19, 1996, the disclosure of which is hereby incorporated by reference herein. The mirror mount and/or windshield button may optionally be specially adapted to accommodate a non-windshield mounting rain sensor module. Such mounting as a module is readily serviceable and attachable to a wide variety of interior mirror assemblies (both electrochromic and non-electrochromic such as prismatic, manually adjusted mirror assemblies), and can help ensure appropriate alignment of the non-windshield-mounted variety of rain sensor to the vehicle windshield insofar that the module attached to the mirror mount remains fixed whereas the mirror itself (which typically attaches to the mirror channel mount via a single or double ball joint) is movable so that the driver can adjust its field of view. Also, should smoke from cigarettes and the like be a potential source of interference to the operation of the non-windshield-contacting rain sensor, then a mirror-attached housing can be used to shroud the rain sensor unit and shield it from smoke (and other debris). Optionally, such ability to detect presence of cigarette smoke can be used to enforce a non-smoking ban in vehicles, such as is commonly requested by rental car fleet operators. Also, when a rain sensor (contacting or non-contacting) is used to activate the wiper on the rear window (rear backlight) of the vehicle, the sensor can be conveniently packaged and mounted with

52

The electrochromic solid films can be used with interior rearview mirrors equipped with a variety of features such as a control to open/close a gasoline fill cap or a rear trunk or a front bonnet, a high/low (or daylight running beam/low) headlamp controller, altitude/incline display, a hands-free phone attachment, a video camera for internal cabin surveillance and/or video telephone function, a vehicle mounted remote transaction interface system (such as would allow payment for gas purchases, automatic bank teller interactions, etc.) seat occupancy detection, map reading lights (including map reading lights comprising an incandescent lamp, an array of light emitting diodes or a solid state diode laser/ array of solid state diode lasers), compass/temperature display, fuel level and other vehicle status display, a train warning system display, a trip computer, an intrusion detector and the like. Again, such features can share components and circuitry with the electrochromic mirror circuitry and assembly so that provision of these extra features is economical.

the CHMSL (center high mounted stop light) stop light

assembly commonly mounted on the rear window glass or

close to it. Mounting of the rain sensor with the CHMSL stop

light can be aesthetically appealing and allow sharing of

components/wiring/circuitry.

Placement of a video camera either at, within, or on the interior rearview mirror assembly (including within or on a module attached to a mirror structure such as the mount that attaches to the windshield button) has numerous advantages. For example, the mirror is centrally and high mounted and so is in a location that has an excellent field of view of the driver, and of the interior cabin in general. Also, it is a defined distance from the driver and so focus of the camera is facilitated. Also, if placed on the movable portion of the mirror assembly, the normal alignment of the mirror reflector relative to the driver's field of vision rearward via the mirror can be used to readily align the video camera to view the head of

the driver. Since many interior rearview mirrors are electrically serviced, placement of a camera at within, or on the rearview mirror assembly can be conveniently and economically realized, with common sharing of components and circuitry by, for example, a compass direction function (which 5 may include a flux gate sensor, a magneto-resistive sensor, a magneto-inductive sensor, or a magneto-capacitive sensor), an external temperature display function and the electrochromic dimming function. Although the driver is likely the principal target and beneficiary of the video camera, the video 10 camera field of view can be mechanically or electrically (i.e., via a joystick) adjusted to view Other portions/occupants of the vehicle cabin interior. In this regard, the joystick controller that adjusts the position of the reflector on the outside rearview mirrors can, optionally, be used to adjust the video 15 camera field of view as well. The video camera can be a CCD camera or a CMOS based video microchip such as is described in PCT Application No. 94/01954 filed Feb. 25, 1994, the disclosure of which is hereby incorporated by reference herein. For operation at night, the internal cabin of the 20 vehicle may optionally be illuminated with non-visible radiation, such as near-infrared radiation, and the video camera can be responsive to said near-infrared radiation so that a video telephone call can be conducted even when the interior cabin is dark to visible light, such as at night. Also, the video camera 25 mounted at, within or on the inner rearview mirror assembly (such as within the mirror housing or in a pod attached to the mirror mount) can be utilized to capture an image of the face of a potential driver and then, using appropriate image recognition software, decide whether the driver is authorized to 30 operate the vehicle and, only then, enable the ignition system to allow the motor of the vehicle be started. Use of such a mirror-mounted video camera (or a digital still camera) enhances vehicle security and reduces theft. Further, the video camera can monitor the driver while he/she is driving 35 and, by detection of head droop, eye closure, eye pupil change, or the like, determine whether the driver is becoming drowsy/falling asleep, and then activate a warning to the driver to stay alert/wake up. It is beneficial to use a microprocessor to control multiple functions within the interior mirror 40 assembly and/or within other areas of the vehicle (such as the header console area), and such as is described in Irish Patent Application No. 970014 entitled "A Vehicle Rearview Mirror and A Vehicle Control System Incorporating Such Mirror," application date Jan. 9, 1997, the disclosure of which is 45 hereby incorporated by reference herein. Such microprocessor can, for example, control the electrochromic dimming function, a compass direction display and an external temperature display. For example, a user actuatable switch can be provided that at one push turns on a compass/temperature 50 display, on second push changes the temperature display to metric units (i.e., to degrees Celsius), on third push changes to Imperial units (i.e., degrees Fahrenheit) and on fourth push turns off the compass/temperature display, with the microprocessor controlling the logic of the display. Alternately, a 55 single switch actuation turns on the display in Imperial units, the second actuation changes it to metric units, and third actuation turns the display off. Further, the displays and functions described herein can find utility also on outside rearview mirrors. For example, a transducer that receives and/or trans- 60 mits information to a component of an intelligent highway system (such as is known in the automotive art) can be incorporated into an interior and/or outside rearview mirror assembly. Thus, for example, a transmitter/receiver for automatic toll booth function could be mounted at/within/on an outside 65 sideview mirror assembly. A digital display of the toll booth transaction can be displayed by a display incorporated in the

54

interior rearview mirror assembly. Optionally, a micro printer incorporated within the rearview mirror can print a receipt of the transaction. Similarly, for safety and security on the highways, GPS information, state of traffic information, weather information, telephone number information, and the like may be displayed and transmitted/received via transducers located at, within, or on an interior rearview mirror assembly and/or an outside sideview mirror assembly. Also, the interior rearview mirror assembly can include a link to the Worldwide Web via the INTERNET. Such as via a modem/cellular phone mounted within the vehicle, and preferably, mounted at, within or on the interior rearview mirror assembly. Thus, the driver can interact with other road users, can receive/transmit messages including E-mail, can receive weather and status of highway traffic/conditions, and the like, via a mirror located interface to the INTERNET.

Further, a trainable garage door opener such as a universal garage door opener such as is available from Prince Corporation, Holland, Mich. under the tradename HOMELINKTM, or the transmitter for a universal home access system that replaces the switch in a household garage that opens/closes the garage door with a smart switch that is programmable to a household specific code that is of the rolling code type, such as is available from TRW Automotive, Farmington Hills, Mich. under the tradename KWIKLINKTM may be mounted at, within, or on the interior mirror (or, if desired, the outside sideview mirror). Switches to operate such devices (typically up to three separate push type switches, each for a different garage door/security gate/household door) can be mounted on the mirror assembly, preferably user actuatable from the front face of the mirror housing. Preferably, the universal garage door opener HOMELINKTM unit or the universal home access KWIKLINKTM unit is mounted at, within or on the interior rearview mirror assembly. Optionally, such a unit could be mounted at, within or on an outside sideview mirror assembly.

The KWIKLINKTM Universal Home Access System (which operates on a rolling code, such as is commonly known in the home/vehicle security art) comprises a vehicle mounted transmitter and a receiver located in the garage. The KWIKLINKTM system is a low-current device that can be, optionally, operated off a battery source, such as a long life lithium battery. It is also compact and lightweight as executed on a single- or double-sided printed circuit board. The KWIKLINKTM printed circuit board can be mounted within the mirror housing (optionally adhered to a shock absorber comprising a double-sticky tape anti-scatter layer on the rear of the reflector element (prismatic or electrochromic) such as is described in U.S. Pat. No. 5,572,354 entitled "Rear Mirror Assembly", invented by J. Desmond et al. and issued Nov. 5, 1996, the disclosure of which is hereby incorporated by reference herein or may be accommodated within a detachable module, such as the pod described in U.S. Pat. No. 5,576,678 entitled "Mirror Support Bracket", invented by R. Hook et al. and issued Nov. 19, 1996, the disclosure of which is hereby incorporated by reference herein, and with the detachable module attached to the mirror mount or to the mirror button. Mounting the KWIKLINKTM unit in a detachable module has advantages, particularly for aftermarket supply where a battery operated KWIKLINKTM unit can be supplied within a pod housing (with the necessary user actuatable button or buttons mounted on the pod and with the battery being readily serviceable either by access through a trap door and/or by detaching the pad from the mirror mount). By supplying a battery-operated, stand-alone, snap-on, detachable KWIKLINKTM mirror mount pod, the KWIKLINKTM home access system can be readily and economically provided to a

broad range of mirrors (including non-electrical mirrors such as base prismatic mirrors, and electrical mirrors such as lighted prismatic mirrors and electo-optic mirrors, such as electrochromic mirrors). Further, a solar panel can be installed on the pod housing to recharge the battery.

Also, the pod module assembly may have a windshield button mount attached thereto or incorporated therein and have, in addition, a structure that replicates the windshield button standard on most vehicles manufactured in the United States. Thus, when a consumer purchases such an aftermarket 10 product, the consumer simply removes the existing interior rearview Mirror assembly from the windshield button it is attached to in the vehicle. Then, the consumer attaches the pod module windshield button mount to the windshield button attached to the windshield (this can be achieved either by sliding on and securing with a screwdriver, or by snap-on in a manner conventional in the mirror mounting art). Finally, the consumer now attaches the rearview mirror assembly to the windshield button replication structure that is part of the aftermarket pod module. Since the windshield button shape is 20 largely an industry standard (but the interior rearview mirror mount that attaches thereto is typically not standard), by using this "button on a button" pod module design, an aftermarket product (such as a pod module incorporating a home access transmitter, a universal garage door opener, a security moni- 25 tor such as a pyroelectric intrusion detector (such as disclosed in U.S. patent application Ser. No. 08/720,237 filed Sep. 26, 1996, the disclosure of which is hereby incorporated by reference herein), a remote keyless entry receiver, a compass, a temperature and/or clock function and the like) may be 30 readily installed by the vehicle owner, and the existing rearview minor assembly can be readily remounted in the vehicle.

Also, a cellular phone can be incorporated into the interior mirror assembly with its antenna, optionally, incorporated into the outside sideview mirror assembly or into the inside 35 rearview mirror assembly. Such mounting within the mirror assemblies has several advantages including that of largely hiding the cellular phone and antenna from ready view by a potential thief. Further, a scat occupancy detector coupled to an air bag deployment/disable monitor can be located at, 40 within or on the interior rearview mirror assembly. The seat occupancy detector can be a video microchip or CD camera seat occupancy detector, an ultrasonic detector or a pyroelectric detector, or their combination. Moreover, where more than one rearview mirror is being controlled or operated; or 45 when several vehicle accessories are linked to, for example, an electrochromic interior or outside mirror, interconnections can be multiplexed, as is commonly known in the automotive art. Moreover, where it is desired to display external outdoor temperature within the interior cabin of the vehicle, a tem- 50 perature sensor (such as a thermocouple or thermistor) can be mounted at, within or on an outside sideview mirror assembly (for example, it can protrude into the slipstream below the lower portion of the sideview mirror housing in a manner that is aesthetically and styling acceptable to the automakers and 55 to the consumer) and with the temperature sensor output connected, directly or by multiplexing to a display (such as a vacuum fluorescent display) located in the interior cabin of the vehicle.

Preferably, the external temperature display is located at, 60 within or on the interior rearview mirror assembly, optionally in combination with another display function such as a compass display (see U.S. patent application Ser. No. 08/799,734, entitled "Vehicle Blind Spot Detection System" invented by K. Schofield et al., and filed Feb. 12, 1997, now U.S. Pat. No. 65 5,786,772), or as a stand-alone pod attached as a module to a mirror support supper member (see U.S. Pat. No. 5,576,687).

56

Most preferably, the interior and outside mirror assemblies are supplied by the same supplier, using just-in-time sequencing methods, such as is commonly known in the automotive supply art and as is commonly used such as for supply of seats to vehicles. Just-in-time and/or sequencing techniques can be used to supply a specific option (for example, the option of configuring an external temperature display with a base prismatic interior mirror, or with a base electrochromic interior mirror, or with a compass prismatic interior mirror, or with a compass electrochromic interior mirror) for an individual vehicle as it passes down the vehicle assembly line. Thus, the automaker can offer a wide array of options to a consumer from an option menu. Should a specific customer select an external temperature display for a particular vehicle due to be manufactured by an automaker at a particular location on a specific day/hour, then the mirror system supplier sends to the vehicle assembly plant, in-sequence and/or just-in-time, a set of an interior rearview mirror assembly and at least one outside sideview mirror assembly for that particular vehicle being produced that day on the assembly line, and with the outside sideview mirror equipped with an external temperature sensor and with the interior rearview mirror assembly equipped with an external temperature display. Such just-intime, in-sequence supply (which can be used for the incorporation of the various added features recited supra and below) is facilitated when the vehicle utilizes a car area network such as is described, in Irish Patent Application No. 970014 entitled "A Vehicle Rearview Mirror and A Vehicle Control System Incorporating Such Mirror", application date Jan. 9, 1997, the disclosure of which is hereby incorporated by reference herein, or when multiplexing is used, such as is disclosed in U.S. patent application Ser. No. 08/679,681 entitled "Vehicles Mirror Digital Network and Dynamically Interactive Mirror System", invented by O'Farrell et al., and filed Jul. 11, 1996, now U.S. Pat. No. 5,798,575, the disclosure of which is hereby incorporated by reference herein. Also, given that an interior electrochromic mirror can optionally be equipped with a myriad of features (such as map lights, reverse inhibit line, headlamp activation, external temperature display, remote keyless entry control, and the like), it is useful to equip such assemblies with a standard connector (for example, a 10-pin, parallel connector) so that a common standard wiring harness can be provided across an automaker's entire product range. Naturally, multiplexing within the vehicle can help alleviate the need for more pins on such a connector, or allow a given pin or set of pins control more than one function.

Polychromic solid films can be used in added feature interior rearview mirror assemblies including those that include a loudspeaker (such as for a vehicle audio system, radio or the like, or for a cellular phone including a video cellular phone). Such loudspeaker may be a high frequency speaker that is mounted at, within, or on the interior rearview mirror assembly (such as within the mirror housing or attached as a module-type pod to the mirror mount such as is described supra) and with its audio output, preferably, directed towards the front windshield of the vehicle so that the windshield itself at least partially reflects the audio output of the speaker (that preferably is a tweeter speaker, more preferably is a compact (such as about 1"×1"×1" in dimensions or smaller), and most preferably utilizes a neodynium magnet core) back into the interior cabin of the vehicle. The interior rearview mirror assembly can also include a microphone and a digital (or a conventional magnetic tape) recorder that can be used by vehicle occupants to record messages and the like. A display can be provided that receives paging information from a pager incorporated in the interior rearview mirror assembly

and that displays messages to the driver (preferably via a scrolling display) or to other occupants. The interior rearview mirror assembly can include a digital storage of information such as phone numbers, message reminders, calendar information and the like, that can automatically, or on demand, display information to the driver.

Each of the documents cited in the present teaching is herein incorporated by reference to the same extent as if each document had individually been incorporated by reference.

In view of the above description of the instant invention, it is evident that a wide range of practical opportunities is provided by the teaching herein. The following examples illustrate the benefits and utility of the present invention and are provided only for purposes of illustration, and are not to be construed so as to limit in any way the teaching herein.

EXAMPLES

In each of these examples, we selected random assemblies, fractured the substrates of the assemblies and scraped the 20 polychromic solid film that had formed during the transformation process within the assembly from the broken substrate

Scatter Safety Aspect of Electrochromic Devices Manufactured with Polychromic Solid Films

To demonstrate the safety performance of the electrochromic devices manufactured according to the these examples, we simulated the impact of an accident by impacting the glass substrates of randomly selected devices with a solid object so as to shatter the glass substrates of those devices. We observed that in each instance the shattered glass was held in place by the polychromic solid film such that glass shards from the broken substrates did not separate and scatter from the device.

Stability and Cyclability of Electrochromic Devices Manufactured with Polychromic Solid Films

In general, we observed good cycle stability, heat stability, performance under prolonged coloration and ultraviolet stability of the electrochromic devices manufactured with the polychromic solid films of the present invention.

To demonstrate the cycle stability, ultraviolet stability and 40 thermal stability of some of the electrochromic devices manufactured with the polychromic solid films of the present invention, we subjected electrochromic mirrors to (1) 15 seconds color—15 seconds bleach cycles at both room temperature and about 50° C.; (2) ultraviolet stability tests by exposing the electrochromic mirrors to at least about 900 KJ/m² using a Xenon Weatherometer as per SAE J1960 and (3) thermal stability tests at about 85° C.

In these mirrors, we observed no change of electrochromic performance or degrading of the electrochromic devices after 50 more than about 100,000 cycles (15 seconds color—15 seconds bleach) at room temperature and more than about 85,000 cycles (15 seconds color—15 seconds bleach) at about 50° C., and after exposure to about 900 KJ/m² of ultraviolet radiation and to about 85° C. for about 360 hours indicating excellent cycle stability and weatherability.

Example 1

In this example, we chose a RMPT-HVBF₄ electrochromic 60 pair, in conjunction with a commercially available ultraviolet curable formulation, to illustrate the beneficial properties and characteristics of the polychromic solid films and electrochromic interior automotive mirrors manufactured therewith.

A. Synthesis and Isolation of RMPT

We synthesized 2-methyl-phenothiazine-3-one according to the procedure described in European Patent Publication EP

58

0 115 394 (Merck Frosst Canada). To reduce MPT to RMPT, we followed the redox procedure described in commonly assigned U.S. patent application Ser. No. 07/935,784 (filed Aug. 27, 1992), now U.S. Pat. No. 5,500,760.

B. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition according to the present invention comprising about 3.7% HVBF₄ (as a cathodic compound), about 1.6% RMPT (as an anodic compound), both homogeneously dispersed in a combination of about 47.4% propylene carbonate (as the plasticizer) and, as a monomer component, about 52.6% "IMPRUV" (an Ultraviolet curable formulation). We thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

C. Mirror Assembly with Electrochromic Monomer Composition

We assembled interior automotive mirrors from HW-ITO coated glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2,5"×10"×37 μ m, with a weather barrier of an epoxy resin coupled with spacers of about 37 μ m also applied.

We placed into the mirror assemblies the electrochromic monomer composition of Example 1(B), supra, by the vacuum backfilling technique [as described in Varaprasad III, supra].

D. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 1(B), supra, was uniformly applied within the mirror assemblies of Example 1(C), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B. While the belt advanced initially at a rate of about twenty-five feet per minute, we exposed the assemblies to ultraviolet radiation generated by the D fusion lamp of the F-300 B. We passed the assemblies under the fusion lamp light eight times at that rate, pausing momentarily between passes to allow the assemblies to cool, then eight times at a rate of about fifteen feet per minute again pausing momentarily between passes to allow the assemblies to cool and finally three times at a rate of about ten feet per minute with the aforementioned pausing between passes.

E. Use of Electrochromic Mirror

We applied a potential of about 1.3 volts to one of the electrochromic mirrors, and thereafter observed this mirror to color rapidly and uniformly to a bluish purple color.

In addition, we observed that the high reflectance at the center portion of the mirror was about 71% reflectance which decreased to a low reflectance of about 10.8% when about 1.3 volts was applied thereto. The response time for the reflectance to change from about 70% to about 20% when that potential was applied thereto was about 3.7 seconds. We made this determination by following the SAE J964a standard procedure of the Society of Automotive Engineers, with a reflectometer—set in reflectance mode—equipped with a light source (known in the art as Illuminant A) and a photopic detector assembly interfaced with a data acquisition system.

We also observed that the mirror bleached from about 20% reflectance to about 60% reflectance in a response time of about 7.1 seconds under about a zero applied potential. We noted the bleaching to be uniform, and the bleached appearance to be silvery.

Example 2

In this example, we chose a RMPT-HVBF₄ electrochromic pair, in conjunction with a combination of commercially

available ultraviolet curable formulations, to illustrate the beneficial properties and characteristics of the polychromic solid film and the electrochromic interior automotive mirrors manufactured therewith by using the sandwich lamination

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition comprising by weight about 2.6%; HVBF₄ (as a cathodic compound), about 1.2%; RMPT (as an anodic compound), both homogeneously dispersed in a combination of about 4% 10 propylene carbonate (as a plasticizer) and, in combination as a monomer component, about 50% "QUICK CURE" B-565 (an acrylated urethane/ultraviolet curable formulation) and about 10% "ENVIBAR" UV 1244 (a cycloalkyl epoxide/ ultraviolet curable formulation). We thoroughly mixed this 15 electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Com-

In this example, we assembled interior automotive mirrors 20 by dispensing a portion of the electrochromic Monomer composition of Example 2(A), supra, onto the conductive surface of a tin oxide-coated glass substrate (the other surface of the substrate being silver-coated so as to form a mirror) onto which we also placed 37 µm glass beads, and then positioned 25 thereover the conductive surface of a clear, tin oxide-coated glass substrate. These glass substrates, commercially available under the trade name "TEC-Glass" products as "TEC-20" from Libby-Owens-Ford Co., Toledo, Ohio, having dimensions of about 3"×6", were assembled to form an inter- 30 pane distance between the glass substrates of about 37 µm. In this way, the electrochromic monomer composition was located between the conductive surface of the two glass substrates of the mirror assemblies.

tion within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 9(A), supra, was uniformly applied within the mirror assemblies of Example 9(B), supra, we placed the assem-F-300 B. While the belt advanced initially at a rate of about twenty feet per minute, we exposed the assemblies to ultraviolet radiation generated by the D fusion lamp of the F-300 B. We passed the assemblies under the fusion lamp light twelve times at that rate, pausing between every third or 45 fourth pass to allow the assemblies to cool.

D. Use of Electrochromic Mirrors

We applied a potential of about 1.3 volts to one of the mirrors, and thereafter observed that the mirror colored rapidly and uniformly to a bluish purple color.

In addition, we observed that the high reflectance at the center portion of the mirror was about 57% reflectance which decreased to a low reflectance of about 9.3%. The response time for the reflectance to change from about 55% to about 20% was about 10 seconds when a potential of about 1.3 volts 55 was applied thereto. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 50% reflectance in a response time of about 56 seconds under about zero applied potential. We 60 noted the bleaching to be uniform, and the bleached appearance to be silvery.

Example 3

In this example, we compared the beneficial properties and characteristics of a polychromic solid film prepared using 60

ferrocene as an anodic electrochromic compound, and manufactured within an exterior automotive mirror [Example 3(B) (1) and (D)(1), infra] and interior automotive mirrors [Example 3(B)(2) and (D)(2), infra]. We also installed an interior automotive mirror as a rearview mirror in an automobile to observe its performance under conditions attendant with actual automotive use.

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition comprising by weight about 4.4%-EVClO₄ (as a cathodic compound), about 2% ferrocene (as an anodic compound), both homogeneously dispersed in a combination comprising, in combination as the plasticizer component, about 46.6%; propylene carbonate and about 8.8% cyanoethyl sucrose and, in combination as a monomer component, about 17.7%, caprolactone acrylate and about 13.3% polyethylene glycol diacrylate (400). We also added about 0.9% benzoin i-butyl ether (as a photoinitiator) and about 4.4% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

1. Exterior Automotive Mirror

We assembled exterior automotive mirrors from HW-ITO coated glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 3.5"×5.5"×74 µm, with a weather barrier of an epoxy resin coupled with spacers of about 74 μm also applied.

We placed into these mirror assemblies the electrochromic C. Transformation of Electrochromic Monomer Composi- 35 monomer composition of Example 3(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, supra].

2. Interior Automotive Mirror

We assembled interior automotive mirrors from HWGblies onto the conveyor belt of a Fusion UV Curing System 40 ITO coated glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×44 μM, with a weather barrier of an epoxy resin coupled with spacers of about 44 µm also applied.

> We placed into these mirror assemblies the electrochromic monomer composition of Example 3(A), supra, using the vacuum backfilling technique [as described in Varaprasad supra].

> C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

> Once the electrochromic monomer composition of Example 3(A), supra, was uniformly applied within each of the respective mirror assemblies of Example 3(8)(1) and (2), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 1(D), supra.

D. Use of Electrochromic Mirror

We applied a potential of about 1.3 volts to one of the electrochromic mirrors of Example 3(B), supra, and to two of the electrochromic mirrors of Example 3(C1, supra. Our observations follow.

1. Exterior Automotive Mirror

We observed that the electrochromic mirror colored rapidly and uniformly to a blue color with a greenish hue.

In addition, we observed that the high reflectance at the center portion of the exterior mirror, decreased from about 80.5% to about 5.7%, with a change in the reflectance of about 70% to about 20% in a response time of about 5.0 seconds when a potential of about 1.3 volts was applied thereto. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 9.2 seconds, under about a zero applied potential. We noted the bleaching to be uniform, and the bleached appearance to be silvery.

2. Interior Automotive Mirror

We observed that each of a first and second electrochromic mirror colored rapidly and uniformly to a blue color with a greenish hue. 15

In addition, we observed that for the first mirror the high reflectance at the center portion of the interior mirror decreased from about 80.2% to about 6.3%, with a change in 20 the reflectance of about 70% to about 20% in a response time of about 3.1 seconds when a potential of about 1.3 volts was applied thereto. The second mirror exhibited comparable results, with the reflectance decreasing from about 78.4% to about 7.5% in about 2.7 seconds. We made these determinations by the reflectometer described in Example 1, supra.

We also observed that the first mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 3.9 seconds under about a zero applied potential, and the second mirror bleached to the same extent in about 3.6 seconds. We noted the bleaching to be uniform, and the bleached appearance to be silvery.

We have successfully installed and operated such an electrochromic mirror in an automobile as a rearview mirror and achieved excellent results.

Example 4

In this example, we chose t-butyl ferrocene as the anodic electrochromic compound together with a monomer component containing the combination of a monomer and a commercially available ultraviolet curable formulation to illustrate the beneficial properties, and characteristics of the polychromic solid films made therefrom and the electrochromic interior automotive mirrors manufactured therewith.

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition comprising by weight about 3.9% EVClO₄ (as a cathodic compound), about 2.3% t-butyl ferrocene (as an anodic compound), both homogeneously dispersed in a combination comprising about 61.7% propylene carbonate (as a plasticizer) and, in combination as a monomer component, about 10.7% caprolactone acrylate and about 10.6% "SARBOX" acrylate resin (SB 500) (an ultraviolet curable formulation). 55 We also added about 1.3% "IRGACURE" 184 (as a photoinitiator) and about 4.4% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled interior automotive mirrors from HWG-ITO coated glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, 65 front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the

62

mirror assemblies were about 2.5"×10"×53 µm, with a weather barrier of an epoxy resin coupled with spacers of about 53 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition. of Example 4(A), supra, using the vacuum backfilling technique [as described in Varaprasad supra].

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 4(A), supra, was uniformly applied within the mirror assemblies of Example 4(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 1(D), supra.

D. Use of Electrochromic Mirror

We applied a potential of about 1.3 volts to one of the electrochromic mirrors of Example 4(B) and (C), supra, and observed this mirror to color rapidly and uniformly to a blue color with a greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 79.3% reflectance which decreased to a low reflectance of about 9.8% when about 1.3 volts was applied thereto. The response time for the reflectance to change from, about 70% to about 20% when that potential was applied thereto was about 2.3 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 3.0 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Examples 5 through 8

In Examples 5 through 8, we compared the beneficial properties and characteristics of polychromic solid films prepared from ferrocene, and three alkyl derivatives thereof, as the anodic electrochromic compound and manufactured within interior automotive mirrors.

Example 5

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition according to the present invention comprising about 3.5% EVClO₄ (as a cathodic compound), about 2.1% dimethyl ferrocene (as an anodic compound), both homogeneously dispersed in a combination of about 51.5% propylene carbonate (as a plasticizer) and about 34.3% "QUICK CURE" B-565 (as a monomer component). We also added about 8.6% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled interior automotive mirrors from HWG-ITO coated glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the

40

63

mirror assemblies were about 2.5"×10"×53 µm, with a weather barrier of an epoxy resin coupled with spacers of about 53 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 5(A), supra, using the 5 vacuum backfilling technique [as described in Varaprasad III, supra].

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 5(A), supra, was uniformly applied within the mirror assemblies of Example 5(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 2(C), supra.

D. Use of Electrochromic Mirror

We applied a potential of about 1.3 volts to one of the electrochromic mirrors, and thereafter observed this mirror to color rapidly and uniformly to a blue color with a greenish 25

In addition, we observed that the high reflectance at the center portion of the mirror was about 71.9% reflectance which decreased to a low reflectance of about 7.5% when about 1.3 volts was applied thereto. The response time for the 30 reflectance to change from about 70% to about 20% when that potential was applied thereto was about 2.4 seconds. We made this determination by the reflectometer described in Example

We also observed that the mirror bleached from about 10% 35 reflectance to about 60% reflectance in a response time of about 4.2 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 6

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition 45 according to the present invention comprising about 3.5% EVClO₄ (as a cathodic compound), about 2.3% n-butyl ferrocene (as an anodic compound), both homogeneously dispersed in a combination of about 51.3% propylene carbonate (as a plasticizer) and about 34.3% "QUICK CURE" B-565 50 (as a monomer component). We also added about 8.6% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled interior automotive mirrors from HWG- 60 ITO coated glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the weather barrier of an epoxy resin coupled with spacers of about 53 µm, also applied.

64

We placed into these mirror assemblies the electrochromic monomer composition of Example 6(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, supra].

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid

Once the electrochromic monomer composition of Example 6(A), supra, was uniformly applied within the mirror assemblies of Example 6(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 2(C), supra.

D. Use of Electrochromic Mirror

We applied a potential of about 1.3 volts to one of the 20 electrochromic mirrors, and thereafter observed this mirror to color rapidly and uniformly to a blue color with a greenish

In addition, we observed that the high reflectance at the center portion of the mirror was about 73.8% reflectance which decreased to a low reflectance of about 7.8% when about 1.3 volts was applied thereto. The response time for the reflectance to change from about 70% to about 20% when that potential was applied thereto was about 2.5 seconds. We made this determination by the reflectometer described in Example

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 4.3 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 7

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition according to the present invention comprising about 3.5% EVClO₄ (as a cathodic compound), about 2.3% t-butyl ferrocene (as an anodic compound), both homogeneously dispersed in a combination of about 51.3% propylene carbonate (as a plasticizer) and about 34.3% "QUICK CURE" B-565. (as a monomer component). We also added about 8.6% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled interior automotive mirrors from HWG-ITO coated glass substrates (where the conductive surface of each glass substrate faced one another), with the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×53 µm, with a weather barrier of an epoxy resin coupled with spacers of about 53 μm also applied.

We placed into these mirror assemblies the electrochromic mirror assemblies were about 2.5"×10"×53 µm, with a 65 monomer composition of Example 7(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, supra].

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition as of 5 Example 7(A), supra, was uniformly applied within the mirror assemblies of Example 7(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 2(C), supra.

D. Use of Electrochromic Mirror

We applied a potential of about 1.3 volts to one of the electrochromic mirrors, and thereafter observed this mirror to color rapidly and uniformly to a blue color with greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 73.1% reflectance which decreased to a low reflectance of about 7.8% when about 1.3 volts was applied, thereto. The response time for the $\ ^{20}$ reflectance to change from about 70% to about 20% when that potential was applied thereto was about 2.5 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about $10\%^{-25}$ reflectance to about 60% reflectance in a response time of about 4.3 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 8

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition 35 according to the present invention comprising about 3.5% EVClO₄ (as a cathodic compound), about 1.8% ferrocene (as an anodic compound), both homogeneously dispersed in a combination of about 51.8% propylene carbonate (as a plasticizer) and about 34.3% "QUICK CURE" B-565 (as a monomer component). We also added about 8.6% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled interior automotive mirrors from HWG-ITO coated glass substrates (where the conductive surface of 50 ITO coated glass substrates (where the conductive surface of each glass substrate faced one another), with the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×53 µm, with a weather barrier of an epoxy resin coupled with spacers of about 53 µm 55 also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 8(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, supra].

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 8(A), supra, was uniformly applied within the mir66

ror assemblies of Example 8(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 2(C), supra.

D. Use of Electrochromic Mirror

We applied a potential of about 1.3 volts to one of the electrochromic mirrors, and thereafter observed this mirror to color rapidly and uniformly to a blue color with a greenish

In addition, we observed that the high reflectance at the center portion of the mirror was about 72.7% reflectance which decreased to a low reflectance of about 7.9% when about 1.3 volts was applied thereto. The response time for the reflectance to change from about 70% to about 20% when that potential was applied thereto was about 2.7 seconds. We made this determination, by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 4.8 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 9

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition 30 comprising by weight about 3.9% EVClO₄ (as a cathodic compound), about 1.0% t-butyl ferrocene and about 1.0% DMPA (in combination as the anodic compound), homogeneously dispersed in a combination comprising about 45% propylene carbonate, about 8.9% cyanoethyl sucrose and about 8.9% 3-hydroxypropionitrile (in combination as a plasticizer component) and, in combination as a monomer component, about 17.7% caprolactone acrylate, about 11.5% polyethylene glycol diacrylate (400) and about 1.8% 1,6hexanediol diacrylate. We also added about 0.9% "IRGA-CURE" 184 (as a photoinitiator) and about 4.4% "UVINUL N 35" (as an ultraviolet stabilizing agent), and we thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled interior automotive mirrors from HWGeach glass substrate faced one another), with the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms: per square. The dimensions of the mirror assemblies were about 2.5"×10"×44 µm, with a weather barrier of an epoxy resin coupled with spacers of about 44 μm also applied.

We placed into these mirror assemblies the electrochromic monomer composition, of Example 9(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, 60 supra].

C. Transformation of Electrochronic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 9(A), supra, was uniformly applied within the mir-

ror assemblies of Example 9(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 1(D), supra.

D. Use of Electrochromic Mirror

We applied a potential of about 1.3 volts to one of the electrochromic mirrors, and thereafter observed that the mirror colored rapidly and uniformly to a bluish green color.

In addition, we observed that the high reflectance at the center portion of the mirror was about 78.2%; decreased to a low reflectance of about 8.2%, with a change in the reflectance of about 70% s to about 20% in a response time of about 1.9 seconds when a potential of about 1.3 volts was applied thereto. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 5.4 seconds under about a zero applied potential. We 20 noted the bleaching to be uniform.

Example 10

In this example, like Example 2, we chose to illustrate the 25 sandwich lamination technique of manufacturing electrochromic devices to demonstrate its efficiency in the context of the present invention.

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition 30 comprising by weight about 3.0% EVClO₄ (as a cathodic compound), about 1.9% t-butyl ferrocene (as an anodic compound), both homogeneously dispersed in a combination of about 31.7% propylene carbonate (as a plasticizer), and, in combination as a monomer component, about 31.7% 35 "QUICK CURE" B-565 and about 31.7% Urethane Acrylate (Soft) (CN 953). We thoroughly mixed this electrochromic monomer composition to ensure that a homogenous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition 40

We assembled rectangular mirrors by dispensing a portion of the electrochromic monomer composition of Example 10(A), supra, onto the conductive surface of a silvered "TEC-20" glass substrate onto which we also placed 150 μ m glass 45 beads, and then positioned thereover the conductive surface of a clear "TEC-20" glass substrate. We assembled these glass substrates, having dimensions of about 5.5"×7", under moderate pressure to form an interpane distance between the glass substrates of about 150 μ m. In this way, the electrochromic 50 monomer composition was located between the conductive surfaces of the two glass substrates of the mirror assemblies.

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of 55 Example 10(A), supra, was uniformly applied within the mirror assemblies of Example 10(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 2(C), 60 supra.

D. Use of Electrochromic Mirrors

We applied a potential of about 1.3 volts to one of the electrochromic mirror, and thereafter observed that the mirror colored rapidly and uniformly to a greenish blue color.

In addition, we observed that the high reflectance at the center portion of the mirror was about 66.7% reflectance

68

which decreased to a low reflectance of about 5.8%. The response time for the reflectance to change from about 60% to about 5.9% was about 30 seconds when a potential of about 1.3 volts was applied thereto. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 5.9% reflectance to about 60% reflectance in a response time of about 180 seconds under about zero applied potential.

Example 11

In this example, we chose to illustrate the beneficial properties and characteristics of the polychromic solid films manufactured within electrochromic glazings, that may be used as small area transmissive devices, such as optical filters and the like.

A. Preparation of Electrochromic Monomer Composition We prepared am electrochromic monomer composition comprising by weight about 2.5% HVBF₄ (as a cathodic compound), about 1.1%—MPT—having been previously reduced by contacting with zinc [see Varaprasad IV and commonly assigned U.S. patent application Ser. No. 07/935,784, now U.S. Pat. No. 5,500,760] (as an anodic compound), both homogeneously dispersed in a combination comprising, in combination as a plasticizer, about 47.7% propylene carbonate and about 1% acetic acid, and about 47.7% "QUICK CURE" B-565 (as a monomer component). We thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Glazing Assembly with Electrochromic Monomer Composition

We assembled electrochromic glazings from HW-ITO coated glass substrates (where the conductive surface of each glass substrate faced one another), with the glass having a sheet resistance of about 15 ohms per square. The dimensions of the glazing assemblies were about 2.5"×10"×53 μm , with a weather barrier of an epoxy resin coupled with spacers of about 53 μm also applied.

We placed into these glazing assemblies the electrochromic monomer composition of Example 11(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, supra].

C. Transformation of Electrochromic Monomer Composition within Glazing to Polychromic Solid Film

Once the electrochromic composition of Example 11(A), supra, was uniformly applied within the glazing assemblies of Example 11(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 1(D), supra.

D. Use of Electrochromic Glazing

on within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of 55 mic glazings of Example 11(B) and (C), supra. We observed that the electrochromic glazings colored rapidly and uniformly to a bluish purple color.

In addition, we observed that the high transmission at the center portion of the glazing decreased from about 79.2% to about 7.4%, with a changed transmission of about 70% to about 20% in a response time of about 4.4 seconds when a potential of about 1.3 volts was applied thereto. We made this determination by the detection method described in Example 1, supra, except that the reflectometer was set in transmission mode.

We also observed that the glazing bleached from about 15% transmission to about 60% transmission in a response

70

time of about 8.4 seconds, under about a zero applied potential. We noted good cycle stability, ultraviolet stability and thermal stability.

Example 12

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 3.7% HVBF4 (as a cathodic compound), about 1.6% RMPT (as an anodic compound), both homogeneously dispersed in a combination comprising about 46.2% 3-hydroxypropionitrile (as a plasticizer), and, in combination as a monomer component, about 23.1% 2-(2-ethoxyethoxy)-ethylacrylate and about 23.1% tetraethylene glycol diacrylate. We also added about 2.3% "ESACURE" TZT (as a photoinitiator), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled electrochromic mirrors from "TEC-20" glass substrates (where the conductive surface of each glass substrate faced one another), having dimensions of about $2.5"\times10"\times37~\mu m$, with a weather barrier of an epoxy resin coupled with spacers of about $37~\mu m$ also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 12(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, supra].

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 12(A), supra, was uniformly applied within the mirror assemblies of Example 12(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing $_{\rm 40}$ System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 1(D), supra.

D. Use of Electrochromic Mirror

We applied a potential of about 1.3 volts to one of the electrochromic mirrors of Example 12(B) and (C), supra, and observed this mirror to color rapidly and uniformly to a bluish purple color.

In addition, we observed that the high reflectance at the 50 center portion of the mirror was about 68.4% reflectance which decreased to a low reflectance of about 13.3% when about 1.3 volts was applied thereto. The response time for the reflectance to change from about 65% to about 20% when that potential was applied thereto was about 3.0 seconds. We made 55 this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 15% reflectance to about 60% reflectance in a response time of about 3.0 seconds under about a zero applied potential. We 60 noted the bleaching to be uniform, and the bleached appearance to be silvery.

Example 13

In this example, we chose to illustrate the beneficial properties and characteristics of polychromic solid films manu-

factured within electrochromic glazings consisting of sun roofs using a compatibilizing plasticizer component. Also, in this example, we chose to formulate the electrochromic monomer composition with an additional monomer having polyfunctionality as a compatibilizing agent for the polychromic solid film.

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition according to the present invention comprising about 4.0% HVBF₄ (as a cathodic compound), about 1.7% RMPT (as an anodic compound), both homogeneously dispersed in a combination comprising, in combination as a plasticizer, about 10.2% propylene carbonate, about 17% benzyl acetone and about 14.7% cyanoethyl sucrose, and, in combination as a monomer component, about 33.5% "QUICK CURE" B-565 and about 18.9% polyethylene glycol diacrylate (400). We thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Glazing Assembly with Electrochromic Monomer Composition

We constructed a glazing assembly consisting of a sun roof model by dispensing a portion of the electrochromic monomer composition of Example 13 (A), supra, onto the conductive surface of a "TEC-10" glass substrate onto which we also placed 100 μ m glass beads, and then positioned thereover another "TEC-10" glass substrate, so that the electrochromic monomer composition was between and in contact with the conductive surface of the two glass substrates. We used "TEC-10" glass substrates having dimensions of about 6"×16.5", with bus bars attached at the lengthwise side of the substrates to create a distance therebetween of about 16.5". The interpane distance between the "TEC-10" glass substrates was about 100 μ m.

C. Transformation of Electrochromic Monomer Composition within Glazing Assembly to Polychromic Solid Film

Once the electrochromic monomer composition of Example 13 (A), supra, was uniformly applied within the glazing assembly of Example 13(B), supra, we placed the assembly onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assembly to ultraviolet radiation in the same manner as described in Example 2(C), supra.

D. Use of Electrochromic Glazing Assembly

We applied a potential of about 1.3 volts to the glazing assembly, and thereafter observed the assembly to color rapidly and uniformly to a bluish purple color.

In addition, we Observed that the high transmission at the center portion of the glazing assembly was about 60.7% transmission which decreased to a low transmission of about 6.0% when about 1.3 volts was applied thereto. The response time for the transmission to change from about 60% to about 10% when that potential was applied thereto was about 3.8 minutes. We made this determination by the detection method described in Example 1, supra, except that the reflectometer was set in transmission mode.

We also observed that the glazing assembly bleached from about 10% transmission to about 45% transmission in a response time of about 4.2 minutes under about a zero applied potential.

Example 14

In this example, we chose to manufacture large area electrochromic mirrors, by the two hole filling technique, to demonstrate the beneficial properties and characteristics of the polychromic solid films within large truck mirrors.

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition comprising by weight about 1.9% EVClO₄ (as a cathodic compound), about 1.2% RMPT (as an anodic compound), both homogeneously dispersed in a combination comprising about 53.3% propylene carbonate (as a plasticizer) and about 43.6% "QUICK CURE" B-565 (as a monomer component). We thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the com-

B. Mirror Assembly with Electrochromic Monomer Composition

ponents was achieved.

We assembled large truck mirrors from FW-ITO glass substrates (where the conductive surface of each glass substrate faced one another), with the clear, front glass and the silvered, rear glass having a sheet resistance of about 6 to about 8 ohms per square. The dimensions of the mirror assemblies were about 6.5"×15"×44 μ m, with a weather barrier of an epoxy resin coupled with spacers of about 44 μ m also applied.

We placed into these mirror assemblies the electrochromic ²⁰ monomer composition of Example 14(A), supra, using the vacuum backfilling technique [as described in Varaprasad supra].

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 14(A), supra, was uniformly applied within the truck mirror assemblies of Example 14(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet ³⁰ radiation in the same manner as described in Example 2(C), supra.

D. Use of Electrochromic Mirror

We applied a potential of about 1.3 volts to one of the electrochromic truck mirrors, and thereafter observed that the 35 mirror colored rapidly and uniformly to a bluish purple color.

In addition, we observed that the high reflectance at the center portion of the mirror was about 67.4% decreased to a low reflectance of about 7.9%, with a changed reflectance of about 65% to about 20% in a response time of about 7.1 40 seconds when a potential of about 1.3 volts was applied thereto. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 55% reflectance in a response time of 45 about 15.0 seconds under about a zero applied potential, and to its high reflectance shortly thereafter.

The electrochromic truck mirrors performed satisfactorily with its long axis positioned in vertical alignment with the ground.

Example 15

In this example, we have illustrated that the electrochromic monomer composition may be prepared in stages and thereafter used to manufacture polychromic solid films, and electrochromic devices manufactured with same, that demonstrates the beneficial properties and characteristics herein described. Also, in this example, like Examples 12 and 13, supra, we chose to formulate the electrochromic monomer composition with a diffunctional monomer component to illustrate the properties and characteristics attendant with the addition of that component.

A. Preparation of Electrochromic Monomer Composition The electrochromic monomer composition of this example comprised by weight about 3.9% EVClO₄ (as a cathodic compound), about 2.3% t-butyl ferrocene (as an anodic com72

pound), both homogeneously dispersed in a combination of about 62% propylene carbonate (as the plasticizer), and, in combination as a monomer component, about 20% caprolactone acrylate and about 6.5% polyethylene glycol diacrylate (400). We also added about 0.9% "IRGACURE" 184 (as a photoinitiator) and about 4.4% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

We prepared the above composition by first combining the propylene carbonate, caprolactone acrylate, polyethylene glycol diacrylate (400) and "IRGACURE" 184, with stirring and bubbling nitrogen gas through the combination, and initiating cure by exposing this combination to a source of fluorescent light at room temperature for a period of time of about 10 minutes.

At this point, we removed the source of fluorescent light, and combined therewith the EVClO₄, t-butyl ferrocene and "UVINUL" N 35 to obtain a homogeneously dispersed electrochromic monomer composition. We monitored the extent of cure by the increase of viscosity.

B. Mirror Assembly with Electrochromic Monomer Com-

We assembled interior automotive mirrors with HWG-ITO coated glass substrates (where the conductive surface of each glass substrate faced one another), with the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×53 µm, with a weather barrier of an epoxy resin coupled with spacers of about 53 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 15(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, supral.

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 15(A), supra, was uniformly applied within the mirror assemblies of Example 15(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 1(D), supra.

D. Use of Electrochromic Mirrors

We applied a potential of about 1.3 volts to one of the mirrors, and thereafter observed that the mirror colored rapidly and uniformly to a blue color with a greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 82.6% reflectance which decreased to a low reflectance of about 8.8%. The response time for the reflectance to change from about 70% to about 20% was about 2.5 seconds at about room temperature and about the same when the surrounding temperature was reduced to about -28° C. when a potential of about 1.3 volts was applied thereto. We made that determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 1.9 seconds at about room temperature and of about 7.4 seconds when the surrounding temperature was reduced to about –28° C. under about zero applied potential.

Example 16

In this example, we chose to manufacture the polychromic solid film from a commercially available epoxy resin together with a cross-linking agent to illustrate enhanced prolonged

coloration performance attained when such combinations are used in the electrochromic monomer composition.

A. Preparation of Electrochromic Monomer Composition
We prepared an electrochromic monomer composition
comprising by weight about 4.7% HVBF₄ (as a cathodic
compound), about 1.7% ferrocene (as an anodic compound),
both homogeneously dispersed in a combination comprising
about 64.5% propylene carbonate (as a plasticizer) and about
26.5% "CYRACURE" resin UVR-6105 (as a monomer component) and about 1.2% 2-ethyl-2-(hydroxymethyl)-1,3-propanediol (as a cross-linking agent). We also added about 1.4%
"CYRACURE" UVI-6990 (as a photoinitiator), and thoroughly mixed this electrochromic monomer composition to
ensure that a homogeneous dispersion of the components was
achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled interior automotive mirrors HWG-ITO coated glass substrates (where the conductive surface of each $_{20}$ glass substrate faced one another), with the clear, front glass and silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about $_{2.5}$ "× $_{10}$ "× $_{53}$ µm, with a weather barrier of an epoxy resin coupled with spacers of about 53 µm also applied. $_{25}$

We placed into these mirror assemblies the electrochromic monomer composition of Example 16(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, supra].

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 16(A), supra, was uniformly applied within the mirror assemblies of Example 16(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 1(D), supra.

D. Use of Electrochromic Mirror

We applied a potential of about 1.3 volts to one of the ⁴⁰ electrochromic mirrors prepared according to Examples 16(B) and (C), supra, and observed this mirror to color rapidly and uniformly to a blue color with a greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 80.0% reflectance 45 which decreased to a low reflectance of about 7.3% when about 1.3 volts was applied thereto. The response time for the reflectance to change from about 70% to about 20% when that potential was applied thereto was about 2.9 seconds. We made this determination by the reflectometer described in Example 50 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 3.8 seconds under about a zero applied potential. We noted the bleaching to be uniform.

We further observed that the mirror bleached uniformly and satisfactorily after prolonged coloration in excess of about 8 hours.

Example 17

In this example, like Example 16, we chose to manufacture polychromic solid films from a commercially available epoxy resin together with a cross-linking agent to illustrate enhanced prolonged coloration performance attained when 65 such combinations are used in the electrochromic monomer composition.

74

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition according to the present invention comprising about 4.7% HVBF₄ (as a cathodic compound), about 1.4% ferrocene (as an anodic compound), both homogeneously dispersed in a combination of about 64.6% propylene carbonate (as a plasticizer), about 17.5% "CYRACURE" resin UVR-6105 (as a monomer component) and about 10.1% "CARBOWAX" PEG 1450 (as a cross-linking agent). We also added about 1.4% "CYRACURE" UVI-6990 (as a photoinitiator), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled interior automotive mirrors from HWG-ITO coated glass substrates (where the conductive surface of each glass substrate faced one another), with the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×53 μm, with a weather barrier of an epoxy resin coupled with spacers of about 53 μm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 17(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, supra].

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 17(A), supra, was uniformly applied within the mirror assemblies of Example 17(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 1(D), supra.

D. Use of Electrochromic Mirror

We applied a potential of about 1.3 volts to one of the electrochromic mirrors, and thereafter observed this mirror to color rapidly and uniformly to a blue color with a greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 75.2% reflectance which decreased to a low reflectance of about 7.6% when about 1.3 volts was applied thereto. The response time for the reflectance to change from about 70% to about 20% when that potential was applied thereto was about 2.4 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 4.2 seconds under about a zero applied potential. We noted the bleaching to be uniform.

We further observed that the mirror bleached uniformly and satisfactorily after prolonged coloration in excess of about 8 hours.

Example 18

In this example, we chose ferrocene as the anodic electro-60 chromic compound together with a monomer component containing the combination of a monofunctional monomer and a difunctional monomer to illustrate the beneficial properties and characteristics of polychromic solid films made therefrom.

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition comprising by weight about 4.3% EVClO₄ (as a cathodic

compound), about 1.9% ferrocene (as an anodic compound), both homogeneously dispersed in a combination comprising about 55.9% propylene carbonate (as a plasticizer) and, in combination as a monomer component, about 12.7% caprolactone acrylate and about 17.2% polyethylene glycol diacrylate (400). We also added about 3.5% benzoin i-butyl ether (as a photoinitiator) and about 4.3% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogenous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Com-

We assembled interior automotive mirrors from HWG-ITO coated glass substrates (where the conductive surface of $_{15}$ each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×44 μm, with a weather barrier of an epoxy resin coupled with spacers of 20 about 44 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 18(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, supra].

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 18(A), supra, was uniformly applied within the mirror assemblies of Example 18(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B. While the belt advanced initially at a rate of about fifty feet per minute, we exposed the assemblies to ultraviolet radiation generated by the D fusion lamp of the F-300 B. We passed these mirror assemblies under the fusion lamp fifteen times pausing for two minute intervals between every third pass, then nine times at that rate pausing for two minute intervals between every third pass, and finally six times at a rate of about twenty-five feet per minute pausing for 40 two minute intervals after every other pass.

D. Use of Electrochromic Mirror

We applied a potential of about 1.5 volts to one of the electrochromic mirrors of Examples 18(B) and (C), supra, and observed this mirror to color rapidly and uniformly to a 45 blue color with a greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 77.1% reflectance which decreased to a low reflectance of about 7.9% when about 1.5 volts was applied thereto. The response time for the 50 about 2.5 seconds under about zero applied potential. reflectance to change from about 70% to about 20% when that potential was applied thereto was about 2.8 seconds. We made this determination by the reflectometer described in Example

reflectance to about 60% reflectance in a response time of about 2.6 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 19

In this example, we chose ferrocene as the anodic electrochromic compound together with a monomer component containing the combination of a monomer and a commercially available ultraviolet curable formulation to illustrate 65 the beneficial properties and characteristics of polychromic solid films made therefrom.

76

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition comprising by weight about 4.3% EVClO₄ (as a cathodic compound), about 1.9% ferrocene (as an anodic compound), both homogeneously dispersed in a combination of about 55.9% propylene carbonate (as a plasticizer), and, in combination as a monomer component, about 10.3% caprolactone acrylate, about 15.5% polyethylene glycol diacrylate (400) and about 4.3% "SARBOX" acrylate resin (SB 500). We also added about 3.5% benzoin i-butyl ether (as a photoinitiator) and about 4.3% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled interior automotive mirrors with HWG-ITO coated glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×53 µm, with a weather barrier of an epoxy resin coupled with spacers of about 53 μm

We placed into these mirror assemblies the electrochromic 25 monomer composition of Example 19(A), supra, using the vacuum backfilling technique [as described in Varaprasad III,

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 19(A), supra, was uniformly applied within the mirror assemblies of Example 19(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 18(C),

D. Use of Electrochromic Mirrors

We applied a potential of about 1.5 volts to one of the mirrors, and thereafter observed that the mirror colored rapidly and uniformly to a blue color with a greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 79.6% reflectance which decreased to a low reflectance of about 7.6%. The response time for the reflectance to change from about 70% to about 20% was about 2.2 seconds when a potential of about 1.5 volts was applied thereto. We made that determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of

Example 20

In this example, we chose to manufacture interior rearview We also observed that the mirror bleached from about 10% 55 mirrors from polychromic solid films prepared with a commercially available epoxy resin together with a cross-linking agent to illustrate enhanced prolonged coloration performance attained when such combinations are used in the electrochromic monomer composition.

> A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition comprising by weight about 4.61% EVClO₄ (as a cathodic compound), about 2.1% ferrocene (as an anodic compound), both homogeneously dispersed in a combination comprising about 57.4% propylene carbonate (as a plasticizer) and, in Combination as a monomer component, about 8.2% "CYRA-CURE" resin UVR-6105 and about 14.0% caprolactone, and

about 1.1% 2-ethyl-2-(hydroxymethyl)-1,3-propanediol (as a cross-linking agent). We also added, in combination as photoinitiators, about 1.4% "CYRACURE" UVI-6990 and about 1.5% benzoin i-butyl ether, and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled interior automotive mirrors HWG-ITO coated glass substrates (where the conductive surface of each 10 glass substrate faced one another), with the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×44 µm, with a weather barrier of an epoxy resin coupled with spacers of about 44 µm also applied. 15

We placed into these mirror assemblies the electrochromic monomer composition of Example 20(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, supral.

C. Transformation of Electrochromic Monomer Composi- 20 tion within Mirror to Polychromic Solid Film tion within Mirror to Polychromic Solid Film Once the electrochromic monomer co

Once the electrochromic monomer composition of Example 20(A), supra, was uniformly applied within the mirror assemblies of Example 20(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing 25 System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 1(D), supra

D. Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the ³⁰ electrochromic mirrors prepared according to Examples 20(B) and (C), supra, and observed this mirror to color rapidly and uniformly to a blue color with a greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 76.9% reflectance 35 which decreased to a low reflectance of about 7.9% when about 1.4 volts was applied thereto. The response time for the reflectance to change from about 70% to about 20% when that potential was applied thereto was about 3.1 seconds. We made this determination by the reflectometer described in Example 40 1. supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 3.3 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 21

In this example, we illustrate that a prolonged application of a bleach potential—i.e., a potential having a polarity opposite to that used to achieve color—having a magnitude greater than about 0.2 volts, and preferably about 0.4 volts, may be used to enhance bleach speeds of electrochromic devices, such as automotive rearview mirrors, manufactured with polychromic solid films as the medium of variable reflectance.

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition comprising by weight about 4.3% EVClO₄ (as a cathodic compound), about 1.9% ferrocene (as an anodic compound), 60 both homogeneously dispersed in a combination comprising about 60.2% propylene carbonate (as a plasticizer) and, in combination as a monomer component, about 8.6% caprolactone acrylate, about 12.9% polyethylene glycol diacrylate (400) and about 4.3% "SARBOX" acrylate resin (SB 500), 65 We also added about 3.4% "IRGACURE" 184 (as a photoinitiator) and about 4.3% "UVINUL" N 35 (as an ultraviolet

78

stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled interior automotive mirrors from HW-ITO coated glass substrates (where the conductive surface of each glass substrate faced one another), with both the front, clear glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×44 μ m, with a weather barrier of an epoxy resin coupled with spacers of about 44 μ m also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 21(A), supra, using the vacuum backfilling technique (as described in Varaprasad III, supra].

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 21(A), supra, was uniformly applied within the mirror assemblies of Example 21(B), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet radiation in the same manner as described in Example 1(D), supra.

D. Use of Electrochromic Mirror

We applied a potential of about -0.7 volts to one of the electrochromic mirrors of Examples 21(B) and (C), supra, and observed that mirror reflectance at the center portion of the mirror remained high at about 76%.

Upon reversing the polarity of the applied potential and increasing the magnitude to about +1.5 volts, we observed this mirror to color rapidly and uniformly to a blue color.

In addition, we observed that the high reflectance at the center portion of the mirror decreased to a low reflectance of about 7.8%, with the response time for the reflectance to change from about 70% to about 20% when that potential was applied thereto being about 2.4 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 1.7 seconds under a potential of about -0.7 volts with a high reflectance of about 78% reestablished. We noted that when a potential of about zero volts to about -0.2 volts was applied to the mirror to bleach the mirror from the fully dimmed stated, the response time to achieve this effect was about 2.0 seconds. We also noted that when a potential having a greater magnitude, such as about -0.8 volts to about -0.9 volts, was applied to the mirror, the color assumed by the polychromic solid film may be controlled. For instance, a slight blue tint may be achieved at that aforestated greater negative potential using the electrochromic system of this example so that the bleached state of the electrochromic mirror may be matched to the color appearance of conventional nonelectrochromic blue-tint mirrors commonly featured on luxury automobiles.

Example 22

In this example, we illustrate that a gradient opacity panel, such as that which may be used as an electrochromic shade band on an automobile windshield, may be created by configuring the bus bars on the electrochromic assembly so they are affixed partially around, or along the opposite sides, of the

assembly, thus creating a transition between the areas of the device to which voltage is applied and those where no voltage is applied.

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition comprising by weight about 2.1% EVClO₄ (as a cathodic compound), about 1.4% t-butyl ferrocene (as an anodic compound), both homogeneously dispersed in a combination of about 54.2% propylene carbonate (as the plasticizer), and, in combination as a monomer component, about 28.6% B-565 and about 13.8% Urethane Acrylate (Soft) (CM 953). We thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Panel Assembly with Electrochromic Monomer Composition

We constructed a panel assembly containing an electro-chromic shade band by dispensing a portion of the electro-chromic monomer composition of Example 22(A), supra, 20 onto the conductive surface of a HW-ITO coated glass substrate having a sheet resistance of about 15 ohms per square. Onto this substrate we also placed 100 µm glass beads, and then positioned thereover another HW-ITO coated glass substrate having a sheet resistance of about 15 ohms per square so 25 that the electrochromic monomer composition was between and in contact with the conductive surface of the two glass substrates. The dimensions of the assembly were about 4.5"× 14", with an interpane distance between the glass substrates of about 100 µm.

We connected bus bars along the 14" sides of the panel assembly only about 4" inward from the edge of each of the opposing 14" sides. We thereafter affixed electrical leads to the bus bars.

C. Transformation of Electrochromic Monomer Composition within Panel Assembly to Polychromic Solid Film

Once the electrochromic monomer composition of Example 22(A), supra, was uniformly applied within the window panel assembly of Example 22(B), supra, we placed the assembly onto the conveyor belt of a Fusion UV Curing 40 System F-300 B, and exposed the panel assembly to ultraviolet radiation in the same manner as described in Example 2(C), supra.

Once the polychromic solid film was formed, we applied a weather barrier of epoxy resin along, and over, the glass joints 45 to prevent entry of environmental contaminants. This weather barrier consisted of a bead of "ENVIBAR" UV 1244 ultraviolet curable adhesive followed by the application of "SMOOTH-ON" room temperature cure epoxy (commercially available from Smooth-On Inc., Gillette, N.J.).

D. Demonstration of Electrochromic Shade Band within Panel Assembly

We applied a potential of about 1.3 volts to the panel assembly, and thereafter observed that only the 4" region through which an electric field was formed colored rapidly, 55 uniformly and intensely to a blue color. We also observed that color extended beyond that 4" region for a distance of about 1" in a gradient opacity which changed gradually from an intense coloration immediately adjacent the bus bar/non-bus bar transition to a bleached appearance beyond that additional 60 1" region or thereabouts.

In addition, we observed that the high transmittance at the center portion of the panel assembly was about 79.6% transmittance which decreased to a low transmittance of about 7.6%. The response time for the transmittance to change from 65 about 70% to about 20% was about 2.2 seconds when a potential of about 1.5 volts was applied thereto. We made that

80

determination by the reflectometer described in Example 1, supra, except that the reflectometer was set in transmission mode.

We also observed that the panel assembly bleached from about 10% transmittance to about 60% transmittance in a response time of about 2.5 seconds under about zero applied potential.

Example 23

In this example, like Example 3, supra, we installed the interior automotive mirror as a rearview mirror in an automobile to observe its performance under conditions attendant with actual use.

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition comprising by weight about 3.0% EVClO₄ (as a cathodic compound), about 1.3% ferrocene (as an anodic compound), both homogeneously dispersed in a combination of about 62.6% propylene carbonate (as a plasticizer), and, in combination as a monomer component, about 8.9% caprolactone acrylate, about 13.4% polyethylene glycol diacrylate (400) and about 4.5% "SARBOX" acrylate resin (SB 500). We also added about 1.8% "IRGACURE" 184 (as a photoinitiator) and about 4.5% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogenous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled an interior automotive mirror with HWG-ITO coated glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×74 μ m, with a weather barrier of an epoxy resin coupled with spacers of about 74 μ m also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 23(A), supra, using the vacuum backfilling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 23(A), supra, was uniformly applied within the mirror assembly of Example 23(B), supra, we placed the assembly onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assembly to ultraviolet radiation in the same manner as described in Example 1(D), supra.

D. Use of Electrochromic Mirror

We applied a potential of about 1.5 volts to the mirror, and thereafter observed rapid and uniform coloration to a blue color with a greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 72.0%; reflectance which decreased to a low reflectance of about 7.5%. The response time for the reflectance to change from about 70% to about 20% was about 3.5 seconds when a potential of about 1.5 volts was applied thereto. We made that determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 5.2 seconds under about zero applied potential.

We have successfully installed and operated this mirror in an automobile as a rearview mirror and have achieved excellent results.

Example 24

In this example, we chose to illustrate the beneficial properties and characteristics of polychromic solid films manufactured within an electrochromic sun roof panel.

A. Preparation of Electrochromic Monomer Composition
We prepared an electrochromic monomer composition
according to the present invention comprising about 1.4
EVCIO₄ (as a cathodic compound), about 0.9% t-butyl ferrocene (as an anodic compound), both homogeneously dispersed in a combination comprising about 39% propylene carbonate (as a plasticizer), and, in combination as a monomer component, about 39% "QUICK CURE" B-565 and about 19.53% Urethane Acrylate (Soft) (CM 953). We thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Preparation of Sun Roof Panel Assembly and Placement of Electrochromic Monomer Composition Therein

We prepared the glass substrates for use in the glazing 25 assembly of this example by placing flat "TEC-20" glass substrates (with a black ceramic frit band around their perimeter edge regions), having dimensions of about 12"×16", onto the mold of a bending instrument at room temperature under ambient conditions, and then increasing the temperature of 30 the substrates to be bent to at least about 500° C. thereby causing the substrates to conform to the shape of the mold.

We also placed, as a spacer means, black drafting tape (Zipatone, Inc., Hillsdale, Ill.), having a width of about 0.0625" and a thickness of about 150 μm , onto a conductive 35 surface of one of the bent "TEC-20" glass substrates in about 1.5" intervals across the width of the substrate. At such intervals, we found the black drafting tape to be positioned in an aesthetically appealing manner, and to maintain uniformity of the electrochromic media across the full dimensions of the 40 panel.

We assembled the sun roof panel by dispensing a portion of the electrochromic monomer composition of Example 24(A), supra, onto the conductive surface of the substrate to be used as the concave interior surface (i.e., the Number 4 surface), 45 and placed thereover the conductive surface of the substrate bearing the spacer means so that the electrochromic monomer composition was between and in contact with the conductive surface of the glass substrates. We then placed the panel assembly in a vacuum bag, gently elevated the temperature 50 and evacuated substantially most of the air from the vacuum bag. In this way, the electrochromic monomer composition dispersed uniformly between the substrates under the pressure from the atmosphere.

C. Transformation of Electrochromic Monomer Composition into Polychromic Solid Film

We then placed the sun roof panel assembly (still contained in the vacuum bag) into a Sunlighter model 1530 UV chamber, equipped with three mercury lamps (commercially available from Test-Lab Apparatus Co., Milford, N.H.), and 60 allowed the sun roof panel to remain exposed to the ultraviolet radiation emitted by the lamps for a period of time of about 30 minutes. The interpane distance between the "TEC-20" glass substrates was about 150 μm .

We thereafter attached bus bars at the 12" side of the 65 substrates to create a distance therebetween of about 16". We then attached electrical leads to the bus bars.

82

D. Use of Electrochromic Sun Roof Panel

We applied a potential of about 1.3 volts to the glazing assembly, and thereafter observed the panel to color rapidly and uniformly to a bluish purple color.

In addition, we observed that the high transmission at the center portion of the sun roof panel was about 67% transmission which decreased to a low transmission of about 5% when about 1.3 volts was applied thereto. The response time for the transmission to change from about 60% to about 10% when that potential was applied thereto was about 3 minutes. We made this determination by the detection method described in Example 1, supra, except that the reflectometer was set in transmission mode.

We also observed that the glazing assembly bleached from about 5% transmission to about 60% transmission in a response time of about 6.5 minutes under about a zero applied potential.

The ultraviolet stability, scatter safety performance and/or electrochromic performance, and reduction in transmittance of near-infrared radiation of sun roof panels manufactured in accordance with the teaching herein, may be augmented by using the methods taught in Lynam III and Lynam V, and in commonly assigned U.S. Pat. No. 5,239,406 (Lynam).

Example 25

In this example, we chose to illustrate the beneficial properties and characteristics of polychromic solid films manufactured within an electrochromic sun visor having a segmented design.

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition according to the present invention comprising about 2.4% EVClO₄ (as a cathodic compound), about 1.6% ferrocene (as an anodic compound), both homogeneously dispersed in a combination comprising about 48% propylene carbonate (as a plasticizer), and, in combination as a monomer component, about 32% "QUICK CURE" B-565 and about 16% Urethane Acrylate (Soft) (CN 953). We thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Sun Visor with Electrochromic Monomer Composition We assembled the sun visor of this example from FW-ITO coated glass substrates, having dimensions of about 4"×14" and a sheet resistance of about 6 to about 8 ohms per square, onto which we previously placed deletion lines to form three individual segments. We created these deletion lines by screening a photo-resist material onto the glass substrate prior to depositing the ITO coating, and thereafter applying a coat of ITO onto the photo-resist coated substrate, and washing away the photoetched resist material using an organic solvent, such as acetone.

We assembled the sun visor by placing onto the 14" edges of the conductive surface of one of the FW-ITO glass substrates "KAPTON" high temperature polyamide tape (E.I. du Pont de Nemours and Company, Wilmington, Del.), having a thickness of 70 μm . We then dispensed a portion of the electrochromic monomer composition of Example 25(A), supra, onto that conductive surface and then placed thereover the conductive surface of another substrate so that the electrochromic monomer composition was between and in contact with the conductive surface of the glass substrates. The interpane distance between the substrates was about 70 μm .

C. Transformation of Electrochromic Monomer Composition within Sun Visor to Polychromic Solid Film

Once the electrochromic monomer composition of Example 25(A), supra, was uniformly applied within the sun visor assembly of Example 25(B), supra, we placed the

assembly onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assembly to ultraviolet radiation in the same manner as described in Example 2(C), supra.

Upon completion of the transformation process, we 5 applied "ENVIBAR" UV 1244 to the glass edges and joints and again exposed the sun visor to ultraviolet radiation to further weather barrier protect the sun visor. We then applied "SMOOTH-ON" epoxy to those portions of the sun visor to form a final weather barrier about the sun visor.

D. Use of Electrochromic Sun Visor

We applied a potential of about 1.3 volts to the sun visor, and thereafter observed the sun visor to color rapidly and uniformly to a bluish purple color.

In addition, we observed that the high transmission at the 15 center portion of the sun visor was about 74.9% transmission which decreased to a low transmission of about 2.5% when about 1.5 volts was applied thereto. The response time for the transmission to change from the high transmission state to about 10% when that potential was applied thereto was about 20 9 seconds. We made this determination by the detection method described in Example 1, supra, except that the reflectometer was set in transmission mode.

We also observed that the sun visor bleached from about 10% transmission to about 70% transmission in a response 25 time of about 15 seconds under about a zero applied potential.

The segmented portions of the sun visor of this example may be made in a horizontal direction or a vertical direction, and individual segments may be activated by connection to an individual segment addressing means, such as a mechanical switch, a photosensor, a touch sensor, including a touch activated glass panel, a voice activated sensor, an RF activated sensor and the like. In addition, segments may be activated individually or as pluralities by responding to glare from the sun, such as when the sun rises from and falls toward the horizon, or as it traverses the horizon. This sun visor, as well as other electrochromic glazings, such as windows, sun roofs and the like, may use automatic glare sensing means that involve single or multiple photosensors, such as those disclosed in U.S. Pat. No. 5,148,014 (Lynam).

Example 26

In this example, we assembled an interior automotive mirror as a rearview mirror, to be installed in an automobile to 45 observe its performance under conditions attendant with actual use.

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition comprising by weight about 3.6% EVClO₄ (as a cathodic 50 compound), about 1.6% ferrocene (as an anodic compound), both homogeneously dispersed in a combination of about 61.9% propylene carbonate (as a plasticizer), and, in combination as a monomer component, about 11.1% polyethylene glycol monomethacrylate (400), about 11.1% polyethylene 55 glycol diacrylate (400) and about 4.4% "SARBOX" acrylate resin (SB 500). We also added about 1.8% "IRGACURE" 184 (as a photoinitiator) and about 4.4% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled an interior automotive mirror with HWG-ITO coated glass substrates (where the conductive surface of 65 each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resis84

tance of about 15 ohms per square. The dimensions of the mirror assemblies were about $2.5"\times10"\times53~\mu m$, with a weather barrier of an epoxy resin coupled with spacers of about 53 μ m also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 26(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, supra].

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 26(A), supra, was uniformly applied within the mirror assembly of Example 26(B), supra, we placed the assembly onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assembly to ultraviolet radiation in the same manner as described in Example 1(D), supra.

D. Use of Electrochromic Mirror

We applied a potential of about 1.5 volts to the mirror, and thereafter observed rapid and uniform coloration to a blue color with a greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 72.0% reflectance which decreased to a low reflectance of about 7.4%. The response time for the reflectance to change from about 70% to about 20% was about 2.1 seconds when a potential of about 1.5 volts was applied thereto. We made that determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 4.0 seconds under about zero applied potential.

Example 27

In this example, we assembled automotive mirrors for use with the 1993 Lincoln Continental automobile. Specifically, Example 27(A), infra, illustrates the manufacture and use of an interior rearview mirror, and Example 27(B), infra, illustrates the use of an exterior mirror, sized for driver-side and passenger-side applications, to be installed in the automobile.

A. 1993 Lincoln Continental Interior Rearview Mirror

1. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 3.6% EVClO₄ (as a cathodic compound), about 1.6% ferrocene (as an anodic compound), both homogeneously dispersed in a combination of about 62% propylene carbonate (as a plasticizer), and, in combination as a monomer component, about 8.9% caprolactone acrylate, about 13.3% polyethylene glycol diacrylate (400) and about 4.4% "SARBOX" acrylate resin (SB 500). We also added about 1.8% "IRGACURE" 184 (as a photoinitiator) and about 4.4% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

2. Interior Rearview Mirror Assembly with Electrochromic Monomer Composition

We assembled an interior rearview mirror, with an interpane distance of 53 μ m, from HWG-ITO coated 093 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. We also applied a weather barrier of an epoxy resin coupled with spacers of about 53 μ m.

We placed into these mirror assemblies the electrochromic monomer composition of Example 27(A)(1), supra, using the vacuum backfilling technique [as described in Varaprasad III, supra].

3. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 27(A)(1), supra, was uniformly applied within the mirror assembly of Example 27(A)(2), supra, we placed the assembly onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assembly to ultraviolet radiation in the same manner as described in Example 1(D), supra.

4. Use of Electrochromic Mirror

We applied a potential of about 1.5 volts to the mirror, and thereafter observed rapid and uniform coloration to a blue color with a greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 76.5% reflectance 20 which decreased to a low reflectance of about 7.4%. The response time for the reflectance to change from about 70% to about 20% was about 2.2 seconds when a potential of about 1.5 volts was applied thereto. We made that determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 2.7 seconds under about zero applied potential.

B. 1993 Lincoln Continental Exterior Mirrors—Driver-Side and Passenger-Side

1. Preparation of Electrochromic Monomer Composition. We prepared an electrochromic monomer composition comprising by weight about 2.6% EVClO₄ (as a cathodic compound), about 1.2% ferrocene (as an anodic compound), both homogeneously dispersed in a combination of about 63% propylene carbonate (as a plasticizer), and, in combination as a monomer component, about 9% caprolactone acrylate, about 13.5% polyethylene glycol diacrylate (400) and about 4.5% "SARBOX" acrylate resin (SB 500). We also added about 1.8% "IRGACURE" 184 (as a photoinitiator) and about 4.5% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

2. Exterior Mirror Assemblies with Electrochromic Monomer Composition

We assembled exterior mirrors, with an interpane distance of 74 μ m, from FW-ITO coated 063 glass substrates (where the conductive surface of each glass substrate faced one 50 another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 6 to about 8 ohms per square. We also applied a weather barrier of an epoxy resin coupled with spacers of about 74 μ m.

We placed into these mirror assemblies the electrochromic 55 monomer composition of Example 27(B)(1), supra, using the vacuum backfilling technique [as described in Varaprasad III, supra].

3. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 27(B)(1), supra, was uniformly applied within the mirror assemblies of Example 27(B)(2), supra, we placed the assemblies onto the conveyor belt of a Fusion UV Curing System F-300 B, and exposed the assemblies to ultraviolet 65 radiation in the same manner as described in Example 1(D), supra.

86

4. Use of Electrochromic Mirrors

We applied a potential of about 1.5 volts to one of the mirrors, and thereafter observed rapid and uniform coloration to a blue color with a greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 72% reflectance which decreased to a low reflectance of about 8%. The response time for the reflectance to change from about 70% to about 20% was about 3.9 seconds when a potential of about 1.5 volts was applied thereto. We made that determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 4.0 seconds under about zero applied potential.

Example 28

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 6.31% HVSS (as a cathodic compound), about 1.63% ferrocene (as an anodic compound), both homogeneously dispersed in a combination of about 47.48% propylene carbonate and about 8.63% 3-hydroxypropionitrile (as a plasticizer), and, in combination as a monomer component, about 12.95% caprolactone acrylate, about 8.63% polyethylene glycol diacrylate (400) and about 8.63% "SARBOX" acrylate resin (SB 501). We also added, in combination as photoinitiators, about 0.13% "IRGACURE" 184 and about 1.29% "CYRACURE" UVI-6990 and about 4.32% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled an interior rearview mirror, with an interpane distance of 53 μm , from HWG-ITO coated 093 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. We also applied a weather barrier of an epoxy resin coupled with spacers of about 53 μm .

We placed into these mirror assemblies the electrochromic monomer composition of Example 28(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, supra].

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 28(A), supra, was uniformly applied within the mirror assembly of Example 28(B), supra, we placed the "SARBOX" acrylate resin (SB 500E50) and about 4.37% "CYRACURE" resin UVR-6110. We also added, in combination as photoinitiators, about 0.44%; "IRGACURE" 184 and about 1.31% "CYRACURE" UVI-6990 and about 4.37% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

87

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled an interior rearview mirror, with an interpane distance of 53 μm , from HWG-ITO coated 093 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. We also applied a weather barrier of an epoxy resin coupled with spacers of about 53 μm .

We placed into these mirror assemblies the electrochromic monomer composition of Example 28(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 28(A), supra, was uniformly applied within the mirror assembly of Example 28(B), supra, we placed the assembly onto the conveyor belt of a Hanovia UV Curing System (Hanovia Corp., Newark, N.J.), fitted with UV lamp 25 6506A431, with the intensity dial set at 300 watts. We exposed the assembly to ultraviolet radiation in a similar manner as described in Example 1(D), supra, by passing the assembly under the UV lamp with the conveyor speed set at about 20% to about 50% for about 120 to about 180 multiple 30 passes.

D. Use of Electrochromic Mirror

We applied a potential of about 1.2 volts to the mirror, and thereafter observed rapid and uniform coloration to a blue color with a greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 73.9% reflectance which decreased to a low reflectance of about 7.4%. The response time for the reflectance to change from about 70% to about 20% was about 3.9 seconds when a potential of about 1.2 volts was applied thereto. We made that determination by the reflectometer described in Example 1, supra.

Example 29

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 4.38% DSMVClO₄ (as a cathodic compound) and about 0.57% EHPVClO₄ (as a cathodic compound), about 1.62% ferrocene (as an anodic 55 compound), both homogeneously dispersed in a combination of about 56.74% propylene carbonate (as a plasticizer), and, in combination as a monomer component, about 13.10% caprolactone acrylate, about 8.73% polyethylene glycol diacrylate (400), about 4.37% "SARBOX" acrylate resin (SB 60 500E50) and about 4.37% "CYRACURE" resin UVR-6110. We also added, in combination as photoinitiators, about 0.44% "IRGACURE" 184 and about 1.31% "CYRACURE" UVI-6990 and about 4.37% "UVINUL" N 35 (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

88

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled an interior rearview mirror, with an interpane distance of 53 μ m, from HWG-ITO coated 093 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. We also applied a weather barrier of an epoxy resin coupled with spacers of about 53 μ m.

We placed into these mirror assemblies the electrochromic monomer composition of Example 29(A), supra, using the vacuum backfilling technique [as described in Varaprasad supra].

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 29(A), supra, was uniformly applied within the mirror assembly of Example 29(B), supra, we placed the assembly onto the conveyor belt of a Hanovia UV Curing System (Hanovia Corp., Newark, N.J., fitted with UV lamp 6506A431, with the intensity dial set at 300 watts. We exposed the assembly to ultraviolet radiation in a similar manner as described in Example 1(D), supra, by passing the assembly under the UV lamp with the conveyor speed set at about 20% to about 50% for about 120 to about 180 multiple passes.

D. Use of Electrochromic Mirror

We applied a potential of about 1.2 volts to the mirror, and thereafter observed rapid and uniform coloration to a blue color with a greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 79.6% reflectance which decreased to a low reflectance of about 6.7%. The response time for the reflectance to change from about 70% to about 20% was about 2.8 seconds when a potential of about 1.2 volts was applied thereto. We made that determination by the reflectometer described in Example 1, supra.

Example 30

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 4.42% DSMVClO₄ (as a cathodic compound) and about 0.59% EHPVClO₄ (as a cathodic compound), about 1.65% ferrocene (as an anodic compound), both homogeneously dispersed in a combination of about 48.67% propylene carbonate (as a plasticizer), and, in combination as a monomer component, about 13.27% caprolactone acrylate, about 8.85% polyethylene glycol diacrylate (400), about 8.85% "SARBOX" acrylate resin (SB 500E50) and about 8.85% "CYRACURE" resin UVR-6110. We also added, in combination as photoinitiators, about 0.44% "IRGACURE" 184 and about 1.77% "CYRACURE" UVI-6990 and about 2.65% 2-hydroxy-4-octoxybenzophenone (as an ultraviolet stabilizing agent), and thoroughly mixed this electrochromic monomer composition to ensure that a homogeneous dispersion of the components was achieved.

45

89

B. Mirror Assembly with Electrochromic Monomer Composition

We assembled an interior rearview mirror, with an interpane distance of 53 from HWG-ITO coated 093 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. We also applied a weather barrier of an epoxy resin coupled with spacers of about 53 µM.

We placed into these mirror assemblies the electrochromic monomer composition of Example 30(A), supra, using the vacuum backfilling technique [as described in Varaprasad III, supra].

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 30(A), supra, was uniformly applied within the mirror assembly of Example 30(B), supra, we placed the assembly onto the conveyor belt of a Hanovia UV Curing System (Hanovia Corp., Newark, N.J., fitted with UV lamp 6506A431, with the intensity dial set at 300 watts. We exposed the assembly to ultraviolet radiation in a similar manner as described in Example 1(D), supra, by passing the assembly under the UV lamp with the conveyor speed set at about 20% to about 50% for about 120 to about 180 multiple passes.

D. Use of Electrochromic Mirror

We applied a potential of about 1.3 volts to the mirror, and thereafter observed rapid and uniform coloration to a blue color with a greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 71% reflectance which decreased to a low reflectance of about 6.9%. The response time for the reflectance to change from about 70% to about 20% was about 3.9 seconds when a potential of about 1.3 volts was applied thereto. We made that determination by the reflectometer described in Example 1, supra.

Example 31

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 0.36% HUVPF₆ (as a cathodic 50 compound), about 0.97% EVClO₄ (as a cathodic compound), about 0.17% Ferrocene (FE, an anodic compound), about 0.39% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), all homogeneously dispersed in a combination of about 89.68% propylene carbonate (as plasticizer) and, in 55 combination as a monomer component, about 0.65% HDT (an isocyanate) and about 3.08% Lexorez 1931-50 (a polyol), and about 0.03% T-1 (a tin catalyst), and about 4.67% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the 60 components was achieved.

B. Mirror assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors from TEC-15 glass substrates (where the conductive surface

90

of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×125 μ m, with a weather barrier of an epoxy resin coupled with spacers of about 125 μ m also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 31 (A), supra, using the vacuum back filling technique (as described in Varaprasad supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 31 (A), supra, was uniformly applied within the mirror assemblies of Example 31 (B), supra, we placed the assemblies overnight at room temperature during which time the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror. These mirror assemblies were then placed in an electrically heated convection oven maintained at about 80° C. for about 2 hours.

D. Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the electrochromic mirrors, and observed this mirror to color ³⁰ rapidly and uniformly to a gray color with bluish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 72.3% reflectance which decreased to a low reflectance of about 7.1% when about 1.4 volts was applied to thereto. The response time for reflectance to change from about 70% to about 20% when that potential was applied thereto was about 2.1 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 7.0 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 32

A. Preparation of Prepolymer Composition that Includes a Viologen Containing Polyol

We prepared viologen containing polyol through copolymerization of ESMVClO₄ with caprolactone acrylate according to the following procedure: We prepared a reaction mixture comprising by weight about 4.86% ESMVCLO₄ (a viologen with vinyl functionality), about 1.94% UVI 6990 (a photoinitiator), about 0.97% Irgacure 184 (a photoinitiator), all homogeneously dispersed in a combination comprising about 43.69% caprolactone acrylate (an acrylate with hydroxyl functionality) and 48.54% propylene carbonate and placed it in a sealed glass container. We placed the sealed glass container on a conveyor belt of a Fusion UV Curing System F-300B. While the belt advanced at a rate of about 10 feet per minute, we exposed the reaction mixture to ultraviolet radiation generated by the D fusion lamp of the F 300B. We passed the sealed glass container containing the reaction mixture under the fusion lamp light twenty five times at that rate, pausing momentarily between the passes to allow the prepolymer composition to cool. We used the resulting prepoly-

mer composition that includes a viologen containing polyol to prepare the electrochromic monomer composition.

B. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 2.11% prepolymer composition of Example 32 (A), supra (as a cathodic compound and polyol), about 1.97% EVClO₄ (as a cathodic compound), and about 1.01% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), all homogeneously dispersed in a combination of about 76.65% propylene carbonate (as plasticizer) and in combination as a monomer component, about 2.68% HDT (an isocyanate) and about 15.52% Desmophen 1700 (a polyol), and about 0.06% T-9 (a tin catalyst). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

C. Mirror assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors from TEC-15 glass substrates (where the conductive surface 25 of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×105 µm, with a weather barrier of an epoxy resin coupled with spacers of 30 about 105 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 32 (B), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

D. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 32 (B), supra, was uniformly applied within the mirror assemblies of Example 32 (C), supra, we placed the assemblies overnight at room temperature during which time the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror. These mirror assemblies were then placed in an electrically heated convection oven maintained at about 80° C. for about 2 hours.

E. Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 64.1% reflectance which decreased to a low reflectance of about 6.5% when about 1.4 volts was applied to thereto. The response time for reflectance to change from about 60% to about 20% when that 60 potential was applied thereto was about 2.6 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 50% reflectance in a response time of 65 about 12.7 seconds under about a zero applied potential. We noted the bleaching to be uniform.

92

Example 33

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 0.3% HHVPF $_6$ (as a cathodic compound), about 0.97% EVClO $_4$ (as a cathodic compound), about 0.59% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), all homogeneously dispersed in a combination of about 89.71% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 0.65% HDT (an isocyanate) and about 3.08% Lexorez 1931-50 (a polyol), and about 0.03% T-9 (a tin catalyst), and about 4.67% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors from TEC 15 and from HW-ITO glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×105 µm, with a weather barrier of an epoxy resin coupled with spacers of about 105 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 33 (A), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 33 (A), supra, was uniformly applied within the mirror assemblies of Example 33 (B), supra, we placed the assemblies in an electrically heated convection oven maintained at about 80° C. for about 2 hours whereupon the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror.

D. Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 71.8% reflectance which decreased to a low reflectance of about 7.0% when about 1.4 volts was applied to thereto. The response time for reflectance to change from about 70% to about 20% when that potential was applied thereto was about 2.2 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 4.9 seconds under about a zero applied potential. We noted the bleaching to be uniform.

E. Stability and Cyclability of Electrochromic Devices Manufactured with Polychromic Solid Films

To demonstrate the cycle stability of the electrochromic mirrors assemblies of Example 33 (B and C), supra, we sub-

93

jected the electrochromic mirrors made from TEC 15 glass substrates to 20 seconds color—20 seconds bleach cycles at different test temperatures required by automotive specifications. We have observed good cycle stability after about 85,000 cycles which include about 25,000 cycles at 70° C., about 20,000 cycles at -30° C., and about 40,000 cycles at room temperature. We observed, that the high reflectance of the mirror at the center portion of the mirror changed from 71.8% to 71.0% and that the low reflectance changed from 7.0% to 7.5% after about 85,000 cycles. We also observed that the response time for reflectance change from about 70% to about 20% changed from 2.2 seconds to 2.7 seconds and the response time for reflectance change from about 10% to about 60% changed from 4.9 seconds to 5.2 seconds after about 85,000 cycles.

To demonstrate the ultraviolet stability, we exposed the electrochromic mirror assemblies made from HW-ITO glass substrate of Example 33 supra, to at least about 2600 kJ/m² using a Xenon weatherometer as per SAE J1960. We observed, that the high reflectance of the mirror at the center portion of the mirror changed from 79.4% to 78.9% and that the low reflectance changed from 6.0% to 6.25% after exposure to ultraviolet radiation. We also observed that the response time for reflectance change from about 70% to about 20% changed from 1.6 seconds to 1.7 seconds and the 25 response time for reflectance change from about 10% to about 60% changed from 4.1 seconds to 4.4 seconds after exposure to ultraviolet radiation.

To demonstrate the thermal stability of the electrochromic mirror assemblies of Example 33 (B and C), supra, we placed the mirror assemblies made from HW-ITO glass substrates in an electric oven maintained at about 85° C. for at least about 400 hours. We observed, that the high reflectance of the mirror at the center portion of the mirror changed from 79% to 77% and that the low reflectance changed from 6.1% to 5.7% after the heat test. We also observed that the response time for reflectance change from about 70% to about 20% changed from 1.5 seconds to 1.7 seconds and the response time for reflectance change from about 10% to about 60% changed from 4.1 seconds to 4.4 seconds after the heat test.

The environmental and overall performance the electrochromic mirrors was suitable for use in a vehicle.

Example 34

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 0.37% HUVPF₆ (as a cathodic 50 compound), about 0.96% EVClO₄ (as a cathodic compound), about 0.59% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), all homogeneously dispersed in a combination of about 89.65% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 0.65% 55 HDT (an isocyanate) and about 3.08% Lexorez 1931-50 (a polyol), and about 0.03% T-1 (a tin catalyst), and about 4.67% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror assembly with Electrochromic Monomer Composition

In this example, we assembled exterior automotive mirrors 65 using TEC 15 glass for the front substrate and a multi-layer metal reflector coated glass (consisting of about 200 ang-

94

stroms of rhodium undercoated with about 1500 angstroms of chromium, and with the chromium being disposed between the rhodium layer and the glass surface so as to serve as an adhesion promoter layer such as is described in U.S. application Ser. No. 08/238,521 filed May 5, 1994, now U.S. Pat. No. 5,668,663, the disclosure of which is hereby incorporated by reference herein) for the rear substrate (where the conductive surface of each glass substrate faced one another), with the clear front glass having a sheet resistance of about 15 ohms per square and the rear multi-layered reflector coated glass having a sheet resistance of about 5 ohms per square. The dimensions of the mirror assemblies were about 3.5"×7.5"×105 µm, with a weather barrier of an epoxy resin coupled with spacers of about 105 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 34 (A), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 34 (A), supra, was uniformly applied within the mirror assemblies of Example 34 (B), supra, we placed the assemblies in an electrically heated convection oven maintained at about 80° C. for about 2 hours whereupon the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror.

D. Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 56.3% reflectance which decreased to a low reflectance of about 7.0% when about 1.4 volts was applied to thereto. The response time for reflectance to change from about 55% to about 20% when that potential was applied thereto was 1.2 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 50% reflectance in a response time of about 5.8 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 35

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about $1.09\%~{\rm HUVPF}_6$ (as a cathodic compound), about $0.58\%~{\rm EVClO}_4$ (as a cathodic compound), about $0.59\%~5,10{\rm -dihydro-}5,10{\rm -dimethylphenazine}$ (as an anodic compound), all homogeneously dispersed in a combination of about 89.34% propylene carbonate (as plasticizer) and, in combination as a monomer component, about $0.84\%~{\rm HDT}$ (an isocyanate) and about $2.88\%~{\rm Lexorez}~1931{\rm -}50$ (a polyol), and about $0.03\%~{\rm T-}1$ (a tin catalyst), and about $4.65\%~{\rm Uvinul}~{\rm N}~35$ (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

95

B. Mirror assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors from TEC-15 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×105 µm, with a weather barrier, of an epoxy resin coupled with spacers of about 105 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 35 (A), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electro chromic monomer composition of 20 Example 35 (A), supra, was uniformly applied within the mirror assemblies of Example 35 (B), supra, we placed the assemblies overnight at room temperature during which time the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror. These mirror assemblies were then placed in an electrically heated convection oven maintained at about 80° C. for about 2 hours,

D. Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 72.1% reflectance which decreased to a low reflectance of about 7.3% when 35 about 1.4 volts was applied to thereto. The response time for reflectance to change from about 70% to about 20% when that potential was applied thereto was about 2.0 seconds, We made this determination by the reflectommeter described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 7.9 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 36

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition 50 comprising by weight about 0.3% HHVPF₆ (as a cathodic compound), about 0.96% EVClO₄ (as a cathodic compound), about 0.59% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), all homogeneously dispersed in a combination of about 84.13% propylene carbonate (as plasticizer) 55 and, in combination as a monomer component, about 1.38% HDT (an isocyanate) and about 7.96% Lexorez 1931-50 (a polyol), and about 0.01% T-9 (a tin catalyst), and about 4.67% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors from TEC-15 glass substrates (where the conductive surface

96

of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×105 μ m, with a weather barrier of an epoxy resin coupled with spacers of about 105 μ m also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 36 (A), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 36 (A), supra, was uniformly applied within the mirror assemblies of Example 36 (B), supra, we placed the assemblies in an electrically heated convection oven maintained at about 80° C. for about 2 hours whereupon the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror.

D. Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 69.9%; reflectance which decreased to a low reflectance of about 8.0% when about 1.4 volts was applied to thereto. The response time for reflectance to change from about 70% to about 20% when that potential was applied thereto was about 2.1 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 5.2 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 37

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 0.65% HUVClO $_4$ (as a cathodic compound), about 0.77% EVClO $_4$ (as a cathodic compound), about 0.59% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), all homogeneously dispersed in a combination of about 89.57% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 0.79% HDT (an isocyanate) and about 2.94% Lexorez 1931-50 (a polyol), and about 0.03% T-1 (a tin catalyst), and about 4.66% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors from TEC-15 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the

97

mirror assemblies were about 2.5"×10"×105 µm, with a weather barrier of an epoxy resin coupled with spacers of about 105 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 37 (A), supra, using the 5 vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 37 (A), supra, was uniformly applied within the mirror assemblies of Example 37 (B), supra, we placed the assemblies overnight at room temperature during which time the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror. These mirror assemblies were then placed in an electrically heated convection 20 oven maintained at about 80° C. for about 2 hours.

D. Use of Electrochromic Mirror

electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 74.0% reflectance which decreased to a low reflectance of about 7.5% when 30 about 1.4 volts was applied to thereto. The response time for reflectance to change from about 70% to about 20% when that potential was applied thereto was about 2.0 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 6.2 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 38

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 0.52% HUEVClO₄ (as a cathodic compound), about 0.77% EVClO₄ (as a cathodic compound), about 0.59% 5,10-dihydro-5,10-dimethylphena- 50 zine (as an anodic compound), all homogeneously dispersed in a combination of about 88.75% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 0.93% HDT (an isocyanate) and about 3.74% Lexorez 1931-50 (a polyol), and about 0.03% T-1 (a tin catalyst), and 55 about 4.67% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors from TEC-15 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, 65 front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the

98

mirror assemblies were about 2.5"×10"×105 µm, with a weather barrier of an epoxy resin coupled with spacers of about 105 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 38 (A), supra, using the vacuum back filling technique (as described in Varaprasad III. supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 38 (A), supra, was uniformly applied within the mirror assemblies of Example 38 (B), supra, we placed the assemblies overnight at room temperature during which time the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror. These mirror assemblies were then placed in an electrically heated convection oven maintained at about 80° C. for about 2 hours.

D. Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the We applied a potential of about 1.4 volts to one of the 25 electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

> In addition, we observed that the high reflectance at the center portion of the mirror was about 72.9% reflectance which decreased to a low reflectance of about 7.1% when about 1.4 volts was applied to thereto. The response time for reflectance to change from about 70% to about 20% when that potential was applied thereto was about 2.0 seconds. We made this determination by the reflectometer described in Example

> We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 5.4 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 39

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 0.3% HHVPF₆ (as a cathodic compound), about 0.96% EVClO₄ (as a cathodic compound), about 0.49% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), and about 0.13% THAc having been previously reduced by contacting with zinc (U.S. Pat. No. 5,500, 760 issued Mar. 19, 1996 the disclosure of which is incorporated by reference herein) (as an anodic compound), all homogeneously dispersed in a combination of about 85.34% propylene carbonate and about 0.91% acetic acid (as plasticizer) and, in combination as a monomer component, about 1.59% HDT (an isocyanate) and about 5.42% Lexorez 1931-50 (a polyol), and about 0.19% T-9 (a tin catalyst), and about 4.67% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous 60 dispersion of the components was achieved.

B. Mirror assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors from TEC-15 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear,

40

99

front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×105 µm, with a weather barrier of an epoxy resin coupled with spacers of about 105 um also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 39 (A), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Example 39 (A), supra, was uniformly applied within the mirror assemblies of Example 39 (B), supra, we placed the assemblies in an electrically heated convection oven maintained at about 80° C. for about 2 hours whereupon the monomer composition reacted to form in situ, the solid polymer 20 matrix film inside the mirror.

D. Use of Electrochromic Mirror

electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 67.4% reflectance which decreased to a low reflectance of about 6.6% when $\,^{30}$ about 1.4 volts was applied to thereto. The response time for reflectance to change from about 65% to about 20% when that potential was applied thereto was about 2.5 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 8.3 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 40

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 0.3% HHVPF₆ (as a cathodic compound), about 0.97% EVClO₄ (as a cathodic compound), about 0.59% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), all homogeneously dispersed in a com- 50 bination of about 89.71% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 0.65% HDT (an isocyanate) and about 3.08% Lexorez 1931-50 (a polyol), and about 0.03% T-9 (a tin catalyst), and about 4.67% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this 55 monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

In this example, we assembled exterior automotive mirrors using clear HW-ITO glass for the front substrate and chromium metal coated glass for the rear substrate (where the conductive surface of each glass substrate faced one another), 65 with the clear front glass having a sheet resistance of about 15 ohms per square and the rear chrome glass having a sheet

100

resistance of 5 ohms per square. The dimensions of the mirror assemblies were about 3.5"×7.5"×105 µm, with a weather barrier of an epoxy resin coupled with spacers of about 105 μm also applied.

We placed into these exterior mirror assemblies the electrochromic monomer composition of Example 40 (A), supra. using the vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Once the electrochromic monomer composition of 15 Example 40 (A), supra, was uniformly applied within the mirror assemblies of Example 40 (B), supra, we placed the assemblies in an electrically heated convection oven maintained at about 80° C. for about 2 hours whereupon the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror.

D. Use of Exterior Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the We applied a potential of about 1.4 volts to one of the 25 electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

> In addition, we observed that the high reflectance at the center portion of the mirror was about 52.7% reflectance which decreased to a low reflectance of about 6.4%; when about 1.4 volts was applied to thereto. The response time for reflectance to change from high reflectance to about 23% when that potential was applied thereto was about 1.6 seconds. We made this determination by the reflectometer described in Example 1, supra.

> We also observed that the mirror bleached from low reflectance to about 40%, reflectance in a response time of about 6.9 seconds under about a zero applied potential. We noted the bleaching to be uniform.

E. Stability and Cyclability of Electrochromic Devices Manufactured with Polychromic Solid Films

To demonstrate the electrical stability of the mirror assemblies of Example 40 (B and C), supra, we applied 1.4 volts and continuously colored the electrochromic mirrors for at least about 300 hours at room temperature. We observed that the high reflectance changed from 52.7% to 52.2% and the low reflectance remained unchanged at 6.4% after the continuous coloration test. We observed that the response time for reflectance to change from high reflectance to about 23% changed from 1.6 seconds to 2.0 seconds after the continuous coloration test and also that the response time for the mirror to bleach from low reflectance to about 40% reflectance remained steady at about 6.9 seconds before and after the continuous coloration test.

To demonstrate the cyclability of the mirror assemblies of Example 40 (B and C), supra, we applied 1.4 volts and continuously colored the electrochromic mirrors for at least about 300 hours at room temperature.

To demonstrate the cycle stability of the electrochromic mirrors assemblies of Example 40 (B and C), supra, we subjected the electrochromic mirrors to 20 seconds color—-20 seconds bleach cycles at different test temperatures required by automotive specifications. We observed good cycle stability after about 80,000 cycles which include about 30,000 cycles at 70° C., and about 50,000 cycles at room temperature. We observed, that the high reflectance of the mirror at the

center portion of the mirror changed from 53.22 to 51.1% and that the low reflectance changed from 6.5% to 7.1% after the cycle test. We also observed that the response time for reflectance change from high reflectance to about 23% remained constant at about 1.9 seconds after the cycle test and the response time for reflectance change from low reflectance to about 40% changed from 5.7 seconds to 5.5 seconds after the cycle test.

Example 41

In this example, we chose to illustrate the beneficial properties and characteristics of the polychromic solid films manufactured within electrochromic glazings, or that may be used as small area transmissive devices, such as optical filters and the like.

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition comprising by weight about 0.37% HUVPF₆ (as a cathodic compound), about 0.96% EVClO₄ (as a cathodic compound), about 0.59% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), all homogeneously dispersed, in a combination of about 89.65% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 0.65% 25 HDT (an isocyanate) and about 3.08% Lexorez 1931-50 (a polyol), and about 0.03% T-1 (a, tin catalyst), and about 4.67% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Glazing Assembly with Electrochromic Monomer Composition

In this example, we assembled electrochromic glazings from clear TEC 15 glass substrates (where the conductive surface of each glass substrate faced one another), with the 35 glass having a sheet resistance of about 15 ohms per square. The dimensions of the glazing assemblies were about 2.5"× $10"\times105\,\mu m$, with a weather barrier of an epoxy resin coupled with spacers of about 105 μm also applied.

We placed into these glazing assemblies the electrochromic monomer composition of Example 41 (A), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Glazing to Polychromic Solid Film

Once the electrochromic monomer composition of Example 41 (A), supra, was uniformly applied within the glazing assemblies of Example 41 (B), supra, we placed the assemblies in an electrically heated convection oven maintained at about 80° C. for about 2 hours whereupon the monomer composition reacted to form in situ the solid polymer matrix film inside the glazing assemblies.

D. Use of Electrochromic Glazing

We applied a potential of about 1.4 volts to one of the electrochromic glazings of Example 41 (B and C), supra. We 55 observed that the electrochromic glazings colored rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high transmission at the center portion of the glazing was about 77.1% transmission which decreased to a low transmission of about 10.3% when 60 about 1.4 volts was applied to thereto. The response time for transmission to change from about 70% to about 20% when that potential was applied thereto was 4 seconds. We made this determination by the reflectometer described in Example 1 surra

We also observed that the glazing bleached from about 10% transmission to about 70% transmission in a response

102

time of about 7.7 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 42

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 0.3% DVAVPF₆ (as a cathodic compound), about 1.15% EVClO₄ (as a cathodic compound), about 0.69% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), all homogeneously dispersed in a combination of about 86.63% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 0.93% HDT (an isocyanate) and about 5.59% Lexorez 1931-50 (a polyol), and about 0.05% dibutyltin dilaurate (a tin catalyst), and about 4.66% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors from TEC-15 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×105 µm, with a weather barrier of an epoxy resin coupled with spacers of about 105 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 42 (A), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 42 (A), supra, was uniformly applied within the mirror assemblies of Example 42 (B), supra, we placed the assemblies in an electrically heated convection oven maintained at about 60° C. for about 1 hour whereupon the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror.

D. Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 68.0% reflectance which decreased to a low reflectance of about 6.7%, when about 1.2 volts was applied to thereto. The response time for reflectance to change from about 60% to about 20% when that potential was applied thereto was about 2.4 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10, reflectance to about 60% reflectance in a response time of about 5.7 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 43

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 2.18% HUVPF₆ (as a cathodic compound), about 0.58% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), all homogeneously dispersed in a combination of about 88.87% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 1.3% HDT (an isocyanate) and about 2.41% Lexorez 1931-50 (a polyol), and about 0.03% T-1 (a tin catalyst), and about 4.63% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors from TEC-15 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, 25 front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×105 μm, with a weather barrier of an epoxy resin coupled with spacers of 30 about 105 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 43 (A), supra, using the vacuum back filling technique (as described in Varaprasad supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid

Once the electrochromic monomer composition of Example 43 (A), supra, was uniformly applied within the mirror assemblies of Example 43 (B), supra, we placed the assemblies in an electrically heated convection oven maintained at about 80° C. for about 1 hour whereupon the monomer composition reacted to form in situ, the solid polymer matrix film inside the mirror.

D. Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high reflectance at the 55 center portion of the mirror was about 71.2% reflectance which decreased to a low reflectance of about 12.5% when about 1.2 volts was applied to thereto. The response time for reflectance to change from about 70% to about 20% when that potential was applied thereto was about 5.3 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 15% reflectance to about 50% reflectance in a response time of 65 about 12.0 seconds under about a zero applied potential. We noted the bleaching to be uniform.

104

Example 44

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 0.66% HVSS (as a cathodic compound), about 1.52% EVClO₄ (as a cathodic compound), about 0.17% ferrocene (as an anodic compound), about 0.74% phenothiazine (as an anodic compound) all homogeneously dispersed in a combination of about 87.6% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 4.61% dipentaerythritol pentaacrylate. We also added about 0.09% 1,1'-azobiscyclohexanecarbonitrile (as an initiator), about 4.61% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was 20 achieved.

B. Mirror assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors from HW-ITO glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×125 µm, with a weather barrier of an epoxy resin coupled with spacers of about 125 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 44 (A), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid

Once the electrochromic monomer composition of Example 44 (A), supra, was uniformly applied within the mirror assemblies of Example 44 (B), supra, we placed the assemblies in an electrically heated convection oven maintained at about 80° C. for about 2 hour whereupon the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror.

D. Use of Electrochromic Mirror

We applied a potential of about 1.3 volts to one of the electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with bluish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 65% reflectance which decreased to a low reflectance of about 6% when about 1.3 volts was applied to thereto. We made this determination by the reflectometer described in Example 1, supra. We noted that the response time to color and also the response time to bleach the mirror was suitable for use in a vehicle.

Example 45

Synthesis of Ferrocene-Polyol

FERROCENE-POLYOL

X is H or methyl

We prepared ferrocene-polyol through copolymerization 20 of vinyl ferrocene (VFE), hydroxyethyl acrylate (HEA) and methyl methacrylate (MMA) according to the following procedure: We prepared a reaction mixture comprising about 1 gm VFE, about 0.25 gm HEA, about 10.0 gm MMA and about 0.33 gm 1,1'-azobiscyclohexanecarbonitrile (an initiator), all 25 homogeneously dispersed in toluene and placed it in a glass container. We thoroughly purged the reaction mixture with oxygen-free nitrogen gas. We then sealed the glass container and heated the reaction mixture in an oven maintained at about 80° C. for about 75 hours. We then allowed the reaction 30 mixture to cool to room temperature and poured it into a large quantity of heptane to isolate the ferrocene-polyol. We then purified the yellow solid by reprecipitation from heptane. We used the resulting ferrocene-polyol prepolymer that includes ferrocene (an anodic compound) and reactive hydroxyl functionalities to prepare electrochromic monomer compositions. Thus one embodiment of this invention uses electrochromic monomer compositions comprising at least one ferrocenepolyol (as an anodic compound) and at least one cathodic electrochromic compound. The composition may also include other anodic compounds and plasticizers as desired. 40

We also prepared other ferrocene-polyols by using different weight ratios of monomers, VFE:HEA:MMA, using the same procedure. In addition other ferrocene-polyols are prepared from monomer mixtures such as caprolactone acrylate & methyl methacrylate and hydroxyethyl methacry- 45 late & methyl methacrylate, each in combination with vinyl ferrocene as a comonomer by using similar procedures.

Example 46

Synthesis of Polymethyl Methacrylate-Polyol

PMMA-POLYOL

X is H or methyl

106

We prepared polymethyl metherylate containing reactive hydroxyl functionalities through copolymerization of hydroxyethyl acrylate (HEA) and methyl methacrylate (MMA.) according to the following procedure: We prepared a reaction mixture comprising about 0.25 gm HEA, about 10.0 gm MMA and about 0.3 um 1.1'-azobiscyclohexanecarbonitrile (an initiator), all homogeneously dispersed in toluene and placed it in a glass container. We thoroughly purged the reaction mixture with oxygen-free nitrogen gas. We then sealed the glass container and heated the reaction mixture in an oven maintained at about 80° C. for about 75 hours. We then allowed the reaction mixture to cool to room temperature and poured it into a large quantity of heptane to isolate the polymethyl methacrylate-polyol. We then purified the white solid by reprecipitation from heptane. We used the resulting polymethyl methacrylate-polyol prepolymer that contains reactive hydroxyl functionalities to prepare the electrochromic monomer compositions.

We also prepared other polymethyl methacrylate-polyols by using different weight ratios of monomers, HEA:MMA, using the same procedure.

Example 47

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 0.80% HUVClO₄ (as a cathodic compound), about 0.87% EVClO₄ (as a cathodic compound), about 1.10% Ferrocene-Polyol (as an anodic compound), about 0.09% Ferrocene (as an anodic compound), about 0.49% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), all homogeneously dispersed in a combination of about 88.5% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 0.89% HDT (an isocyanate) and about 2.60% Lexorez 1931-50 (a polyol), and about 0.014% T-1 (a tin catalyst), and about 4.60% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

In this example, we assembled exterior automotive mirrors using HW-ITO glass for the front substrate and a multi-layer metal reflector coated glass (consisting of about 200 angstroms of rhodium undercoated with about 1500 angstroms of chromium, and with the chromium being disposed between the rhodium layer and the glass surface so as to serve as an adhesion promoter layer such as is described in U.S. Pat. No. 5,668,663 and U.S. Pat. No. 5,724,187, the disclosures of which are hereby incorporated by reference herein) for the 60 rear substrate (where the conductive surface of each glass substrate faced one another), with the clear front glass having a sheet resistance of about 15 ohms per square and the rear multi-layered reflector coated glass having a sheet resistance of about 5 ohms per square. The dimensions of the mirror 65 assemblies were about 5.0"×8.0"×125 μm, with a weather barrier of an epoxy resin coupled with an anhydride curing agent and spacers of about 125 µm also applied.

107

We placed into these mirror assemblies the electrochromic monomer composition of Example 47(A), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid

Once the electrochromic monomer composition of ¹⁰ Example 47(A), supra, was uniformly applied within the mirror assemblies of Example 47(B), supra, we placed the assemblies in an electrically heated convection oven maintained at about 80° C. for about 2 hours whereupon the monomer composition reacted to form in situ the solid polymer mat ix film inside the mirror.

Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a green color with bluish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 64.5% reflectance which decreased to a low reflectance of about 5.4% when about 1.4 volts was applied to thereto. The response time for 25 reflectance to change from about 60% to about 20% when that potential was applied thereto was 3.2 seconds. We made this determination by the reflectometer described in Example 1, supra

We also observed that the mirror bleached from about 10% ³⁰ reflectance to about 50% reflectance in a response time of about 10.4 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 48

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 0.80% HUVClO₄ (as a cathodic compound), about 0.87% EVClO₄ (as a cathodic compound), about 1.10% Ferrocene-Polyol (as an anodic compound), about 0.09% Ferrocene (as an anodic compound), about 0.49% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), all homogeneously dispersed in a combination of about 57.6% tertraethyleneglycol dimethylether and about 31.0% tetramethylenesulfone (as plasticizer) and, in combination as a monomer component, about 0.89% HDT (an isocyanate) and about 2.60% Lexorez 1931-50 (a polyol), and about 0.03% T-1 (a tin catalyst), and about 4.60% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors 60 from TEC-15 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×88 μ m, with a 65 weather barrier of an epoxy resin coupled with an imidazole curing agent and spacers of about 88 μ m also applied.

108

We placed into these mirror assemblies the electrochromic monomer composition of Example 48(A), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 48(A), supra, was uniformly applied within the mirror assemblies of Example 48(B), supra, we placed the assemblies overnight at room temperature during which time the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror. These mirror assemblies were then placed in an electrically heated convection oven maintained at about 80° C. for about 2 hours.

Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 74.1% reflectance which decreased to a low reflectance of about 8.3% when about 1.4 volts was applied to thereto. The response time for reflectance to change from about 70% to about 20% when that potential was applied thereto was about 2.0 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 11.4 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 49

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 0.80% HUVClO₄ (as a cathodic compound), about 0.87%-EVClO₄ (as a cathodic compound), about 1.10% Ferrocene-Polyol (as an anodic compound), about 0.09% Ferrocene (as an anodic compound), about 0.49% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), all homogeneously dispersed in a combination of about 83.9% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 1.44% HDT (an isocyanate) and about 5.84% Lexorez 1931-50 (a polyol), and about 0.03% T-1 (a tin catalyst), 0.82% polymethyl methacrylate-polyol and about 4.60% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

In this example, we assembled exterior automotive mirrors from TEC-15 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 3.5"×5"×125 µm, with a weather barrier of an epoxy resin coupled with spacers of about 125 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 49(A), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of ¹⁰ Example 49(A), supra, was uniformly applied within the mirror assemblies of Example 49(B), supra, we placed the assemblies overnight at room temperature during which time the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror. These mirror assemblies were then placed in an electrically heated convection oven maintained at about 80° C. for about 2 hours.

Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the electrochromic mirrors, and observed this mirror to color ²⁰ rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 72.3% reflectance which decreased to a low reflectance of about 6.8% when about 1.4 volts was applied to thereto. The response time for 25 reflectance to change from about 70% to about 20% when that potential was applied thereto was about 4.5 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about $10\%^{-30}$ reflectance to about 60% reflectance in a response time of about 11.8 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 50

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 1.0% HUVClO₄ (as a cathodic compound), about 0.57% EVClO₄ (as a cathodic compound), about 0.78% Ferrocene-Polyol (as an anodic compound), about 0.03% Ferrocene (as an anodic compound), about 0.39% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), all homogeneously dispersed in a combination of about 89.4% propylene carbonate (as plasticizer) and, in combination as a monomer camponent, about 1.06% HDT (an isocyanate) and about 2.2% Lexorez 1931-50 (a polyol), and about 0.03% T-1 (a tin catalyst), and about 4.60 Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors from TEC-15 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the 60 mirror assemblies were about 2.5"×10"×105 µm, with a weather barrier of an epoxy resin coupled with spacers of about 105 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 50(A), supra, using the 65 vacuum back filling technique (as described in Varaprasad III, supra). $\,$

110

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 50(A), supra, was uniformly applied within the mirror assemblies of Example 50(B), supra, we placed the assemblies overnight at room temperature during which time the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror. These mirror assemblies were then placed in an electrically heated convection oven maintained at about 80° C. for about 2 hours.

Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with bluish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 73.9% reflectance which decreased to a low reflectance of about 7.1%—when about 1.4 volts was applied to thereto. The response time for reflectance to change from about 70% to about 20% when that potential was applied thereto was about 1.7 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 9.0 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 51

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 0.64% HUVClO₄ (as a cathodic compound), about 0.76% EVClO₄ (as a cathodic compound), about 1.56% Ferrocene-Polyol (as an anodic compound), about 0.03% Ferrocene (as an anodic compound), about 0.39% 5,10-dihydro-5,10-dimethylphenazine (as an anodic compound), all homogeneously dispersed in a combination of about 88.9% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 1.05% HDT (an isocyanate) and about 2.2% Lexorez 1931-50 (a polyol), and about 0.03% T-1 (a tin catalyst), and about 4.60% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors from TEC-15 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about $2.5"\times10"\times105~\mu m$, with a weather barrier of an epoxy resin coupled with spacers of about $105~\mu m$ also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 51(A), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

55

35

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of 5 Example 51(A), supra, was uniformly applied within the mirror assemblies of Example 51(B), supra, we placed the assemblies overnight at room temperature during which time the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror. These mirror assemblies were then placed in an electrically heated convection oven maintained at about 80° C. for about 2 hours.

Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 73.6% reflectance which decreased to a low reflectance of about 7.5% when about 1.4 volts was applied to thereto. The response time for reflectance to change from about 70% to about 20% when that 20 potential was applied thereto was about 1.8 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 6.7 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 52

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 0.60% HUPPVCIO₄ (as a cathodic compound), about 1.11% PPVCIO₄ (as a cathodic compound), about 0.59% DMPA (as an anodic compound), all homogeneously dispersed in a combination of about 88.75% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 0.93% HDT (an isocyanate) and about 3.74% Lexorez 1931-50 (a polyol), and about 0.03% T-1 (a tin catalyst), and about 4.67% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors from TEC-15 glass substrates (where the conductive surface 50 of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×105 µm, with a weather barrier of an epoxy resin coupled with spacers of 55 about 105 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 52(A), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 52(A), supra, was uniformly applied within the

112

mirror assemblies of Example 52(B), supra, we placed the assemblies overnight at room temperature during which time the monomer composition reacted to form in situ the solid polymer matrix film inside the mirror. These mirror assemblies were then placed in an electrically heated convection oven maintained at about 80° C. for about 2 hours.

Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 71.8% reflectance which decreased to a low reflectance of about 7.4% when about 1.4 volts was applied to thereto. The response time for reflectance to change from about 70% to about 20% when that potential was applied thereto was about 1.9 seconds. We made this determination by the reflectometer described in Example 1, supra.

We also observed that the mirror bleached from about 10% reflectance to about 60% reflectance in a response time of about 6.2 seconds under about a zero applied potential. We noted the bleaching to be uniform.

Example 53

In this example, we chose to illustrate the beneficial properties and characteristics of the polychromic solid films manufactured within electrochromic glazings, or that may be used as small area transmissive devices, such as optical filters and the like.

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition comprising by weight about 1.12% HUVPF₆ (as a cathodic compound), about 0.67% EVClO₄ (as a cathodic compound), about 3.85% Ferrocene-polyol (as an anodic compound), about 0.30% Ferrocene (as an anodic compound), all homogeneously dispersed in a combination of about 85.32% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 1.01% HDT (an isocyanate) and about 2.39% Lexorez 1931-50 (a polyol), and about 0.85% polymethyl methacrylate and about 0.013% T-1 (a tin catalyst), and about 4.48% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Glazing Assembly with Electrochromic Monomer Composition

In this example, we assembled electrochromic glazings from clear TEC 15 glass substrates (where the conductive surface of each glass substrate faced one another), with the glass having a sheet resistance of about 15 ohms per square. The dimensions of the glazing assemblies were about 2.5"× $10"\times105\,\mu m$, with a weather barrier of an epoxy resin coupled with spacers of about 105 μm also applied.

We placed into these glazing assemblies the electrochromic monomer composition of Example 53(A), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composi-60 tion within Glazing to Polychromic Solid Film

Once the electrochromic monomer composition of Example 53(A), supra, was uniformly applied within the glazing assemblies of Example 53(B), supra, we placed the assemblies in an electrically heated convection oven maintained at about 80° C. for about 2 hours whereupon the monomer composition reacted to form in situ the solid polymer matrix film inside the glazing assemblies.

Use of Electrochromic Glazing

We applied a potential of about 1.4 volts to one of the electrochromic glazings of Example 53(B and C), supra. We observed that the electrochromic glazings colored rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high transmission at the center portion of the glazing was about 71.3% transmission which decreased to a low transmission of about 13.2% when about 1.4 volts was applied to thereto. We made this determination by the reflectometer described in Example 1, supra. We noted the bleaching to be uniform.

Example 54

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 2.13% HUVClO₄ (as a cathodic 20 compound), 7.31% Ferrocene-polyol (as an anodic compound), all homogeneously dispersed in a combination of about 82.0% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 1.57% HDT (an isocyanate) and about 1.88% Lexorez 1931-50 (a polyol), 25 and about 0.82% polymethyl methacrylate, and about 0.013% T-1 (a tin catalyst), and about 4.31% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors 35 from TEC-15 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"×10"×105 µm, with a 40 weather barrier of an epoxy resin coupled with spacers of about 105 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 54(A), supra, using the vacuum back filling technique (as described in Varaprasad III, 45 supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 54(A), supra, was uniformly applied within the mirror assemblies of Example 54(B), supra, we placed the assemblies overnight at room temperature during which time 55 noted the bleaching to be uniform. the Monomer composition reacted to form in situ the solid polymer matrix film inside the mirror. These mirror assemblies were then placed in an electrically heated convection oven maintained at about 80° C. for about 2 hours.

Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 70.8% reflectance 65 which decreased to a low reflectance of about 9.6% when about 1.4 volts was applied to thereto. We made this determi114

nation by the reflectometer described in Example 1, supra. We noted the bleaching to be uniform.

Example 55

In this example, we chose to illustrate the beneficial properties and characteristics of the polychromic solid films manufactured within electrochromic glazings, or that may be used as small area transmissive devices, such as optical filters and the like.

A. Preparation of Electrochromic Monomer Composition We prepared an electrochromic monomer composition comprising by weight about 0.80% HUVClO₄ (as a cathodic compound), about 0.87% EVClO₄ (as a cathodic compound), 15 about 1.10% Ferrocene-polyol (as an anodic compound), about 0.086% Ferrocene (as an anodic compound), about 0.49% DMPA (as an anodic compound), all homogeneously dispersed in a combination of about 24.16% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 9.70% HDT (an isocyanate) and about 58.0% Lexorez 1931-50 (a polyol), and about 0.23% polymethyl methacrylate and about 0.014% T-I (a tin catalyst), and about 4.60% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Glazing Assembly with Electrochromic Monomer Composition

In this example, we assembled electrochromic glazings from clear TEC 15 glass substrates (where the conductive surface of each glass substrate faced one another), with the glass having a sheet resistance of about 15 ohms per square. The dimensions of the glazing assemblies were about 3.0"× $10" \times 150 \, \mu m$.

We placed into these glazing assemblies the electrochromic monomer composition of Example 55(A), supra.

C. Transformation of Electrochromic Monomer Composition within Glazing to Polychromic Solid Film

Once the electrochromic monomer composition of Example 55(A), supra, was uniformly applied within the glazing assemblies of Example 55(B), supra, we placed the assemblies in an electrically heated convection oven maintained at about 80° C. for about 2 hours whereupon the monomer composition reacted to form in situ the solid polymer matrix film inside the glazing assemblies.

Use of Electrochromic Glazing

We applied a potential of about 1.4 volts to one of the electrochromic glazings of Example 55(B and C), supra. We observed that the electrochromic glazings colored rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high transmission at the center portion of the glazing was about 70.8%, transmission which decreased to a low transmission of about 12.9% when about 1.4 volts was applied to thereto. We made this determination by the reflectometer described in Example 1, supra. We

Example 56

A. Preparation of Electrochromic Monomer Composition

We prepared an electrochromic monomer composition comprising by weight about 0:80% HUVlO₄ (as a cathodic compound), about 0.87% EVClO₄ (as a cathodic compound), about 1.10% Ferrocene-polyol (as an anodic compound), about 0.086% Ferrocene (as an anodic compound), about 0.49% DMPA (as an anodic compound), all homogeneously

115

dispersed in a combination of about 24.16% propylene carbonate (as plasticizer) and, in combination as a monomer component, about 9.70% HDT (an isocyanate) and about 58.0% Lexorez 1931-50 (a polyol), and about 0.23% polymethyl methacrylate and about 0.014% T-1 (a tin catalyst), and about 4.60% Uvinul N 35 (a UV stabilizer). We thoroughly mixed this monomer composition to ensure that a homogeneous dispersion of the components was achieved.

B. Mirror Assembly with Electrochromic Monomer Composition

In this example, we assembled interior automotive mirrors from TEC-15 glass substrates (where the conductive surface of each glass substrate faced one another), with both the clear, front glass and the silvered, rear glass having a sheet resistance of about 15 ohms per square. The dimensions of the mirror assemblies were about 2.5"-xio"×105 µm, with a weather barrier of an epoxy resin coupled with spacers of about 105 µm also applied.

We placed into these mirror assemblies the electrochromic monomer composition of Example 56(A), supra, using the vacuum back filling technique (as described in Varaprasad III, supra).

C. Transformation of Electrochromic Monomer Composition within Mirror to Polychromic Solid Film

Once the electrochromic monomer composition of Example 56(A), supra, was uniformly applied within the mirror assemblies of Example 56(B), supra, we placed the assemblies overnight at room temperature during which time the monomer composition reacted to form in situ the solid 35 polymer matrix film inside the mirror. These mirror assemblies were then placed in an electrically heated convection oven maintained at about 80° C. for about 2 hours.

Use of Electrochromic Mirror

We applied a potential of about 1.4 volts to one of the $_{40}$ electrochromic mirrors, and observed this mirror to color rapidly and uniformly to a gray color with greenish hue.

In addition, we observed that the high reflectance at the center portion of the mirror was about 69.7% reflectance which decreased to a low reflectance of about 8.7% when 45 about 1.4 volts was applied to thereto. We made this determination by the reflectometer described in Example 1, supra. We noted the bleaching to be uniform.

While we have provided the above examples of the foregoing invention for illustrative purposes employing preferred electrochromic compounds, monomer components and plasticizers, and other components it is to be understood that variations and equivalents of each of the prepared electrochromic monomer compositions identified herein will provide suitable, if not comparable, results when viewed in connection with the results gleaned from these examples. Without undue experimentation, those of ordinary skill in the art will find it readily apparent to prepare polychromic solid film with the beneficial properties and characteristics desirable for the specific application armed with the teaching herein disclosed. And, it is intended that such equivalents be encompassed by the claims which follow hereinafter.

What we claim is:

1. A method of forming a mirrored bent cut glass shape 65 suitable for use in an exterior rearview mirror assembly of a vehicle, said method comprising:

116

providing a flat sheet of glass of area greater than the area of a bent cut glass shape that is to be formed from said flat sheet of glass;

bending said flat sheet of glass to establish a curved sheet of glass;

determining a surface profile of said curved sheet of glass by a machine vision system;

providing a computer numerical controlled cutting tool having a cutting wheel that is controlled via digital computer control;

positioning said cutting tool at said curved sheet of glass; maintaining said cutting wheel at or close to 90 degrees to the tangential plane of said curved sheet of glass;

controlling at least one of (a) said cutting wheel and (b) said curved sheet of glass in three dimensions to cut a bent cut glass shape from said curved sheet of glass;

wherein controlling at least one of (a) said cutting wheel and (b) said curved sheet of glass to cut said bent cut glass shape is, at least in part, responsive to the surface profile of said curved sheet of glass as determined by said machine vision system; and

establishing a mirror reflector at a surface of said bent cut glass shape to form a mirrored bent cut glass shape.

- The method of claim 1, wherein bending said flat sheet of
 glass comprises bending said flat sheet of glass to establish an aspherically-curved sheet of glass.
 - 3. The method of claim 1, wherein bending said flat sheet of glass comprises bending said flat sheet of glass to establish a spherically-curved sheet of glass.
 - **4**. The method of claim **1**, wherein said mirrored bent cut glass shape comprises a mirrored bent cut glass shape for a conventional mirror reflective element.
 - 5. The method of claim 1, wherein maintaining said cutting wheel at or close to 90 degrees to the tangential plane of said curved sheet of glass comprises maintaining said cutting wheel within about 20 degrees of 90 degrees to the tangential plane of said curved sheet of glass.
 - **6**. The method of claim **1**, wherein establishing a mirror reflector comprises vacuum deposition of a metal thin film coating at said surface of said bent cut glass shape.
 - 7. The method of claim 6, wherein said metal thin film coating comprises chromium.
 - 8. The method of claim 1, wherein determining the surface profile of said curved sheet of glass by said machine vision system comprises capturing a digital image of a pattern reflected off said curved sheet of glass and processing said captured digital image.
 - **9**. The method of claim **8**, further comprising storing a captured digital image of the reflected pattern in a computer storage.
 - 10. The method of claim 9, wherein said machine vision system allocates an identifier to said stored digital image.
 - 11. A method of forming an electro-optic reflective element suitable for use in an exterior rearview mirror assembly of a vehicle, said method comprising:

providing a first flat sheet of glass of area greater than the area of a front bent cut glass shape that is to be formed from said first flat sheet of glass;

bending said first flat sheet of glass to establish a first curved sheet of glass;

providing a second flat sheet of glass of area greater than the area of a rear bent cut glass shape that is to be formed from said second flat sheet of glass;

bending said second flat sheet of glass to establish a second curved sheet of glass, said second curved sheet of glass having substantially the same curvature as said first curved sheet of glass;

- determining a first surface profile of said first curved sheet of glass and a second surface profile of said second curved sheet of glass by a machine vision system;
- providing a computer numerical controlled cutting tool having a cutting wheel that is controlled via digital computer control:
- positioning said cutting tool at said first curved sheet of
- maintaining said cutting wheel at or close to 90 degrees to the tangential plane of said first curved sheet of glass;
- controlling at least one of (a) said cutting wheel and (b) said first curved sheet of glass in three dimensions to cut a front bent cut glass shape from said first curved sheet of
- wherein controlling at least one of (a) said cutting wheel and (b) said first curved sheet of glass to cut said front bent cut glass shape is, at least in part, responsive to the first surface profile of said first curved sheet of glass as determined by said machine vision system;
- positioning said cutting tool at said second curved sheet of glass;
- maintaining said cutting wheel at or close to 90 degrees to the tangential plane of said second curved sheet of glass;
- controlling at least one of (a) said cutting wheel and (b) said 25 second curved sheet of glass in three dimensions to cut a rear bent cut glass shape from said second curved sheet of glass; and
- wherein controlling at least one of (a) said cutting wheel and (b) said second curved sheet of glass to cut said rear bent cut glass shape is, at least in part, responsive to the second surface profile of said second curved sheet of glass as determined by said machine vision system;
- cut glass shape; and
- assembling said rear bent cut glass shape and said front bent cut glass shape to form an electro-optic mirror reflective element.
- 12. The method of claim 11, wherein bending said first flat $_{40}$ sheet of glass comprises bending said first flat sheet of glass to establish an aspherically-curved first sheet of glass and wherein bending said second flat sheet of glass comprises bending said second flat sheet of glass to establish an aspherically-curved second sheet of glass.
- 13. The method of claim 11, wherein bending said first flat sheet of glass comprises bending said first flat sheet of glass to establish a spherically-curved first sheet of glass and wherein bending said second flat sheet of glass comprises bending said second flat sheet of glass to establish a spherically- 50 curved second sheet of glass.
- 14. The method of claim 11, wherein establishing a mirror reflector comprises vacuum deposition of a metal thin film coating.
- 15. The method of claim 11, wherein maintaining said 55 cutting wheel at or close to 90 degrees to the tangential plane of said first curved sheet of glass comprises maintaining said cutting wheel within about 20 degrees of 90 degrees to the tangential plane of said first curved sheet of glass and wherein maintaining said cutting wheel at or close to 90 degrees to the 60 tangential plane of said second curved sheet of glass comprises maintaining said cutting wheel within about 20 degrees of 90 degrees to the tangential plane of said second curved sheet of glass.
- 16. The method of claim 11, wherein each of said front and 65 rear bent cut glass shapes has an electrically conductive coating on a surface thereof and wherein said front and rear bent

118

cut glass shapes are assembled together with an electro-optic medium disposed therebetween and contacting said electrically conductive coatings.

- 17. The method of claim 16, wherein said electro-optic medium disposed between said front and rear bent cut glass shapes comprises an electrochromic cross-linked polymeric solid film, said electrochromic cross-linked solid polymeric film formed from an electrochromic monomer composition, said electrochromic monomer composition including at least one cathodic electrochromic compound.
- 18. The method of claim 11, further comprising selectively sorting a plurality of front and rear bent cut glass shapes to select a pair of matched front and rear bent substrates for said electro-optic mirror reflective element.
- 19. The method of claim 18, wherein selectively sorting a plurality of front and rear bent cut glass shapes comprises utilizing said machine vision system to capture digital images of patterns reflected off said first and second curved sheets of 20 glass and to store said digital images of the reflected patterns in a computer storage, and wherein said stored digital images are processed to determine which combination of any two first and second curved sheets of glass has a substantially matched reflected pattern.
 - 20. The method of claim 19, wherein at least one of (a) said machine vision system allocates an identifier to each stored digital image and (b) said method comprises selecting front and rear bent cut glass shapes cut from curved sheets of glass that are determined to have substantially matching reflected
 - 21. The method of claim 19, wherein said reflected pattern consists of at least one of dots, squares, lines, circles and ovals.
- 22. A method of forming a mirrored bent cut glass shape establishing a mirror reflector at a surface of said rear bent suitable for use in an exterior rearview mirror assembly of a vehicle, said method comprising:
 - providing a flat sheet of glass of area greater than the area of a bent cut glass shape that is to be formed from said flat sheet of glass;
 - bending said flat sheet of glass to establish a curved sheet of glass:
 - determining a surface profile of said curved sheet of glass by a machine vision system;
 - wherein determining the surface profile of said curved sheet of glass by said machine vision system comprises capturing a digital image of a pattern reflected off said curved sheet of glass and processing said captured digital image;
 - providing a computer numerical controlled cutting tool having a cutting wheel that is controlled via digital computer control:
 - positioning said cutting tool at said curved sheet of glass; maintaining said cutting wheel at or close to 90 degrees to the tangential plane of said curved sheet of glass;
 - controlling at least one of (a) said cutting wheel and (b) said curved sheet of glass in three dimensions to cut a bent cut glass shape from said curved sheet of glass;
 - wherein controlling at least one of (a) said cutting wheel and (b) said curved sheet of glass to cut said bent cut glass shape is, at least in part, responsive to the surface profile of said curved sheet of glass as determined by said machine vision system; and
 - establishing a mirror reflector at a surface of said bent cut glass shape to form a mirrored bent cut glass shape and wherein establishing a mirror reflector comprises vacuum deposition of a metal thin film coating at said surface of said bent cut glass shape.

- 23. The method of claim 22, wherein bending said flat sheet of glass comprises bending said flat sheet of glass to establish an aspherically-curved sheet of glass.
- **24**. The method of claim **22**, wherein bending said flat sheet of glass comprises bending said flat sheet of glass to establish 5 a spherically-curved sheet of glass.
- 25. The method of claim 22, wherein maintaining said cutting wheel at or close to 90 degrees to the tangential plane of said curved sheet of glass comprises maintaining said cutting wheel within about 20 degrees of 90 degrees to the 10 tangential plane of said curved sheet of glass.
- 26. The method of claim 22, wherein determining the surface profile of said curved sheet of glass by said machine

120

vision system comprises capturing a digital image of a pattern reflected off a convex surface of said curved sheet of glass.

- 27. The method of claim 22, wherein said cutting tool comprises a five-axis cutting tool.
- 28. The method of claim 22, further comprising storing a captured digital image of the reflected pattern in a computer storage.
- **29**. The method of claim **28**, wherein said machine vision system allocates an identifier to said stored digital image.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 8,164,817 B2 Page 1 of 4

APPLICATION NO. : 12/910479 DATED : April 24, 2012

INVENTOR(S) : Desaraju V. Varaprasad et al.

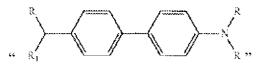
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specifications:

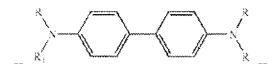
Column 1

Line 32, "08/957,027;" should be --08/957,027,--

Column 2


Line 36, "thereof;" should be --thereof,--

Column 4


Line 9, "M" should be --in--

Column 7

Lines 56-61,

should be

Column 13

Lines 49-50, "2-keto-N-ethyl_phenazine ("KEPA")" should be --2-keto-N-ethyl-phenazine ("KEPA")--

Signed and Sealed this Fourth Day of June, 2013

Teresa Stanek Rea

Acting Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) U.S. Pat. No. 8,164,817 B2

Column 14

Lines 59-64,

should be

Column 15

Line 31, "combined;" should be --combined,--

Column 16

Line 54, "Phosphoryldihydoxyalkyl" should be --Phosphoryldihydroxyalkyl--

Column 19

Lines 15-20,

Divatericacid Viologen Hexallusry-phosphate

$$CDVAVPF_6^n)$$

should be

XXXXII

Divalericacid Viologen Hexafluorophosphate ("DVAVPF6")

Column 20

Line 7, "itself;" should be --itself,--

Column 21

Line 4, "characteristics," should be --characteristics.--

Line 20, "Labs," should be --Labs.--

CERTIFICATE OF CORRECTION (continued) U.S. Pat. No. 8,164,817 B2

Column 22

Line 9, "decyl methacrylate" should be --i-decyl methacrylate--

Column 23

Line 43, "Spiro" should be --spiro--

Column 25

Lines 6-7, "Am/late/EMMA" should be --Acrylate/EOEOEA--

Column 27

Line 29, "polyethylene glycols)" should be --poly (ethylene glycols)--

Column 28

Line 16, "KB 1" should be --KB1--

Column 30

Line 55, "thereof;" should be --thereof,--

Column 37

Line 33, "fits" should be --frits--

Column 40

Line 63, "Conductive" should be --conductive--

Column 41

Line 2, "stared" should be --stored--

Column 43

Line 36, "fits" should be --frits--

Column 45

Line 22, Delete "," after "data"

Column 47

Line 29, "easing" should be --casing--

Column 55

Line 12, "Mirror" should be --mirror--

Line 39, "scat" should be --seat--

Column 58

Line 11, "Ultraviolet" should be --ultraviolet--

Line 22, "2,5"×10"×37 μ m" should be --2.5"×10"×37 μ m--

CERTIFICATE OF CORRECTION (continued) U.S. Pat. No. 8,164,817 B2

Column 60

Line 43, "µM" should be --µm--

Line 48, Insert -- III -- after "Varaprasad"

Column 62

Line 6, Insert -- III -- after "Varaprasad"

Column 70

Line 45, "Observed" should be --observed--

Column 71

Line 22, Insert --III-- after "Varaprasad"

Column 88

Line 13, Insert -- III -- after "Varaprasad"

Column 89

Line 5, Insert -- µm-- after "53"

Line 10, "µM" should be --µm--

Column 95

Line 21, "electro chromic" should he --electrochromic--

Line 28, "hours," should be --hours--

Line 40, "seconds," should be --seconds.--

Line 41, "reflectommeter" should be --reflectonmeter--

Column 101

Line 27, "(a, tin catalyst)" should be --(a tin catalyst)--

Column 103

Line 31, Insert -- III -- after "Varaprasad"

Column 105

Line 25, "1,1'-azobiscyclohexanecarbonitrile" should be --1.1'-azobiscyclohexanecarbonitrile--

Column 106

Lines 6-7, "1,1'-azobiscyclohexanecarbonitrile" should be --1.1'-azobiscyclohexanecarbonitrile--

Column 114

Line 63, "0:80%" should be --0.80%--