
US008225408B2

(12) United States Patent (10) Patent N0.2 US 8,225,408 B2
Rubin et al. (45) Date of Patent: Jul. 17, 2012

(54) METHOD AND SYSTEM FOR ADAPTIVE 5,414,833 A * 5/1995 Hershey et a1. 726/22
RULE-BASED CONTENT SCANNERS 5,485,409 A 1/19% Gupta et a1~

5,485,575 A 1/1996 Chess et al.
. 5,572,643 A 11/1996 Judson

(75) Inventors: Moshe Rubin, Jerusalem (IL); Moshe 5,579,509 A 11 “996 Funney et a1‘
Matltyas 1911152119111 (1L); Artem 5,606,668 A 2/1997 Shwed
Melnick, Beit Shemesh (IL); Shlomo 5,623,600 A 4/1997 Ji et_al.
Touboul, Kefar-Haim (IL); Alexander 5,638,446 A 6/1997 Rubln
Yermakov, Beit Shemesh (IL); Amit 5,675,711 A * 10/1997 Kephart et a1~ ~~~~~~~~~~~~~~~ ~~ 706/12

Shaked, Tel Aviv (IL) (Continued)

(73) Assignee: Finjan, Inc., San Jose, CA (US) FOREIGN PATENT DOCUMENTS
EP 1091276 Al 4/2001

(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35

U.S.C. 154(b) by 1298 days. OTHER PUBLICATIONS

(21) Appl. NO.Z 10/930,884 D Grune, C Jacobs, K Langendoen, H BaliParsing Techniques: A
Practical Guide, 2000iJ0hn Wiley & Sons, Inc. New York, NY,

Aug. 30, USA, p‘ l_326‘*

(65) Prior Publication Data (Continued)

US 2005/0108554 A1 May 19, 2005 _ _
Primary Examiner * Eleni Sh1feraW

Related US. Application Data Assistant Examiner * Jeffery Williams

(63) Continuation-in-part of application No. 09/539,667, (s7i)ldli4liwilieyp’ Agent’ or Flrm i Dawn-Mane Bey; Kmg &
?led On Mar. 30, 2000, noW Pat. NO. 6,804,780, which P g
is a continuation of application No. 08/964,388, ?led
On Nov. 6, 1997, noW Pat. NO. 6,092,194. (57) ABSTRACT

(51) Int Cl A method for scanning content, including identifying tokens
H02”! é9/06 (2006 01) Within an incoming byte stream, the tokens being lexical

52 U 5 Cl 7'26/25_ 713/153_ 726/22 constructs for a speci?c language, identifying patterns of
() _‘ ‘ ‘ """ "_' """ "_ """"" " ’ ’ tokens, generating a parse tree from the identi?ed patterns of

(58) Field of.Cla'ss1?cat1on Search: None tokens, and identifying the presence of potential exploits
See apphcanon ?le for Complete Search hlstory' Within the parse tree, Wherein said identifying tokens, iden

(56) R f Ct d tifying patterns of tokens, and identifying the presence of
e erences 1 e

U.S. PATENT DOCUMENTS

potential exploits are based upon a set of rules for the speci?c
language. A system and a computer readable storage medium
are also described and claimed.

5,077,677 A 12/1991 Murphy et al.
5,359,659 A 10/1994 Rosenthal
5,361,359 A ll/l994 Tajalli et al. 35 Claims, 7 Drawing Sheets

NETWORK GATEWAY 150 (- 1 10

@he CONTENT SCANNER

CORPORATE INTRANET

CLIENT l—| CLIENT

CONTENT CACHE

140

I20

120

120

CLIENT hm

120

CLIENT ’—| CLIENT

US 8,225,408 B2
Page 2

US. PATENT DOCUMENTS

5,692,047 A 11/1997 McManis
5,692,124 A 11/1997 Holden et al.
5,720,033 A 2/1998 Deo
5,724,425 A 3/1998 Chang et al.
5,740,248 A 4/1998 Fieres et al.
5,740,441 A * 4/1998 Yellin et al. 717/134

5,761,421 A 6/1998 van Hoffetal.
5,765,205 A 6/1998 Breslau et al.
5,784,459 A 7/1998 Devarakonda et al.
5,796,952 A 8/1998 Davis et al.
5,805,829 A 9/1998 Cohen et al.
5,832,208 A 11/1998 Chen et al.
5,832,274 A 11/1998 Cutler et al.
5,850,559 A 12/1998 Angelo et al.
5,859,966 A 1/1999 Hayman et al.
5,864,683 A 1/1999 Boebert et al.
5,881,151 A * 3/1999 Yamamoto 726/24

5,884,033 A * 3/1999 Duvallet al. 709/206

5,892,904 A 4/1999 Atkinson et al.
5,951,698 A 9/1999 Chen et al.
5,956,481 A 9/1999 Walsh etal.
5,963,742 A 10/1999 Williams 717/143

5,974,549 A 10/1999 Golan
5,978,484 A 11/1999 Apperson et al.
5,983,348 A * 11/1999 Ji 726/13

5,987,611 A 11/1999 Freund .. 726/4
6,088,801 A * 7/2000 Grecsek .. 726/1
6,088,803 A * 7/2000 Tso et al. 726/22

6,092,194 A 7/2000 Touboul
6,154,844 A 11/2000 Touboul
6,167,520 A 12/2000 Touboul
6,339,829 B1 1/2002 Beadle et al.
6,425,058 B1 7/2002 Arimilliet al. 711/134

6,434,668 B1 8/2002 Arimilliet al. . 711/128
6,434,669 B1 8/2002 Arimilliet al. 711/128

6,480,962 B1 11/2002 Touboul
6,487,666 B1 11/2002 Shanklin et al. 726/23

6,519,679 B2 2/2003 Devireddy et al. . 711/114
6,598,033 B2 7/2003 Ross etal. 706/46
6,732,179 B1 5/2004 Brown et al. . 709/229
6,804,780 B1 10/2004 Touboul
6,917,953 B2 7/2005 Simon et al. 707/204
7,058,822 B2 6/2006 Edery et al. . 726/22
7,143,444 B2* 11/2006 Porras et al. 726/30
7,210,041 B1* 4/2007 GryaZnov et al. 713/188
7,308,648 B1* 12/2007 Buchthalet al. . 715/234
7,343,604 B2* 3/2008 Grabarnik et al. . . 719/313
7,418,731 B2 8/2008 Touboul 726/22

2003/0014662 A1* 1/2003 Gupta et al. . 713/200
2003/0074190 A1* 4/2003 Allison 704/10

2003/0101358 A1* 5/2003 Porras et al. . 713/201
2004/0073811 A1* 4/2004 Sanin 713/201

2004/0088425 A1* 5/2004 Rubinstein et al. 709/230
2005/0050338 A1* 3/2005 Liang et al. 713/188
2005/0172338 A1* 8/2005 Sandu et al. 726/22
2006/0031207 A1* 2/2006 Bjarnestam et al. 707/3
2006/0048224 A1* 3/2006 Duncan et al. 726/22
2008/0066160 A1* 3/2008 Becker et al. .. 726/4
2010/0195909 A1 8/2010 Wasson et al. 382/176

FOREIGN PATENT DOCUMENTS

EP 1132796 A1 9/2001
W0 WO 2004/063948 7/2004

OTHER PUBLICATIONS

Power, James, “Notes on Formal Language Theory and Parsing”,
1999, National University of Ireland, p. 1-40.*
Scott et al., “Abstracting Application-Level Web Security”, 2002,
ACM, p. 396-407.*
U.S. Appl. No. 10/838,889, ?led Oct. 26, 1999, Golan, G.
http://www.codeguru.com/Cpp/Cpp/cppimfc/parsing/article.php/
c4093/.
http://www.cs.may.ie/~jpower/Courses/compilers/notes/leXical.pdf.
http://www.mail-archive.com/kragen-tol@canonical.org/
msg00097.html.

http://www.owlnet.rice.edu/~comp412/Lectures/L06LeXWrapup4.
pdf.
http://www.cs.odu.edu/~toida/nerZic/390teched/regular/fa/min-fa.
htrnl.
http://rw4.cs.uni-sb.de/~ganimal/GANIFNpage16ie.htm.
http://www.cs.msstate.edu/~hansen/classes/3813fall0 1/ slides/
06MinimiZe.pdf.
http://www.win.tue.nl/~watson/2R870/downloads/madfaialgs.pdf.
http://www.cs.nyu.edu/web/Research/Theses/changLchia-hsiang.
pdf.
“Products” Article published on the Internet, “Revolutionary Secu
rity for a New Computing Paradigm” regarding Sur?nGateTM 7
pages.
“Release Notes for the Microsoft ActiveX Development Kit”, Aug.
13, 1996, activeX.adsp.orjp/inetsdk/readmetxt, pp. 1-10.
Doyle et al., “Micro soft Press Computer Dictionary” 1993, Microsoft
Press, 2”’ Edition, pp. 137-138.
Finjan Software Ltd., “Powerful PC Security for the New World of
JavaTM and Downloadables, Sur?n ShieldTM” Article published on
the Internet by Finjan Software Ltd., 1996, 2 pages.
Finjan Software Ltd., “Finjan Announces a Personal JavaTM Firewall
for Web Browsersithe Sur?nShieldTM 1.6 (formerly known as
Sur?nBoard)”, Press Release of Finjan Releases Sur?nShield 1.6,
Oct. 21, 1996, 2 pages.
Finjan Software Ltd., “Finjan Announces Major Power Boost and
New Features for Sur?nShieldTM 2.0” Las Vegas Convention Center/
Pavilion 5 P5551, Nov. 18, 1996, 3 pages.
Finjan Software Ltd., “Finjan Software Releases Sur?nBoard, Indus
try’s First JAVA Security Product for the World Wide Web”, Article
published on the Internet by Finjan Software Ltd., Jul. 29, 1996, 1
page.
Finjan Software Ltd., “Java Security: Issues & Solutions” Article
published on the Internet by Finjan Software Ltd., 1996, 8 pages.
Finjan Software Ltd., Company Pro?le “FinjaniSafe Sur?ng, The
Java Security Solutions Provider” Article published on the Internet
by Oct. 31, 1996, 3 pages.
IBM Antivirus User’s Guide Version 2.4, International Business
Machines Corporation, Nov. 15, 1995, p. 6-7.
Khare, R. “Microsoft Authenticod Analyzed” Jul. 22, 1996, Xent.
com/FoRK-archive/smmer96/0338.htrnl, p. 1-2.
LaDue, M., “Online Business Consultant: Java Security: Whose
Business Is It?” Article published on the Internet, Home Page Press,
Inc. 1996, 4 pages.
Leach, Norvin et al., “IE 3.0 Applets Will Earn Certi?cation”, PC
Week, vol. 13, No. 29, Jul. 22, 1996, 2 pages.
MoritZ, R., “Why We Shouldn’t Fear Java” Java Report, Feb. 1997,
pp. 5 1 -56.
Microsofti“Microsoft ActiveX Software Development Kit” Aug.
12, 1996, activeX.adsp.orjp/inetsdk/help/overviewhtm, pp. 1-6.
Microsoft Corporation, Web Page Article “Frequently Asked Ques
tions About Authenticode”, last updated Feb. 17, 1997, Printed Dec.
23, 1998. URL: http://www.microsoft.com/workshop/security/
authcode/signfaq.asp#9, pp. 1-13.
Microsoft® Authenticode Technology, “Ensuring Accountability
and Authenticity for Software Components on the Internet”,
Microsoft Corporation, Oct. 1996, including Abstract, Contents,
Introduction and pp. 1-10.
Okamoto, E. et al., “ID-Based Authentication System for Computer
Virus Detection”, IEEE/IEE Electronic Library online, Electronics
Letters, vol. 26, Issue 15, ISSN 0013-5194, Jul. 19, 1990, Abstract
and pp. 1169-1170. URL: http://iel.ihs.com:80/cgi-bin/ielicgi?se...
2ehts%26ViewTemplate%3ddocview%5fb%2ehts.
Omura, J. K., “Novel Applications of Cryptography in Digital Com
munications”, IEEE Communications Magazine, May 1990; pp.
21-29.
Schmitt, D.A., “.EXE ?les, OS-2 style” PC Tech Journal, v6, n11, p.
76 (13).
Zhang, X.N., “Secure Code Distribution”, IEEE/IEE Electronic
Library online, Computer, vol. 30, Issue 6, Jun. 1997, pp. 76-79.
International Search Report for Application No. PCT/ IL05/ 00915, 4
pp., dated Mar. 3, 2006.

US 8,225,408 B2
Page 3

Zhong, et al., “Security in the Large: is Java’s Sandbox Scalable,”
Seventh IEEE Symposium on Reliable Distributed Systems, pp. 1-6,
Oct. 1998.
Rubin, et al., “Mobile Code Security,” IEEE Internet, pp. 30-34, Dec.
1998.
Schmid, et al. “Protecting Data From Malicious Software,” Proceed
ing of the 18th Annual Computer Security Applications Conference,
pp. 1-10, 2002.
Corradi, et al., “A Flexible Access Control Service for Java Mobile
Code,” IEEE, pp. 356-365, 2000.

International Search Report for Application No. PCT/IB97/0l626, 3
pp., May 14, 1998 (mailing date).
Written Opinion for Application No. PCT/ ILOS/ 00915, 5 pp., dated
Mar. 3, 2006 (mailing date).
International Search Report for Application No. PCT/IBO l/Ol I38, 4
pp., Sep. 20, 2002 (mailing date).
International Preliminary Examination Report for Application No.
PCT/IB0l/0ll38, 2 pp., dated Dec. 19,2002.

* cited by examiner

US. Patent Jul. 17, 2012 Sheet 1 017 US 8,225,408 B2

H .UE /

>

V

1 [5

US. Patent Jul. 17, 2012 Sheet 2 on US 8,225,408 B2

N .UE

$22523 /W&

> @
> >

mm”; mwmi mmaouma / 8N

mw~z<zmoz
[8N

Emmi / CNN mwuzwxg

US. Patent Jul. 17, 2012 Sheet 3 of7 US 8,225,408 B2

"532552 .5

US. Patent Jul. 17, 2012 Sheet 4 on US 8,225,408 B2

match(’):Rule1 EQUALS NUMBER

US. Patent Jul. 17, 2012 Sheet 5 of7 US 8,225,408 B2

/- 500
CALL TOKENIZER TO RETRIEVE NEXT

TOKEN II

ADD TOKEN TO PARSE TREE

I 520

NO IS THERE A PATTERN ‘
MATCH WITH A ‘

PARSER RULE?

YES

II

I 530

DOES THE RULE
HAVE A NONODE

A'I'I'RIBUTE?

YES

, N0

PERFORM ACTION ASSOCIATED WITH
MATCHED PARSER RULE: /‘ 54°

CREATE A NEW NODE. CALLED [RULE
NAME] AND PLACE THE MATCHING
NODES UNDER THE NEw NoDE

DOES THE RULE
HAVE A NOANALYZE

ATTRIBUTE'?

YES

I

/- 560
CALL ANALYZER TO DETERMINE IF A
POTENTIAL EXPLOIT IS PRESENT

570

DOES ANALYZER FIND
AN ANALYZER RULE

MATCH?

PERFORM ACTION ASSOCIATED WITH /- 580
MATCHED ANALYZER RULE:

RECORD ANALYZER RULE AT CURRENT
NODE, AS LEVEL 0

I
PROPAGATE ANALYZER RULE UPWARD /_ 590

THROUGH NODE PARENTS. AS
SUCCESSIVELY INCREASING LEVEL

FIG. 5

US. Patent Jul. 17, 2012 Sheet 6 of7 US 8,225,408 B2

w .QE c3535 cum

222

ohm

owmj

US. Patent Jul. 17, 2012 Sheet 7 of7 US 8,225,408 B2

BUILDER

ARB SCANNER FACTORY

SCANNER REPOSITORY

ARB SCANNER ARB SCANNER ARB SCANNER
HTML JAVASCRIPT URI

4l—l____.l

TOKENIZER TOKENIZER TOKENIZER

PARSER PARSER PARSER

ANALYZER ANALYZER ANALYZER

FIG. 7

US 8,225,408 B2
1

METHOD AND SYSTEM FOR ADAPTIVE
RULE-BASED CONTENT SCANNERS

CROSS REFERENCES TO RELATED
APPLICATIONS

This application is a continuation-in-part of assignee’s
application U.S. Ser. No. 09/539,667, ?led on Mar. 30, 2000,
now US. Pat. No. 6,804,780, entitled “System and Method
for Protecting a Computer and a Network from Hostile
Downloadables,” which is a continuation of assignee’ s patent
application U.S. Ser. No. 08/964,388, ?led on 6 Nov. 1997,
now US. Pat. No. 6,092,194, also entitled “System and
Method for Protecting a Computer and a Network from Hos
tile Downloadables.”

FIELD OF THE INVENTION

The present invention relates to network security, and in
particular to scanning of mobile content for exploits.

BACKGROUND OF THE INVENTION

Conventional anti-virus software scans a computer ?le sys
tem by searching for byte patterns, referred to as signatures
that are present within known viruses. If a virus signature is
discovered within a ?le, the ?le is designated as infected.

Content that enters a computer from the Internet poses
additional security threats, as such content executes upon
entry into a client computer, without being saved into the
computer’s ?le system. Content such as JavaScript and
VBScript is executed by an Internet browser, as soon as the
content is received within a web page.

Conventional network security software also scans such
mobile content by searching for heuristic virus signatures.
However, in order to be as protective as possible, virus sig
natures for mobile content tend to be over-conservative,
which results in signi?cant over-blocking of content. Over
blocking refers to false positives; i.e., in addition to blocking
of malicious content, prior art technologies also block a sig
ni?cant amount of content that is not malicious.

Another drawback with prior art network security software
is that it is unable to recogniZe combined attacks, in which an
exploit is split among different content streams. Yet another
drawback is that prior art network security software is unable
to scan content containers, such as URI within JavaScript.

All of the above drawbacks with conventional network
security software are due to an inability to diagnose mobile
code. Diagnosis is a daunting task, since it entails understand
ing incoming byte source code. The same malicious exploit
can be encoded in an endless variety of ways, so it is not
suf?cient to look for speci?c signatures.

Nevertheless, in order to accurately block malicious code
with minimal over-blocking, a thorough diagnosis is
required.

SUMMARY OF THE DESCRIPTION

The present invention provides a method and system for
scanning content that includes mobile code, to produce a
diagnostic analysis of potential exploits within the content.
The present invention is preferably used within a network
gateway or proxy, to protect an intranet against viruses and
other malicious mobile code.

The content scanners of the present invention are referred
to as adaptive rule-based (ARB) scanners. AnARB scanner is
able to adapt itself dynamically to scan a speci?c type of

20

25

30

35

40

45

50

55

60

65

2
content, such as inter alia JavaScript, VBScript, URI, URL
and HTML. ARB scanners differ from prior art scanners that
are hard-coded for one particular type of content. In distinc
tion, ARB scanners are data-driven, and can be enabled to
scan any speci?c type of content by providing appropriate
rule ?les, without the need to modify source code. Rule ?les
are text ?les that describe lexical characteristics of a particu
lar language. Rule ?les for a language describe character
encodings, sequences of characters that form lexical con
structs of the language, referred to as tokens, patterns of
tokens that form syntactical constructs of program code,
referred to as parsing rules, and patterns of tokens that corre
spond to potential exploits, referred to as analyZer rules.
Rules ?les thus serve as adaptors, to adapt an ARB content
scanner to a speci?c type of content.
The present invention also utiliZes a novel description lan

guage for e?iciently describing exploits. This description
language enables an engineer to describe exploits as logical
combinations of patterns of tokens.

Thus it may be appreciated that the present invention is able
to diagnose incoming content. As such, the present invention
achieves very accurate blocking of content, with minimal
over-blocking as compared with prior art scanning technolo
gies.

There is thus provided in accordance with a preferred
embodiment of the present invention a method for scanning
content, including identifying tokens within an incoming
byte stream, the tokens being lexical constructs for a speci?c
language, identifying patterns of tokens, generating a parse
tree from the identi?ed patterns of tokens, and identifying the
presence of potential exploits within the parse tree, wherein
said identifying tokens, identifying patters of tokens, and
identifying the presence of potential exploits are based upon
a set of rules for the speci?c language.

There is moreover provided in accordance with a preferred
embodiment of the present invention a system for scanning
content, including a tokeniZer for identifying tokens within an
incoming byte stream, the tokens being lexical constructs for
a speci?c language, a parser operatively coupled to the token
iZer for identifying patterns of tokens, and generating a parse
tree therefrom, and an analyZer operatively coupled to the
parser for analyZing the parse tree and identifying the pres
ence of potential exploits therewithin, wherein the tokeniZer,
the parser and the analyZer use a set of rules for the speci?c
language to identify tokens, patterns and potential exploits,
respectively.

There is further provided in accordance with a preferred
embodiment of the present invention a computer-readable
storage medium storing program code for causing a computer
to perform the steps of identifying tokens within an incoming
byte stream, the tokens being lexical constructs for a speci?c
language, identifying patterns of tokens, generating a parse
tree from the identi?ed patterns of tokens, and identifying the
presence of potential exploits within the parse tree, wherein
said identifying tokens, identifying patters of tokens, and
identifying the presence of potential exploits are based upon
a set of rules for the speci?c language.

There is yet further provided in accordance with a preferred
embodiment of the present invention a method for scanning
content, including expressing an exploit in terms of patterns
of tokens and rules, where tokens are lexical constructs of a
speci?c programming language, and rules are sequences of
tokens that form programmatical constructs, and parsing an
incoming byte source to determine if an exploit is present
therewithin, based on said expressing.

There is additionally provided in accordance with a pre
ferred embodiment of the present invention a system for

US 8,225,408 B2
3

scanning content, including a parser for parsing an incoming
byte source to determine if an exploit is present thereWithin,
based on a formal description of the exploit expressed in
terms of patterns of tokens and rules, Where tokens are lexical
constructs of a speci?c programming language, and rules are
sequences of tokens that form programmatical constructs.

There is moreover provided in accordance With a preferred
embodiment of the present invention a computer-readable
storage medium storing program code for causing a computer
to perform the steps of expressing an exploit in terms of
patterns of tokens and rules, Where tokens are lexical con
structs of a speci?c programming language, and rules are
sequences of tokens that form programmatical constructs,
and parsing an incoming byte source to determine if an
exploit is present thereWithin, based on said expressing.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention Will be more fully understood and
appreciated from the folloWing detailed description, taken in
conjunction With the draWings in Which:

FIG. 1 is a simpli?ed block diagram of an overall gateWay
security system that uses an adaptive rule-based (ARB) con
tent scanner, in accordance With a preferred embodiment of
the present invention;

FIG. 2 is a simpli?ed block diagram of an adaptive rule
based content scanner system, in accordance With a preferred
embodiment of the present invention;

FIG. 3 is an illustration of a simple ?nite state machine for
detecting tokens “a” and “ab”, used in accordance With a
preferred embodiment of the present invention;

FIG. 4 is an illustration of a simple ?nite state machine for
a pattern, used in accordance With a preferred embodiment of
the present invention;

FIG. 5 is a simpli?ed ?owchart of operation of a parser for
a speci?c content language Within anARB content scanner, in
accordance With a preferred embodiment of the present
invention;

FIG. 6 is a simpli?ed block diagram of a system for seri
aliZing binary instances of ARB content scanners, transmit
ting them to a client site, and regenerating them back into
binary instances at the client site, in accordance With a pre
ferred embodiment of the present invention; and

FIG. 7 illustrates a representative hierarchy of objects cre
ated by a builder module, in accordance With a preferred
embodiment of the present invention.

LIST OF APPENDICES

Appendix A is a source listing of an ARB rule ?le for the
JavaScript language, in accordance With a preferred embodi
ment of the present invention.

DETAILED DESCRIPTION

The present invention concerns scanning of content that
contains mobile code, to protect an enterprise against viruses
and other malicious code.

Reference is noW made to FIG. 1, Which is a simpli?ed
block diagram of an overall gateWay security system that uses
an adaptive rule-based (ARB) content scanner, in accordance
With a preferred embodiment of the present invention. ShoWn
in FIG. 1 is a netWork gateWay 110 that acts as a conduit for
content from the Internet entering into a corporate intranet,
and for content from the corporate intranet exiting to the
Internet. One of the functions of netWork gateWay 110 is to
protect client computers 120 Within the corporate intranet

20

25

30

35

40

45

50

55

60

65

4
from malicious mobile code originating from the Internet.
Mobile code is program code that executes on a client com

puter. Mobile code can take many diverse forms, including
inter alia JavaScript, Visual Basic script, HTML pages, as
Well as a Uniform Resource Identi?er (U RI).

Mobile code can be detrimental to a client computer.
Mobile code can access a client computer’s operating system
and ?le system, can open sockets for transmitting data to and
from a client computer, and can tie up a client computer’s
processing and memory resources. Such malicious mobile
code cannot be detected using conventional anti-virus scan
ners, Which scan a computer’s ?le system, since mobile code
is able to execute as soon as it enters a client computer from

the Internet, before being saved to a ?le.
Many examples of malicious mobile code are knoWn today.

Portions of code that are malicious are referred to as exploits.
For example, one such exploit uses JavaScript to create a
WindoW that ?lls an entire screen. The user is then unable to
access any WindoWs lying underneath the ?ller WindoW. The
folloWing sample code shoWs such an exploit.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//
EN”>
<HTML>
<HEAD>
<TITLE>BID-3469</TITLE>
<SCRIPT>

op=WindoW.createPopup();
s=‘<body>foobar</body>’;
op.document.body.innerHTML=s;
function oppop()

if (! op.isOpen)
{
W = screenwidth;

h = Screenheight;

op.shoW(0,0,W,h,document.body);

function doit ()

</SCRIPT>
</HEAD>
<BODY>

<FORM method=POST action=“”>
<INPUT type=“button” naIne=“btnDoIt” value=“Do It” onclick=“doit()”>
</FORM>

</HTML>

Thus it may be appreciated that the security function of net
Work gateWay 110 is critical to a corporate intranet.

In accordance With a preferred embodiment of the present
invention, netWork gateWay 110 includes a content scanner
130, Whose purpose is to scan mobile code and identify poten
tial exploits. Content scanner 130 receives as input content
containing mobile code in the form of byte source, and gen
erates a security pro?le for the content. The security pro?le
indicates Whether or not potential exploits have been discov
ered Within the content, and, if so, provides a diagnostic list of
one or more potential exploits and their respective locations
Within the content.

Preferably, the corporate intranet uses a security policy to
decide Whether or not to block incoming content based on the
content’ s security pro?le. For example, a security policy may
block content that may be severely malicious, say, content
that accesses an operating system or a ?le system, and may

US 8,225,408 B2
5

permit content that is less malicious, such as content that can
consume a user’s computer screen as in the example above.
The diagnostics Within a content security pro?le are com
pared With the intranet security policy, and a decision is made
to alloW or block the content. When content is blocked, one or

more alternative actions can be taken, such as replacing sus
picious portions of the content With innocuous code and
allowing the modi?ed content, and sending a noti?cation to
an intranet administrator.

Scanned content and their corresponding security pro?les
are preferably stored Within a content cache 140. Preferably,
netWork gateWay 110 checks if incoming content is already
resident in cache 140, and, if so, bypasses content scanner
130. Use of cache 140 saves content scanner 130 the task of
re-scanning the same content.

Alternatively, a hash value of scanned content, such as an
MD5 hash value, canbe cached instead of caching the content
itself. When content arrives at scanner 130, preferably its hash
value is computed and checked against cached hash values. If
a match is found With a cached hash value, then the content
does not have to be re-scanned and its security pro?le can be
obtained directly from cache.

Consider, for example, a complicated JavaScript ?le that is
scanned and determined to contain a knoWn exploit there
Within. An MD5 hash value of the entire JavaScript ?le can be
stored in cache, together With a security pro?le indicating that
the JavaScript ?le contains the knoWn exploit. If the same
JavaScript ?le arrives again, its hash value is computed and
found to already reside in cache. Thus, it can immediately be
determined that the JavaScript ?le contains the knoWn
exploit, Without re-scanning the ?le.

It may be appreciated by those skilled in the art that cache
140 may reside at netWork gateWay 110. HoWever, it is often
advantageous to place cache 140 as close as possible to the
corporate intranet, in order to transmit content to the intranet
as quickly as possible. HoWever, in order for the security
pro?les Within cache 140 to be up to date, it is important that
netWork gateWay 110 notify cache 140 Whenever content
scanner 130 is updated. Updates to content scanner 130 can
occur inter alia When content scanner 130 is expanded (i) to
cover additional content languages; (ii) to cover additional
exploits; or (iii) to correct for bugs.

Preferably, When cache 140 is noti?ed that content scanner
130 has been updated, cache 140 clears its cache, so that
content that Was in cache 140 is re-scanned upon arrival at
netWork gateWay 110.

Also, shoWn in FIG. 1 is a pre-scanner 150 that uses con
ventional signature technology to scan content. As mentioned
hereinabove, pre-scanner 150 can quickly determine if con
tent is innocuous, but over-blocks on the safe side. Thus
pre-scanner 150 is useful for recognizing content that poses
no security threat. Preferably, pre-scanner 150 is a simple
signature matching scanner, and processes incoming content
at a rate of approximately 100 mega-bits per second. ARB
scanner 130 performs much more intensive processing than
pre-scanner 150, and processes incoming content at a rate of
approximately 1 mega-bit per second.

In order to accelerate the scanning process, pre-scanner
150 acts as a ?rst-pass ?lter, to ?lter content that can be
quickly recogniZed as innocuous. Content that is screened by
pre-scanner 150 as being potentially malicious is passed
along to ARB scanner 130 for further diagnosis. Content that
is screened by pre-scanner 150 as being innocuous bypasses
ARB scanner 130. It is expected that pre-scanner 150 ?lters
90% of incoming content, and that only 10% of the content
requires extensive scanning by ARB scanner 130. As such,

20

25

30

35

40

45

50

55

60

65

6
the combined effect of ARB scanner 130 and pre-scanner 150
provides an average scanning throughout of approximately 9
mega-bits per second.
Use of security pro?les, security policies and caching is

described in applicant’s US. Pat. No. 6,092,194 entitled
SYSTEM AND METHOD FOR PROTECTING A COM
PUTER AND A NETWORK FROM HOSTILE DOWN
LOADABLES, in applicant’s US. Pat. No. 6,804,780
entitled SYSTEM AND METHOD FOR PROTECTING A
COMPUTER AND A NETWORK FROM HOSTILE
DOWNLOADABLES, and in applicant’s US. Pat. No.
7,418,731 entitled METHOD AND SYSTEM FOR CACH
ING AT SECURE GATEWAYS.

Reference is noW made to FIG. 2, Which is a simpli?ed
block diagram of an adaptive rule-based content scanner sys
tem 200, in accordance With a preferred embodiment of the
present invention. An ARB scanner system is preferably
designed as a generic architecture that is language-indepen
dent, and is customiZed for a speci?c language through use of
a set of language-speci?c rules. Thus, a scanner system is
customiZed for JavaScript by means of a set of JavaScript
rules, and is customiZed for HTML by means of a set of
HTML rules. In this Way, each set of rules acts as an adaptor,
to adapt the scanner system to a speci?c language. A sample
rule ?le for JavaScript is provided in Appendix A, and is
described hereinbeloW.

Moreover, in accordance With a preferred embodiment of
the present invention, security violations, referred to as
exploits, are described using a generic syntax, Which is also
language-independent. It is noted that the same generic syn
tax used to describe exploits is also used to describe lan
guages. Thus, referring to Appendix A, the same syntax is
used to describe the JavaScript parser rules and the analyZer
exploit rules.

It may thus be appreciated that the present invention pro
vides a ?exible content scanning method and system, Which
can be adapted to any language syntax by means of a set of
rules that serve to train the content scanner hoW to interpret
the language. Such a scanning system is referred to herein as
an adaptive rule-based (ARB) scanner. Advantages of an
ARB scanner, include inter alia:

the ability to re-use softWare code for many different lan
guages;

the ability to re-use softWare code for binary content and

the ability to focus optimiZation efforts in one project,
rather than across multiple projects; and

the ability to describe exploits using a generic syntax,
Which can be interpreted by any ARB scanner.

The system of FIG. 2 includes three main components: a
tokeniZer 210, a parser 220 and an analyZer 230. The function
of tokeniZer 210 is to recogniZe and identify constructs,
referred to as tokens, Within a byte source, such as JavaScript
source code. A token is generally a sequence of characters
delimited on both sides by a punctuation character, such as a
White space. Tokens includes inter alia language keyWords,
values, names for variables or functions, operators, and punc
tuation characters, many of Which are of interest to parser 220
and analyZer 230.

Preferably, tokeniZer 210 reads bytes sequentially from a
content source, and builds up the bytes until it identi?es a
complete token. For each complete token identi?ed, tokeniZer
210 preferably provides both a token ID and the token
sequence.

In a preferred embodiment of the present invention, the
tokeniZer is implemented as a ?nite state machine (FSM) that
takes input in the form of character codes. Tokens for the

US 8,225,408 B2
7

language are encoded in the FSM as a sequence of transitions
for appropriate character codes, as described hereinbeloW
With reference to FIG. 3. When a sequence of transitions
forms a complete lexical token, a punctuation character,
Which normally indicates the end of a token, is expected.
Upon receiving a punctuation character, the token is com
plete, and the tokenizer provides an appropriate ID. If a punc
tuation character is not received, the sequence is considered to
be part of a longer sequence, and no ID is provided at this
point.

Reference is noW made to FIG. 3, Which is an illustration of
a simple ?nite state machine for detecting tokens “a” and
“ab”, used in accordance With a preferred embodiment of the
present invention. ShoWn in FIG. 3 are ?ve states, 1-5, With
labeled and directed transitions therebetWeen. As tokenizer
reads successive characters, a transition is made from a cur
rent state to a next state accordingly. State 1 is an entry state,
Where tokenizer 210 begins. State 4 is a generic state for
punctuation. Speci?cally, Whenever a punctuation character
is encountered, a transition is made from the current state to
state 4. The “a” token is identi?ed Whenever a transition is
made from state 3 to state 4. Similarly, the “ab” token is
identi?ed Whenever a transition is made from state 5 to state
4. A generic token, other than “a” and “ab” is identi?ed
Whenever a transition is made from state 2 to state 4. A
punctuation token is identi?ed Whenever a transition is made
out of state 4.

Referring back to FIG. 2, tokenizer 210 preferably includes
a normalizer 240 and a decoder 250. In accordance With a
preferred embodiment of the present invention, normalizer
240 translates a raW input stream into a reduced set of char
acter codes. Normalized output thus becomes the input for
tokenizer 210. Examples of normalization rules includes,
inter alia

skipping character ranges that are irrelevant;
assigning special values to character codes that are irrel

evant for the language structure but important for the
content scanner;

translating, such as to loWercase if the language is case
insensitive, in order to reduce input for tokenizer 210;

merging several character codes, such as White spaces and
line ends, into one; and

translating sequences of raW bytes, such as trailing spaces,
into a single character code.

Preferably, normalizer 240 also handles Unicode encodings,
such as UTF-8 and UTE-l6.

In accordance With a preferred embodiment of the present
invention, normalizer 240 is also implemented as a ?nite-state
machine. Each successive input is either translated immedi
ately according to normalization rules, or handled as part of a
longer sequence. If the sequence ends unexpectedly, the bytes
are preferably normalized as individual bytes, and not as part
of the sequence.

Preferably, normalizer 240 operates in conjunction With
decoder 250. Preferably, decoder 250 decodes character
sequences in accordance With one or more character encoding
schemes, including inter alia (i) SGML entity sets, including
named sets and numerical sets; (ii) URL escape encoding
scheme; (iii) ECMA script escape sequences, including
named sets, octal, hexadecimal and Unicode sets; and (iv)
character-encoding sWitches.

Preferably, decoder 250 takes normalized input from nor
malizer 240. In accordance With a preferred embodiment of
the present invention, decoder 250 is implemented as a ?nite
state machine. The FSM for decoder 250 terminates When it
reaches a state that produces a decoded character. If decoder
250 fails to decode a sequence, then each character is pro

20

25

30

35

40

45

50

55

60

65

8
cessed by tokenizer 210 individually, and not as part of the
sequence. Preferably, a plurality of decoders 250 can be pipe
lined to enable decoding of text that is encoded by one escape
scheme over another, such as text encoded With a URL
scheme and then encoded With ECMA script scheme inside of
JavaScript strings.

Tokenizer 21 0 and normalizer 240 are generic modules that
can be adapted to process any content language, by providing
a description of the content language Within a rule ?le. Pref
erably, the rule ?le describes text characters used Within the
content language, and the composition of constructs of the
content language, referred to as tokens. Tokens may include
inter alia, an IDENT token for the name of a variable or
function, various punctuation tokens, and tokens for key
Words such as NEW, DELETE, FOR and IF. A sample rule ?le
for JavaScript is provided in Appendix A, and is described
hereinbeloW.

In accordance With a preferred embodiment of the present
invention, parser 220 controls the process of scanning incom
ing content. Preferably, parser 220 invokes tokenizer 210,
giving it a callback function to call When a token is ready.
Tokenizer 210 uses the callback function to pass parser 220
the tokens it needs to parse the incoming content. Preferably,
parser 220 uses a parse tree data structure to represent
scanned content. A parse tree contains a node for each token
identi?ed While parsing, and uses parsing rules to identify
groups of tokens as a single pattern. Examples of parsing
rules appear in Appendix A, and are described hereinbeloW.

Preferably, the parse tree generated by parser 220 is
dynamically built using a shift-and-reduce algorithm. Suc
cessive tokens provided to parser 220 by tokenizer 210 are
positioned as siblings. When parser 220 discovers that a pars
ing rule identi?es a group of siblings as a single pattern, the
siblings are reduced to a single parent node by positioning a
neW parent node, Which represents the pattern, in their place,
and moving them doWn one generation under the neW parent
note.

Preferably, Within the parse tree, each node contains data
indicating inter alia an ID number, the token or rule that the
node represents, a character string name as a value for the
node, and a numerical list of attributes. For example, if the
node represents an IDENT token for the name of a variable,
then the value of the node is the variable name; and if the node
represents a rule regarding a pattern for a function signature,
then the value of the node is the function name.

In addition, Whenever a parsing rule is used to recognize a
pattern, information about the pattern may be stored Within an
internal symbol table, for later use.

In a preferred embodiment of the present invention, parsing
rules are implemented as ?nite-state machines. These FSMs
preferably return an indicator for (i) an exact match, (ii) an
indicator to continue With another sibling node, or (iii) an
indicator of a mis-match that serves as an exit.

More generally, parsing rules may be implemented using a
hybrid mix of matching algorithms. Thus, it may use a deter
ministic ?nite automaton (DFA) for quick identi?cation of
rule candidates, and a non-deterministic ?nite automaton
(N FA) engine for exact evaluation of the candidate rules.

In addition to a pattern, a parser rule optionally includes
one or more actions to be performed if an exact pattern match
is discovered. Actions that can be performed include inter alia
creating a neW node in the parse tree, as described herein
above With respect to the shift and reduce algorithm; setting
internal variables; invoking a sub-scanner 270, as described
hereinbeloW; and searching the parse tree for nodes satisfying
speci?c conditions. By default, When the pattern Within a
parser rule is matched, parser 220 automatically performs a

US 8,225,408 B2
9

reduce operation by creating a new node and moving token
nodes underneath the neW node. A rule may be assigned a
NoCreate attribute, in Which case the default is changed to not
performing the reduction operation upon a match, unless an
explicit addnode command is speci?ed in an action for the
rule.

Sub-scanner 270 is another ARB scanner, similar to scan
ner 200 illustrated in FIG. 2 but for a different type of content.
Preferably, sub-scanner 270 is used to scan a sub-section of
input being processed by scanner 200. Thus, if an HTML
scanner encounters a script element that contains JavaScript
code, then there Will be a rule in the HTML scanner Whose
action includes invoking a JavaScript scanner. In turn, the
JavaScript scanner may invoke a URI scanner. Use of sub
scanner 270 is particularly e?icient for scanning content of
one type that contains content of another type embedded
therein.

Preferably, immediately after parser 220 performs a reduce
operation, it calls analyZer 23 0 to check for exploits. AnalyZer
230 searches for speci?c patterns of content that indicate an
exploit.

Preferably, parser 220 passes to analyZer 230 a neWly
created parsing node. AnalyZer 230 uses a set of analyZer
rules to perform its analysis. An analyZer rule speci?es a
generic syntax pattern in the node’s children that indicates a
potential exploit. An analyZer rule optionally also includes
one or more actions to be performed When the pattern of the
rule is matched. In addition, an analyZer rule optionally
includes a description of nodes for Which the analyZer rule
should be examined. Such a description enables analyZer 230
to skip nodes that are not to be analyZed. Preferably, rules are
provided to analyZer 230 for each knoWn exploit. Examples
of analyZer rules appear in Appendix A, and are described
hereinbeloW.

Preferably, the nodes of the parse tree also include data for
analyZer rules that are matched. Speci?cally, if analyZer 230
discovers that one or more analyZer rules are matched at a

speci?c parsing tree node, then the matched rules are added to
a list of matched rules stored Within the node.
An advantage of the present invention is that both parser

220 and analyZer 230 use a common ARB regular expression
syntax. As such, a common pattern matching engine 260
performs pattern matching for both parser 220 and analyZer
230. In accordance With a preferred embodiment of the
present invention, pattern matching engine 260 accepts as
input (i) a list of ARB regular expression elements describing
a pattern of interest; and (ii) a list of nodes from the parse tree
to be matched against the pattern of interest. Preferably, pat
tern matching engine 260 returns as output (i) a Boolean ?ag
indicating Whether or not a pattern is matched; and (ii) if the
pattern is matched, positional variables that match grouped
portions of the pattern. For example, if a pattern “(IDENT)
EQUALS NUMBER” is matched, then $1 is preferably set to
a reference to the nodes involved in the IDENT token. That is,
if a matched pattern is “(l 2 3) 4 5”, then $1 refers to the nodes
1, 2 and 3 as a single group.

Preferably, the ARB regular expression that is input to
pattern matching engine 260 is pre-processed in the form of a
state machine for the pattern. Reference is noW made to FIG.
4, Which is an illustration of a simple ?nite state machine,
used in accordance With a preferred embodiment of the
present invention, for a pattern,

(IDENT<val::“foo” & match(*) :Rule 1 >| List
<val::“bar”>) EQUALS NUMBER Speci?cally, the
pattern of interest speci?es either an IDENT token With

20

25

30

35

40

45

50

55

60

65

10
value “foo” and that matches Rulel, or a List With value
“bar”, folloWed by an EQUALS token and a NUMBER
token.

Reference is noW made to Appendix A, Which is a source
listing of an ARB rule ?le for the JavaScript language, in
accordance With a preferred embodiment of the present
invention. The listing in Appendix A is divided into six main
sections, as folloWs: (i) vchars, (ii) tokens, (iii) token_pairs,
(iv) attribs, (v) parser_rules and (vi) analyZer_rules.
The vchars section includes entries for virtual characters.

Each such entry preferably conforms to the syntax

vchar vchar-name [action=string] (charlhex-num)

vchar—pattern*

For example, the entry

vchar nl OxOd

converts a sequence of one or more CRs (carriage-retums)

and a sequence of one or more LFs (line-feeds) to a neWline
meta-character.
The vchars section also includes entries for aliases, Which

are names for special virtual characters. Each such entry
preferably conforms to the syntax

vcharialias vchar-name

hex-nurn

For example, the entry

Vcharialias underscore

identi?es the hexadecimal number 0x5F With the name
“underscore”.
The tokens section includes entries for language tokens for

a scanner language; namely, JavaScript forAppendixA. Each
such entry preferably conforms to the syntax

token—entry* (cdata);

For example, the entry

LBRACE “[1lefticurlyibracket?” punct;

US 8,225,408 B2
11

de?nes identi?es a punctuation token, LBRACE, as a
“left_curly_bracket”, Which is an alias for 0x7B as de?ned in
the previous vchars section. Note that aliases are preferably
surrounded by exclamation points.

A CDATA token, for identifying strings or commented
text, preferably conforms to the syntax

5

12

Preferably, ID-expr is one of the following:

ID

.. ” a ” a _ a - _ ”_ ID <val==val>

start end [escape pattern] skip pattern , ID <id==ml6-ID>

ID <match(n) : rule-ID>
ID <match(*) : rule-ID>

For example, the entry 1D <m?tch (Hm) I “116-11)

15 _

The modi?ers ‘*’, ‘+’, ‘7’, ‘{m}’ and ‘{m,n}’ are used con
DOUBLELQUOTE DOUBLELQUOTE “[lbackslashl][ldoublefquote]? Vemlonany as follows:

. 0%’

identi?es a string as beginning and ending With a DOUBLE- ‘Jr, 2100‘?
QUOTE token, as previously de?ned, With an escape pattern .7, mm or one Occumnc?
that has a “backslash” folloWed by Zero or one ‘{m}’ exactly m occurrences
“double_quote”, and a skip pattern that has one or more {mm}, b?tw?enmandnoccumnces> mcluslve

characters other than “backslash” and “double_quote”. 25

The token pairs section de?nes tokens that can validly For example’ the Pattern in the rule for Funcsig
appear in juxtaposition, and tokens that cannot validly appear
in juxtaposition, in conformance With the language rules.
Generally, When the tokeniZer encounters an invalid juxtapo- 30 (FUNCTION) (IDENT?) (List)
sition, it inserts a virtual semi-colon. An entry for a token-pair
referabl conforms to the s ntax . .

P y y describes a keyWord “function”, followed by Zero or one
IDENT token, and folloWed by a “List”. In turn, the pattern in
the rule for List

{valid I invalid} [(] token-ID l token-ID]* D] 35
[(] token-ID l token-ID]* [)];

(LPAREN) ((Expr) (COMMA Expr)*)? (RPAREN)
For example, the entry

40 describes a LPAREN token and a RPAREN token surround
ing a list of Zero or more Expr’s separated by COMMA

invalid IF (ELSE ‘ FOR ‘WHILE ‘ DOT); tokens. In turn, the pattern in the rule for Expr

indicates that an IF token cannot validly be folloWed by an 45 ([E D l. T k E M l. T k E M l. R l P
. xpr 61m 0 611$ xpr 61m 0 611$ xpr 61TH 116$.

ELSE’ FOR’ WHILE Or DOT token' Thus’ If an IF token ([A ExprDelimTokens ExprLdelimTokens ExprLdelimRules
folloWed by an ELSE, FOR, WHILE, or DOT token is ExprExcludeRules
encountered in the input, tokeniZer 210 Will insert a virtual EXPIRdeliIHTOkwSH) [EXPrDdiIHTOkwS EXprRd?limTok?nsl) l
delimiter character betWeen them. ([EXprStmntRulesD;

. . . 50

The parser-rules section has entries de?ning rules for the d _b 1 d ?n_ _ f h 1_?
parser. Such entries preferably conform to the syntax _escn_ es a genera, e? men 0 W at qua 1 es as an expres'

sion, involving delimiter tokens and other rules.
An action prescribes an action to perform When a pattern is

matched. For example, the action in the rule for FuncSig
rule rule-name [nonode] [noanalyze] [nomatch] 55
{

[patterns
{ this.val=$(2).val;
H ID-Pmm? @(“FUNCNAME”).val=$(2).val;

[actions 60
{ I *_ assigns a value to FuncSig, Which is the value of the second
H action ’ parameter in the pattern for FuncSi g; namely, the value of the

} IDENT token. In addition, the action assigns this same value
to an entry in a symbol table called “FUNCNAME”, as

65 described hereinbeloW. It may thus be appreciated that certain
A pattern is a regular expression of IDs, preferably con

forming to the syntax
rules have values associated thereWith, Which are assigned by
the parser as it processes the tokens.

US 8,225,408 B2
13

The symbol table mentioned hereinabove is an internal
table, for rules to store and access variables.

The analyZer-rules section has entries de?ning rules for the
parser. Such entries preferably conform to the syntax

rule rule-name [nonode] [noanalyze] [nomatch]
{

[nodes
{

ID-p attern;
}

Patterns and actions for analyzer rules are similar to patterns
and actions for parser rules. For example, the pattern

(IDENT) ASSIGNMENT IDENT <val==“screen”> DOT
IDENT <val==“width”>;

within the rule for ScrWidAssign describes a ?ve-token pat
tern; namely, (i) an IDENT token, followed by (ii) an
ASSIGNMENT token, followed by (iii) an IDENT token that
has a value equal to “screen”, followed by (iv) a DOT token,
and followed by (V) an IDENT token that has a value equal to
“widt ”. Such a pattern indicates use of a member reference
“screen.width” within an assignment statement, and corre
sponds to the example exploit listed above in the discussion of
FIG. 1.

The action

@($(1).val).attr += ATTRiSCRWID;

within the ScrWidAssign rule assigns the attribute
ATTR_SCRWID to the symbol table entry whose name is the
value of the IDENT token on the left side of the pattern.

Similarly, the pattern

(IDENT) ASSIGNMENT IDENT <@(val).attr?=ATTRiWINDOW>
DOT FuncCall <val==“createPopup”> $;

in the rule for CreatePopupl corresponds to the command

op=window.createPopup();

in the example exploit above. It may thus be appreciated that
exploits are often described in terms of composite pattern
matches, involving logical combinations of more than one
pattern.
Node patterns within analyZer rules preferably specify

nodes for which an analyZer rule should be evaluated. Node
patterns serve to eliminate unnecessary analyses.

20

25

30

35

40

45

50

55

60

65

14
Referring back to FIG. 2, when parser 220 ?nds a pattern

match for a speci?c parser rule, it preferably creates a node in
the parse tree, and places the matching nodes underneath the
newly created node. Preferably, parser 220 assigns the name
of the speci?c rule to the name of the new node. However, if
the rule has a “nonode” attribute, then such new node is not
created.

After performing the actions associated with the speci?c
rule, parser 220 preferably calls analyZer 230, and passes it
the newly-created parser node of the parse tree. However, if
the rule has a “noanalyZer” attribute, then analyZer 230 is not
called.
When analyZer 230 ?nds a pattern match for a speci?c

analyZer rule, it preferably adds the matched rule to the parse
tree. However, if the rule has a “nomatch” attribute, then the
matched rule is not added to the parser tree.

Reference is now made to FIG. 5, which is a simpli?ed
?owchart of operation of a parser for a speci?c content lan
guage, such as parser 220 (FIG. 2), within an ARB content
scanner, such as content scanner 130 (FIG. 1), in accordance
with a preferred embodiment of the present invention. Prior to
beginning the ?owchart in FIG. 5, it is assumed that the parser
has initialiZed a parse tree with a root node. At step 500, the
parser calls a tokeniZer, such as tokeniZer 210, to retrieve a
next token from an incoming byte stream. At step 510 the
parser adds the token retrieved by the tokeniZer as a new node
to a parse tree. Preferably, new nodes are added as siblings
until a match with a parser rule is discovered.
Nodes within the parse tree are preferably named; i.e., they

have an associated value that corresponds to a name for the
node. Preferably, new nodes added as siblings are named
according to the name of the token they represent.
At step 520 the parser checks whether or not a pattern is

matched, based on parser rules within a rule ?le for the
speci?c content language. If not, then control returns to step
500, for processing the next token. If a match with a parser
rule is discovered at step 520, then at step 530 the parser
checks whether or not the matched parser rule has a “nonode”
attribute. If so, then control returns to step 500. If the matched
parser rule does not have a “nonode” attribute, then at step 540
the parser performs the matched parser rule’s action. Such
action can include inter alia creation of a new node, naming
the new node according to the matched parser rule, and plac
ing the matching nodes underneath the new node, as indicated
at step 540. Thus it may be appreciated that nodes within the
parse tree have names that correspond either to names of
tokens, or names of parser rules.

At step 550 the parser checks whether or not the matched
parser rule has a “noanalyZe” attribute. If so, then control
returns to step 520. If the matched parser rule does not have a
“noanalyZe” attribute, then at step 560 the parser calls an
analyZer, such as analyZer 230, to determine if a potential
exploit is present within the current parse tree. It may thus be
appreciated that the analyZer is called repeatedly, while the
parse tree is being dynamically built up.

After checking the analyZer rules, the analyZer returns its
diagnostics to the parser. At step 570 the parser checks
whether or not the analyZer found a match for an analyZer
rule. If not, then control returns to step 500. If the analyZer did
?nd a match, then at step 580 the parser performs the matched
analyZer rule’s action. Such action can include inter alia
recording the analyZer rule as data associated with the current
node in the parse tree; namely, the parent node that was
created at step 540, as indicated at step 580.

In accordance with a preferred embodiment of the present
invention, binary class instances of ARB scanners are pack
aged serially, for transmission to and installation at a client

US 8,225,408 B2
15

site. Reference is noW made to FIG. 6, Which is a simpli?ed
block diagram of a system for serialiZing binary instances of
ARB content scanners, transmitting them to a client site, and
regenerating them back into binary instances at the client site.
The Work?oW in FIG. 6 begins With a set of rule ?les for one
or more content languages. Preferably, the rule ?les are gen
erated by one or more people Who are familiar With the
content languages.
A rule-to-XML convertor 610 converts rule ?les fromARB

syntax into XML documents, for internal use. Thereafter a
builder module 620 is invoked. Preferably, builder module
620 generates a serialiZed rule data ?le, referred to herein as
an archive ?le.

In turn, ARB scanner factory module 630 is responsible for
producing an ARB scanner on demand. Preferably, an ARB
scanner factory module has a public interface as folloWs:

class arbScannerFactory
{

INT32 createScanner(const std::string& mimeType,
arbScanner** scanner);
INT32 retireScanner(arbScanner *scanner, INT32&
factoryStillActive);
Bool hasScannerType(const std::string& mirneType);

}

ARB scanner factory module 630 is also responsible for
pooling ARB scanners for later re-use.
ARB scanner factory module 630 instantiates a scanner

repository 640. Repository 640 produces a single instance of
eachARB scanner de?ned in the archive ?le. Preferably, each
instance of an ARB scanner is able to initialiZe itself and
populate itself With the requisite data.

Reference is noW made to FIG. 7, Which illustrates a rep
resentative hierarchy of objects created by builder module
620, in accordance With a preferred embodiment of the
present invention. ShoWn in FIG. 7 are three types of content
scanners: a scanner for HTML content, a scanner for JavaS

cript content, and a scanner for URI content. An advantage of
the present invention is the ability to generate such a multi
tude of content scanners Within a uni?ed framework.

After ARB scanner factory module 630 is produced,
builder module 620 calls a serialiZe() function. As such, the
serialiZe() function called by builder module 620 causes all
relevant classes to serialize themselves to the archive ?le
recursively. Thereafter the archive ?le is sent to a client site.

After receiving the archive ?le, the client deserialiZes the
archive ?le, and creates a global singleton object encapsulat
ing an ARB scanner factory instance 650. The singleton is
initialiZed by passing it a path to the archive ?le.
When the client doWnloads content from the Internet it

preferably creates a pool of thread objects. Each thread object
stores its ARB scanner factory instance 650 as member data.
Whenever a thread object has content to parse, it requests an
appropriate ARB scanner 660 from its ARB scanner factory
object 650. Then, using the ARB scanner interface, the thread
passes content and calls the requisite API functions to scan
and process the content. Preferably, When the thread ?nishes
scanning the content, it returns the ARB scanner instance 660
to its ARB scanner factory 650, to enable pooling the ARB
scanner for later re-use.

It may be appreciated by those skilled in the art that use of
archive ?les and scanner factories enables auto-updates of
scanners Whenever neW versions of parser and analyZer rules
are generated.

20

25

35

40

45

50

55

60

65

16
In reading the above description, persons skilled in the art

Will realiZe that there are many apparent variations that can be
applied to the methods and systems described. Thus, although
FIG. 5 describes a method in Which a complete diagnostic of
all match analyZer rules is produced, in an alternative embodi
ment the method may stop as soon as a ?rst analyZer rule is
matched. The parser Would produce an incomplete diagnos
tic, but enough of a diagnostic to determine that the scanned
content contains a potential exploit.

In addition to script and text ?les, the present invention is
also applicable to parse and analyZe binary content and EXE
?les. Tokens can be de?ned for binary content. Unlike tokens
for text ?les that are generally delimited by punctuation char
acters, tokens for binary content generally have different
characteristics.

In the foregoing speci?cation, the invention has been
described With reference to speci?c exemplary embodiments
thereof. It Will, hoWever, be evident that various modi?ca
tions and changes may be made to the speci?c exemplary
embodiments Without departing from the broader spirit and
scope of the invention as set forth in the appended claims.
Accordingly, the speci?cation and draWings are to be
regarded in an illustrative rather than a restrictive sense.

APPENDIX A

vchars

vchar ignore 0x00 “ignore”

[0x00-0xFF]+;

}
vchar nl OxOd

vchar alphanum ‘7’ “raw”

vcharialias underscore

vcharialias equals

vcharialias hash

0x2 3 ;

vcharialias at
{

0x40;
}

}
tokens

TOKENIZERiDEFAULT “.+”;
WS “[!Ws!]” punct not-a-token;

IDENT “[A-Za-Z[!underscore!][!dollarsign!]]
[A-Za-ZO-9[lunderscore!] [!dollarsign!]]*”;
LBRACE “ [! lefticurlyibracket!] ” punct;
RBRACE “ [! righticurlyibracket!]” punct;
LPAREN “ [! leftiparenthesis!]” punct;
RPAREN “ [! rightip arenthesis!]” punct;
LBRACKET “[1le?isquareibracket?” punct;

US 8,225,408 B2
17 18

APPENDIX A-continued APPENDIX A-continued

RBRACKET “[Irightfsquarefbracket!]” punct; THROW RETURN CASE VAR
. . #de?ne EXprRdelirnTokens RPAREN RBRACE

SINGLEiQUOTE “[Isinglefquote?” punct; #de?ne EXprLdelirnRules IfClause WhileClause ForClause
DOUBLEiQUOTE “[I doublefquote!]” punct; 5 ForInClause WithClause
COMMENTiOPEN “[Islash!][Iasterisk!]” punct; #de?ne EXprEXcludeRules IiStrnnt Expr
COMMENTiCLOSE “[Iasteriskl] [IslashI]” punct; #de?ne EXprStrnntRules FuncDecl IiElseStrnnt IfNoElseStrnnt
DOUBLEiSLASH “[IslashI][IslashI]” punct; WhileStrnnt DoWhileStrnnt ForStrnnt ForInStrnnt SWitchStrnnt
INTEGERi DECIMAL
INTEGER HEX

cdata CDATA

DOUBLEiQUOTE DOUBLEiQUOTE “[Ibackslashl]
[Idoublefquotel]? “[[Ibackslashl][Idoublefquotel]]+”;

SINGLEiQUOTE SINGLEiQUOTE “[Ibackslashl]
[Isinglefquotel]?” “[??backslashl] [Isinglefquotel]1+”;

COMMENTiOPEN COMMENTiCLOSE “[[IasteriskI]]+”;
DOUBLEiSLASH EOL “[[InlI]]+”;

}
VSEMICOLON vdelirn;

}
#de?ne OP PLUS I MINUS I SLASH I MULTIPLY I MOD
tokenipairs

invalid IDENT IDENT;
invalid IF(ELSE I FOR I WHILE I DOT);
invalid (OP) (OP);
valid (PLUS I MINUS) (PLUS I MINUS);
invalid INTEGERiDECIMAL IDENT;

#de?ne Sernicolon (SEMICOLON IVSEMICOLON)
#de?ne Sernicoloni SEMICOLON VSEMICOLON
#de?ne ActionClause (((Expr) Sernicolon) I (Block))
parserirules

rule Eval

p atterns

EVAL List;

rule FuncSig
{

patterns

(FUNCTION) (IDENT?) (List);

actions

this.val=$(2).val;
@(“FUNCNAME”).val = $(2).val;

rule FuncDecl

{
patterns

(FuncSig) Block;

actions

this.val=$(1).val;
~@(“FUNCNAME”);

rule FuncCall

{
patterns

(IDENT) List;

actions

this.val=$(1).val;

}

#de?ne EXprDelirnTokens
#de?ne EXprLdelirnTokens

Sernicoloni COMMA COLON
LPAREN LBRACE ELSE DO IN

20

25

30

35

40

50

55

65

WithStrnnt TryCatchFinallyStrnnt TryCatchNoFinallyStrnnt
TryNoCatchFinallyStrnnt ThroWStrnnt ReturnStrnnt LabelStrnnt
CaseStrnnt DefaultStrnnt BreakStrnnt ContinueStrnnt VarStrnnt
DebuggerStrnnt NakedBlockStrnnt NakedListStrnnt

rule Expr nonode

p atterns

{
(

[EXprDelirnTokens EXprLdelirnTokens EXprLdelirnRules]?
([EXprDelirnTokens EXprLdelirnTokens EXprLdelirnRules

EXprEXcludeRules EXprRdelirnTokens]+) [EXprDelirnTokens
EXprRdelirnTokens]) I ([EXprStrnntRules]);

actions

addnode(children=“2 3”);
}

}
rule BlockBegin nonode
{

patterns

LBRACE;
}
actions

@level++;

}
rule Block

{
patterns

(LBRACE)(EXpr Sernicolon?)* (RBRACE);

actions

rule List

{
patterns

(LPAREN) ((Expr) (COMMA Expr)*)? (RPAREN);

analyzerirules

RULEiDECL (Begin) nornatch
{

patterns

BEGIN;

actions

@(“WindoW”, O).attr += ATTRiWINDOW;
@(“self’, 0).attr += ATTRiWINDOW;
@(“parent”, O).attr += ATTRiWINDOW;

}

RULEiDECL (ScrWidAssign)
{

patterns

(IDENT) ASSIGNMENT IDENT <val==“screen”> DOT IDENT
<val==“Width”>;

}
actions

US 8,225,408 B2
1 9

APPENDIX A-continued

@($(l).val).attr += ATTRiS CRWID;

RULEiDECL (ScrHgtAssign)

p atterns

(IDENT) ASSIGNMENT IDENT <val==“screen”> DOT IDENT
<val==“height”>;

actions

RULEiDECL (ScrWidHgtList)

p atterns

LPAREN Expr COMMA Expr COMMA
Expr <attr?=ATTRiSCRWID> COMMA
Expr <attr?=ATTRiSCRHGT>;

}
RULEiDECL (EXPLOIT) exploit
{

p atterns

. <(rnatches(*):RULE(CreatePopupl) &

rnatches(*):RULE(WndShoWScrnWidHgtl)) l
(rnatches(*):RULE(CreatePopup2) &

rnatches(*):RULE(WndShoWScrnWidHgt2))>;

RULEiDECL (CreatePopup l)

patterns

(IDENT) ASSIGNMENT IDENT <@(val).attr?=
ATTRiWINDOW>

DOT FuncCall <val==“createI’opup“> $;

actions

@($(l).val).attr += ATTRiWINDOW;

What is claimed is:
1. A computer processor-based multi-lingual method for

scanning incoming program code, comprising:
receiving, by a computer, an incoming stream of program

code;
determining, by the computer, any speci?c one of a plural

ity of programming languages in Which the incoming
stream is Written;

instantiating, by the computer, a scanner for the speci?c
programming language, in response to said determining,
the scanner comprising parser rules and analyZer rules
for the speci?c programming language, Wherein the
parser rules de?ne certain patterns in terms of tokens,
tokens being lexical constructs for the speci?c program
ming language, and Wherein the analyZer rules identify
certain combinations of tokens and patterns as being
indicators of potential exploits, exploits being portions
of program code that are malicious;

identifying, by the computer, individual tokens Within the
incoming stream;

dynamically building, by the computer While said receiv
ing receives the incoming stream, a parse tree Whose
nodes represent tokens and patterns in accordance With
the parser rules;

01

20

30

40

45

50

55

60

65

20
dynamically detecting, by the computer While said

dynamically building builds the parse tree, combina
tions of nodes in the parse tree Which are indicators of
potential exploits, based on the analyZer rules; and

indicating, by the computer, the presence of potential
exploits Within the incoming stream, based on said
dynamically detecting.

2. The method of claim 1 Wherein said dynamically build
ing a parse tree is based upon a shift-and-reduce algorithm.

3. The method of claim 1 Wherein the parser rules and
analyZer rules include actions to be performed When rules are
matched.

4. The method of claim 1 Wherein the speci?c program
ming language is JavaScript.

5. The method of claim 1 Wherein the speci?c program
ming language is Visual Basic VBScript.

6. The method of claim 1 Wherein the speci?c program
ming language is HTML.

7. The method of claim 1 Wherein the speci?c program
ming language is Uniform Resource Identi?er (URI).

8. The method of claim 1 Wherein the incoming stream of
program code includes embedded program code, the method
further comprising:

identifying, by the computer, another one of the plurality of
programming languages in Which the embedded pro
gram code is Written, the other programming language
being different that the speci?c programming language
in Which the incoming stream is Written; and

repeating said instantiating, said identifying, said dynami
cally building, said dynamically detecting and said indi
cating for the embedded program code, based on the
parser rules and the analyZer rules for the other program
ming language.

9. A computer system for multi-lingual content scanning,
comprising:

a non-transitory computer-readable storage medium stor
ing computer-executable program code that is executed
by a computer to scan incoming program code;

a receiver, stored on the medium and executed by the
computer, for receiving an incoming stream of program
code;

a multi-lingual language detector, stored on the medium
and executed by the computer, operatively coupled to
said receiver for detecting any speci?c one of a plurality
of programming languages in Which the incoming
stream is Written;

a scanner instantiator, stored on the medium and executed
by the computer, operatively coupled to said receiver
and said multi-lingual language detector for instantiat
ing a scanner for the speci?c programming language, in
response to said determining, the scanner comprising:
a rules accessor for accessing parser rules and analyZer

rules for the speci?c programming language, Wherein
the parser rules de?ne certain patterns in terms of
tokens, tokens being lexical constructs for the speci?c
programming language, and Wherein the analyZer
rules identify certain combinations of tokens and pat
terns as being indicators of potential exploits, exploits
being portions of program code that are malicious;

a tokeniZer, for identifying individual tokens Within the
incoming;

a parser, for dynamically building While said receiver is
receiving the incoming stream, a parse tree Whose
nodes represent tokens and patterns in accordance
With the parser rules accessed by said rules accessor;
and

