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EFFICIENT POLYNOMIAL MAPPING OF 
DATA FOR USE WITH LINEAR SUPPORT 

VECTOR MACHINES 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims the bene?t under 35 U.S.C. §119 
(e) of US. Provisional Patent Application No. 61/230,669, 
titled “EFFICIENT POLYNOMIAL MAPPING OF DATA 
FOR USE WITH LINEAR SUPPORT VECTOR 
MACHINES,” ?led Jul. 31, 2009, Which is incorporated here 
by reference. 

BACKGROUND 

This speci?cation relates to e?iciently training and using 
computer-implemented classi?ers. 

Support Vector Machines (SVMs) are tools for data clas 
si?cation. Non-linear SVMs map training and testing 
instances to a high dimensional space by a nonlinear function. 
While nonlinear SVMs have good accuracy in classi?cation, 
nonlinear SVMs also require large amounts of memory. In 
general, a technique knoWn as “the kernel trick” is used to 
reduce the memory demands of a nonlinear SVM HoWever, 
training nonlinear SVMs, even With the kernel trick, still 
requires a great deal of memory and a great deal of training 
time, especially for large data sets. 

Decomposition methods are a Way to train nonlinear SVMs 
With less memory consumption than standard techniques. 
HoWever, decomposition methods still require considerable 
training time for training data With a large number of features. 
In addition, the classifying procedure is sloW. 

SUMMARY 

This speci?cation describes technologies relating to e?i 
cient polynomial mapping of data for use With linear support 
vector machines. 

This speci?cation describes systems, methods, and com 
puter program products that generate condensed representa 
tions of multi-dimensional feature vectors and use the con 
densed representations as input to train and use nonlinear 
SVMs. 

In general, one aspect of the subject matter described in this 
speci?cation can be embodied in methods that include the 
actions of receiving original training data including a plural 
ity of training feature vectors and a respective decision for 
each training feature vector, each training feature vector rep 
resenting a classi?cation state, each element of each training 
feature vector indicating a presence or absence of a feature of 
the classi?cation state; generating, for each training feature 
vector, a condensed representation of a mapped vector corre 
sponding to a degree-d polynomial mapping of the training 
feature vector, the mapping de?ning each component of the 
mapped vector as either a single element of the training fea 
ture vector or a product of up to d elements of the training 
feature vector, the condensed representation of the mapped 
vector including an index for each non-Zero component of the 
mapped vector, each index indicating a position in a Weight 
vector of a Weight for the corresponding non-Zero mapped 
vector component; and using a linear support vector machine 
to train a linear classi?er on the condensed representations, 
the linear support vector machine con?gured to receive as 
training data the condensed representations and decisions for 
the training feature vectors corresponding to the condensed 
representations, and determine the Weights in the Weight vec 
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2 
tor from the condensed training data. Other embodiments of 
this aspect include corresponding systems, apparatus, and 
computer programs recorded on computer storage devices, 
each con?gured to perform the operations of the methods. 

These and other embodiments can each optionally include 
one or more of the folloWing features. The degree d can be an 
integer greater than one. Each training feature vector can be a 
condensed representation of a corresponding feature vector, 
the condensed representation containing indices of only ele 
ments of the corresponding feature vector that are present in 
the classi?cation state. The classi?cation state can be a cur 
rent state of a parser. The Weight vector can only includes 
Weights for features, and combinations of features, that are 
present in the original training data. 

In general, another aspect of the subject matter described in 
this speci?cation canbe embodied in methods that include the 
actions of receiving a feature vector representing a current 
classi?cation state, Where each element of the feature vector 
indicates a presence or absence of a respective feature of the 
current classi?cation state; identifying non-Zero components 
resulting from a degree-d polynomial mapping of the feature 
vector to a set of polynomial components, the polynomial 
mapping associating each polynomial component With either 
a single element of the feature vector or a product of up to d 
elements of the feature vector; for each non-Zero component, 
mapping the combination of one or more elements of the 
non-Zero polynomial component to a single Weight in a 
Weight vector to determine a set of Weights, Where each 
position in the Weight vector corresponds to a distinct com 
bination of elements of the feature vector; deriving a classi 
?cation score for the current classi?cation state by summing 
the set of Weights; and classifying the current classi?cation 
state according to the classi?cation score. Other embodi 
ments of this aspect include corresponding systems, appara 
tus, and computer programs recorded on computer storage 
devices, each con?gured to perform the operations of the 
methods. 

These and other embodiments can each optionally include 
one or more of the folloWing features. The degree d can be an 
integer greater than one. The feature vector can be a con 
densed representation of a corresponding complete feature 
vector, the condensed representation containing indices of 
only elements of the corresponding complete feature vector 
that are present in the classi?cation state. The classi?cation 
state can be a state of a parser; the classi?cation score can be 

a score for a particular transition in the parser; and classifying 
the current classi?cation state according to the classi?cation 
score can include receiving classi?cation scores for various 
transitions and selecting the transition With the highest clas 
si?cation score. 

Mapping the one or more elements of the non-Zero com 

ponents can include, for at least one of the non-Zero compo 
nents, determining that the Weight vector does not include a 
Weight for the at least one non-Zero component, and selecting 
a default Weight for the at least one non-Zero component. The 
default Weight can be Zero. Mapping the one or more ele 
ments of each non-Zero component to a Weight in the Weight 
vector can include, for each component that is associated With 
a product of elements of the feature vector, identifying an 
index into the Weight vector from a hash table that takes the 
indices of the elements as input and outputs the index, and 
retrieving the Weight stored at that index in the Weight vector. 

Particular embodiments of the subject matter described in 
this speci?cation can be implemented so as to realiZe one or 
more of the folloWing advantages. LoW-degree polynomial 
mappings can be used to achieve as accurate of classi?cations 
as are generated With a kernel approach to nonlinear SVMs, 
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but With less training time and less classi?cation time. A 
loW-degree polynomial mapping can be used to increase the 
speed of a parser Without decreasing accuracy of the classi 
?cations performed Within the parser. Classi?ers for building 
a dependency relation graph can be trained in less time than 
the time required by kernel techniques. 

The details of one or more embodiments of the subject 
matter described in this speci?cation are set forth in the 
accompanying draWings and the description beloW. Other 
features, aspects, and advantages of the subject matter Will 
become apparent from the description, the draWings, and the 
claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates an example system for training a linear 
classi?er using a polynomial mapping of data. 

FIG. 2 illustrates an example method for training a linear 
classi?er on condensed representations of mapped vectors 
corresponding to polynomial mappings of training feature 
vectors. 

FIG. 3 illustrates an example system for classifying a fea 
ture vector. 

FIG. 4 illustrates an example method for classifying a 
classi?cation state Whose features are represented by a fea 
ture vector. 

FIG. 5 illustrates an example parsing system that performs 
data-driven dependency parsing. 

FIG. 6 illustrates an example dependency graph for a sen 
tence. 

Like reference numbers and designations in the various 
drawings indicate like elements. 

DETAILED DESCRIPTION 

FIG. 1 illustrates an example system 100 for training a 
linear classi?er using a polynomial mapping of data. The 
system 100 includes a condensed representation generator 
102 and a linear SVM 104. 
The condensed representation generator 102 receives a set 

of training feature vectors 106 and generates a set of con 
densed representations 108 for the training feature vectors 
106. 
Each training feature vector (x) in the set of training feature 

vectors 106 corresponds to a given classi?cation state, i.e., a 
state that is being classi?ed, and has elements that each indi 
cate the presence or absence of a respective feature of the 
classi?cation state. In some implementations, the training 
feature vector is a vector of ones and Zeros, Where each one 
indicates the presence of a corresponding feature, and Zero 
indicates the absence of a corresponding feature. In other 
implementations, the training feature vector is condensed so 
that only indices of the features that are present in the classi 
?cation state are included in the vector, rather than a one or a 
Zero for every feature. 

The condensed representations 108 are condensed repre 
sentations of mapped vectors corresponding to a polynomial 
mapping of each training feature vector of the set of training 
feature vectors 106. The polynomial mapping corresponds to 
a polynomial kernel of a SVM. In general, a polynomial 
kernel has the form: 

K(xilxj):(yxiTxj+r)da 
Where y and r are parameters and d is the degree. The poly 
nomial kernel is the product of tWo vectors q)(xl-) and q)(xj). 
When d is small, e.g., 2 or 3, a linear SVM can be applied to 
an explicit representation of q)(x) rather than using a nonlinear 
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4 
SVM With a polynomial kernel. For example, When d:2 and 
y:r:l, the mapped vector q)(x) can be explicitly represented 
as: 

The explicit representation of q)(x) can be unWieldy even 
When d is small, because the polynomial mapping leads to a 
large number of terms. Therefore, the condensed representa 
tion generator 102 generates a condensed representation of 
q)(x). The condensed representation only includes represen 
tations of each non-Zero component of q)(x). In some imple 
mentations, the representations are indices Where each index 
indicates a position in a Weight vector W 112 of a Weight 
corresponding to the component. 
The system calculates the index into the Weight vector for 

a given component by mapping the indices of the elements 
that make up the component to an index into the Weight vector 
W 112. The index is determined from a hash table, e.g., asso 
ciative array, using the indices of the corresponding elements 
in the feature vector x. For example, the system can calculate 
a component corresponding to the combination (xi, x) by 
generating a hash value for the combination (i ,j), and retriev 
ing the index stored at the hash value position in the hash 
table. When the feature vector x is a condensed representation 
of a larger feature vector, i.e., the feature vector x stores the 
indices of non-Zero elements in the larger feature vector, the 
condensed representation generator 102 uses the indices 
stored in the condensed representation of the larger feature 
vector. 

For example, the condensed representation generator 102 
can generate the hash table M and the condensed representa 
tion of q)(x) (condensed_phi) as described in the folloWing 
pseudocode. In the folloWing pseudocode, the degree of the 
polynomial is assumed to be 2: N is a counter variable used to 
track What index into the Weight vector is being assigned to a 
hash value, and i and j are counter variables used to track 
Which features are being combined. M is the hash table that 
stores indexes into the Weight vector for combinations of 
elements into the feature vector x. To access the index into the 
Weight vector stored in M for a given combination (a, b), the 
method generates a hash code from a and b, and retrieves the 
index into the Weight vector stored at the index given by the 
hash code. x is a feature vector in the training data. The feature 
vector x is a condensed representation that stores indices of 
the non-Zero features in x. 

N = O; 

M = null; 
For all feature vectors x in the training data: 

condensediphi = null 

For i = l to the number ofelements in x: 

Forj = i to the number ofelements in x: 

a = mi11(X[il, XUI); 
b = m?X(X[il, XUI); 
If M does not include an index value for the 

combination (a, b): 
N = N+1; 
Store the index N in M for the 
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-continued 

combination (a, b); 
Append N to condensediphi; 

Else 
Append the index value stored in M for 
the combination (a, b) to condensediphi. 

The illustrated method iterates over the non-Zero pairs of 
features of each training vector. If an index for the combina 
tion is not stored in the hash table M, the method increments 
the counter N, and stores the value of N as the index value for 
the combination. If an index value for the combination is 
already stored in the hash table M, the method uses that index 
as the representation for the combination stored in phi. 

The illustrated method relies on the dependency between 
components of q)(x). In general, tWo components depend on 
each other if the tWo components Will alWays have the same 
value. For example, components of q)(x) corresponding to a 
single element of the feature vector and components corre 
sponding to the single element squared Will alWays have the 
same value. If the single element is Zero, the square Will also 
be Zero, and if the single element is one, the square Will also 
be one. Similarly, the component of q)(x) corresponding to the 
product of the ith element of the feature vector times the jth 
element of the feature vector is dependent on the component 
of q)(x) corresponding to the product of the jth element of the 
feature vector times ith element of the feature vectorithe 
tWo components Will both have the same value. Therefore, to 
save space, condensed_phi only includes a single component 
from a given group of dependent components, and the Weight 
in the Weight vector re?ects the presence of all of the depen 
dent components. 

In some other implementations, the method adds an entry 
into M for each single element of the feature vector as Well as 
components corresponding to the single element of the fea 
ture vector squared. 

The linear SVM 104 receives training data, including the 
condensed representations 108 and decisions 110 for the 
training feature vectors corresponding to the condensed rep 
resentations. The linear SVM 104 uses this training data to 
train a linear classi?er by learning Weights corresponding to 
the elements of q)(x). These Weights are stored in a Weight 
vector W 112. The Weight vector W 112 is a data structure that 

stores Weights corresponding to elements in q)(x). The Weight 
vector W 112 can take various forms including, for example, 
a vector or a hash table, and is indexed as described above. 

In some implementations, the linear SVM 104 uses a con 

densed form of the Weight vector W, one that only has entries 
for non-Zero components of the q)(x) observed in the training 
data. 

The linear SVM 104 processes the condensed representa 
tions 108 of the feature vectors and learns Weights stored 
according to the structure of the Weight vector. For example, 
the linear SVM can process condensed representations 108 of 
the feature vectors Where the condensed representations 108 
include indices into the Weight vector for each non-Zero com 
ponent of q)(x). 

Because the condensed representations 108 are an explicit 
linear representation of the polynomial mapped vectors q)(x), 
the linear SVM 104 can use linear decomposition to train the 
classi?er. Linear decomposition is often a faster technique 
than techniques used to train nonlinear SVMs. 
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6 
A suitable conventional technique for linear decomposi 

tion is as folloWs. 

While 0t is not optimal: 
(1) Select the ith element randomly, sequentially, or by 

other methods. 

In the above technique, W is the Weight vector, 1 is the 
number of training vectors, xi is the condensed representation 
of q)(x) for a given feature vector, yl. is a decision for the 
feature vector q)(x), C is a penalty parameter, 0t is a Lagrange 
multiplier, and Ql-i?/iyixl-Txi. 

Other methods for training a classi?er using a SVM, for 
example, the NeWton method, can also be used. 

While the above description envisions pre-computing the 
condensed representations 1 08 and providing them as input to 
the linear SVM 104, other techniques can also be used. For 
example, the system 100 can calculate and store {(|)(xi), . . . , 

q)(xi)} as the neW input data or can use {xl, . . . , x;} as the input 
data and calculate q)(xl-) as part of the linear decomposition. 
Calculating {(|)(xZ), . . . , q)(xl)} as the neW input data does not 

require any modi?cation of linear SVM solvers, but does 
require a large amount of disk or memory space to store q)(xl-) 
for each i. Calculating q)(xl.) in the decomposition does not 
require extra memory, but requires some modi?cations of the 
decomposition implementation. For data With a manageable 
number of features, calculating q)(xl.) during decomposition 
may be the fastest, because even if all q)(xi) can be stored in 
memory, accessing the q)(xl.) from memory may be sloWer 
than calculating them. HoWever, for an application With very 
large number of features and a small number of non-Zero 
features, the technique illustrated in FIG. 1 may be the most 
suitable. 

FIG. 2 illustrates an example method 200 for training a 
linear classi?er on condensed representations of mapped vec 
tors corresponding to polynomial mappings of training fea 
ture vectors. For convenience, the method Will be described 
With reference to a system including one or more computing 
devices that performs the method 200. The system can be, for 
example, the system 100 described above With reference to 
FIG. 1. 
The system receives original training data including a plu 

rality of training feature vectors and a respective decision for 
each training feature vector (202). The system generates, for 
each training feature vector, a condensed representation of a 
mapped vector corresponding to a polynomial mapping of the 
training feature vector (204). The mapped vector is q)(x), 
described above With reference to FIG. 1. Each component of 
the mapped vector is either a single element of the training 
feature vector or a product of elements of the training feature 
vector. 

The system uses a linear SVM to train a linear classi?er on 
the condensed representations (206). The linear SVM is con 
?gured to receive as training data the condensed representa 
tions and decisions for the training feature vectors corre 
sponding to the condensed representations, and determine the 
Weights in the Weight vector from the condensed training 
data, for example, as described above With reference to FIG. 
1. 

In some implementations, after the system receives the 
original training data, the system processes the training data 

(2) 



US 8,463,591 B1 
7 

to identify features that are present in the training data at least 
a threshold number of times. The system then generates the 
Weight vector so that the Weight vector only stores Weights for 
components of the mapped vector that are non-Zero at least a 
threshold number of times. 

FIG. 3 illustrates an example system 300 for classifying a 
feature vector. The system includes a classi?er 302 and a 
decision engine 304. 

The classi?er 302 receives a feature vectorx 306, generates 
a score 308 for the feature vectorx 306, and provides the score 
308 to the decision engine 304. The feature vector x 306 
represents a classi?cation state and can be formatted like the 
training feature vectors described above With reference to 
FIG. 1. 

The classi?er 302 includes a non-Zero component identi 
?er 310, a mapping engine 312, a Weight vector W 314, and an 
adding engine 316. The non-Zero component identi?er 310 
identi?es non-Zero components in a mapped vector corre 

sponding to a polynomial mapping of the feature vector, e.g., 
q)(x), described above With reference to FIG. 1. The non-Zero 
component identi?er 310 identi?es non-Zero components 
Without explicitly computing the products. In particular, the 
non-Zero component identi?er 310 identi?es the components 
that are generated from only non-Zero features in the feature 
vector x 306. In some implementations, the non-Zero compo 
nent identi?er 310 condenses the non-Zero components, for 
example, to remove components that are dependent on each 
other, as described above With reference to FIG. 1. The non 
Zero component identi?er 310 provides the indices of the 
elements of the feature vector corresponding to the non-Zero 
components of the mapped vector to the mapping engine 312. 

The mapping engine 3 12 generates an index into the Weight 
vector W 314 from the indices of the non-Zero features, for 
example, as described above With reference to FIG. 1. While 
the mapping engine 312 and Weight vector W 314 are illus 
trated as separate parts of the classi?er 302, the mapping 
engine 312 and Weight vector W can alternatively be a single 
element of the classi?er 302. For example, the Weight vector 
W 314 can be a hash map that receives the inputs to the 
mapping engine 312 and outputs the Weight stored at an index 
corresponding to those inputs. 

The classi?er 302 retrieves the Weights from the Weight 
vector 314 corresponding to the indices, and sums them using 
the adding engine 316. The classi?er 302 provides this sum to 
the decision engine 304 as the score 308. In some implemen 
tations, one or more of the non-Zero components do not have 
a corresponding Weight stored in the Weight vector W 314. In 
these implementations, the classi?er 302 uses a default 
Weight, e.g., Zero, for components that do not have a Weight 
stored in the Weight vector W 314. 
The decision engine 304 receives the score 308 from the 

classi?er and outputs a decision 310. In some implementa 
tions, the decision 310 is a yes or no decision indicating 
Whether the classi?cation state corresponding to the feature 
vector has a certain property. 

In other implementations, the decision 310 output by the 
decision engine 304 is a selection of a property that applies to 
the classi?cation state. In these implementations, the score 
308 output by the classi?er 302 is a “one-against-the-rest” 
score indicating a likelihood that the classi?cation state has a 
certain property as opposed to all other properties. The deci 
sion engine 304 receives multiple scores from multiple clas 
si?ers, each giving a “one-against-the-rest” score for a par 
ticular property. The decision engine 304 then picks the most 
likely property, for example, by picking the property With the 
highest score. 
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FIG. 4 illustrates an example method 400 for classifying a 

classi?cation state Whose features are represented by a fea 
ture vector. For convenience, the method Will be described 
With reference to a system including one or more computing 
devices that performs the method 400. The system can be, for 
example, the system 300 described above With reference to 
FIG. 3. 
The system receives a feature vector representing a current 

classi?cation state (402). The system identi?es non-Zero 
components from a polynomial mapping of the feature vector 
to a set of polynomial components, the polynomial mapping 
associating each component With either a single element of 
the feature vector, or a product of elements of the feature 
vector (404). The mapping maps the feature vector to a 
mapped vector, for example, the mapped vector q)(x), 
described above With reference to FIG. 1. The system deter 
mines the non-Zero components of the mapped vector, for 
example, as described above With reference to FIG. 3. The 
system maps the elements of each non-Zero component to a 
Weight in a Weight vector to determine a set of Weights (406), 
for example, as described above With reference to FIG. 3. The 
system derives a classi?cation score for the current classi? 
cation state by summing the set of Weights (408), and classi 
?es the current classi?cation state according to the classi? 
cation score (410), for example, as described above With 
reference to FIG. 3. 

FIG. 5 illustrates an example parsing system 500 that uses 
the classi?er described above to perform data-driven depen 
dency parsing. Data-driven dependency parsing constructs 
dependency graphs using a classi?er learned from training 
data, rather than grammar-based rules. A dependency graph 
represents syntactic modi?ers for Words in a sentence through 
labeled directed edges. The Word being modi?ed is the 
“head” and the Word doing the modifying is the “modi?er.” 
FIG. 6 illustrates an example dependency graph for a particu 
lar text sentence. 
The parsing system 500 includes a tokeniZer 502, a part of 

speech tagger 504, and a parser 506. The tokeniZer 502 
receives a sentence 508, e.g., a natural language sentence, and 
generates tokens 510 corresponding to the Words and punc 
tuation in the sentence. The part of speech tagger 504 receives 
the tokens 510 and outputs a list of tokens, each associated 
With a part of speech, 512. 
The parser processes the tokens using a transition selector 

514 and builds the dependency graph. The parser uses a 
transition-based parsing technique that builds a labeled 
dependency graph in one left-to-right pass over the input, 
using a stack to store partially processed tokens. At each step, 
the parser 506 uses the transition selector 514 to decide Which 
transition to perform. 
The parser 506 chooses from the folloWing transitions: 
SHIFT: Pushes the next input token to the top of the stack 

and advances to the next input token. 
REDUCE: Takes the top token from the stack. 
LEFT-ARC(r): Adds an edge With label r from the next 

input token to the token on top of the stack and pops the top 
element off the stack. 
RIGHT-ARC(r): Adds an edge With label r from the top 

token on the stack to the next input token. Then pushes the 
current input token to the stack and advances to the next input 
token. 
The current features identi?er 516 in the parser 506 iden 

ti?es a feature vector xi 518 corresponding to features in the 
current parse state. The parse state includes the stack, the 
remaining input tokens, and the partially built dependency 
graph. The feature identi?er 516 identi?es the binary features 
corresponding to various values for various feature types. 
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Example feature types include the part of speech tag of the 
current token, the part of speech tag of tokens that are a 
various number of tokens to the right of the current token in 
the sentence, the Word form of the current token, the Word 
form of tokens that are a various number of tokens to the right 
of the current token in the sentence, the part of speech tag of 
the top token on the stack, the part of speech tag of tokens at 
various depths in the stack, the dependency relation label for 
the edge betWeen the token on the top of the stack and its head 
token in the partially built dependency graph, the Word form 
of the top token on the stack, the Word form of the head token 
for the top token on the stack, the dependency relation label 
for the edge betWeen the leftmost, or rightmost, modi?er of 
the token on the top of the stack and its head in the partially 
built dependency graph, the dependency relation label for the 
edge betWeen the leftmost, or rightmost, modi?er of the cur 
rent input token and its head in the partially built dependency 
graph. 
Once the current feature identi?er 51 6 identi?es the feature 

vector 518 for a given parse state, the parser 506 sends the 
feature vector 518 to the transition selector 514. The transi 
tion selector 514 provides the feature vector 518 to various 
classi?ers, e.g., classi?erA 520, classi?er B 522, and classi 
?er C 524. The classi?ers generate scores for the feature 
vector that indicate hoW likely a given transition, or a label for 
the RIGHT-ARC and LEFT-ARC transitions, is correct for 
the given feature vector. Each classi?er corresponds to a given 
transition and uses a Weight vector that Was trained for that 
transition using a linear SVM, for example, as described 
above With reference to FIGS. 1-2. The classi?ers generate 
the scores, for example, as described above With reference to 
FIG. 3. 

In some implementations, the classi?ers further corre 
spond to particular sub-sets of training data, e.g., training data 
having a certain feature, or training data for a vector corre 
sponding to a token With a particular part of speech being on 
the stack. In these implementations, the transition selector 
514 only uses the classi?ers that are appropriate to the current 
feature vector 518. The classi?ers correspond to particular 
sets of training data When the SVM that processed the training 
data to generate the transition selector 514 divides the training 
data into multiple groups of data. For example, if a feature i 
takes tWo values a and b, the training data can be divided into 
{xlxfa} and {xlxfb}, leading to tWo Weight vectors Wu and 
Wb, each corresponding to an individual classi?er. The tran 
sition selector 514 then uses the individual classi?er corre 
sponding to the value of i in the current vector. 
The decision engine 526 receives scores from the various 

classi?ers and determines a transition 528 for the current 
parse state, e.g., by selecting the transition corresponding to 
the highest score. The transition selector 514 provides the 
transition 528 to the dependency graph builder 530, Which 
uses the transition 528 to build the dependency graph, and 
also sends the transition 528 to the current features identi?er 
516. The current features identi?er 516 transitions to the next 
state based in part on the transition. 

FIG. 6 illustrates an example dependency graph 600 for a 
sentence 602. The dependency graph 600 represents syntactic 
modi?ers for Words in a sentence through labeled directed 
edges, and can be built, for example, using the system 
described above With reference to FIG. 5. 

Each Word in the sentence 602 is tagged With its corre 
sponding part of speech 604. For example, “hit” is a past tense 
verb (“VBD”), and “Wit ” is a preposition “IN.” The graph 
labels each Word that modi?es another Word (modi?er) With 
the relationship 606 betWeen the modi?er Word and the Word 
being modi?ed (head). For example, “John” is modi?ed by 
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“hit” because “John” is the noun subject of “hit.” The arroWs 
608 indicate Which Word is doing the modifying and Which 
Word is being modi?ed. For example, in FIG. 6, the Word “hit” 
modi?es the Word “John” as indicated by the arroW from “hit” 
to “John.” 

Embodiments of the subject matter and the functional 
operations described in this speci?cation can be implemented 
in digital electronic circuitry, or in computer softWare, ?rm 
Ware, or hardWare, including the structures disclosed in this 
speci?cation and their structural equivalents, or in combina 
tions of one or more of them. Embodiments of the subject 
matter described in this speci?cation can be implemented as 
one or more computer programs, i.e., one or more modules of 
computer program instructions encoded on a computer stor 
age medium for execution by, or to control the operation of, 
data processing apparatus. Alternatively or in addition, the 
program instructions can be encoded on a propagated signal 
that is an arti?cially generated signal, e. g., a machine-gener 
ated electrical, optical, or electromagnetic signal, that is gen 
erated to encode information for transmission to suitable 
receiver apparatus for execution by a data processing appa 
ratus. The computer storage medium can be a machine-read 
able storage device, a machine-readable storage substrate, a 
random or serial access memory device, or a combination of 
one or more of them. 

The term “data processing apparatus” encompasses all 
kinds of apparatus, devices, and machines for processing 
data, including by Way of example a programmable proces 
sor, a computer, or multiple processors or computers. The 
apparatus can include special purpose logic circuitry, e. g., an 
FPGA (?eld programmable gate array) or an ASIC (applica 
tion-speci?c integrated circuit). The apparatus can also 
include, in addition to hardWare, code that creates an execu 
tion environment for the computer program in question, e. g., 
code that constitutes processor ?rmware, a protocol stack, a 
database management system, an operating system, or a com 
bination of one or more of them. 

A computer program (also knoWn as a program, softWare, 
softWare application, script, or code) can be Written in any 
form of programming language, including compiled or inter 
preted languages, or declarative or procedural languages, and 
it can be deployed in any form, including as a stand-alone 
program or as a module, component, subroutine, or other unit 
suitable for use in a computing environment. A computer 
program may, but need not, correspond to a ?le in a ?le 
system. A program can be stored in a portion of a ?le that 
holds other programs or data (e.g., one or more scripts stored 
in a markup language document), in a single ?le dedicated to 
the program in question, or in multiple coordinated ?les (e. g., 
?les that store one or more modules, sub-programs, or por 
tions of code). A computer program can be deployed to be 
executed on one computer or on multiple computers that are 
located at one site or distributed across multiple sites and 
interconnected by a communication netWork. 
The processes and logic ?oWs described in this speci?ca 

tion can be performed by one or more programmable proces 
sors executing one or more computer programs to perform 
functions by operating on input data and generating output. 
The processes and logic ?oWs can also be performed by, and 
apparatus can also be implemented as, special purpose logic 
circuitry, e. g., an FPGA (?eld programmable gate array) or an 
ASIC (application-speci?c integrated circuit). 

Processors suitable for the execution of a computer pro 
gram include, by Way of example, both general and special 
purpose microprocessors, and any one or more processors of 
any kind of digital computer. Generally, a processor Will 
receive instructions and data from a read-only memory or a 



US 8,463,591 B1 
11 

random access memory or both. The essential elements of a 
computer are a proces sor for performing or executing instruc 
tions and one or more memory devices for storing instructions 
and data. Generally, a computer Will also include, orbe opera 
tively coupled to receive data from or transfer data to, or both, 
one or more mass storage devices for storing data, e. g., mag 
netic, magneto-optical disks, or optical disks. HoWever, a 
computer need not have such devices. Moreover, a computer 
can be embedded in another device, e. g., a mobile telephone, 
a personal digital assistant (PDA), a mobile audio or video 
player, a game console, a Global Positioning System (GPS) 
receiver, or a portable storage device (e.g., a universal serial 
bus (U SB) ?ash drive), to name just a feW. 

Computer-readable media suitable for storing computer 
program instructions and data include all forms of non-vola 
tile memory, media and memory devices, including by Way of 
example semiconductor memory devices, e.g., EPROM, 
EEPROM, and ?ash memory devices; magnetic disks, e.g., 
internal hard disks or removable disks; magneto-optical 
disks; and CD-ROM and DVD-ROM disks. The processor 
and the memory can be supplemented by, or incorporated in, 
special purpose logic circuitry. 

To provide for interaction With a user, embodiments of the 
subject matter described in this speci?cation can be imple 
mented on a computer having a display device, e.g., a CRT 
(cathode ray tube) or LCD (liquid crystal display) monitor, 
for displaying information to the user and a keyboard and a 
pointing device, e. g., a mouse or a trackball, by Which the user 
can provide input to the computer. Other kinds of devices can 
be used to provide for interaction With a user as Well; for 
example, feedback provided to the user can be any form of 
sensory feedback, e. g., visual feedback, auditory feedback, or 
tactile feedback; and input from the user can be received in 
any form, including acoustic, speech, or tactile input. In addi 
tion, a computer can interact With a user by sending docu 
ments to and receiving documents from a device that is used 
by the user; for example, by sending Web pages to a Web 
broWser on a user’s client device in response to requests 
received from the Web broWser. 

Embodiments of the subject matter described in this speci 
?cation can be implemented in a computing system that 
includes a back-end component, e.g., as a data server, or that 
includes a middleWare component, e.g., an application server, 
or that includes a front-end component, e.g., a client com 
puter having a graphical user interface or a Web broWser 
through Which a user can interact With an implementation of 
the subject matter described in this speci?cation, or any com 
bination of one or more such back-end, middleWare, or front 
end components. The components of the system can be inter 
connected by any form or medium of digital data 
communication, e.g., a communication netWork. Examples 
of communication netWorks include a local area netWork 

(“LAN”) and a Wide area netWork (“WAN”), e.g., the Inter 
net. 

The computing system can include clients and servers. A 
client and server are generally remote from each other and 
typically interact through a communication netWork. The 
relationship of client and server arises by virtue of computer 
programs running on the respective computers and having a 
client-server relationship to each other. 

While this speci?cation contains many speci?c implemen 
tation details, these should not be construed as limitations on 
the scope of any invention or of What may be claimed, but 
rather as descriptions of features that may be speci?c to 
particular embodiments of particular inventions. Certain fea 
tures that are described in this speci?cation in the context of 
separate embodiments can also be implemented in combina 
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tion in a single embodiment. Conversely, various features that 
are described in the context of a single embodiment can also 
be implemented in multiple embodiments separately or in any 
suitable subcombination. Moreover, although features may 
be described above as acting in certain combinations and even 
initially claimed as such, one or more features from a claimed 
combination can in some cases be excised from the combi 
nation, and the claimed combination may be directed to a 
subcombination or variation of a subcombination. 

Similarly, While operations are depicted in the draWings in 
a particular order, this should not be understood as requiring 
that such operations be performed in the particular order 
shoWn or in sequential order, or that all illustrated operations 
be performed, to achieve desirable results. In certain circum 
stances, multitasking and parallel processing may be advan 
tageous. Moreover, the separation of various system compo 
nents in the embodiments described above should not be 
understood as requiring such separation in all embodiments, 
and it should be understood that the described program com 
ponents and systems can generally be integrated together in a 
single softWare product or packaged into multiple softWare 
products. 

Particular embodiments of the subject matter have been 
described. Other embodiments are Within the scope of the 
folloWing claims. For example, While the above describes 
using condensed representations With linear support vector 
machines, similar representations can be used With other dis 
criminative classi?ers, for example, Naive Bayes, Percep 
tron, and Maximum Entropy classi?ers. As another example, 
the actions recited in the claims can be performed in a differ 
ent order and still achieve desirable results. As another 
example, the processes depicted in the accompanying ?gures 
do not necessarily require the particular order shoWn, or 
sequential order, to achieve desirable results. In certain imple 
mentations, multitasking and parallel processing may be 
advantageous. 
What is claimed is: 
1. A computer-implemented method, comprising: 
receiving, in a computing system comprising one or more 

computers, original training data including a plurality of 
training feature vectors and a respective decision for 
each training feature vector, each training feature vector 
representing a parse state of a parser, each element of 
each training feature vector indicating a presence or 
absence of a feature of the parse state, the parser con 
structing a dependency graph for a sentence having 
Words and punctuation, the parser input comprising 
tokens corresponding to the Words and punctuation of 
the sentence; 

generating, by the computing system, for each training 
feature vector, a condensed representation of a mapped 
vector corresponding to a degree-d polynomial mapping 
of the training feature vector, the mapping de?ning each 
component of the mapped vector as either a single ele 
ment of the training feature vector or a product of up to 
d elements of the training feature vector, the condensed 
representation of the mapped vector including an index 
for each non-Zero component of the mapped vector, each 
index indicating a position in a Weight vector of a Weight 
for the corresponding non-Zero mapped vector compo 
nent; and 

using a linear support vector machine to train a classi?er on 
the condensed representations, the linear support vector 
machine con?gured to receive as training data the con 
densed representations and decisions for the training 
feature vectors corresponding to the condensed repre 
sentations, and determine the Weights in the Weight vec 
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tor from the condensed training data, Where the classi?er 
corresponds to a given parsing transition and uses the 
Weight vector that Was trained for the given parsing 
transition to generate a score for the given parsing tran 
sition, Where the score for the given parsing transition is 
used to determine Whether to perform the given parsing 
transition in building a dependency graph, the depen 
dency graph representing syntactic modi?ers for Words 
in the sentence through labeled directed edges. 

2. The method of claim 1, Where d is an integer greater than 
one. 

3. The method of claim 1, Where each training feature 
vector is a condensed representation of a corresponding fea 
ture vector, the condensed representation containing indices 
of only elements of the corresponding feature vector that are 
present in the parse state. 

4. The method of claim 1, Where the tokens corresponding 
to the Words and punctuation of the sentence comprise tokens 
each associated With a respective part of speech. 

5. The method of claim 1, Where the Weight vector only 
includes Weights for features, and combinations of features, 
that are present in the original training data. 

6. A computer-implemented method, comprising: 
receiving a computer-readable list of tokens representing a 

sentence having Words and punctuation, the tokens cor 
responding to the Words and punctuation of the sen 
tence; 

identifying, in a computing system comprising one or more 
computers, from the list of tokens, a feature vector cor 
responding to features in a current parse state of a parser, 
Where each element of the feature vector indicates a 
presence or absence of a respective feature of the current 
parse state; 

identifying, by operation of the computing system, non 
Zero components resulting from a degree-d polynomial 
mapping of the feature vector to a set of polynomial 
components, the polynomial mapping associating each 
polynomial component With either a single element of 
the feature vector or a product of up to d elements of the 
feature vector; 

for each non-Zero component, mapping, by operation of 
the computing system, the combination of one or more 
elements of the non-Zero polynomial component to a 
single Weight in a Weight vector to determine a set of 
Weights, Where each position in the Weight vector cor 
responds to a distinct combination of elements of the 
feature vector; 

deriving, by operation of the computing system, a classi? 
cation score for the current parse state for a particular 
transition in the parser, by summing the set of Weights; 
and 

using the transition to build a dependency graph, the 
dependency graph representing syntactic modi?ers for 
Words in the sentence through labeled directed edges. 

7. The method of claim 6, Where d is an integer greater than 
one. 

8. The method of claim 6, Where the feature vector is a 
condensed representation of a corresponding complete fea 
ture vector, the condensed representation containing indices 
of only elements of the corresponding complete feature vec 
tor that are present in the parse state. 

9. The method of claim 6, Where: 
the list of tokens comprises tokens each associated With a 

respective part of speech. 
10. The method of claim 6, Where mapping the one or more 

elements of the non-Zero components comprises, for at least 
one of the non-Zero components, determining that the Weight 
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vector does not include a Weight for the at least one non-Zero 
component, and selecting a default Weight for the at least one 
non-Zero component. 

11. The method of claim 10, Where the default Weight is 
5 Zero. 

12. The method of claim 6, Where mapping the one or more 
elements of each non-Zero component to a Weight in the 
Weight vector includes, for each component that is associated 
With a product of elements of the feature vector, identifying 
an index into the Weight vector from a hash table that takes the 
indices of the elements as input and outputs the index, and 
retrieving the Weight stored at that index in the Weight vector. 

13. A computer storage medium encoded With a computer 
program, the computer program comprising instructions that 
When executed by data processing apparatus cause the data 
processing apparatus to perform actions comprising: 

receiving original training data including a plurality of 
training feature vectors and a respective decision for 
each training feature vector, each training feature vector 
representing a parse state of a parser, each element of 
each training feature vector indicating a presence or 
absence of a feature of the parse state, the parser con 
structing a dependency graph for a sentence having 
Words and punctuation, the parser input comprising 
tokens corresponding to the Words and punctuation of 
the sentence; 

generating, for each training feature vector, a condensed 
representation of a mapped vector corresponding to a 
degree-d polynomial mapping of the training feature 
vector, the mapping de?ning each component of the 
mapped vector as either a single element of the training 
feature vector or a product of up to d elements of the 
training feature vector, the condensed representation of 
the mapped vector including an index for each non-Zero 
component of the mapped vector, each index indicating 
a position in a Weight vector of a Weight for the corre 
sponding non-Zero mapped vector component; and 

using a linear support vector machine to train a classi?er on 
the condensed representations, the linear support vector 
machine con?gured to receive as training data the con 
densed representations and decisions for the training 
feature vectors corresponding to the condensed repre 
sentations, and determine the Weights in the Weight vec 
tor from the condensed training data, Where the classi?er 
corresponds to a given parsing transition and uses the 
Weight vector that Was trained for the given parsing 
transition to generate a score for the given parsing tran 
sition, Where the score for the given parsing transition is 
used to determine Whether to perform the given parsing 
transition in building a dependency graph, the depen 
dency graph representing syntactic modi?ers for Words 
in the sentence through labeled directed edges. 

14. A computer storage medium encoded With a computer 
program, the computer program comprising instructions that 

55 When executed by data processing apparatus cause the data 
processing apparatus to perform actions comprising: 

receiving a list of tokens representing a sentence having 
Words and punctuation, the tokens corresponding to the 
Words and punctuation of the sentence; 

identifying, from the list of tokens, a feature vector corre 
sponding to features in a current parse state of a parser, 
Where each element of the feature vector indicates a 
presence or absence of a respective feature of the current 
parse state; 

identifying non-Zero components resulting from a 
degree-d polynomial mapping of the feature vector to a 
set of polynomial components, the polynomial mapping 
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associating each polynomial component With either a 
single element of the feature vector or a product of up to 
d elements of the feature vector; 

for each non-Zero component, mapping the combination of 
one or more elements of the non-Zero polynomial com 

ponent to a single Weight in a Weight vector to determine 
a set of Weights, Where each position in the Weight vector 
corresponds to a distinct combination of elements of the 
feature vector; 

deriving a classi?cation score for the current parse state for 
a particular transition in the parser, by summing the set 
of Weights; and 

using the transition to build a dependency graph, the 
dependency graph representing syntactic modi?ers for 
Words in the sentence through labeled directed edges. 

15. A system, comprising: 
one or more computers programmed to perform actions 

comprising: 
receiving original training data including a plurality of 

training feature vectors and a respective decision for 
each training feature vector, each training feature vec 
tor representing a parse state of a parser, each element 
of each training feature vector indicating a presence 
or absence of a feature of the parse state, the parser 
con?gured to construct a dependency graph for a sen 
tence having Words and punctuation, the parser input 
comprising tokens corresponding to the Words and 
punctuation of the sentence; 

generating, for each training feature vector, a condensed 
representation of a mapped vector corresponding to a 
degree-d polynomial mapping of the training feature 
vector, the mapping de?ning each component of the 
mapped vector as either a single element of the train 
ing feature vector or a product of up to d elements of 
the training feature vector, the condensed representa 
tion of the mapped vector including an index for each 
non-Zero component of the mapped vector, each index 
indicating a position in a Weight vector of a Weight for 
the corresponding non-Zero mapped vector compo 
nent; and 

using a linear support vector machine to train a classi?er on 
the condensed representations, the linear support vector 
machine con?gured to receive as training data the con 
densed representations and decisions for the training 
feature vectors corresponding to the condensed repre 
sentations, and determine the Weights in the Weight vec 
tor from the condensed training data, Where the classi?er 
corresponds to a given parsing transition and uses the 
Weight vector that Was trained for the given parsing 
transition to generate a score for the given parsing tran 
sition, Where the score for the given parsing transition is 
used to determine Whether to perform the given parsing 
transition in building a dependency graph, the depen 
dency graph representing syntactic modi?ers for Words 
in the sentence through labeled directed edges. 

16. The system of claim 15, Where d is an integer greater 
than one. 

17. The system of claim 15, Where each training feature 
vector is a condensed representation of a corresponding fea 
ture vector, the condensed representation containing indices 
of only elements of the corresponding feature vector that are 
present in the parse state. 
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18. The system of claim 15, Where the tokens correspond 

ing to the Words and punctuation of the sentence comprise 
tokens each associated With a respective part of speech. 

19. The system of claim 15, Where the Weight vector only 
includes Weights for features, and combinations of features, 
that are present in the original training data. 

20. A system, comprising: 
one or more computers programmed to perform actions 

comprising: 
receiving a list of tokens representing a sentence having 

Words and punctuation, the tokens corresponding to 
the Words and punctuation of the sentence; 

identifying, from the list of tokens, a feature vector 
corresponding to features in a current parse state of a 
parser, Where each element of the feature vector indi 
cates a presence or absence of a respective feature of 
the current parse state; 

identifying non-Zero components resulting from a 
degree-d polynomial mapping of the feature vector to 
a set of polynomial components, the polynomial map 
ping associating each polynomial component With 
either a single element of the feature vector or a prod 
uct of up to d elements of the feature vector; 

for each non-Zero component, mapping the combination 
of one or more elements of the non-Zero polynomial 
component to a single Weight in a Weight vector to 
determine a set of Weights, Where each position in the 
Weight vector corresponds to a distinct combination 
of elements of the feature vector; 

deriving a classi?cation score for the current parse state 
for a particular transition in the parser, by summing 
the set of Weights; and 

using the transition to build a dependency graph, the 
dependency graph representing syntactic modi?ers 
for Words in the sentence through labeled directed 
edges. 

21. The system of claim 20, Where d is an integer greater 
than one. 

22. The system of claim 20, Where the feature vector is a 
condensed representation of a corresponding complete fea 
ture vector, the condensed representation containing indices 
of only elements of the corresponding complete feature vec 
tor that are present in the parse state. 

23. The system of claim 20, Where: 
the list of tokens comprises tokens each associated With a 

respective part of speech. 
24. The system of claim 20, Where mapping the one or 

more elements of the non-Zero components comprises, for at 
least one of the non-Zero components, determining that the 
Weight vector does not include a Weight for the at least one 
non-Zero component, and selecting a default Weight for the at 
least one non-Zero component. 

25. The system of claim 24, Where the default Weight is 
Zero. 

26. The system of claim 24, Where mapping the one or 
more elements of each non-Zero component to a Weight in the 
Weight vector includes, for each component that is associated 
With a product of elements of the feature vector, identifying 
an index into the Weight vector from a hash table that takes the 
indices of the elements as input and outputs the index, and 
retrieving the Weight stored at that index in the Weight vector. 

* * * * * 


