
US008463591B1

(12) Ulllted States Patent (10) Patent N0.: US 8,463,591 B1
Chang et al. (45) Date of Patent: Jun. 11, 2013

(54) EFFICIENT POLYNOMIAL MAPPING OF 7,783,473 B2 * 8/2010 Bangalore et al. 704/2
DATA FOR USE WITH LINEAR SUPPORT 7,788,193 B2 * 8/2010 Bartlett et al. .. 706/14

7,895,148 B2 * 2/2011 Ma et al. 706/55

VECTOR MACHINES 8,065,241 B2 * 11/2011 Vapnik et al. .. 706/12

_ _ _ _ 8,275,600 B2 * 9/2012 Bilac et al. 704/2
(75) IIWBIIIOFSI Yln-Wen Chang, Talpel (TW); Cho-Jlll 2005/0071300 A1 * 3/2005 Bartlett et al. 706/12

Hsieh, Taipei (TW); Kai-Wei Chang, 2007/0011110 A1 * l/2007 Selvaraj et al. 706/12

Taipei Michael Ringgaard 2008/0109389 A1 * 5/2008 Polyak et a1. 706/12
s. - _ - - a - 2008/0162111 A1* 7/2008 Bangalore et al. . 704/2

Lysmlp (13K)’ Chlh Jen Lm’ Talpel 2008/0162117 A1 * 7/2008 Bangalore et al. . .. 704/10
(TW) 2008/0301070 A1 * 12/2008 Bartlett et al. 706/12

_ _ _ 2009/0204553 A1* 8/2009 Gates 706/12

(73) Ass1gnee: Google Inc., Mountain V1eW, CA (US) 2010/0161527 A1 * 6/2010 Sellamanickam et a1. 706/12

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended Or adjusted under 35 Boser, B. et al. “A Training Algorithm for Optimal Margin Classi?
U.S.C. 154(b) by 267 days. ers.” in: Proceedings of theFifth Annual Workshop of Computational

Learning Theory (ACM Press, 1992), pp. 144-152.
21 A l. N .: 12/846 741

() pp 0 ’ (Continued)

(22) Filed: Jul. 29, 2010 _ _ _
Primary Examiner * Martm Lerner

Related US Application Data (74) Attorney, Agent, or Firm * Fish & Richardson PC.

(60) Provisional application No. 61/230,669, ?led on Jul. (57) ABSTRACT

31’ 2009' Methods, systems, and apparatus, including computer pro
grams encoded on computer storage media, for polynomial

(51) Int. Cl. . .
mappmg of data for llnear SVMs. In one aspect, a method

G06F 17/27 (2006.01)
lncludes trammg a llnear classl?er by receiving feature Vec

G06F 15/18 (2006.01) . .
52) U 5 Cl tors and generating a condensed representation of a mapped

(C ' 704/1_ 7 0 4 / 9_ 706/12 Vector correspondlng to a polynomial mappmg of each fea
_ """"" "_' """ "_ """""""" " ’ ’ ture Vector, the condensed representation including an index

(58) Fleld of Classl?catlon Search _ into a Weight Vector for each non-Zero component of the
USPC 704/1, 9, 706/10, 12 mapped VeCtOLA linear classi?eris trained on tha Condensed
See apphcanon ?le for Complete Search hlstory' representations. In another aspect, a method includes receiv

(56) References Cited ing a feature Vector, identifying non-Zero components result

U.S. PATENT DOCUMENTS

ing from a polynomial mapping of the feature Vector, and
mapping the combination of one or more elements of each
non-Zero component to a Weight in a Weight Vector to deter
mine a set of Weights. The feature Vector is classi?ed accord
ing to a classi?cation score derived by summing the set of
Weights.

26 Claims, 6 Drawing Sheets

6,961,719 B1* 11/2005 Rai 706/21

7,318,051 B2* 1/2008 Weston et a1. 706/12
7,353,215 B2* 4/2008 Bartlettet a1. 706/46
7,475,048 B2* 1/2009 Weston et a1. 706/20
7,490,071 B2* 2/2009 Milenova et al. .. 706/45
7,617,163 B2* 11/2009 Ben-Hur etal. 706/12

“"1
Sen ence 508

" (Tokens,

Tokenizer {Tokeni Panof 53:30?)
510 ' Speech 512

Tagger

592 E!

Parser in

Transition
Current Features Identifier

5.1.6
Feature Vector x. 513

Transition
lwelghtvemnrAl Seminar 53

Classifier core A

A m Dependency
Graph Builder

WElgM rem a Decision Transition m
Scot Engine 528 I

Classifier m

B m

weight veeter c

I I Acre 0
Classifier

C

US 8,463,591 B1
Page 2

OTHER PUBLICATIONS

Bottou, L. Stochastic Gradient Descent Examples on Toy Problems.
Leon Bottou Website [online], 2007. Retrieved from the
internet:<URL: http://leon.bottou.org/projects/sgd>. 5 pages.
Chang, C., and Lin, C. LIBSVM: A Library for Support Vector
Machines. CSIE-NTU [online], 2001. Retrieved from the
internet:<URL: http://www.csie.ntu.edu.tw/~cjlin/libsvm>, 4 pages.
Cortes, C. andVapnik, V. ‘Support-Vector Network’, MachineLearn
ing, vol. 20, No. 3 (1995), pp. 273-297.
Crammer, K., Singer, Y. “On the Learnability and Design of Output
Codes for Multiclass Problems.” in: Machine Learning (2002), pp.
201-233.
Fan, R., et al. ‘Working Set Selection Using Second Order Informa
tion for Training SVM’, Journal of Machine Learning Research,
2005, vol. 6, Retrieved from the internet:<URL: http://www.csie.ntu.
edu.tw/~cjlin/papers/quadworkset.pdf>, pp. 1889-1918.
Fan, R., et al. ‘LIBLINEAR: A Library for Large Linear Classi?ca
tion’, Journal ofMachine Learning Research, 2008, vol. 9. Retrieved
from the internet:<URL: http://www.csie.ntu.edu.tw/~cjlin/papers/
liblinear.pdf>, pp. 1871-1874.
Ferris, M. and Munson, T. “Interior Point Methods for Massive
Support Vector Machines.” in: SIAM Journal on Optimization, vol.
13, Issue 3 (2003), pp. 783-804.
Gertz, E., and Grif?n, J. ‘Support Vector Machine Classi?ers for
Large Data Sets’, Technical Report ANL/MCS-TW-289, Argonne
National Laboratory, 2005, 22 pages.
Goldberg, Y, and Elhadad, M. “SplitSVM: Fast, Space-Ef?cient,
Non-Heuristic, Polynomial Kernel Computation for NLP Applica
tions”. In: Proceedings ofACL, 2008, pp. 237-240.
Hsieh, C., et al. ‘A Dual Coordinate Descent Method for Large-Scale
Linear SVM’, Proceedings of the Twenty Fifth International Confer
ence on Machine Learning (ICML) [online], 2008. Retrieved from
the internet:<URL: http://www.csie.ntu.edu.tw/~cjlin/papers/cd
dual.pdf>. pp. 408-415.
Hsu, C., and Lin, C. “A Comparison of Methods for Multi-Class
Support Vector Machines.” in: IEEE Transactions on Neural Net
works, vol. 13, No. 2 (2002), pp. 415-425.
Hsu, C., et al. ‘A Practical Guide to Support Vector Classi?cation’,
Technical Report, Department of Computer Science, National Tai
wan University [online], 2003. Retrieved from the internet:<URL:
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf>, pp.
1-12.
Ifrim, G., et al. “Fast Logistic Regression for Text Categorization
with Variable-Length N-grams”. in: Proceedings of the I4’h ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (2008), pp. 354-382.
Isozaki, H., and Kazawa, H. “Ef?cient Support Vector Classi?ers for
Named Entity Recognition.” in: Proceedings of COLIN G (2002), pp.
390-396.
Joachims, T. “Making Large-Scale SVM Leaning Practical.” in:
Scholkopf, B., et al., Advances in Kernel MethodsiSupport Vector
Learning (Cambridge, MA: MIT Press, 1998), pp. 169-184.
Joachims, T. “Training Linear SVMs in Linear Time.” in: Proceed
ings of the ACM Conference on Knowledge Discovery and Data
Mining (KDD) (ACM, 2006), pp. 217-226.
Jung, J ., et al. “Adaptive Constraint Reduction for Training Support
Vector Machines.” in: Electronic Transactions on Numerical Analy
sis (2008), vol. 31, pp. 156-177.
Keerthi, S., and Lin, C. “Asymptotic Behaviors of Support Vector
Machines with Gaussian Kernel.” in: Neural Computation (2003),
vol. 15, No. 7, pp. 1667-1689.
Keerthi, S., et al. “Improvements to Platt’s SMO Algorithm for SVM
Classi?er Design.” in: Neural Computation (2001), vol. 13, pp. 637
649.
Keerthi, S., et al. “Building Support Vector Machines with Reduced
Classi?er Complexity.” in: Journal of Machine Learning Research
(2006), vol. 7, pp. 1493-1515.
Keerthi, S., et al. ‘A Sequential Dual Method for Large Scale Multi
Class Linear SVMs’, Proceedings of the I4’h ACM SI GKDD Inter

national Conference on Knowledge Discovery and Data Mining
[online], 2008. Retrieved from the internet:<URL: http://www.csie.
ntu.edu.tw/~cjlin/papers/sdmikdd.pdf>.
Kudo, T., and Matsumoto, Y. “Japanese Dependency Structure
Analysis Based on Support Vector Machines.” in: Proceedings of the
2000 Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora (2000), vol. 13, pp.
18-25.
Kudo, T., and Matsumoto, Y. “Fast Methods for Kernel-Based Text
Analysis.” in: Proceedings of the 415, Annual Meeting of the Asso
ciation of Computational Linguistics (ACL) (2003), pp. 24-31.
Langford, J ., et al. “Sparse Online Learning via Truncated Gradient.”
in: Journal ofMachine Learning Research (2009), vol. 10, pp. 771
801.
Lee, Y, and Mangasarian, O. “RSVM: Reduced Support Vector
Machines.” in: Proceedings of the First SIAM International Confer
ence on Data Mining (2001).
Lin, C., et al. ‘Trust Region Newton Method for a Large-Scale Logis
tic Regression’, Journal of Machine Learning Research [online],
2008, vol. 9. Retrieved from the Internet:<URL: http://www.csie.ntu.
edu.tw/~cjlin/papers/logistic.pdf>,, pp. 627-650.
Lippert, R., and Ri?<in, R. “In?nite-0 Limits for Tikhonov Regular
ization.” in: Journal of Machine Learning Research (2006), vol. 7,
pp. 855-876.
Mangasarian, O., and Musicant, D. “Successive Overrelaxation for
Support Vector Machines.” in: IEEE Transactions on Neural Net
works (1999), vol. 10, No. 5, pp. 1032-1037.
Marcus, M., et al. “Building a Large Annotated Corpus of English:
The Penn Treebank.” in: Computational Linguistics (1993), vol. 19,
pp. 313-330.
McDonald, R., and Nivre, J. “Characterizing the Errors of Data
Driven Dependency Parsing Models.” in: Proceedings of the Joint
Conferences on Empirical Methods in Natural Language Processing
and Computational Natural Language Learnings (EMNLP-CoNLL)
(2007), pp. 122-131.
McDonald, R., and Pereira, F. “Online Learning of Approximate
Dependency Parsing Algorithms.” in: Proceedings of the 1 I’h Con
ference of the European Chapter of the Association for Computa
tional Linguistics (EACL) (2006), pp. 81-88.
Moh, Y, and Buhmann, J. “Kernel Expansion for Online Preference
Tracking.” in: Proceedings of the International Society for Music
Information Retrieval (ISMIR) (2008), pp. 167-172.
Nivre, J. “An Ef?cient Algorithm for Projective Dependency Pars
ing.” in: Proceedings of the 8’h International Workshop on Parsing
Technologies (IWPT 03) (2003), pp. 149-160.
Nivre, J ., and Hall, J. “MaltParser: A Language-Independent System
for Data-Driven Dependency Parsing.” in: Proceedings of the Fourth
Workshop on Treebanks and Linguistic Theories (2005), 12 pages.
Nivre, J ., et al. “MaltParser: A Language-Independent System for
Data-Driven Dependency Parsing.” in: National Language Engineer
ing (2007), vol. 13, No. 2, pp. 95-135.
Ravichandran, D., et al. “The Terascale Challenge.” in: Proceedings
of KDD Workshop on Mining for and from the Semantic Web (MS W
04) (2004), pp. 1-11.
Shalev-Shwartz, S., et al. “Pegasos: Primal Estimated Sub-gradient
Solver for SVM.” in: Proceedings of the 24’h International Confer
ence on Machine Learning (ICML) (2007). pp. 807-814.
Weinberger, K., et al. “Feature Hashing for Large Scale Multitask
Learning.” in: Proceedings of the 26’h International Conference on
Machine Learning (ICML) (2009), pp. 1113-1120.
Yamada, H., and Matsumoto, Y “Statistical Dependency Analysis
with Support Vector Machines.” in: Proceedings of the 8’h Interna
tional Workshop on Parsing Technologies (I WPT 03) (2003), 12
pages.
Yuan, G., et al. ‘A Comparison of Optimization Methods for Large
Scale ll-Regularized Linear Classi?cation,’ Technical Report,
Department of Computer Science, National Taiwan University
[online] 2009. Retrieved from the Internet:<URL: http://www.csie.
ntu.edu.tw/~cjlin/papers/11.pdf>, pp. 1-51.

* cited by examiner

US. Patent Jun. 11,2013 Sheet 2 of6 US 8,463,591 B1

2002I
Receive Original Training Data Including a Plurality

of Training Feature Vectors and a Respective
Decision for Each Training Feature Vector

l
Generate, For Each Training Feature Vector, a
Condensed Representation of a Mapped Vector
Corresponding to a Polynomial Mapping of the

Training Feature Vector

l
Using a Linear Support Vector Machine to Train a

Linear Classifier on the Condensed Representations

M

l2

M

FIG. 2

US. Patent Jun. 11,2013 Sheet 4 of6 US 8,463,591 B1

400 1

Receive a Feature Vector Representing a Current
Classification State

l
Identify Non-Zero Components from a Polynomial

Mapping of the Feature Vector to a Set of
Polynomial Components, the Polynomial Mapping

Associating Each Polynomial Component with Either
a Single Element of the Feature Vector, or a Product

of Elements of the Feature Vector 404

l
Map the Elements of Each Non-Zero Component to
a Weight in a Weight Vector to Determine a Set of

Weights

l
Derive a Classification Score for the Current

Classification State by Summing the Set of Weights

M

Classify the Current Classification State According
to the Classification Score

M

M

10

FIG. 4

US. Patent Jun. 11,2013 Sheet 6 of6 US 8,463,591 B1

m

ZN“ Jib? a Q ,1“ a

m

Z2 :55

DH} is HQ

i am ?gs“. Gm E_Y._.m._..H s8... . fllk‘

$8...
Meow

US 8,463,591 B1
1

EFFICIENT POLYNOMIAL MAPPING OF
DATA FOR USE WITH LINEAR SUPPORT

VECTOR MACHINES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the bene?t under 35 U.S.C. §119
(e) of US. Provisional Patent Application No. 61/230,669,
titled “EFFICIENT POLYNOMIAL MAPPING OF DATA
FOR USE WITH LINEAR SUPPORT VECTOR
MACHINES,” ?led Jul. 31, 2009, Which is incorporated here
by reference.

BACKGROUND

This speci?cation relates to e?iciently training and using
computer-implemented classi?ers.

Support Vector Machines (SVMs) are tools for data clas
si?cation. Non-linear SVMs map training and testing
instances to a high dimensional space by a nonlinear function.
While nonlinear SVMs have good accuracy in classi?cation,
nonlinear SVMs also require large amounts of memory. In
general, a technique knoWn as “the kernel trick” is used to
reduce the memory demands of a nonlinear SVM HoWever,
training nonlinear SVMs, even With the kernel trick, still
requires a great deal of memory and a great deal of training
time, especially for large data sets.

Decomposition methods are a Way to train nonlinear SVMs
With less memory consumption than standard techniques.
HoWever, decomposition methods still require considerable
training time for training data With a large number of features.
In addition, the classifying procedure is sloW.

SUMMARY

This speci?cation describes technologies relating to e?i
cient polynomial mapping of data for use With linear support
vector machines.

This speci?cation describes systems, methods, and com
puter program products that generate condensed representa
tions of multi-dimensional feature vectors and use the con
densed representations as input to train and use nonlinear
SVMs.

In general, one aspect of the subject matter described in this
speci?cation can be embodied in methods that include the
actions of receiving original training data including a plural
ity of training feature vectors and a respective decision for
each training feature vector, each training feature vector rep
resenting a classi?cation state, each element of each training
feature vector indicating a presence or absence of a feature of
the classi?cation state; generating, for each training feature
vector, a condensed representation of a mapped vector corre
sponding to a degree-d polynomial mapping of the training
feature vector, the mapping de?ning each component of the
mapped vector as either a single element of the training fea
ture vector or a product of up to d elements of the training
feature vector, the condensed representation of the mapped
vector including an index for each non-Zero component of the
mapped vector, each index indicating a position in a Weight
vector of a Weight for the corresponding non-Zero mapped
vector component; and using a linear support vector machine
to train a linear classi?er on the condensed representations,
the linear support vector machine con?gured to receive as
training data the condensed representations and decisions for
the training feature vectors corresponding to the condensed
representations, and determine the Weights in the Weight vec

20

25

30

35

40

45

50

55

60

65

2
tor from the condensed training data. Other embodiments of
this aspect include corresponding systems, apparatus, and
computer programs recorded on computer storage devices,
each con?gured to perform the operations of the methods.

These and other embodiments can each optionally include
one or more of the folloWing features. The degree d can be an
integer greater than one. Each training feature vector can be a
condensed representation of a corresponding feature vector,
the condensed representation containing indices of only ele
ments of the corresponding feature vector that are present in
the classi?cation state. The classi?cation state can be a cur
rent state of a parser. The Weight vector can only includes
Weights for features, and combinations of features, that are
present in the original training data.

In general, another aspect of the subject matter described in
this speci?cation canbe embodied in methods that include the
actions of receiving a feature vector representing a current
classi?cation state, Where each element of the feature vector
indicates a presence or absence of a respective feature of the
current classi?cation state; identifying non-Zero components
resulting from a degree-d polynomial mapping of the feature
vector to a set of polynomial components, the polynomial
mapping associating each polynomial component With either
a single element of the feature vector or a product of up to d
elements of the feature vector; for each non-Zero component,
mapping the combination of one or more elements of the
non-Zero polynomial component to a single Weight in a
Weight vector to determine a set of Weights, Where each
position in the Weight vector corresponds to a distinct com
bination of elements of the feature vector; deriving a classi
?cation score for the current classi?cation state by summing
the set of Weights; and classifying the current classi?cation
state according to the classi?cation score. Other embodi
ments of this aspect include corresponding systems, appara
tus, and computer programs recorded on computer storage
devices, each con?gured to perform the operations of the
methods.

These and other embodiments can each optionally include
one or more of the folloWing features. The degree d can be an
integer greater than one. The feature vector can be a con
densed representation of a corresponding complete feature
vector, the condensed representation containing indices of
only elements of the corresponding complete feature vector
that are present in the classi?cation state. The classi?cation
state can be a state of a parser; the classi?cation score can be

a score for a particular transition in the parser; and classifying
the current classi?cation state according to the classi?cation
score can include receiving classi?cation scores for various
transitions and selecting the transition With the highest clas
si?cation score.

Mapping the one or more elements of the non-Zero com

ponents can include, for at least one of the non-Zero compo
nents, determining that the Weight vector does not include a
Weight for the at least one non-Zero component, and selecting
a default Weight for the at least one non-Zero component. The
default Weight can be Zero. Mapping the one or more ele
ments of each non-Zero component to a Weight in the Weight
vector can include, for each component that is associated With
a product of elements of the feature vector, identifying an
index into the Weight vector from a hash table that takes the
indices of the elements as input and outputs the index, and
retrieving the Weight stored at that index in the Weight vector.

Particular embodiments of the subject matter described in
this speci?cation can be implemented so as to realiZe one or
more of the folloWing advantages. LoW-degree polynomial
mappings can be used to achieve as accurate of classi?cations
as are generated With a kernel approach to nonlinear SVMs,

US 8,463,591 B1
3

but With less training time and less classi?cation time. A
loW-degree polynomial mapping can be used to increase the
speed of a parser Without decreasing accuracy of the classi
?cations performed Within the parser. Classi?ers for building
a dependency relation graph can be trained in less time than
the time required by kernel techniques.

The details of one or more embodiments of the subject
matter described in this speci?cation are set forth in the
accompanying draWings and the description beloW. Other
features, aspects, and advantages of the subject matter Will
become apparent from the description, the draWings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example system for training a linear
classi?er using a polynomial mapping of data.

FIG. 2 illustrates an example method for training a linear
classi?er on condensed representations of mapped vectors
corresponding to polynomial mappings of training feature
vectors.

FIG. 3 illustrates an example system for classifying a fea
ture vector.

FIG. 4 illustrates an example method for classifying a
classi?cation state Whose features are represented by a fea
ture vector.

FIG. 5 illustrates an example parsing system that performs
data-driven dependency parsing.

FIG. 6 illustrates an example dependency graph for a sen
tence.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

FIG. 1 illustrates an example system 100 for training a
linear classi?er using a polynomial mapping of data. The
system 100 includes a condensed representation generator
102 and a linear SVM 104.
The condensed representation generator 102 receives a set

of training feature vectors 106 and generates a set of con
densed representations 108 for the training feature vectors
106.
Each training feature vector (x) in the set of training feature

vectors 106 corresponds to a given classi?cation state, i.e., a
state that is being classi?ed, and has elements that each indi
cate the presence or absence of a respective feature of the
classi?cation state. In some implementations, the training
feature vector is a vector of ones and Zeros, Where each one
indicates the presence of a corresponding feature, and Zero
indicates the absence of a corresponding feature. In other
implementations, the training feature vector is condensed so
that only indices of the features that are present in the classi
?cation state are included in the vector, rather than a one or a
Zero for every feature.

The condensed representations 108 are condensed repre
sentations of mapped vectors corresponding to a polynomial
mapping of each training feature vector of the set of training
feature vectors 106. The polynomial mapping corresponds to
a polynomial kernel of a SVM. In general, a polynomial
kernel has the form:

K(xilxj):(yxiTxj+r)da
Where y and r are parameters and d is the degree. The poly
nomial kernel is the product of tWo vectors q)(xl-) and q)(xj).
When d is small, e.g., 2 or 3, a linear SVM can be applied to
an explicit representation of q)(x) rather than using a nonlinear

20

25

30

35

40

45

50

55

60

65

4
SVM With a polynomial kernel. For example, When d:2 and
y:r:l, the mapped vector q)(x) can be explicitly represented
as:

The explicit representation of q)(x) can be unWieldy even
When d is small, because the polynomial mapping leads to a
large number of terms. Therefore, the condensed representa
tion generator 102 generates a condensed representation of
q)(x). The condensed representation only includes represen
tations of each non-Zero component of q)(x). In some imple
mentations, the representations are indices Where each index
indicates a position in a Weight vector W 112 of a Weight
corresponding to the component.
The system calculates the index into the Weight vector for

a given component by mapping the indices of the elements
that make up the component to an index into the Weight vector
W 112. The index is determined from a hash table, e.g., asso
ciative array, using the indices of the corresponding elements
in the feature vector x. For example, the system can calculate
a component corresponding to the combination (xi, x) by
generating a hash value for the combination (i ,j), and retriev
ing the index stored at the hash value position in the hash
table. When the feature vector x is a condensed representation
of a larger feature vector, i.e., the feature vector x stores the
indices of non-Zero elements in the larger feature vector, the
condensed representation generator 102 uses the indices
stored in the condensed representation of the larger feature
vector.

For example, the condensed representation generator 102
can generate the hash table M and the condensed representa
tion of q)(x) (condensed_phi) as described in the folloWing
pseudocode. In the folloWing pseudocode, the degree of the
polynomial is assumed to be 2: N is a counter variable used to
track What index into the Weight vector is being assigned to a
hash value, and i and j are counter variables used to track
Which features are being combined. M is the hash table that
stores indexes into the Weight vector for combinations of
elements into the feature vector x. To access the index into the
Weight vector stored in M for a given combination (a, b), the
method generates a hash code from a and b, and retrieves the
index into the Weight vector stored at the index given by the
hash code. x is a feature vector in the training data. The feature
vector x is a condensed representation that stores indices of
the non-Zero features in x.

N = O;

M = null;
For all feature vectors x in the training data:

condensediphi = null

For i = l to the number ofelements in x:

Forj = i to the number ofelements in x:

a = mi11(X[il, XUI);
b = m?X(X[il, XUI);
If M does not include an index value for the

combination (a, b):
N = N+1;
Store the index N in M for the

US 8,463,591 B1
5

-continued

combination (a, b);
Append N to condensediphi;

Else
Append the index value stored in M for
the combination (a, b) to condensediphi.

The illustrated method iterates over the non-Zero pairs of
features of each training vector. If an index for the combina
tion is not stored in the hash table M, the method increments
the counter N, and stores the value of N as the index value for
the combination. If an index value for the combination is
already stored in the hash table M, the method uses that index
as the representation for the combination stored in phi.

The illustrated method relies on the dependency between
components of q)(x). In general, tWo components depend on
each other if the tWo components Will alWays have the same
value. For example, components of q)(x) corresponding to a
single element of the feature vector and components corre
sponding to the single element squared Will alWays have the
same value. If the single element is Zero, the square Will also
be Zero, and if the single element is one, the square Will also
be one. Similarly, the component of q)(x) corresponding to the
product of the ith element of the feature vector times the jth
element of the feature vector is dependent on the component
of q)(x) corresponding to the product of the jth element of the
feature vector times ith element of the feature vectorithe
tWo components Will both have the same value. Therefore, to
save space, condensed_phi only includes a single component
from a given group of dependent components, and the Weight
in the Weight vector re?ects the presence of all of the depen
dent components.

In some other implementations, the method adds an entry
into M for each single element of the feature vector as Well as
components corresponding to the single element of the fea
ture vector squared.

The linear SVM 104 receives training data, including the
condensed representations 108 and decisions 110 for the
training feature vectors corresponding to the condensed rep
resentations. The linear SVM 104 uses this training data to
train a linear classi?er by learning Weights corresponding to
the elements of q)(x). These Weights are stored in a Weight
vector W 112. The Weight vector W 112 is a data structure that

stores Weights corresponding to elements in q)(x). The Weight
vector W 112 can take various forms including, for example,
a vector or a hash table, and is indexed as described above.

In some implementations, the linear SVM 104 uses a con

densed form of the Weight vector W, one that only has entries
for non-Zero components of the q)(x) observed in the training
data.

The linear SVM 104 processes the condensed representa
tions 108 of the feature vectors and learns Weights stored
according to the structure of the Weight vector. For example,
the linear SVM can process condensed representations 108 of
the feature vectors Where the condensed representations 108
include indices into the Weight vector for each non-Zero com
ponent of q)(x).

Because the condensed representations 108 are an explicit
linear representation of the polynomial mapped vectors q)(x),
the linear SVM 104 can use linear decomposition to train the
classi?er. Linear decomposition is often a faster technique
than techniques used to train nonlinear SVMs.

20

30

35

40

45

50

55

60

65

6
A suitable conventional technique for linear decomposi

tion is as folloWs.

While 0t is not optimal:
(1) Select the ith element randomly, sequentially, or by

other methods.

In the above technique, W is the Weight vector, 1 is the
number of training vectors, xi is the condensed representation
of q)(x) for a given feature vector, yl. is a decision for the
feature vector q)(x), C is a penalty parameter, 0t is a Lagrange
multiplier, and Ql-i?/iyixl-Txi.

Other methods for training a classi?er using a SVM, for
example, the NeWton method, can also be used.

While the above description envisions pre-computing the
condensed representations 1 08 and providing them as input to
the linear SVM 104, other techniques can also be used. For
example, the system 100 can calculate and store {(|)(xi), . . . ,

q)(xi)} as the neW input data or can use {xl, . . . , x;} as the input
data and calculate q)(xl-) as part of the linear decomposition.
Calculating {(|)(xZ), . . . , q)(xl)} as the neW input data does not

require any modi?cation of linear SVM solvers, but does
require a large amount of disk or memory space to store q)(xl-)
for each i. Calculating q)(xl.) in the decomposition does not
require extra memory, but requires some modi?cations of the
decomposition implementation. For data With a manageable
number of features, calculating q)(xl.) during decomposition
may be the fastest, because even if all q)(xi) can be stored in
memory, accessing the q)(xl.) from memory may be sloWer
than calculating them. HoWever, for an application With very
large number of features and a small number of non-Zero
features, the technique illustrated in FIG. 1 may be the most
suitable.

FIG. 2 illustrates an example method 200 for training a
linear classi?er on condensed representations of mapped vec
tors corresponding to polynomial mappings of training fea
ture vectors. For convenience, the method Will be described
With reference to a system including one or more computing
devices that performs the method 200. The system can be, for
example, the system 100 described above With reference to
FIG. 1.
The system receives original training data including a plu

rality of training feature vectors and a respective decision for
each training feature vector (202). The system generates, for
each training feature vector, a condensed representation of a
mapped vector corresponding to a polynomial mapping of the
training feature vector (204). The mapped vector is q)(x),
described above With reference to FIG. 1. Each component of
the mapped vector is either a single element of the training
feature vector or a product of elements of the training feature
vector.

The system uses a linear SVM to train a linear classi?er on
the condensed representations (206). The linear SVM is con
?gured to receive as training data the condensed representa
tions and decisions for the training feature vectors corre
sponding to the condensed representations, and determine the
Weights in the Weight vector from the condensed training
data, for example, as described above With reference to FIG.
1.

In some implementations, after the system receives the
original training data, the system processes the training data

(2)

US 8,463,591 B1
7

to identify features that are present in the training data at least
a threshold number of times. The system then generates the
Weight vector so that the Weight vector only stores Weights for
components of the mapped vector that are non-Zero at least a
threshold number of times.

FIG. 3 illustrates an example system 300 for classifying a
feature vector. The system includes a classi?er 302 and a
decision engine 304.

The classi?er 302 receives a feature vectorx 306, generates
a score 308 for the feature vectorx 306, and provides the score
308 to the decision engine 304. The feature vector x 306
represents a classi?cation state and can be formatted like the
training feature vectors described above With reference to
FIG. 1.

The classi?er 302 includes a non-Zero component identi
?er 310, a mapping engine 312, a Weight vector W 314, and an
adding engine 316. The non-Zero component identi?er 310
identi?es non-Zero components in a mapped vector corre

sponding to a polynomial mapping of the feature vector, e.g.,
q)(x), described above With reference to FIG. 1. The non-Zero
component identi?er 310 identi?es non-Zero components
Without explicitly computing the products. In particular, the
non-Zero component identi?er 310 identi?es the components
that are generated from only non-Zero features in the feature
vector x 306. In some implementations, the non-Zero compo
nent identi?er 310 condenses the non-Zero components, for
example, to remove components that are dependent on each
other, as described above With reference to FIG. 1. The non
Zero component identi?er 310 provides the indices of the
elements of the feature vector corresponding to the non-Zero
components of the mapped vector to the mapping engine 312.

The mapping engine 3 12 generates an index into the Weight
vector W 314 from the indices of the non-Zero features, for
example, as described above With reference to FIG. 1. While
the mapping engine 312 and Weight vector W 314 are illus
trated as separate parts of the classi?er 302, the mapping
engine 312 and Weight vector W can alternatively be a single
element of the classi?er 302. For example, the Weight vector
W 314 can be a hash map that receives the inputs to the
mapping engine 312 and outputs the Weight stored at an index
corresponding to those inputs.

The classi?er 302 retrieves the Weights from the Weight
vector 314 corresponding to the indices, and sums them using
the adding engine 316. The classi?er 302 provides this sum to
the decision engine 304 as the score 308. In some implemen
tations, one or more of the non-Zero components do not have
a corresponding Weight stored in the Weight vector W 314. In
these implementations, the classi?er 302 uses a default
Weight, e.g., Zero, for components that do not have a Weight
stored in the Weight vector W 314.
The decision engine 304 receives the score 308 from the

classi?er and outputs a decision 310. In some implementa
tions, the decision 310 is a yes or no decision indicating
Whether the classi?cation state corresponding to the feature
vector has a certain property.

In other implementations, the decision 310 output by the
decision engine 304 is a selection of a property that applies to
the classi?cation state. In these implementations, the score
308 output by the classi?er 302 is a “one-against-the-rest”
score indicating a likelihood that the classi?cation state has a
certain property as opposed to all other properties. The deci
sion engine 304 receives multiple scores from multiple clas
si?ers, each giving a “one-against-the-rest” score for a par
ticular property. The decision engine 304 then picks the most
likely property, for example, by picking the property With the
highest score.

20

25

30

35

40

45

50

55

60

65

8
FIG. 4 illustrates an example method 400 for classifying a

classi?cation state Whose features are represented by a fea
ture vector. For convenience, the method Will be described
With reference to a system including one or more computing
devices that performs the method 400. The system can be, for
example, the system 300 described above With reference to
FIG. 3.
The system receives a feature vector representing a current

classi?cation state (402). The system identi?es non-Zero
components from a polynomial mapping of the feature vector
to a set of polynomial components, the polynomial mapping
associating each component With either a single element of
the feature vector, or a product of elements of the feature
vector (404). The mapping maps the feature vector to a
mapped vector, for example, the mapped vector q)(x),
described above With reference to FIG. 1. The system deter
mines the non-Zero components of the mapped vector, for
example, as described above With reference to FIG. 3. The
system maps the elements of each non-Zero component to a
Weight in a Weight vector to determine a set of Weights (406),
for example, as described above With reference to FIG. 3. The
system derives a classi?cation score for the current classi?
cation state by summing the set of Weights (408), and classi
?es the current classi?cation state according to the classi?
cation score (410), for example, as described above With
reference to FIG. 3.

FIG. 5 illustrates an example parsing system 500 that uses
the classi?er described above to perform data-driven depen
dency parsing. Data-driven dependency parsing constructs
dependency graphs using a classi?er learned from training
data, rather than grammar-based rules. A dependency graph
represents syntactic modi?ers for Words in a sentence through
labeled directed edges. The Word being modi?ed is the
“head” and the Word doing the modifying is the “modi?er.”
FIG. 6 illustrates an example dependency graph for a particu
lar text sentence.
The parsing system 500 includes a tokeniZer 502, a part of

speech tagger 504, and a parser 506. The tokeniZer 502
receives a sentence 508, e.g., a natural language sentence, and
generates tokens 510 corresponding to the Words and punc
tuation in the sentence. The part of speech tagger 504 receives
the tokens 510 and outputs a list of tokens, each associated
With a part of speech, 512.
The parser processes the tokens using a transition selector

514 and builds the dependency graph. The parser uses a
transition-based parsing technique that builds a labeled
dependency graph in one left-to-right pass over the input,
using a stack to store partially processed tokens. At each step,
the parser 506 uses the transition selector 514 to decide Which
transition to perform.
The parser 506 chooses from the folloWing transitions:
SHIFT: Pushes the next input token to the top of the stack

and advances to the next input token.
REDUCE: Takes the top token from the stack.
LEFT-ARC(r): Adds an edge With label r from the next

input token to the token on top of the stack and pops the top
element off the stack.
RIGHT-ARC(r): Adds an edge With label r from the top

token on the stack to the next input token. Then pushes the
current input token to the stack and advances to the next input
token.
The current features identi?er 516 in the parser 506 iden

ti?es a feature vector xi 518 corresponding to features in the
current parse state. The parse state includes the stack, the
remaining input tokens, and the partially built dependency
graph. The feature identi?er 516 identi?es the binary features
corresponding to various values for various feature types.

US 8,463,591 B1
9

Example feature types include the part of speech tag of the
current token, the part of speech tag of tokens that are a
various number of tokens to the right of the current token in
the sentence, the Word form of the current token, the Word
form of tokens that are a various number of tokens to the right
of the current token in the sentence, the part of speech tag of
the top token on the stack, the part of speech tag of tokens at
various depths in the stack, the dependency relation label for
the edge betWeen the token on the top of the stack and its head
token in the partially built dependency graph, the Word form
of the top token on the stack, the Word form of the head token
for the top token on the stack, the dependency relation label
for the edge betWeen the leftmost, or rightmost, modi?er of
the token on the top of the stack and its head in the partially
built dependency graph, the dependency relation label for the
edge betWeen the leftmost, or rightmost, modi?er of the cur
rent input token and its head in the partially built dependency
graph.
Once the current feature identi?er 51 6 identi?es the feature

vector 518 for a given parse state, the parser 506 sends the
feature vector 518 to the transition selector 514. The transi
tion selector 514 provides the feature vector 518 to various
classi?ers, e.g., classi?erA 520, classi?er B 522, and classi
?er C 524. The classi?ers generate scores for the feature
vector that indicate hoW likely a given transition, or a label for
the RIGHT-ARC and LEFT-ARC transitions, is correct for
the given feature vector. Each classi?er corresponds to a given
transition and uses a Weight vector that Was trained for that
transition using a linear SVM, for example, as described
above With reference to FIGS. 1-2. The classi?ers generate
the scores, for example, as described above With reference to
FIG. 3.

In some implementations, the classi?ers further corre
spond to particular sub-sets of training data, e.g., training data
having a certain feature, or training data for a vector corre
sponding to a token With a particular part of speech being on
the stack. In these implementations, the transition selector
514 only uses the classi?ers that are appropriate to the current
feature vector 518. The classi?ers correspond to particular
sets of training data When the SVM that processed the training
data to generate the transition selector 514 divides the training
data into multiple groups of data. For example, if a feature i
takes tWo values a and b, the training data can be divided into
{xlxfa} and {xlxfb}, leading to tWo Weight vectors Wu and
Wb, each corresponding to an individual classi?er. The tran
sition selector 514 then uses the individual classi?er corre
sponding to the value of i in the current vector.
The decision engine 526 receives scores from the various

classi?ers and determines a transition 528 for the current
parse state, e.g., by selecting the transition corresponding to
the highest score. The transition selector 514 provides the
transition 528 to the dependency graph builder 530, Which
uses the transition 528 to build the dependency graph, and
also sends the transition 528 to the current features identi?er
516. The current features identi?er 516 transitions to the next
state based in part on the transition.

FIG. 6 illustrates an example dependency graph 600 for a
sentence 602. The dependency graph 600 represents syntactic
modi?ers for Words in a sentence through labeled directed
edges, and can be built, for example, using the system
described above With reference to FIG. 5.

Each Word in the sentence 602 is tagged With its corre
sponding part of speech 604. For example, “hit” is a past tense
verb (“VBD”), and “Wit ” is a preposition “IN.” The graph
labels each Word that modi?es another Word (modi?er) With
the relationship 606 betWeen the modi?er Word and the Word
being modi?ed (head). For example, “John” is modi?ed by

20

25

30

35

40

45

50

55

60

65

10
“hit” because “John” is the noun subject of “hit.” The arroWs
608 indicate Which Word is doing the modifying and Which
Word is being modi?ed. For example, in FIG. 6, the Word “hit”
modi?es the Word “John” as indicated by the arroW from “hit”
to “John.”

Embodiments of the subject matter and the functional
operations described in this speci?cation can be implemented
in digital electronic circuitry, or in computer softWare, ?rm
Ware, or hardWare, including the structures disclosed in this
speci?cation and their structural equivalents, or in combina
tions of one or more of them. Embodiments of the subject
matter described in this speci?cation can be implemented as
one or more computer programs, i.e., one or more modules of
computer program instructions encoded on a computer stor
age medium for execution by, or to control the operation of,
data processing apparatus. Alternatively or in addition, the
program instructions can be encoded on a propagated signal
that is an arti?cially generated signal, e. g., a machine-gener
ated electrical, optical, or electromagnetic signal, that is gen
erated to encode information for transmission to suitable
receiver apparatus for execution by a data processing appa
ratus. The computer storage medium can be a machine-read
able storage device, a machine-readable storage substrate, a
random or serial access memory device, or a combination of
one or more of them.

The term “data processing apparatus” encompasses all
kinds of apparatus, devices, and machines for processing
data, including by Way of example a programmable proces
sor, a computer, or multiple processors or computers. The
apparatus can include special purpose logic circuitry, e. g., an
FPGA (?eld programmable gate array) or an ASIC (applica
tion-speci?c integrated circuit). The apparatus can also
include, in addition to hardWare, code that creates an execu
tion environment for the computer program in question, e. g.,
code that constitutes processor ?rmware, a protocol stack, a
database management system, an operating system, or a com
bination of one or more of them.

A computer program (also knoWn as a program, softWare,
softWare application, script, or code) can be Written in any
form of programming language, including compiled or inter
preted languages, or declarative or procedural languages, and
it can be deployed in any form, including as a stand-alone
program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. A computer
program may, but need not, correspond to a ?le in a ?le
system. A program can be stored in a portion of a ?le that
holds other programs or data (e.g., one or more scripts stored
in a markup language document), in a single ?le dedicated to
the program in question, or in multiple coordinated ?les (e. g.,
?les that store one or more modules, sub-programs, or por
tions of code). A computer program can be deployed to be
executed on one computer or on multiple computers that are
located at one site or distributed across multiple sites and
interconnected by a communication netWork.
The processes and logic ?oWs described in this speci?ca

tion can be performed by one or more programmable proces
sors executing one or more computer programs to perform
functions by operating on input data and generating output.
The processes and logic ?oWs can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e. g., an FPGA (?eld programmable gate array) or an
ASIC (application-speci?c integrated circuit).

Processors suitable for the execution of a computer pro
gram include, by Way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor Will
receive instructions and data from a read-only memory or a

US 8,463,591 B1
11

random access memory or both. The essential elements of a
computer are a proces sor for performing or executing instruc
tions and one or more memory devices for storing instructions
and data. Generally, a computer Will also include, orbe opera
tively coupled to receive data from or transfer data to, or both,
one or more mass storage devices for storing data, e. g., mag
netic, magneto-optical disks, or optical disks. HoWever, a
computer need not have such devices. Moreover, a computer
can be embedded in another device, e. g., a mobile telephone,
a personal digital assistant (PDA), a mobile audio or video
player, a game console, a Global Positioning System (GPS)
receiver, or a portable storage device (e.g., a universal serial
bus (U SB) ?ash drive), to name just a feW.

Computer-readable media suitable for storing computer
program instructions and data include all forms of non-vola
tile memory, media and memory devices, including by Way of
example semiconductor memory devices, e.g., EPROM,
EEPROM, and ?ash memory devices; magnetic disks, e.g.,
internal hard disks or removable disks; magneto-optical
disks; and CD-ROM and DVD-ROM disks. The processor
and the memory can be supplemented by, or incorporated in,
special purpose logic circuitry.

To provide for interaction With a user, embodiments of the
subject matter described in this speci?cation can be imple
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e. g., a mouse or a trackball, by Which the user
can provide input to the computer. Other kinds of devices can
be used to provide for interaction With a user as Well; for
example, feedback provided to the user can be any form of
sensory feedback, e. g., visual feedback, auditory feedback, or
tactile feedback; and input from the user can be received in
any form, including acoustic, speech, or tactile input. In addi
tion, a computer can interact With a user by sending docu
ments to and receiving documents from a device that is used
by the user; for example, by sending Web pages to a Web
broWser on a user’s client device in response to requests
received from the Web broWser.

Embodiments of the subject matter described in this speci
?cation can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleWare component, e.g., an application server,
or that includes a front-end component, e.g., a client com
puter having a graphical user interface or a Web broWser
through Which a user can interact With an implementation of
the subject matter described in this speci?cation, or any com
bination of one or more such back-end, middleWare, or front
end components. The components of the system can be inter
connected by any form or medium of digital data
communication, e.g., a communication netWork. Examples
of communication netWorks include a local area netWork

(“LAN”) and a Wide area netWork (“WAN”), e.g., the Inter
net.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication netWork. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

While this speci?cation contains many speci?c implemen
tation details, these should not be construed as limitations on
the scope of any invention or of What may be claimed, but
rather as descriptions of features that may be speci?c to
particular embodiments of particular inventions. Certain fea
tures that are described in this speci?cation in the context of
separate embodiments can also be implemented in combina

20

25

30

35

40

45

50

55

60

65

12
tion in a single embodiment. Conversely, various features that
are described in the context of a single embodiment can also
be implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
be described above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

Similarly, While operations are depicted in the draWings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shoWn or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum
stances, multitasking and parallel processing may be advan
tageous. Moreover, the separation of various system compo
nents in the embodiments described above should not be
understood as requiring such separation in all embodiments,
and it should be understood that the described program com
ponents and systems can generally be integrated together in a
single softWare product or packaged into multiple softWare
products.

Particular embodiments of the subject matter have been
described. Other embodiments are Within the scope of the
folloWing claims. For example, While the above describes
using condensed representations With linear support vector
machines, similar representations can be used With other dis
criminative classi?ers, for example, Naive Bayes, Percep
tron, and Maximum Entropy classi?ers. As another example,
the actions recited in the claims can be performed in a differ
ent order and still achieve desirable results. As another
example, the processes depicted in the accompanying ?gures
do not necessarily require the particular order shoWn, or
sequential order, to achieve desirable results. In certain imple
mentations, multitasking and parallel processing may be
advantageous.
What is claimed is:
1. A computer-implemented method, comprising:
receiving, in a computing system comprising one or more

computers, original training data including a plurality of
training feature vectors and a respective decision for
each training feature vector, each training feature vector
representing a parse state of a parser, each element of
each training feature vector indicating a presence or
absence of a feature of the parse state, the parser con
structing a dependency graph for a sentence having
Words and punctuation, the parser input comprising
tokens corresponding to the Words and punctuation of
the sentence;

generating, by the computing system, for each training
feature vector, a condensed representation of a mapped
vector corresponding to a degree-d polynomial mapping
of the training feature vector, the mapping de?ning each
component of the mapped vector as either a single ele
ment of the training feature vector or a product of up to
d elements of the training feature vector, the condensed
representation of the mapped vector including an index
for each non-Zero component of the mapped vector, each
index indicating a position in a Weight vector of a Weight
for the corresponding non-Zero mapped vector compo
nent; and

using a linear support vector machine to train a classi?er on
the condensed representations, the linear support vector
machine con?gured to receive as training data the con
densed representations and decisions for the training
feature vectors corresponding to the condensed repre
sentations, and determine the Weights in the Weight vec

US 8,463,591 B1
13

tor from the condensed training data, Where the classi?er
corresponds to a given parsing transition and uses the
Weight vector that Was trained for the given parsing
transition to generate a score for the given parsing tran
sition, Where the score for the given parsing transition is
used to determine Whether to perform the given parsing
transition in building a dependency graph, the depen
dency graph representing syntactic modi?ers for Words
in the sentence through labeled directed edges.

2. The method of claim 1, Where d is an integer greater than
one.

3. The method of claim 1, Where each training feature
vector is a condensed representation of a corresponding fea
ture vector, the condensed representation containing indices
of only elements of the corresponding feature vector that are
present in the parse state.

4. The method of claim 1, Where the tokens corresponding
to the Words and punctuation of the sentence comprise tokens
each associated With a respective part of speech.

5. The method of claim 1, Where the Weight vector only
includes Weights for features, and combinations of features,
that are present in the original training data.

6. A computer-implemented method, comprising:
receiving a computer-readable list of tokens representing a

sentence having Words and punctuation, the tokens cor
responding to the Words and punctuation of the sen
tence;

identifying, in a computing system comprising one or more
computers, from the list of tokens, a feature vector cor
responding to features in a current parse state of a parser,
Where each element of the feature vector indicates a
presence or absence of a respective feature of the current
parse state;

identifying, by operation of the computing system, non
Zero components resulting from a degree-d polynomial
mapping of the feature vector to a set of polynomial
components, the polynomial mapping associating each
polynomial component With either a single element of
the feature vector or a product of up to d elements of the
feature vector;

for each non-Zero component, mapping, by operation of
the computing system, the combination of one or more
elements of the non-Zero polynomial component to a
single Weight in a Weight vector to determine a set of
Weights, Where each position in the Weight vector cor
responds to a distinct combination of elements of the
feature vector;

deriving, by operation of the computing system, a classi?
cation score for the current parse state for a particular
transition in the parser, by summing the set of Weights;
and

using the transition to build a dependency graph, the
dependency graph representing syntactic modi?ers for
Words in the sentence through labeled directed edges.

7. The method of claim 6, Where d is an integer greater than
one.

8. The method of claim 6, Where the feature vector is a
condensed representation of a corresponding complete fea
ture vector, the condensed representation containing indices
of only elements of the corresponding complete feature vec
tor that are present in the parse state.

9. The method of claim 6, Where:
the list of tokens comprises tokens each associated With a

respective part of speech.
10. The method of claim 6, Where mapping the one or more

elements of the non-Zero components comprises, for at least
one of the non-Zero components, determining that the Weight

14
vector does not include a Weight for the at least one non-Zero
component, and selecting a default Weight for the at least one
non-Zero component.

11. The method of claim 10, Where the default Weight is
5 Zero.

12. The method of claim 6, Where mapping the one or more
elements of each non-Zero component to a Weight in the
Weight vector includes, for each component that is associated
With a product of elements of the feature vector, identifying
an index into the Weight vector from a hash table that takes the
indices of the elements as input and outputs the index, and
retrieving the Weight stored at that index in the Weight vector.

13. A computer storage medium encoded With a computer
program, the computer program comprising instructions that
When executed by data processing apparatus cause the data
processing apparatus to perform actions comprising:

receiving original training data including a plurality of
training feature vectors and a respective decision for
each training feature vector, each training feature vector
representing a parse state of a parser, each element of
each training feature vector indicating a presence or
absence of a feature of the parse state, the parser con
structing a dependency graph for a sentence having
Words and punctuation, the parser input comprising
tokens corresponding to the Words and punctuation of
the sentence;

generating, for each training feature vector, a condensed
representation of a mapped vector corresponding to a
degree-d polynomial mapping of the training feature
vector, the mapping de?ning each component of the
mapped vector as either a single element of the training
feature vector or a product of up to d elements of the
training feature vector, the condensed representation of
the mapped vector including an index for each non-Zero
component of the mapped vector, each index indicating
a position in a Weight vector of a Weight for the corre
sponding non-Zero mapped vector component; and

using a linear support vector machine to train a classi?er on
the condensed representations, the linear support vector
machine con?gured to receive as training data the con
densed representations and decisions for the training
feature vectors corresponding to the condensed repre
sentations, and determine the Weights in the Weight vec
tor from the condensed training data, Where the classi?er
corresponds to a given parsing transition and uses the
Weight vector that Was trained for the given parsing
transition to generate a score for the given parsing tran
sition, Where the score for the given parsing transition is
used to determine Whether to perform the given parsing
transition in building a dependency graph, the depen
dency graph representing syntactic modi?ers for Words
in the sentence through labeled directed edges.

14. A computer storage medium encoded With a computer
program, the computer program comprising instructions that

55 When executed by data processing apparatus cause the data
processing apparatus to perform actions comprising:

receiving a list of tokens representing a sentence having
Words and punctuation, the tokens corresponding to the
Words and punctuation of the sentence;

identifying, from the list of tokens, a feature vector corre
sponding to features in a current parse state of a parser,
Where each element of the feature vector indicates a
presence or absence of a respective feature of the current
parse state;

identifying non-Zero components resulting from a
degree-d polynomial mapping of the feature vector to a
set of polynomial components, the polynomial mapping

20

25

30

35

40

45

50

60

US 8,463,591 B1
15

associating each polynomial component With either a
single element of the feature vector or a product of up to
d elements of the feature vector;

for each non-Zero component, mapping the combination of
one or more elements of the non-Zero polynomial com

ponent to a single Weight in a Weight vector to determine
a set of Weights, Where each position in the Weight vector
corresponds to a distinct combination of elements of the
feature vector;

deriving a classi?cation score for the current parse state for
a particular transition in the parser, by summing the set
of Weights; and

using the transition to build a dependency graph, the
dependency graph representing syntactic modi?ers for
Words in the sentence through labeled directed edges.

15. A system, comprising:
one or more computers programmed to perform actions

comprising:
receiving original training data including a plurality of

training feature vectors and a respective decision for
each training feature vector, each training feature vec
tor representing a parse state of a parser, each element
of each training feature vector indicating a presence
or absence of a feature of the parse state, the parser
con?gured to construct a dependency graph for a sen
tence having Words and punctuation, the parser input
comprising tokens corresponding to the Words and
punctuation of the sentence;

generating, for each training feature vector, a condensed
representation of a mapped vector corresponding to a
degree-d polynomial mapping of the training feature
vector, the mapping de?ning each component of the
mapped vector as either a single element of the train
ing feature vector or a product of up to d elements of
the training feature vector, the condensed representa
tion of the mapped vector including an index for each
non-Zero component of the mapped vector, each index
indicating a position in a Weight vector of a Weight for
the corresponding non-Zero mapped vector compo
nent; and

using a linear support vector machine to train a classi?er on
the condensed representations, the linear support vector
machine con?gured to receive as training data the con
densed representations and decisions for the training
feature vectors corresponding to the condensed repre
sentations, and determine the Weights in the Weight vec
tor from the condensed training data, Where the classi?er
corresponds to a given parsing transition and uses the
Weight vector that Was trained for the given parsing
transition to generate a score for the given parsing tran
sition, Where the score for the given parsing transition is
used to determine Whether to perform the given parsing
transition in building a dependency graph, the depen
dency graph representing syntactic modi?ers for Words
in the sentence through labeled directed edges.

16. The system of claim 15, Where d is an integer greater
than one.

17. The system of claim 15, Where each training feature
vector is a condensed representation of a corresponding fea
ture vector, the condensed representation containing indices
of only elements of the corresponding feature vector that are
present in the parse state.

10

20

25

30

35

40

45

50

55

60

16
18. The system of claim 15, Where the tokens correspond

ing to the Words and punctuation of the sentence comprise
tokens each associated With a respective part of speech.

19. The system of claim 15, Where the Weight vector only
includes Weights for features, and combinations of features,
that are present in the original training data.

20. A system, comprising:
one or more computers programmed to perform actions

comprising:
receiving a list of tokens representing a sentence having

Words and punctuation, the tokens corresponding to
the Words and punctuation of the sentence;

identifying, from the list of tokens, a feature vector
corresponding to features in a current parse state of a
parser, Where each element of the feature vector indi
cates a presence or absence of a respective feature of
the current parse state;

identifying non-Zero components resulting from a
degree-d polynomial mapping of the feature vector to
a set of polynomial components, the polynomial map
ping associating each polynomial component With
either a single element of the feature vector or a prod
uct of up to d elements of the feature vector;

for each non-Zero component, mapping the combination
of one or more elements of the non-Zero polynomial
component to a single Weight in a Weight vector to
determine a set of Weights, Where each position in the
Weight vector corresponds to a distinct combination
of elements of the feature vector;

deriving a classi?cation score for the current parse state
for a particular transition in the parser, by summing
the set of Weights; and

using the transition to build a dependency graph, the
dependency graph representing syntactic modi?ers
for Words in the sentence through labeled directed
edges.

21. The system of claim 20, Where d is an integer greater
than one.

22. The system of claim 20, Where the feature vector is a
condensed representation of a corresponding complete fea
ture vector, the condensed representation containing indices
of only elements of the corresponding complete feature vec
tor that are present in the parse state.

23. The system of claim 20, Where:
the list of tokens comprises tokens each associated With a

respective part of speech.
24. The system of claim 20, Where mapping the one or

more elements of the non-Zero components comprises, for at
least one of the non-Zero components, determining that the
Weight vector does not include a Weight for the at least one
non-Zero component, and selecting a default Weight for the at
least one non-Zero component.

25. The system of claim 24, Where the default Weight is
Zero.

26. The system of claim 24, Where mapping the one or
more elements of each non-Zero component to a Weight in the
Weight vector includes, for each component that is associated
With a product of elements of the feature vector, identifying
an index into the Weight vector from a hash table that takes the
indices of the elements as input and outputs the index, and
retrieving the Weight stored at that index in the Weight vector.

* * * * *

