a2 United States Patent

US008543407B1

(10) Patent No.: US 8,543,407 B1

Gagnon et al. (45) Date of Patent: *Sep. 24, 2013
(54) SPEECH INTERFACE SYSTEM AND 5,386,556 A 1/1995 Hedin et al.
METHOD FOR CONTROL AND 5,434,777 A 71995 Luciw
INTERACTION WITH APPLICATIONS ON A samass A 121903 Lennigetal
COMPUTING SYSTEM 5,577,241 A 11/1996 Spencer
5,608,624 A 3/1997 Luciw
(75) Inventors: Jean Gagnon, Vankleek Hill (CA); 5,664,061 A 9/1997 Andreshak et al.
Philippe Roy, Kitchener (CA); Paul J. g’gg%’;gg ﬁ 12; }gg; gonf(adtztlaL
127, ook et al.
Lagassey, Vero Beach, L. (US) 5748974 A 5/1998 Johnson
5,777,614 A 7/1998 Ando et al.
(73) Assignee: Great Northern Research, LLC, Vero 5794050 A 8/1998 Dahlogfe;l etal.
Beach, FL (US) 5,826,261 A 10/1998 Spencer
5,895,447 A 4/1999 Ittycheriah et al.
(*) Notice: Subject to any disclaimer, the term of this 5,805,466 A 4/1999 Goldberg et al.
patent is extended or adjusted under 35 (Continued)
US.LC.154(b) by 0 days. FOREIGN PATENT DOCUMENTS
Thi.s patent is subject to a terminal dis- AU 3540601 8/2001
claimer. DE 69923253 1/2006
(21) Appl. No.: 13/454,333 (Continued)
(22) Filed: Apr. 24. 2012 Primary Examiner — Abdul Azad
' pr- 2% (74) Attorney, Agent, or Firm — Steven M. Hoflberg;
Related U.S. Application Data Ostrolenk Faber LLP
(63) Continuation of application No. 12/241,028, filed on
Sep. 29, 2008, now Pat. No. 8,165,886. (7 ABSTRACT
(60) Provisional application No. 60/977,645, filed on Oct. A speech processing system which exploits statistical mod-
4.2007 T eling and formal logic to receive and process speech input,
’ ’ which may represent data to be received, such as dictation, or
commands to be processed by an operating system, applica-
(51) Imt.ClL p y p g sy pp
GI0L 21/00 (2013.01) tion or process. A command dictionary and dynamic gram-
(52) US.Cl mars are used in processing speech input to identify, disam-
U‘SI;C) 704/275: 704/257 biguate and extract commands. The logical processing
(53) Field ofClasmﬁcatlonSearch """ ’ scheme ensures that putative commands are complete and
USPC 704/235. 251. 257. 275 unambiguous before processing. Context sensitivity may be
g lt """ ﬁlf """"""" et ilh' t’ ’ employed to differentiate data and commands. A multi fac-
ce application liie for complete search fustory. eted graphic user interface may be provided for interaction
(56) References Cited with a user to speech enable interaction with applications and

5,282,265 A
5,377,303 A

U.S. PATENT DOCUMENTS

1/1994 Rohra Suda et al.
12/1994 Firman

processes that do not necessarily have native support for
speech input.

20 Claims, 51 Drawing Sheets

. I User I Speech System:
=9 Utterance Recognition receives
1 Process SltT'Z::n > input from
N /' the Speech
Supplements or replaces STT Recognition
P
kreoy(;eos:rg/r Multi Faceted Graphical
maouse . User Interface Interface is
System controls) . ahigh-level window
information - ‘/’Text-To-Speech*}) MFGUI and \ Confégr;;as;t;:am
and/or prompt _Engine (TTS) ! / — applications o
— promp ~ Engine (TTS) mocording application. (MFGUI)
m\ J\ <_Supplements or replaces STT \ N to the CD.
S (System) N
Application 1 .
\pp:_" LR
L _ Application Application
1 2
Application 2 M
| Registers >
- ! Application 3
Mare e f Commands
Applications... ?\ Dictionary
(CD)

US 8,543,407 B1

Page 2
(56) References Cited 7,225,125 B2 5/2007 Bennett et al.
7,233,790 B2 6/2007 Kjellberg et al.
7,233,904 B2 6/2007 Luisi
U.8. PATENT DOCUMENTS 7,266,496 B2 9/2007 Wang et al.
5,899,972 A 5/1999 Miyazawa et al. 7,277,854 B2 10/2007 Bennett et al.
5,915,249 A 6/1999 Spencer 7,290,039 Bl 10/2007 Lisitsa et al.
5,970,457 A 10/1999 Brant et al. 7,292,579 B2 112007 Morris
5,987,404 A 11/1999 Della Pietra et al. 7,299,033 B2 11/2007 Kjellberg et al.
6,052,656 A 4/2000 Suda et al. 7,310,600 Bl 12/2007 Garner et al.
6,081,750 A 6/2000 Hoftberg et al. 7,324,947 B2 1/2008 Jordan et al.
6,088,669 A 7/2000 Maes 7,349,896 B2 3/2008 Chowdhury et al.
6,088,671 A 7/2000 Gould et al. 7,349,953 B2 3/2008 Lisitsa et al.
6,088,731 A 7/2000 Kiraly et al. 7,376,556 B2 5/2008 Bennett
6,144,938 A 11/2000 Surace et al. 7,376,645 B2 5/2008 Bernard
6,161,084 A 12/2000 Messerly et al. 7,379,874 B2 5/2008 Schmid et al.
6,246,981 Bl 6/2001 Papineni et al. 7,386,449 B2 6/2008 Sun etal.
6,317,831 Bl 11/2001 King 7,392,185 B2 6/2008 Bennett
6,323,846 Bl 11/2001 Westerman et al. 7,398,209 B2 7/2008 Kennewick et al.
6,421,672 Bl 7/2002 McAllister et al. 7,403,938 B2 7/2008 Harrison et al.
6,453,292 B2 9/2002 Ramaswamy et al. 7,409,337 Bl 8/2008 Potter et al.
6,466,654 Bl 10/2002 Cooper et al. 7,412,591 B2 82008 Maetal.
6,501,937 Bl 12/2002 Ho etal. 7,415,100 B2 8/2008 Cooper et al.
6,523,061 Bl 2/2003 Halverson et al. 7,418,392 Bl 8/2008 Mozer et al.
6,570,557 Bl 5/2003 Westerman et al. 7,426,467 B2 9/2008 Nashida et al.
6,598,018 Bl 7/2003 Junqua ..o 704/251 7,447,635 Bl 112008 Konopka et al.
6,598,039 Bl 7/2003 Livowsky 7454351 B2 11/2008 Jeschke et al.
6,601,026 B2 7/2003 Appelt et al. 7,467,087 Bl 12/2008 Gillick et al.
6,615,172 Bl 9/2003 Bennett et al. 7,475,010 B2 1/2009 Chao
6,633,846 Bl 10/2003 Bennett et al. 7,483,894 B2 1/2009 Cao
6,650,735 B2 11/2003 Burton et al. 7,487,089 B2 2/2009 Mozer
6,665,639 B2 12/2003 Mozer et al. 7,502,738 B2 3/2009 Kennewick et al.
6,665,640 Bl 12/2003 Bennett et al. 7,522,927 B2 4/2009 Fitch et al.
6,677,932 Bl 1/2004 Westerman 7,523,108 B2 4/2009 Cao
6,691,111 B2 2/2004 Lazaridis et al. 7,526,466 B2 4/2009 Au
6,691,151 Bl 2/2004 Cheyer et al. 7,539,656 B2 5/2009 Fratkina et al.
6,704,728 Bl 3/2004 Chang et al. 7,543,232 B2 6/2009 Easton, Jr. et al.
6,735,632 Bl 5/2004 Kiraly et al. 7,546,382 B2 6/2009 Healey et al.
6,742,021 Bl 5/2004 Halverson et al. 7,548,895 B2 6/2009 Pulsipher
6,757,362 Bl 6/2004 Cooper et al. 7,555,431 B2 6/2009 Bennett
6,757,718 Bl 6/2004 Halverson et al. 7,571,106 B2 8/2009 Cao et al.
6,778,951 Bl 8/2004 Contractor 7,599,918 B2 10/2009 Shen et al.
6,792,082 Bl 9/2004 Levine 7,620,549 B2 11/2009 Di Cristo et al.
6,807,574 Bl 10/2004 Partovi et al. 7,624,007 B2 11/2009 Bennett
6,810,379 B1 10/2004 Vermeulen et al. 7,634,409 B2 12/2009 Kennewick et al.
6,813,491 Bl 11/2004 McKinney 7,640,160 B2 12/2009 Di Cristo et al.
6,832,194 Bl 12/2004 Mozer et al. 7,647,225 B2 1/2010 Bennett et al.
6,842,767 Bl 1/2005 Partovi et al. 7,657,424 B2 2/2010 Bennett
6,851,115 Bl 2/2005 Cheyer et al. 7,672,841 B2 3/2010 Bennett
6,859,931 Bl 2/2005 Cheyer et al. 7,676,026 Bl 3/2010 Baxter, Jr.
6,895,380 B2 5/2005 Sepe, Jr. 7,684,985 B2 3/2010 Dominach et al.
6,895,558 Bl 5/2005 Loveland 7,693,720 B2 4/2010 Kennewick et al.
6,928,614 Bl 8/2005 Everhart 7,698,131 B2 4/2010 Bennett
6,937,975 Bl 8/2005 Elworthy 7,702,500 B2 4/2010 Blaedow
6,964,023 B2 11/2005 Maes et al. 7,702,508 B2 4/2010 Bennett
6,974,223 B2 12/2005 Krietzman 7,707,027 B2 4/2010 Balchandran et al.
6,975,993 Bl 12/2005 Keillerccccecevevvenene 704/275 7,707,267 B2 4/2010 Lisitsa et al.
6,980,949 B2 12/2005 Ford 7,711,672 B2 5/2010 Au
6,985,865 Bl 1/2006 Packingham et al. 7,716,056 B2 5/2010 Weng et al.
6,996,531 B2 2/2006 Korall et al. 7,720,674 B2 5/2010 Kaiser et al.
6,999,927 B2 2/2006 Mozer et al. 7,720,683 Bl 5/2010 Vermeulen et al.
7,027,974 Bl 4/2006 Busch et al. 7,725,307 B2 5/2010 Bennett
7,036,128 Bl 4/2006 Julia et al. 7,725,318 B2 5/2010 Gavalda et al.
7,050,977 Bl 5/2006 Bennett 7,725,320 B2 5/2010 Bennett
7,062,428 B2 6/2006 Hogenhout et al. 7,725,321 B2 5/2010 Bennett
7,069,560 Bl 6/2006 Cheyer et al. 7,729,904 B2 6/2010 Bennett
7,071,999 B2 7/2006 Lee 7,729.916 B2 6/2010 Coffman et al.
7,092,887 B2 82006 Mozer et al. 7,734,461 B2 6/2010 Kwak et al.
7,092,928 Bl 8/2006 Elad et al. 7,752,152 B2 7/2010 Paek et al.
7,127,046 Bl 10/2006 Smith et al. 7,774,204 B2 8/2010 Mozer et al.
7,136,710 B1 11/2006 Hoffberg et al. 7,783,486 B2 8/2010 Rosser et al.
7,137,126 Bl 11/2006 Coffman et al. 7,801,729 B2 9/2010 Mozer
7,139,714 B2 11/2006 Bennett et al. 7,809,570 B2 10/2010 Kennewick et al.
7,177,798 B2 2/2007 Hsu et al. 7,809,610 B2 10/2010 Cao
7,197,460 Bl 3/2007 Gupta et al. 7,818,176 B2 10/2010 Freeman et al.
7,200,559 B2 4/2007 Wang 7,822,608 B2 10/2010 Cross, Jr. et al.
7,200,638 B2 4/2007 Lake 7,823,123 B2 10/2010 Sabbouh
7,203,646 B2 4/2007 Bennett 7,831,426 B2 112010 Bennett
7,216,073 B2 5/2007 Lavi et al. 7,840,400 B2 11/2010 Lavi et al.
7,216,080 B2 5/2007 Tsiao et al. 7,840,447 B2 112010 Kleinrock et al.

US 8,543,407 B1

Page 3
7,873,519 B2 1/2011 Bennett 2008/0052063 Al 2/2008 Bennett et al.
7,873,654 B2 1/2011 Bernard 2008/0056242 A1 3/2008 Hersent
7,881,936 B2 2/2011 Longeetal. 2008/0071544 A1 3/2008 Beaufays et al.
7,912,702 B2 3/2011 Bennett 2008/0109322 Al 5/2008 Leach et al.
7,917,367 B2 3/2011 Di Cristo et al. 2008/0120112 A1 5/2008 Jordan et al.
7,917,497 B2 3/2011 Harrison et al. 2008/0221880 Al 9/2008 Cerraetal.
7,920,678 B2 4/2011 Cooper et al. 2008/0221903 Al 9/2008 Kanevsky et al.
7,930,168 B2 4/2011 Weng et al. 2008/0228496 Al 9/2008 Yuetal.
7,949,520 B2 5/2011 Weider et al. 2008/0247519 Al 10/2008 Abella et al.
7,974,844 B2 7/2011 Sumita 2008/0300878 Al 12/2008 Bennett
7974972 B2 7/2011 Cao 2009/0028908 Al 1/2009 Donovan
7,983,915 B2 7/2011 Knight et al. 2009/0076796 Al 3/2009 Daraselia
7,983,917 B2 7/2011 Kennewick et al. 2009/0086805 Al 4/2009 Samueli et al.
7,983,997 B2 7/2011 Allen et al. 2009/0100049 A1 4/2009 Cao
7,987,151 B2 7/2011 Schott et al. 2009/0112572 A1 4/2009 Thorn
8,000,453 B2 82011 Cooper et al. 2009/0157401 Al 6/2009 Bennett
8,005,679 B2 82011 Jordan et al. 2009/0164441 Al 6/2009 Cheyer
8,015,006 B2 9/2011 Kennewick et al. 2009/0171664 Al 7/2009 Kennewick et al.
8,024,195 B2 9/2011 Mozer et al. 2009/0253463 Al 10/2009 Shin et al.
8,036,901 B2 10/2011 Mozer 2009/0299745 Al 12/2009 Kennewick et al.
8,041,570 B2 10/2011 Mirkovic et al. 2009/0306980 Al 12/2009 Shin
8,041,611 B2 10/2011 Kleinrock et al. 2011/0082688 Al 4/2011 Kim et al.
8,055,708 B2 11/2011 Chitsaz et al. 2011/0112921 Al 5/2011 Kennewick et al.
8,069,046 B2 11/2011 Kennewick et al. 2011/0113414 Al 5/2011 Ewington et al.
8,073,681 B2 12/2011 Baldwin et al. 2011/0119049 A1 5/2011 Ylonen
8,082,153 B2 12/2011 Coffman et al. 2011/0125540 A1 5/2011 Jang et al.
8,095364 B2 1/2012 Longe et al. 2011/0131045 A1 6/2011 Cristo et al.
8,099,280 B2 1/2012 Mozer et al. 2011/0144999 Al 6/2011 Jang et al.
8,107,401 B2 1/2012 Johnetal. 2011/0175810 A1 7/2011 Markovic et al.
8,112,275 B2 2/2012 Kennewick et al. 2011/0184730 Al 7/2011 LeBeau et al.
8,112,280 B2 2/2012 Lu 2011/0231182 Al 9/2011 Weider et al.
8,140,335 B2 3/2012 Kennewick et al. 2011/0231188 Al 9/2011 Kennewick et al.
8,165,886 B1* 4/2012 Gagnonetal. 704/275 2011/0264643 A1 10/2011 Cao
8,195,467 B2 6/2012 Mozer et al. 2011/0279368 Al 11/2011 Klein et al.
8,204,238 B2 6/2012 Mozer 2012/0016678 Al 1/2012 Gruber et al.
8,219,407 Bl 7/2012 Royetal. 2012/0020490 Al 1/2012 Leichter
8,290,603 Bl 10/2012 Lambourne 2012/0022787 Al 1/2012 LeBeau et al.
2001/0011028 Al 82001 Wendelrup 2012/0022857 Al 1/2012 Baldwin et al.
2002/0032567 Al 3/2002 Lindholm et al. 2012/0022860 Al 1/2012 Lloyd etal.
20020072917 AL 6/2002 Irvin et al. 2012/0022869 Al 12012 Lloydetal.
2003/0120494 Al 6/2003 Jost et al. 2012/0022874 Al 12012 Llovd of al
yd et al.
2003/0144845 A1* 7/2003 Lee .ovvvrirrrririrrnrrrnnnn, 704/275 2012/0023088 Al 172012 Chene et al
2003/0187659 A1* 10/2003 Cho etal. ...occoovvrrrrnenn. 704/275 &t al

2012/0035908 Al 2/2012 LeBeau et al.

2003/0212961 AL 11/2003 Soin et al. 2012/0035924 Al 2/2012 Jitkoff et al.

2004/0054535 Al 3/2004 Mackie et al.

2004/0054690 A1 3/2004 Hillerbrand et al. 2012/0035931 Al 2/2012 LeBeau et al.
2004/0162741 Al 8/2004 Flaxeretal. 2012/0035932 Al 2/2012 Jltkoffetal.
2004/0186717 Al 9/2004 Savic ef al. 2012/0042343 Al 2/2012 Laligand et al.
2004/0193420 A1 9/2004 Kennewick et al.

2005/0071332 Al 3/2005 Ortega et al. FOREIGN PATENT DOCUMENTS
2005/0080625 Al 4/2005 Bennett et al. EP 0961263 12/1999
2005/0119897 A1 6/2005 Bennett et al. EP 1245023 10/2002
2005/0125235 Al 6/2005 Lazay et al. EP 1687961 8/2006
2005/0190059 Al 9/2005 Wehrenberg EP 2109295 10/2009
2006/0017692 Al 1/2006 Wehrenberg et al. P 2000056792 2/2000
2006/0111906 A1 5/2006 Cross et al. P 2001125896 5/2001
2006/0122834 Al 6/2006 Bennett P 2002024212 1/2002
2006/0143007 Al 6/2006 Koh et al. P 2003517158 5/2003
2007/0050191 Al 3/2007 Weider et al. P 2009036999 2/2009
2007/0088556 Al 4/2007 Andrew KR 20070067495 6/2007
2007/0094047 Al 4/2007 Sager KR 20080012277 2/2008
2007/0100790 Al 5/2007 Cheyer et al. KR 20080032841 4/2008
2007/0118377 Al 5/2007 Badino et al. KR 20080032843 4/2008
2007/0124149 A1 5/2007 Shen et al. KR 20080033350 4/2008
2007/0185917 Al 8/2007 Prahlad et al. WO WO02004012151 2/2004
2007/0208726 Al 9/2007 Krishnaprasad et al. WO WO2005050958 6/2005
2007/0276810 Al 11/2007 Rosen WO WO2006129967 12/2006
2007/0282595 Al 12/2007 Tunning et al. WO WO02007118029 10/2007
2008/0015864 Al 1/2008 Ross et al. WO WO2008085742 7/2008
2008/0021708 Al 1/2008 Bennett et al. WO WO2008109835 9/2008

2008/0034032 Al 2/2008 Healey et al. . .
2008/0049905 Al 2/2008 Seo * cited by examiner

U.S. Patent Sep. 24, 2013

Sheet 1 of 51

Start MAIN PROCESS
(5101)

|

INITIALIZE SYSTEM
(S200)

'

Verify Activation of
Speech Recognition
Process
(8102)

Speech
Input Active?
(S103)

Yes

US 8,543,407 B1

Set Speech As Primary
Interface (Optional)
(8104)

Set Keyboard And Mouse
As Primary Interfaces
(Optional)

(8105)

Y

Greet User [Optional]
(S106)

'

ACTIVATE SYSTEM
(S300)

Fig. 1 MAIN PROCESS

U.S. Patent Sep. 24, 2013 Sheet 2 of 51 US 8,543,407 B1

(" Start INITIALIZE SYSTEM)

(5200)

- /

\ 4

Initialize Viewable Graphical
User Interface To Default Views
(MFGUI in Preferred Emb.)
(8201)

'

Open Default Applications
(S202)

Y

Load Speech Recognition
Process
(S203)

l

Load Text To Speech Engine

(TTS)
(S204)

Load Commands Dictionary [From Disk Storage _ Commands
(S205) To Memory Dictionary

Y

Initialize Default Applications To
Default Facets Of MFGUI
(S206)

Return To
MAIN PROCESS Legend

Figure 1

Process Flow——»
—————— Data Flow--——-»

Fig. 2 INITIALIZE SYSTEM

U.S. Patent Sep. 24, 2013 Sheet 3 of 51 US 8,543,407 B1

Start ACTIVATE SYSTEM
(S300)

Y

Prompt User
(S301)

A 4

|
|
|
|
|
|
|
|
|
Wait For User Input :
(S302) :
|

|

|

|

|

|

|

|

|

1

\ A

|

PROCESS USER INPUT Ontional
(S400) ptiona

Fig. 3 ACTIVATE SYSTEM

U.S. Patent Sep. 24, 2013

INPUT (S400)

[Start PROCESS USER]

Sheet 4 of 51

Command

Mode? (S403
Input Acquire Incoming input
. Stream
Stream S401)
(contains command
information?
| PARSE MODE (S500) | S404
+ No
System - Determine Mode Of Prompt User For Command
Mode Operation (S402) (S405)

Wait For User Input (S406)

Data Stream

/

Command Status

/

Y
Inform and/or Prompt User For
Command Information
(Command Status is unknown,
or incomplete) (S411)

Command Status
"incomplete"? (S412

No

L]

Acquire Incoming Input
Stream (S407)
I

v
PROCESS STREAM
(S600)

Determine Command
Status (S408)

Status “Processed” or
"Processed Error" "CAS"
or "Aborted"? (3409

Inform and/or Prompt User for
Command Status/Command
Information [Optional]

Clear Data Construct and if

| Command Status is not
"CAS" Set System Mode to

Clear Data

Construct Data
(Optional) (S413) Construct
| -

Legend
—Process Flow—»-
-—--Data Flow —

Return To ACTIVATE
SYSTEM (Figure 3)

"Wait" (S414)

Fig. 4A PROCESS USER INPUT

US 8,543,407 B1

U.S. Patent Sep. 24, 2013 Sheet 5 of 51 US 8,543,407 B1

(Start PROCESS USER INPUT)
(S400))

Y

Acquire Incoming Input Stream | m
(8450)

PROCESS STREAM

-

(8550)
Command » Determine Command Status
Status (S452)

Command Status Set to Yes
Incomplete?

(S453)

Inform User of Command Prompt User For
Status As Required Comma_nd
(S454) Information
(5455)

Clear Data
Data
Construct -~ Construct
(5456)

Y
[Return To ACTIVATE SYSTEM]

(Figure 3)

Legend

—Process Flows
-—-Data Flow »

Fig. 4B PROCESS USER INPUT

U.S. Patent Sep. 24, 2013 Sheet 6 of 51 US 8,543,407 B1

(Start PROCESS USER INPUT

(5400)
Acquire Incoming Input Stream | ~ _ / Input /
(S401) Stream
PARSE MODE
(8500)

Determine Mode Of Operation
(S402)

Command Mode?
(S403)

PROCESS STREAM
(S600)
Y

Determine Command Status | Command
(S408) Status

“Processed Error”, “CAS” or

"Aborted"?
Y (S409)
Clear Data Yes
Cosnﬂrémt Inform User of
() Command Status \
(S415) Inform and/or Prompt User
For Command Information
Clear Data Construct and it (S416)

Command Status is not CAS
Valid Set System mode to “Wait”
(S4|17)

Return To ACTIVATE SYSTEM
(Figure 3)

Fig. 4C PROCESS USER INPUT

U.S. Patent

Sep. 24,2013 Sheet 7 of 51

Start PARSE MODE
(S500)

Y

US 8,543,407 B1

)

Input
Stream

-—»

Parse Input Stream Into Data
Construct
(S501)

_ Data
Construct

Commands
Dictionary

v

Search Data Construct For A
Command Activation
Statement
(S504)

- Data
Construct

No

CAS Found?

(S505)

Set System to Command
Mode
(S506)

. System
Mode

!

Clear CAS from Data
Construct
(S507)

Legend

—Process Flows
- —-Data Flow »

y

Return To PROCESS USER
INPUT
(Figure 4A)

Fig. 5A PARSE MODE

U.S. Patent Sep. 24, 2013 Sheet 8 of 51 US 8,543,407 B1
Start PROCESS STREAM
(8550)
Parse Input Stream Into Data Daia
—> Construct T Construct /
(5551)
Search data construct for D
. ata
rom matching command f———/ Construct /
| (8552) !
|
|
l v |
| Check for known |
L |
Commands command |
/ Dictionary / (S553) :
T |
| [
! Known No | | SetCommand Status
: Command? ' to "unknown"
I | (S559)
|
: . '
| |
! Check for Abort Command or | | Command
: Condition : Status - ‘:
I (S555) | 7y |
| | ! |
|
! Yes | | Set Command Status to | |
: Command or Condition? | "Aborted" —’lh—
[! (S560) |
: : i' ———————— -
:____ Check for Command complete | J |
(8557) |
|
|
Set Command Status
to "incomplete”
(S561)
PROCESS COMMAND
(8650)
Legend V
9 Return to PROCESS USER
—Process Flows INPUT
-~ -Data Flow (Figure 4B) Fig. 5B PARSE MODE

U.S. Patent Sep. 24, 2013 Sheet 9 of 51 US 8,543,407 B1

Start PARSE MODE)
(S500)

Parse Input Stream Into Data Data
——— Construct - Construct
(8501)

(Optional)
Determine Mode of Operation
(8502)

Yes (Optional)
Command Mode?

(S503)

Search Data Construct For A

Commands > Command Activation . Data
Dictionary Statement (CAS) Construct

(S504)

CAS Found?
(8505)

Set System to Command Mode | System
(S506) Mode

Clear CAS from Data Construct

(S507)
|
L4
(" Return To PROCESS USER)
Legend F'lNPUIC
—Process Flow» . (Figure 4C) J

-—-Data Flow » Fig. 5C PARSE MODE

U.S. Patent

Sep. 24,2013 Sheet 10 of 51

(Start PROCESS STREAM
(S600)

US 8,543,407 B1

Parse Input Stream Into Data
Data
——— Construct - — | Construct
(8601)
T
|
Commands Search d_ata construct for :
Dictionary | matching command - —————— 1
| (8602)

Fig. A PROCESS STREAM

>

Check for known command
(S603)

own Command
(S604)

Set Command
tatus to "unknown" (—

Check for Abort Command or

CAS
(S609)

Abor
Command or CAS?

(86|05)
Y
Check for Command complete < Command
(S606) Status
A

Set Command Status

to "incomplete"
(S608)

Yes Status to "Aborted”

Set Command

or "CAS"
(S611)
Set Command Status to "System :
Valid" or "Application Valid" ¥
(S612) Command /
v Status
PROCESS COMMAND
(S700)
y
(Return to PROCESS USER
INPUT
Y (Figure 4A) y Legend
—Process Flows
—Data Flow—»

U.S. Patent

Sep. 24,2013

Sheet 11 of 51 US 8,543,407 B1
Start PROCESS COMMAND <
S650 —
17 System
Data Preserve System State [if | (Sétgt;f
Construct required] S651 Content
| L] Mode)
(S »| Determine If Command Acts on
an Application ot Tsysiem valid o A
i‘ ———— > S652 “application valid” *
' / Command /
Commands Status
Dictionary ommand Act on~_ No
an Application?
Determine If Current Command s
Associated With An Active L Data "
Start Application \ / Construct
Application 5654 v
8656 “ //
\
Y “ /I
Determine If Associated with an \\,’
Application Active Application? }
Started 1\
S657 I
¥y Yes Pt
[F Applicable Select AFacet & |/
Display Application In MFGUI, Ve '/ Commands
and If Applicable, give Focus Dictionary
5660
Y
Determine If Command Was A
Command To Start An
Application Legend
Set Command S661 —Process Flows
Status to ---Data Flow »
"processed
Zrég; Command Was to No _ I
| tart An Application? o
l
| -
Clear Data
/ Command / [Return To PROCESS STREAM]<_ Construct .
Status (Figure 5B)

[Optional] S677

Fig. 6B PROCESS COMMAND

U.S. Patent

Sep. 24, 2013 Sheet 12 of 51 US 8,543,407 B1
Yes
s the Command a
comma_nd to return to 6B 6C
previous state?
No
Process command Data

Command an exit syste
command?

5666 Construct

-/ /

S664
es
Set Command
EXIT SYSTEM S665 omman No
=T (> >: v successful? "pro?etztsl:asdtgrror"
8667 5669
- v <)
Set Command Status to Command
"Processed” = === |f-———————————————— 7/ Status /
S668

Determine If Command Enters

Content Loop
S670

Commands
Dictionary

/

Enter Content Loop
S750

Y

Determine If Command
Completion Requires Returning
To Previous State
S672

Determine If Command Is
- — — —1] Present
S675
A

Required
0 Return To Previous
State?
8673

erS

Is
a Command
Present?
S676

Preserved System

Return to Previous System
State
S674

States
(CCA, Content
Mode, Etc.)

Fig. 6C PROCESS COMMAND

U.S. Patent Sep. 24, 2013 Sheet 13 of 51 US 8,543,407 B1

[Start PROCESS STREAM j

(S600)
Y
Search data construct for
Commands . Data
Dictionary /™) matching command 7/ Construct
i (S602) :
. v l
! Check for known command !
: (S603) :
| |
! . ' Set Command
| Known Command? I Status to "unk nl
! (S604) ! atus to "unknown
| | (S605)
: Yes : Y
:» Check for Command complete <: Command /
(S606) Sta+tus
Set Command Status
to "incomplete" m
(S608)
Check for Abort Command or
CAS Command /
(S609) StT“S
!
Set Command Status
to "Aborted" or "CAS"
(8611)
Set Command Status to "System
Valid" or "Application Valid"
(5612) If Command Status is
CAS, Delete CAS from -
PROCESS COMMAND Construct [Optional]
(S700) (S613)
Legend # I
—Process Flows- —p tum to PROCESS USER)
- —-Data Flow- » INPUT
S (Figure 4C))

Fig. 6D PROCESS STREAM

U.S. Patent

Commands
Dictionary

/

Sep. 24,2013

Sheet 14 of 51

Start PROCESS STREAM]

(S600)
L

Search data construct for
matching command
(S602)

v

Check for known command
(S603)

nown
Command?
S604

Yes

T / Construct

US 8,543,407 B1

Data

/

A 4

Check for Command Valid
(Complete)
(S606)

ommand Vali

|
|

|

|

|

|

|

|

|

|

|

|
N

|
o

No

\

(Complete)?
(S607)

——p
Command
Status
A
| i
: Set Command
I} | Statusto
| "unknown"
: (5605)
:
v
Set Command
Status to "Aborted" <
or "CAS"
(S611)
\4
If Command
Status is CAS,
Delete CAS from
Data Construct
[Optional]
(S613)

Check for Abort Command
or CAS
(S609)

Command or CAS?

Legend
—Process Flow—»
——-Data Flow—»

Set Command Status to “System

Valid” or “Application Valid”
(S612)

PROCESS COMMAND

(S700)

/

Command
Status

/

vy
_("Return to PROCESS USER INPU

L

(Figure 4C)

J

Fig. 6E PROCESS STREAM

U.S. Patent Sep. 24, 2013 Sheet 15 of 51 US 8,543,407 B1
v
Prompt for missing Command
Information
(S614)
Wait for Input from User Input
(S615) <] stream
Acquire and Parse new Input /// Data
into Data Construct #-—-—--—- 7/ Construct /
(S616) e
Check For CAS or Abort 2
Command i ——————— CDOirCT:irS:SdS
(S617) ry
CAS or Abort No

Command?
S618

Yes

Set Command Status to
C d
"Aborted” or "CAS" fF--——-——- 7/ OSTaTuasn /
(8619)
If Command Status is CAS,
Delete CAS from Data Construct 6E 6F
[Optional]
(S620)
Legend
—Process Flow»

- —-Data Flow »

Fig. 6F PROCESS STREAM

U.S. Patent Sep. 24, 2013 Sheet 16 of 51 US 8,543,407 B1

Start PROCESS STREAM

v
(S600) Commands Check for Command
I 7 ey /| comee L

r
: (5629)
Search data construct for Data |
| g —_ _
matching command - (S625) Construct Eommand

plete? (5630

A
Check for at least one Set Command Status

known command to "System Valid" or Prompt for missing
(S626) "Application Valid" Paramaters
(S631) (363'32)
Wait for Input from User
PROCESS (S633)
COMMAND v
(S700) Acquire and Parse new Data
Input into Data Construct |- -
; (S634) Construct
/
For Each Known Command | | CheckF VC 3 /
in the Data Construct: €Ck For Lomman
- Y Aborted or CAS Commands
(5628) Dictionary
Set Command (5639)
[————— Status to "unknown"
(S638)

Legend

Set Command Status to

Command "Aborted" or "CAS" —~Process Flow—
T (SG|37) —---Data Flow— -
Fig. 6G PROCESS STREAM

INPUT

Y
Return to PROCESS USER
(Figure 4C)

U.S. Patent

Sep. 24,2013

Preserved
System
States
(CCA,
Content
Mode, Etc.)

7A 7B

Sheet 17 of 51

(Start PROCESS COMMAND
S700
v

Preserve System State if
required
S701
L]
Determine Command Status
8702

US 8,543,407 B1

| Set to “system valid”
or “application valid”

v

/

Command
Status

Command Status

"system valid" ?

o]

Determine If Current Command Is
Associated With An Active
Application
S704

Start Application
S706

No

v

Determine If
Application Started

Yes

Current
Command
Associated with an Active
Application?
S705

Application Started*

[
o

Li Yes

If Applicable Select A Facet &
Display Application In MFGUI and
If Applicable, Give Focus - S710

(]

Set Command
Status to "processed

5709
I

Determine If Command Was A |,
Command To Start or Switch to An
Application - S711

A
Command
Status

[s/

Commands
Dictionary

Command to

Start/Switch to An No

Application?

Yes

-

[
|

Y
Return To PROCESS STREAM
(Figure 6A)

Fig. 7A PROCESS COMMAND

U.S. Patent Sep. 24, 2013 Sheet 18 of 51 US 8,543,407 B1

e Command a command to re Yes

or switch to a previous state?
ommand an exit syste Process command < Data
command? 5716 Construct
S714
Yes Set Command
EXIT/SHUTDOWN successful? Status to "processed
SYSTEM S715) S717 error" S719
T
Set Command Statusto | Command
"Processed" S718 Status
1]
Determine If Command Enters - Commands
Content Loop S$720 H Dictionary
|
|
|
Content Enters Content Loop? |
Loop |
S800 :
! No |
Y :
Determine If Command Completion I
Requires Returning To Previous State |«
8722
Required
To Return To Previous Preserved
State? System
States (CCA,
Content
Inform user of Command Mode,
Status [Optional] S724
Clear Data e] Etlc.)
- [%);t?;;ua(ﬁ Return to Previous System [#-——---—-——-—- :
tate S72 -
s726 | State S725
- . Legend
Flg. 7B PROCESS —Process Flows

COMMAND - —-Data Flow

U.S. Patent

7

Data/loop

Sep. 24,2013

Start CONTENT LOOP
\ (S750)

Sheet 19 of 51

N

US 8,543,407 B1

v

Clear Data Construct
(8751)

Prompt User [optional]
(S752)

Wait for and Receive Input
Stream
(8753)

/
/

PARSE COMPLEX
5850

Y

Determine if Data Construct

- / Input
/
Stream /

/
/

/ Commands

(S756)

If Data is present Place Data
In Required Field Of CCA

7
/

/
/

contains Command - Dictionar
(S754) / gnary
i) /
\ /
\ /
\ /
BN \ /
N7
/// H \\\\ N
No Contains o A
< aCommand? FAERN
S~ (8755) J/ AN
\\\ //’/ / \
;' Yes / \
’ 7/ \ 7/
Determine if Abort Command Data
(8757) Construct /
Ves /Abo\rt\
< Command
0 S758)
;NO Return to
" CCA No Process
<__Command? > Command <«
‘\(\8759)// (Figure 6B)
R S760
Yes ()

Fig. 7C

U.S. Patent

7C

7D

-~

\
Command loop

Sep. 24, 2013 Sheet 20 of 51 US 8,543,407 B1
Determine if Exit CCA Command ¢ Data /
(S761) e Construct /
77777 Commands
Dictionary
o Bt e e
< CCACommand?
T (8762)

Ask User to Confirm Exit (Optinal)

(S766)

Noi/

Process Command in CCA

'

Legend

—Process Flows
——————— Data Flow-»

(8763)
-_~User Has™.__
Confirmed? ™ No
_ (Optional)
__—~Command - (8767)/
YeS T S e
< Successful? > Yes
T (STB4) l
No Exit CCA
(S768)
Inform and/or Prompt User
(8765)
|
Set Command Status to
"Processed" (Optional)
(8769)
|
Y
Command
Status
77 v ™
Return To PROCESS COMMAND |
(Figure 6B)

Fig. 7D

U.S. Patent

Sep. 24,2013

Sheet 21 of 51

(Start PROCESS COMMAND

S700
Preserved v
System Lo Preserve System State if required
States S701
(CCA, v
Content Determine Command Status
Mode, Etc.) 8702

Start Application
S706

!

US 8,543,407 B1

| Set to “system valid”
or “application valid”

Y

/ Command
Status

Command Status

Y

"system valid" ?
S703

No

Yes

Determine If
Application Started
S707

Determine If Current Command Is
Associated With An Active
Application
S704

Determine if Command
Status is “application
valid” or “system valid”
S728

Data
Construct
Application No Command ‘\ //I //’
Started? Associated with an N
3 X
S705 /N
/ /
Statsue; ’tcc;)()"mrr(l;?:sdsed > yYes e
oo — [If Applicable Select A Facet & SN
S709 Display Application In MFGUI and [a——;-— \
T If Applicable, Give Focus - S710 /] AN
v v 2
/ b
Command Determine If Command Was A |/ | \
Status Command To Start or Switch to An -~~~ \
Application - S711 I
1

\

/

Commands
Dictionary

/

Command to

Start/Switch to An No

Application?

ommand Stat
“application valid” or
system valid”?

N

A 4

L 4
Return To PROCESS STREAM
(Figure 6A)

Fig. 7E PROCESS COMMAND

U.S. Patent

Fig. 7F PROCESS COMMAND

Sep. 24, 2013 Sheet 22 of 51 US 8,543,407 B1
7E 7F
the Command™s v
command to return to a es M
previous state?
ommand an exit syster Process command - Data
command? S716 Construct
S714
Yes Set Command
EXIT/SHUTDOWN successful?) Status to -
SYSTEM S715) sS717 processed error
S719
- v
Set Command Statusto | Command
"Processed" S718 Status
Y
Determine If Command Enters | Commands
Content Loop S720 B Dictionary
|
|
C|(_)ntent Enters Content Loop? :
oop |
S800 : Inform User
' y\° t—| [Optional] |«
Determine If Command Completion | S727
Requires Returning To Previous State |«
8722
Required
To Return To Previous Preserved
State? System
States (CCA,
Content
Inform user of Command Mode,
Status [Optional] S724 Etc.)
v .
- Return to Previous System [®€--———------— :
State 8725 -
Legend

—Process Flow»
-—-Data Flow

U.S. Patent

Sep. 24,2013

Sheet 23 of 51

[Start PROCESS COMMAND

US 8,543,407 B1

S700
Preserved 17
System Preserve System State if
States —— required
(CCA, S701
Content
Mode, Etc.) Determine Command Status | set to “system valia”
S702 " or “application valid”
¥
/ Command
Command Status Status
" H L) l?
system valid" ~ Yes
7G 7H Determine If Current Command s
Associated With An Active e« —————
Application !
8704 Data
‘\ Construct
\
Current \ ;S
Start Application No Command A ;o
i Associated with an Active v /)
S706 - Sy
+ Application? v ;
_ S705 SN
Determine If _ SN/
Application Started " L Yes) /) \

Application Started?

If Applicable Select A Facet & A
Display Application In MFGUI and
If Applicable, Give Focus - S710 /

Determine If Command Was A /
Command To Start or Switch to An

|
|
/
Y 4 : \
|
|
Application - S711 :

Set Command
Status to "processed

S709
|
Y

Command
Status

/=)

Commands
Dictionary
Command to N
Start/Switch to An 0
Application?
Yes
> -t

y
Return To PROCESS STREAM
(Figure 6A)

Fig. 7G PROCESS COMMAND ENABLED FOR
RECURSIVITY

U.S. Patent

Sep. 24,2013

he Commanda
command to return to a
previous state?

ommand an exit syste
command?
S714

Yes

Sheet 24 of 51

Process command
S716

Data
Construct

e/

Yes

(EXIT SYSTEM §715))

Yes

[
-

successful?
S717

Set Command
Status to "processed
error' S719

Set Command Status to
"Processed" S718

Command
Status

W

L]

Determine If Command Enters
Content Loop S720

Commands

/

Dictionary

-

I
|
Confer:telioo | Inform User of
. P I Command Failure |
Fig. 8G I S730
S800 |
. ~ [
I
Determine If Command Completion :
Requires Returning To Previous State |« L q
egen
Sr22 —Process Flow»

Required
To Return To Previous
State?

-—-Data Flow »

Preserved
System
States (CCA,

Inform user of Command

Status [Optional] S724

Content
Mode,

Etc.)
T

Return to Parse Complex
(Figure SE - S935)
(S731)

Fig. 7TH PROCESS COMMAND ENABLED FOR RECURSIVITY

US 8,543,407 B1

U.S. Patent Sep. 24, 2013 Sheet 25 of 51 US 8,543,407 B1

Start CONTENT LOOP
(S800)
8A
A
Y
Clear Data Construct 8B
(S801)
Wait for and Receive Input Stream «—
(S802)
PARSE COMPLEX
S900
/\ Determine if Data Construct Dat
Data loop contains CCA Command or CAS <—,—/ Conzta i /
N (S803) ! ruc

|
If Data is present Place Data In :
Required Field Of CCA !
(S805) !
|
Contains !
:
|
|
Legend :
—Process Flows :
-—-Data Flow » !
|

Fig. BA CONTENT LOOP

U.S. Patent Sep. 24, 2013 Sheet 26 of 51 US 8,543,407 B1

CCA Command:
Process Application
Command In CCA
(S807)

RN

Commands
Dictionary

Command loop.

Y
Determine if Exit
CCA Command —T— —

(5808)

No Exit
CCA Command?
(8809)

Yes

Y
Return To PROCESS COMMAND
Legend (Figure 7A)
—Process Flows

-—-Data Flow

Fig. 8B CONTENT LOOP

U.S. Patent Sep. 24, 2013 Sheet 27 of 51 US 8,543,407 B1

Start PARSE COMPLEX
(S850)

I
]

Parse Input Stream
I Into Context-Based | Data
Data Construct Construct
(S851)

Determine if Data
Cqmmands Construct contains a
Dictionary ™ Command «—————————

(S852))

Does Data
Construct Contain A
Command?
(S853)

Search Locus Of
Words Around
Command to - ————————— 4
Determine Context
(S854)

Yes In Context?

w%)

No

8C

8D

Fig. 8C PARSE COMPLEX

U.S. Patent

Data

Construct /

Sep. 24,2013

Pass Stream
Data As Data

o For CCA
(S862)
/444144447
/ CCA /
Legend

—Process Flows

,,,,,,, Data Flow » Fig. 8D PARSE COMPLEX

Yes -~ Command

Generate
Dictation
Command
(5861) /,,/ \

v

Determine if
Command is
Valid (Complete)
(S856)

e .

e I s IS
" Command
S valid?
\\\\\(8857)//,/

f(es

.

s el
p A \\\\
< Dictation Command? >
[Optional]
.(S858)

*

N e
Ry 7

~_1s Command a CCA~_

N\ Command?
O " (S859)

I/Yes

Set Command
Status to CCA
(S860)

.

Sheet 28 of 51

US 8,543,407 B1

Commands
Dictionary

| /
777777777777
7

Command
Status

v A
Inform User of

Command
Failure and/or
Prompt User
for Command

Information

(Optional)

(5863)

v

Options Depend
on Embodiment

e

Wait For
and Acquire
User Input
(S864)

.

Return To
CONTENT LOOP
(Figure 7C)

U.S. Patent

Sep. 24,2013

Start CONTENT LOOP
(S800)

[

7

Data loop

Sheet 29 of 51

J

US 8,543,407 B1

Inform User (Optional)

Y

Clear Data Construct
(§801)
T

(S8817)

Prompt User for

y

Wait for and Receive
Input Stream
(S802)

h 4

PARSE COMPLEX
S800

!

Determine if Data
Construct contains a
Command
(S811)

CCA

If data is present,
place data in
required field of

(S805)

Contains
Command?

No (S812)

Determine if Command is
a CCA Command
(S816)

|

A

Command Information

<

(S814)
L Input
Stream
Data

/

Construct

No

s Command Status
Incomplete? [optional]
S813

Yes

Yes

s Command Status
Unknown? [optional]
S815

Fig. 8E CONTENT LOOP

U.S. Patent Sep. 24, 2013 Sheet 30 of 51 US 8,543,407 B1

Is

8E
Command A CCA
Command?
(S818)
8F

CCA Command:
Process Application
Command In CCA
(8807)

l

Determine if Exit CCA
Command =
(S808)

Command loop

Exit
CCA Command?
(S809)

No

Y
Return To PROCESS
COMMAND

(Figure 7E)

Legend

—Process Flows
-—-Data Flow »

Fig. 8F CONTENT LOOP

U.S. Patent Sep. 24, 2013 Sheet 31 of 51 US 8,543,407 B1

[Start CONTENT LOOP]

S800
A
h 4
Clear Data Construct
S801
A J
Wait for and Receive Input Stream < —
S802
A J
PARSE COMPLEX
S900
h 4
/\ Determine if Data Construct Dat
Data loop contains CCA Command <—,—/ Conztfuct /
N $803 !
|
If Data is present Place Data In :
Required Field Of CCA :
S805 !
| 8G
|
Contains :
a CCA Command :
S819 |
Legend :
—Process Flow» : 8H
---Data Flow » !
|
|

Fig. 8G CONTENT LOOP RECURSIVE

U.S. Patent Sep. 24, 2013 Sheet 32 of 51 US 8,543,407 B1

1

|

|

|

|

|

|

|

:

CCA Command: l
Process Application |
Command In CCA :
|

|

|

|

|

|

|

|

|

|

|

|

(S807)

\ J

t Determine if Exit Commands
CCA Command - ——— —'— .
Command loop. (S808) Dictionary

Y

NO %Xit
CCA Command?

(S809)

Legend
—Process Flows
-—-Data Flow »

Fig. 8H CONTENT LOOP RECURSIVE

Return To PROCESS COMMAND
(Figure 7H)

U.S. Patent Sep. 24, 2013 Sheet 33 of 51 US 8,543,407 B1

e N
Start CONTENT LOOP
(5800)

Y
Clear Data Construct

7 (5801)
Data loop
\
Wait for and Receive Input
Input Stream Il / Stream /
(5802)

PARSE COMPLEX
S$900

l

Determine if Data
Construct contains a

Command nl
(S811) :
|
|
l
|
b Data
: H Construct
If data is present I :
Place Data In No Contains : :
Required Field Of | Command? ! !
CCA (8812) o
(S805) o
N
N o
Determine if Command : !
isa CCACommand [=-
(S816) :
|
Legend : 8J
Process Flow——m :
— — — — DataFlow— — —pw |
|
|
|
|
|

Fig. 81 CONTENT LOOP

U.S. Patent

S

\
\

Sep. 24,2013 Sheet 34 of 51

" Command -

e (s820)

iYes
CCA Command:
Process Application

Command In CCA
(S807)

4
Determine if an Exit CCA

(S808)

Command loop l

No . Exit
-~ CCA Command? >
e (S809)

Yes

< Statusis CCAValid? >

No

Command -

B

Return To
PROCESS
COMMAND
(Figure 7E)

Fig. 84 CONTENT LOOP

US 8,543,407 B1

U.S. Patent Sep. 24, 2013 Sheet 35 of 51 US 8,543,407 B1

Start PARSE COMPLEX
S900

'

Parse Input Stream

] Into Context-Based | Data
Data Construct Construct

S901

l

Determine if Data

Commands Construct contains a
- > - ——————— !
Dictionary Command

S902

Does Data
Construct Contain A

Command?
S903

No

Yes

Search Locus Of
Words Around
Command to -+ ———————— =~
Determine Context
5904

Yes n Context?

Qos

9A

9B

Fig. 9A PARSE COMPLEX

U.S. Patent Sep. 24, 2013 Sheet 36 of 51

Determine Command Type (CAS,
CCA, or Dictation [optional]
Command) and if Command is
Valid (Complete)

S906

Y

s T
<___ Command Valid? ">
S

& Yes

No

Is -
_—"Command A Dictation .
Yes | ~-.Command? [Optional]

US 8,543,407 B1

/ /

/ Commands /

/

/ Dictionary /

/

/

’ ' /Preserved /
\\\591 i / System /
G(_en er_ate 7 / State /
y Dictation No // (CCA, //
inform Command D_ata // Content //
User and Place in // MOde) /
[Optional] | Data Stree_lm for / /
5913 CCA [Optional] v
8915
Is ™ Preserve
. _~~ Command A ~.Yes System State
. CAS? (if required) |
8908 8910
No
Pass Stream Set Command _Status
to "CCA Valid"
To CCA
As Data S909
Set Command Status to
$912 CAS Valid
| S911
|
Legend vy
_ Process Flows Return To QONTENT LOOP
(Figure 8A)

——————— Data Flow—»

Fig.

9B PARSE COMPLEX

U.S. Patent Sep. 24, 2013 Sheet 37 of 51 US 8,543,407 B1

Start PARSE COMPLEX
(S900)

y

Parse Input Stream Into Daa
--+ Context-Based Data Construct -7/ /
(S901) Consltruct
v :
Determine if Data Construct |
Commands .

/ L contains a CAS - —————— !

Dictionary (S916)

oes Data
No Construct Contain A
CAS?
(8917) ac
Yes
Search Locus Of Words Around
the CAS To Determine Context
(S918)
9D
Yes In Context?
(S905)
No
\
Prompt User for Command Or
Missing Command Information
(if applicable)
(8919)
Wait for User Input
(8920)
Acquire and Parse Incoming
Input Stream into Context- | Data /
Based Data Construct Construct
(S921)
Fig. 9C PARSE COMPLEX

U.S. Patent

Sheet 38 of 51

US 8,543,407 B1

Sep. 24,2013
//L\
No /f*ﬁoes Da\t\é\‘\\
__~Construct Contain A~ . ____ Data /
T . Command? /" Construct
T (S903) N,
\\\ /// N
S N
*Yes \\\
Determine Command AN
Type and If Command
is Valid (known and / Commands
A complete) Dictionary /
(S922)
' Depending on | No - s
-« Embodiment %:i:\ Command Valid? /j> / v
(S924) L e (8907) Preserved
N2 B v / System State /
Y Inform User| 7. (CCA,
Inform User of and/or Yes // Content //
Unknown or Clear Data Mode) /
Incomplete Construct)
Command (Optional)
[Optional] $927
(8925) - Is Preserve System
v o mand A CCA No A State (if required)
< > (8910)
Set Command \\\Command?//
Status to (8908) #
"unknown" or Yes
"ncomplete” Set Command
(8926) Status to "System
valid" or
"application valid")
Set Command Status to (8923)
"CCAvald" — [
Pass Stream To (S909)
CCA As Data
(S912)
- / ~ /
Return To CONTENT LOOP | . Command
Legend ! (Figure 8E)

—Process Flows
Data Flow—»

Fig. 9D PARSE COMPLEX

U.S. Patent

Stream /

Sep. 24, 2013 Sheet 39 of 51 US 8,543,407 B1

" Start PARSE COMPLEX

(S900)

~

A Data Construct
(S901)

Parse Input Into Context Based

Data
Construct

v

Commands
Dictionary

contains a CAS

No

(5916)

Determine if Data Construct

—

_"Does Data -

< Stream Contain A CAS? >

e (8917)

\\{((/es

Search Locus Of Words Around
the CAS To Determine Context
(8918)

Yes o Context? -

e (S905)

9E

9F

Noy

Prompt User for Command
(S926)

Wait for User Input

(S920)
v

Acquire and Parse Incoming Input

Stream into Context Based
Data Construct (5921)

No

=7

Yes

e / Does Data e T

e (8903)

Yes \;

___Is-Command an Abort___

~ Command?
Teese2r

I No

——=_Construct Contain A Command? ">

A

/ Data /

Fig. 9 PARSE COMPLEX RECURSIVE

U.S. Patent

Sep. 24, 2013 Sheet 40 of 51 US 8,543,407 B1
Determine Command Type (System,
Application or CCA Command) And | _ Commands
If CCA or System Command, if it is Dictionary
Valid (Complete) - (3928)
i L No
- g |S \\\ N /r// \\\\\ :
P . No - IsCommand™. Clear Data
—— Command Valid Pt a CAS? Yis» Construct
~.and Not a CAS? -) (S930) - (5931)
\;Yes
_~Command A CCA~_No | Preserve System
< P State in Stack
. Command? -~ (S932)
Prompt .(S908)
User v
[Optional] es \
(8937) Set Command Status
77777 to "System Valid" or
"Application Valid
Set Command (S933)
Status as "CCA v
— Valid” Go to Figure 7D -
(5909) S702 to Process
o R Command in
. vy ¥ New Stack
ass (8934)
Stream COSTaTuasnd 4
;\O %CA /Preserved
s Data Legend System
(8912) p Fl State
—Process Flows- (CCA.
Data Flow » / Content /
L Mode) /
y
Clear Data Return from Fig. 7D — S731
Construct - Restore System State |«
v $936 (S935)
‘Return To CONTENT Loop | Fig. 9F PARSE COMPLEX
(Figure 8G) RECURSIVE

U.S. Patent Sep. 24, 2013 Sheet 41 of 51 US 8,543,407 B1

Start PARSE COMPLEX
(S900)

Y

Inout Parse Input Into Context 5ata

/ P -» Based Data Construct |---- 7/ /
Construct

|

Stream (S901)

v

Determine if Data Construct

/ CDoirCr:irgre]a:ds /» contains a CAS .-
ry (S916)

oes Data
Construct Contain A
CAS?
(S917)

No

9G
Yes

Search Locus Of Words
Around the CAS To
Determine Context
(S918) 9H

In Context?
(S905)

Yes

Y

Clear CAS From Data
Pass Construct and Optionally
Stream Prompt User for Command
To CCA (S938) Prompt User for

As Data T Command

(5912) _ Y Information
Wiait for User Input (8923)

(8920)

Acquire and Parse Incoming
Data Stream into Context | Data /

Based Data Construct Construct
(S921)

Fig. 9G FLARSE COMPLEX

U.S. Patent

Prompt
User
Optional
(S937)

\ 4

Clear
Data
Construct
(S931)

Legend

—Process Flows
- —-Data Flow -»

Comman

Command A CCA

Sep. 24, 2013 Sheet 42 of 51 US 8,543,407 B1
Does Data
Construct Contain A
Command?
(8903)
Determine Command Type and
If Command is Valid (known / Commands /
-t — — .
and complete) Dictionary
(S922)
Is No
Command Valid?
(S907)
Is Yes
Command A CAS?
(S930)
Preserved
System State
Is (CCA,
Command an Abort Content
Command? Mode)

d?

Preserve System
State (if required)
(S910)

Y

"CCA val

Set Command Status to

(5909)

id"

Set Command
Status to "system
valid" or
"application valid"
or “incomplete”
S940

- 1

[Return To CONTENTJ

(Figure 81)

Fig. 9H PARSE COMPLEX

Command
Status

/4_

U.S. Patent Sep. 24, 2013 Sheet 43 of 51

Process Command in
CCA

S1001

- ..

__—~"Command Processed ~-__ Yes

US 8,543,407 B1

—

- Successfully? -
81002

~——

No
) 4

See Error Condition and

Inform/Prompt User
S1003

y

Wait for User Input
51004

Input
Stream / \
| Parse Input into Context-
o — - - based Data Construct

FTTT T S1005
v
Data / ______ v
Construct */// S
Yes . Does Data Construct No

<~ Contain an Applicable >
.. Command?
Commands / 5\\81006///

—_—

Dictionary T~
Legend) v \

Process Flows- Return to Content Loop
——————— Data Flow—» (Figure 8A)

FIG. 10A PROCESS COMMAND IN CCA OPTION 1

U.S. Patent

Sep. 24, 2013 She

Process Command in
CCA
S1001

__—"Command Processed -

_ Successfully?
81002

No

Set Error Condition and
Inform/Prompt User
S$1003

l

et 44 of 51 US 8,543,407 B1

Yes

/Preserved
/ System

Preserve System State
Content Loop
S$1004

State
T (cea,
Content /
Mode) /

/
/
/
/

/
/
/
/

A

7

Open New Stack for
Error Condition
S1005-S302

-— Alternate $1004-S601

v

Return From S725
Process Command

Legend $1006

—Process Flows
Data Flow--»

/

N

Return to Content Loop |
(Figure 8A)

S

FIG. 10B PROCESS COMMAND IN CCA OPTION 2

U.S. Patent Sep. 24, 2013 Sheet 45 of 51 US 8,543,407 B1

Process Command in
CCA
S1001

i

T T
— ~.
— ~
- ~
- ~
—

///C/ommand Processe\d\\\ Yes
. Successfully?
81002
No

Inform/Prompt User

S$1003

/ /
/Preserved /
/ /
Preserve System State J o System
/ State /
Content Loop ————» CCA /
$1004 / (CCA,
/ Content /
/
/// Mode) /
Open New Stack for
Error Condition
Figure 11
S1005

i

Return to Content Loop \
S1006-S807

\ /

Legend
—Process Flows-
——————— Data Flow-»

FIG. 10C PROCESS COMMAND IN CCA OPTION 3

U.S. Patent Sep. 24, 2013 Sheet 46 of 51 US 8,543,407 B1

Process Error in CCA
$1100

Wait for User Input
S1101

Data
Stream +
| Parse Input into Data

S Construct
S1102

Data / _____ i
Construct TN

Inform/Promot User No _— Does Data Construct Contain a
P S Command Applicable to Error >

51104 Iy Condition? //

T 81103

—

Commands /A
LT e ——— Yes
Dictionary i
Go to 8716

Process Command
$1105

Legend l

Process Flows Return from S725

Data Flow » Process Command
S1106

Return to Process
Command in CCA
(Figure 10C)

FIG. 11 Error Condition Stack For Processing
Command in CCA

U.S. Patent Sep. 24, 2013 Sheet 47 of 51 US 8,543,407 B1

System Flow Overview
Preferred Embodiment

MAIN PROCESS
S100 - Figure 1

T A

Y v

INITIALIZE SYSTEM ACTIVATE SYSTEM
8200 - Figure 2 S300 - Figure 3

3
Y

PROCESS USER INPUT
S400 - Figures 4A-4C

K
v !
PARSE MODE
$500 - Figures 5A-5C PROCESS STREAM

S600 - Figures 6A-6G
A

h 4
PROCESS COMMAND
S700 - Figures 7A-7H

A

\ 4

CONTENT LOOP
800 - Figures 8A-8J

A

v

PARSE COMPLEX
S900 - Figures 9A-9H

Fig. 12 Charts Overview

U.S. Patent Sep. 24, 2013 Sheet 48 of 51 US 8,543,407 B1

. User (Speech | System:
/@ _’ { Recognition receives
. Frotess »| input from
I /| the Speech
=2 \ Supplements or replaces STT iit Recognition
{ / Process or
keyboard/

mouse,

Process

Multi Faceted Graphical
. User Interface Interface is
—‘System controls %, a high-level window
L/ containing Facets, each
/ occupied by one

information "~~~ /”Text-To-Speech\] /] MFGUI and
i licati
and/orprompt/ «__Engine (TTS) ¢ ‘—‘ agé)clg?d:(r)]gs application. (MFGUI)
= N
U 1\\\ <_Supplements or replaces STT \ R o the CD.
&L() ‘ (System) m

~. -
~

Application 1 5= AN “\
—_ L BEQ\IS terS\ U
= >

L

Application 2 I

Application Application
1 2

- Application 3
More = e,Q‘»\ 9‘\6// Commands
Applications... /?* Dictionary
(CD)

Fig. 13 System Overview

U.S. Patent Sep. 24, 2013 Sheet 49 of 51 US 8,543,407 B1

App"‘;at'on Application 2 Application 1 || Application 2
Application 3 Application 3 || Application 4
Application 2
icqti Applicatio
App";:at'o” Application 2 PR
Application 3

Fig. 14 Examples of possible Facet configurations for
the Multi Faceted Graphical User Interface (MFGUI)

U.S. Patent Sep. 24, 2013 Sheet 50 of 51 US 8,543,407 B1

Command comes in

<__ CAS? >——» Process Stream

N

" system Y " valdto . Y System executes
< R b
“~._command? -~ . System? - command

L~

e L

N N

X

Y//Fifnown to :ciT“\\\\>N System loop & prompts
. least 1app? to validate Command

.

Y

.

//known to Y >///\//alid to Y .| CCA executes
. CCA? . CCA? command

-~ S

N N

Y

Y ///known to 1 orN CCA loop & prompts
“~.more other app? to validate Command

T \j

v Fig. 15A Decision chart for Priorities at v
executing Commands

U.S. Patent

nown to
or more
ctive app?

Known to 1 or
more inactive

Sep. 24,2013

Known to only
1 active app?

\ 4
Prompt
user for

which
application
to use

User wants
inactive app?

Known to
only
1 inactive

pp?

N

\ 4

Prompt user
for which
application to
launch and
use

I—r_

{pactive app?

Sheet 51 of 51

Valid to Y

[

US 8,543,407 B1

that app?

nownto1o
more other
inactive app?

Valid to Y

App
executes
command

App loop &
prompts to
validate
Command

App

that app?

N

nownto1o
more other

& executes

command

App loop &
prompts to
validate
Command

Return

Fig. 15B Decision chart for Priorities at
executing Commands

US 8,543,407 B1

1
SPEECH INTERFACE SYSTEM AND
METHOD FOR CONTROL AND
INTERACTION WITH APPLICATIONS ON A
COMPUTING SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application is a Continuation of U.S. patent
application Ser. No. 12/241,028, filed Sep. 29, 2008, now
U.S. Pat. No. 8,165,886, issued Apr. 24, 2012, which claims
benefit of priority from 60/977,645 filed Oct. 4, 2007, the
entirety of which are expressly incorporated herein by refer-
ence.

1 BACKGROUND OF THE INVENTION

1.1 Field of the Invention

The present invention relates to systems and methods for
controlling computer applications and/or processes using
voice input. More precisely, the present invention relates to
integrating a plurality of applications and/or processes into a
common user interface which is controlled mostly by voice
activated commands, which allows hands-free control of each
process within a common environment.

1.2 Discussion of Prior Art

Speech input user interfaces are well known. This specifi-
cation expressly incorporates by reference U.S. Pat. No.
6,606,599 and U.S. Pat. No. 6,208,972, which provide a
method for integrating computing processes with an interface
controlled by voice actuated grammars.

Typical speech driven software technology has tradition-
ally been useful for little more than a dictation system which
types what is spoken on a computer display, and has limited
command and control capability. Although many applica-
tions have attempted to initiate command sequences, this may
involve an extensive training session to teach the computer
how to handle specific words. Since those words are not
maintained in a context based model that simulates intelli-
gence, it is easy to confuse such speech command systems
and cause them to malfunction. In addition, the systems are
limited in capability to the few applications that support the
speech interface.

It is conventionally known that an application window can
spawn another window when the application calls for specific
user input. When that happens, we call the first window a
“parent window”, and the spawned window a “child win-
dow”. This presents certain problems in that the child window
generally overlaps its parent window.

Some child windows have to be satiated or terminated
before releasing control (active focus) and returning 1/O
access back to the main application window. Examples of
Child Windows are 1) a Document window in an application
like Word, i1) another foreground, monopolizing (aka Modal)
window like File Open, iii) another foreground, non-monopo-
lizing (aka Non-Modal) window.

Every speech-initiated application maintains its own oper-
ating window as a “child window” of the system. The child/
parent window scheme does not allow for complex command
processing. A complex command may require more than one
application to be put to contribution in a specific order based
on a single spoken command phrase. For example, the spoken
command phrase “add Bob to address book™ is a multiple-
step/multiple-application command. The appropriate com-
mands required by the prior art are: “open address book”,
“new entry” and “name Bob”. In the prior art, each operation
is required to be completed one by one in a sequential order.

20

25

30

35

40

45

50

55

60

65

2

Although this methodology works to a minimum satisfaction
level, it does not use natural language speech. The prior art is
typically not capable of performing multiple step operations
with a single spoken command phrase. In addition, the prior
art does not enable a single spoken phrase to process com-
mands that require the application to perform multiple steps
without first training the application on the sequence of steps
that the command must invoke (much like programming a
macro). For example, the spoken command phrase “Write a
letter to Bob” requires multiple applications to be used
sequentially, and if those applications are not running, they
must be launched in order to execute the command. The prior
art would typically have the user say: “open address book”,
“select Bob”, “copy address”, “open editor”, “new letter” and
“paste address”—or would require the user to train the appli-
cation to perform these steps every time it hears this com-
mand. The address book and text editor/word processor are
generally different applications. Since these programs
require the data to be organized in a specific order, the voice
commands must be performed in a specific order to achieve
the desired result. The prior art is not capable of performing
operations across multiple applications entirely on its own
with a single spoken command phrase.

Ineach Windowed Operating System it is common for each
executing application window to “pop-up” a new “child win-
dow” when a secondary type of interaction is required by the
user. When an application is executing a request, focus (an
active attention within its window) is granted to it. Windowed
operating systems running on personal computers are gener-
ally limited to a single active focus to a single window at any
given time.

Current computer technology allows application programs
to execute their procedures within individual application ori-
ented graphical user interfaces (i.e. “windows”). Each appli-
cation window program is encapsulated in such a manner that
most services available to the user are generally contained
within the window. Thus each window is an entity unto itself.

When an application window requires 1/O, such as a key-
board input, mouse input or the like, the operating system
passes the input data to the application.

Typical computer technologies are not well suited for use
with a speech driven interface. The use of parent and child
windows creates a multitude of problems since natural lan-
guage modeling is best suited for complex command process-
ing. Child windows receive active focus as a single window,
and because they are sequentially activated by the operating
system (single action), and as stated above, prior art speech
command applications are not suited for natural language
processing of complex commands.

The following US patents are expressly incorporated
herein by reference: U.S. Pat. No. 5,974,413, Oct. 26, 1999,
Beauregard et al.; U.S. Pat. No. 5,805,775, Sep. 8, 1998,
Eberman et al; U.S. Pat. No. 5,748,974, May 5, 1998,
Johnson; U.S. Pat. No. 5,621,859, Apr. 15, 1997, Schwartz et
al.; U.S. Pat. No. 6,208,972, Mar. 27, 2001, Grant et al.; U.S.
Pat. No. 5,412,738, May 2, 1995, Brunelli et al.; U.S. Pat. No.
5,668,929, Sep. 16, 1997, Foster Jr.; U.S. Pat. No. 5,608,784,
Mar. 4, 1997, Miller; U.S. Pat. No. 5,761,329, Jun. 2, 1998,
Chen et al.; U.S. Pat. No. 6,292,782, Sep. 18, 2001, Weide-
man; U.S. Pat. No. 6,263,311, Jul. 17, 2001, Dildy; U.S. Pat.
No. 4,993,068, Feb. 12, 1991, Piosenka et al.; U.S. Pat. No.
5,901,203, May 4, 1999, Morganstein et al.; U.S. Pat. No.
4,975,969, Dec. 4, 1990, Tal; U.S. Pat. No. 4,449,189, May
15,1984, Feix et al.; U.S. Pat. No. 5,838,968, Nov. 17, 1998,
Culbert; U.S. Pat. No. 5,812,437, Sep. 22, 1998, Purcell et al.;
U.S. Pat. No. 5,864,704, Jan. 26, 1999, Battle et al.; U.S. Pat.
No. 5,970,457, Oct. 19, 1999, Brant et al.; U.S. Pat. No.

US 8,543,407 B1

3

6,088,669, Jul. 11, 2000, Maes; U.S. Pat. No. 3,648,249, Mar.
7,1972, Goldsberry; U.S. Pat. No. 5,774,859, Jun. 30, 1998,
Houser et al.; U.S. Pat. No. 6,208,971, Mar. 27, 2001, Belle-
garda etal.; U.S. Pat. No. 5,950,167, Sep. 7, 1999, Yaker; U.S.
Pat. No. 6,192,339, Feb. 20, 2001, Cox; U.S. Pat. No. 5,895,
447, Apr. 20, 1999, Ittycheriah et al.; U.S. Pat. No. 6,192,343,
Feb. 20,2001, Morgan etal.; U.S. Pat. No. 6,253,176, Jun. 26,
2001, Janek et al.; U.S. Pat. No. 6,233,559, May 15, 2001,
Balakrishnan; U.S. Pat. No. 6,199,044, Mar. 6, 2001, Ackley
et al.; U.S. Pat. No. 6,138,098, Oct. 24, 2000, Shieber et al.;
U.S. Pat. No. 6,044,347, Mar. 28, 2000, Abellaetal.; U.S. Pat.
No. 5,890,122, Mar. 30, 1999, Van Kleeck et al.; U.S. Pat. No.
5,812,977, Sep. 22, 1998, Douglas; U.S. Pat. No. 5,685,000,
Nov. 4,1997, Cox Jr.; U.S. Pat. No. 5,461,399, Oct. 24, 1995,
Cragun; U.S. Pat. No. 4,513,189, Apr. 23, 1985, Ueda et al.;
U.S. Pat. No. 4,726,065, Feb. 16, 1988, Froessl; U.S. Pat. No.
4,766,529, Aug. 23, 1988, Nakano et al.; U.S. Pat. No. 5,369,
575, Nov. 29, 1994, Lamberti et al.; U.S. Pat. No. 5,408,582,
Apr. 18,1995, Colier; U.S. Pat. No. 5,642,519, Jun. 24, 1997,
Martin; U.S. Pat. No. 6,532,444, Mar. 11, 2003, Weber; and
U.S. Pat. No. 6,212,498, Apr. 3, 2001, Sherwood et al.

2 OBJECTS AND SUMMARY OF THE
INVENTION

2.1 Objects

It is an object of the invention to provide a speech process-
ing method, comprising receiving a speech input representing
atleast one of a command and a stream of data; analyzing the
speech for characteristics of a command structure, and if so,
entering a command mode; in a command mode, analyzing
the speech input with respect to a set of at least one grammar
representation, to determine an ambiguity and a complete-
ness; based in the determined ambiguity and completeness,
prompting the user in a contextually appropriate manner for
further speech input, to at least one of reduce ambiguity and
increase completeness; and if the speech input is sufficiently
unambiguous and sufficiently complete, generating an output
representing the command; and in an absence of a character-
istic of acommand structures: treating the speech input as one
representative of data; and generating an output as a symbolic
representation of the speech input.

It is a further object of the invention to provide a method
further comprising the steps of: entering a data input mode if
the step of analyzing the speech for characteristics of a com-
mand structure does not result in entering a command mode
or if the speech input represents a command to enter a data
input mode; and in a data input mode: treating the speech
input as one representative of data, unless a context of the
speech input indicates that the data input mode has termi-
nated, and thereafter entering the command mode. If the
speech input represents a command to enter a data input
mode, a data input mode may be entered wherein subsequent
speech input is analyzed for a command, if a command is
found a context may be determined, and if a command is in
the context of data input, the speech input may be treated as
one representative of data, otherwise generating an output as
a symbolic representation of the speech input. The method
may further comprise the step of maintaining at least one data
structure representing at least a status of a grammar, wherein
the data structure is updated based on the speech input and a
context; and the speech input, wherein the set of at least one
grammar representation is generated dynamically based at
least in part on available ones of a set of temporally varying
available functions within the command structure. In one
embodiment, the analyzing determines if a single string of
speech input comprises at least one of a single command

20

25

30

35

40

45

50

55

60

65

4

impacting at least two software constructs, at least two com-
mands, and a combination of at least one command and data,
and processing the speech input in accordance with the deter-
mination. In another embodiment, the analyzing step is per-
formed by a plurality of analyzers in parallel, each analyzer
analyzing according to a different set of criteria, and wherein
the outputs of the plurality of analyzers are directed to a
plurality of respective applications. According to a further
embodiment, at least one of a non-linguistic implicit input is
employed as a cue to determine at least one of a context, and
a target software construct for analyzing said input; and at
least one of a temporal analysis, natural language analysis,
and syntactic analysis are used to determine a context of the
speech input. An output may be generated representing the
command is targeted to one of a plurality of respective appli-
cations while preserving a respective prior system state,
wherein at least one of: after command execution, and in
dependence on a result thereof, a system state is selectively
restored or processing assumed by another application with-
out restoring the prior system state; and a command restores
one of a previously preserved system state. A plurality of
applications may be concurrently available, and said steps of
analyzing and generating an output are performed with
respect to, and directed at, a particular one of the available
applications.

It is another object of the invention to provide a speech
processing method, comprising: analyzing a set of contexts to
determine available commands; formulating command struc-
tures corresponding to the determined available commands;
statistically modeling at least portions of the command struc-
tures; receiving a natural language speech input representing
at least one command; processing the speech input with
respect to the statistically modeled portions of the command
structures; determining, with respect to the statistically mod-
eled portions of the command structures, if the speech input
likely represents a command; if the speech input likely rep-
resents at least one command, determining a completeness
and an ambiguity of the likely at least one command; if the
likely at least one command is too ambiguous or incomplete
for execution, prompting the speaker for further input to
decrease an ambiguity or increase the completeness; and if
the likely at least one command is sufficiently unambiguous
and complete for execution, executing the command.

The method may further comprise the step of maintaining
at least one data structure representing at least a status of a
grammar, wherein the data structure is updated based on the
speech input and a context; and the speech input, wherein the
set of at least one grammar representation is generated
dynamically based at least in part on available ones of a set of
temporally varying available functions within the command
structures. The analyzing step may determine ifa single string
of speech input comprises at least one of a single command
impacting at least two software constructs, at least two com-
mands, and a combination of at least one command and data,
and processing the speech input in accordance with the deter-
mination. The analyzing step may be performed by a plurality
of'analyzers in parallel, each analyzer analyzing according to
a different set of criteria, and wherein the outputs of the
plurality of analyzers are directed to a plurality of respective
applications. A non-linguistic implicit input is employed as a
cue to determine at least one of a context. A target software
construct may be employed for analyzing said input. At least
one of a temporal analysis, natural language analysis, and
syntactic analysis may be used to determine a context of the
speech input. The command may be targeted to one of a
plurality of respective applications, while preserving a
respective prior system state, wherein at least one of: after

US 8,543,407 B1

5

command execution, and in dependence on a result thereof, a
system state is selectively restored or processing assumed by
another application without restoring the prior system state;
and a command restores one of a previously preserved system
state. A plurality of applications may be concurrently avail-
able, and said step of analyzing is performed with respect to
a particular one of the available applications and the com-
mand is executed by that respective application.

It is a further object of the invention to provide a speech
processing method, comprising: receiving a natural language
speech input representing commands and data in the form of
spoken words; analyzing the speech for contextual indicia to
distinguish between spoken commands instructing a device at
take automated action, and spoken words intended as data;
determining whether speech analyzed to comprise com-
mands, represents a sufficiently complete command capable
of at least partial execution, or whether additional command
input is required; if required additional command input is not
received within a contextually appropriate period, prompting
the speaker for additional input to complete the command
sufficient for at least partial execution; at least partially
executing commands; and passing speech containing words
intended as data to a data sink.

The method may further comprise the step of maintaining
at least one data structure representing at least a status of a
grammar, wherein the data structure is updated based on the
speech input and a context; and the speech input, wherein the
set of at least one grammar representation is generated
dynamically based at least in part on available ones of a set of
temporally varying available functions within the command
structure. A non-linguistic implicit input may be employed as
a cue to determine at least one of a context. A target software
construct may be employed for analyzing said input. At least
one of a temporal analysis, natural language analysis, and
syntactic analysis may be used to determine a context of the
speech input. A command may be targeted to one of a plural-
ity of respective applications while preserving a respective
prior system state, wherein at least one of: after command
execution, and in dependence on a result thereof, a system
state is selectively restored or processing assumed by another
application without restoring the prior system state; and a
command restores one of a previously preserved system state.
A plurality of applications may be concurrently available, and
said analyzing step is performed with respect to, and directed
at, a particular one of the available applications and the com-
mand is at least partially executed by that respective applica-
tion.

A still further object of the invention provides a method for
recursive processing of speech, comprising: receiving a
speech input to be processed, the speech input comprising a
command structure in which a processing result for a first
portion of the speech input is necessary for determining a
processing result for a second portion of the speech input;
assigning control of processing of the speech input to a first
processing unit, for generating the processing result for the
first portion of the speech input; and delegating, from the first
processing unit, to a second processing unit, control of pro-
cessing the second portion of the speech input, the determin-
ing of the processing result for the second portion of the
speech input by the second processing unit being deferred
until the processing result for the first portion is available, and
after the processing result for the second portion is available,
deferring control back to the first processing unit. The second
portion of the speech input may comprise a command struc-
ture in which a processing result for a first subportion of the
second portion input is necessary for determining a process-
ing result for a second subportion of the second portion,

20

25

30

35

40

45

50

55

60

65

6

further comprising: delegating, from the second processing
unit, to a third processing unit, control of processing the
second subportion, the determining of the processing result
for the second subportion by the third processing unit being
deferred until the processing result for the first subportion is
available, and after the processing result for the second sub-
portion is available, deferring control back to the second
processing unit.

Another object of the invention is to provide a speech
processing method, comprising: receiving a speech input rep-
resenting a command targeted to one of a plurality of respec-
tive applications, an execution of a second command inter-
rupting an execution of a first command, wherein a respective
prior system state representing a system state at the time of
interruption is preserved, and wherein a plurality of system
states may be preserved concurrently; after execution of the
second command, in dependence on at least one of a pre-
defined condition, the second command, and a result of an
execution of the second command, the preserved system state
prior to interruption of the first command is restored, another
preserved system state is restored, or the processing is
assumed by an application without restoring the prior system
state.

2.2 Summary of the Invention

The current invention seeks to overcome these limitations
by providing a uniform speech aware interface that is opti-
mized for a hands free, speech driven environment and pro-
vides the user with a primary interface that minimizes the
need for using a keyboard and pointing device. The keyboard
and pointing device are not replaced, but rather speech, when
available, becomes the primary interface, while giving the
user the flexibility to use whatever input means works best at
the time. Such a system enhances productivity and is espe-
cially useful for contact management, business professionals
and anyone looking to eliminate the time consuming proce-
dures of typing, using menus and pushing and shoving win-
dows around a computer display to find the useful data buried
therein. In the preferred embodiment of the present invention,
by utilizing Speech-To-Text engine, an innovative natural
language processor and a unique graphical user interface
which can control and contain multiple applications, and
display management, the limitations of the prior art are over-
come.

According to an aspect of the invention, there is provided
for a system and method for controlling a plurality of appli-
cations by speech initiated commands spoken by a user, each
command having at least one phoneme, the steps comprising:
receiving an initial command from a process in response to
the user initiating an utterance, the process including a speech
recognition process, such as a speech recognition engine or
speech-to-text engine (the STT), setting a command mode of
operation when the initial command from the step of receiv-
ing is determined to be a command activation statement
(CAS), cycling through a first loop when in the command
mode of operation, under control of the first loop: receiving an
input stream, storing the input stream in a data location,
searching the data location for a valid command, the step of
searching includes comparing each the input stream to com-
mands or derived representations thereof stored in the Com-
mands Dictionary (CD) to determine if the input stream con-
tains a valid command, reporting an error condition when the
step of searching does not find a valid command, processing
the valid command when the step of searching finds the valid
command, the valid command statement corresponding to at
least one of the plurality of processes and applications, and
optionally dependent on the command, setting the mode of
operation to a wait mode of operation when the step of pro-

US 8,543,407 B1

7

cessing the valid command is completed. When the step of
searching finds a command statement that is not valid because
information needed to process the command is missing, the
reporting of an error condition can be one that prompts the
user to input the missing information, and cycling through
another loop. In this case, the process can be repeated suc-
cessively until the user builds a valid command or the com-
mand input is terminated by the user or the system.

It is noted that the Command Dictionary may be embodied
in a data matrix or network, and therefore need not be a simple
table entry or human-readable or human comprehendible for-
mat. The Command Dictionary may also be associated with
disambiguation logic in the case where a plurality of available
commands has conditions or states simultaneously satisfied
by a prior input.

According to another aspect of the invention, there is a
method for controlling a graphical user interface display area
for a plurality of applications by speech, and displaying said
plurality of applications in a single display window that is
composed of multiple facets. Multiple applications are dis-
played at one time, and applications (and their child windows,
if any and if permitted by the application) move in and out of
the display area, as they are needed. The size, shape and
location of facets can be fixed at three as in the preferred
embodiment (although the fixed number of facets can be more
or less), or the facets can adjust in size, reshaping themselves,
ormorphing, to accommodate the number of applications that
need to be displayed. From a visual standpoint in a non-
Windowed, character-based operating system, the MFGUI
occupies the whole display area. That makes the MFGUI the
main user interface on the computer system, also fitting the
widely accepted definition of a “shell”.

The System functions as an interface enabling humans to
exercise command and control over computer software appli-
cations and to input information into multiple software appli-
cations by speech, and in the preferred embodiment provides
for a multi-faceted graphical user interface to display multiple
applications in a single viewing area instead of being limited
to multiple separate and overlapping windows as in the prior
art.

Briefly stated, a preferred embodiment of the present
invention has two main aspects that provide methods for a
human centered user interface utilizing speech to input data
and control multiple applications, and a multi-faceted graphi-
cal user interface for displaying multiple applications (and
their child windows, if any and if permitted by the applica-
tion) within multiple facets of one main window. While the
present invention can be used for command and control and
input to applications within the standard parent-child win-
dows used in current computing systems, the preferred
embodiment uses both aspects to implement a speech enabled
environment to control and display multiple applications in a
single window with multiple facets. The preferred embodi-
ment also uses a context based parser such as a natural lan-
guage model (NLM) to parse speech initiated commands and
data, to route those voice initiated inputs to the required
applications, and when applicable to determine if speech
input is actual commands or input of data. In summary, pars-
ing is the action of identifying the respective roles of uttered
words. In the examples below, the roles that would be deter-
mined by parsing sentences appear in parenthesis. For
example, a typical command could contain i) an optional
statement to get the computer’s attention, ii) a Command iii)
Parameters (more information the command may need).

20

25

30

35

40

45

50

55

60

65

8
Example 1

“Computer, turn on (Command) the front lights (Param-
eter).”

Example 2

“Email (Command) Peter (Parameter—implied recipient)
about his car (Parameter—“about” implied subject)

The System functions by parsing the output to a series of
speech initiated commands received by a speech recognition
process, such as a speech recognition engine or speech to text
engine (“STT”), aseries of command sequences are identified
and tasks are executed by the System. The speech initiated
commands can be composed of any type of phoneme (the
smallest unit of speech that distinguishes one sound from
another), word or phrase in any language supported by said
speech recognition process. In the preferred embodiment,
speech is used as an input means together with input received
from other devices including a series of keyboard inputs or
pointing device movements and clicks. Accordingly,
although speech is the preferred means of input to the System,
all available means of input are available and can be used to
initiate the command sequence. In a preferred embodiment of
the invention, hands free spoken commands control the
execution of tasks by one or more software applications,
facilitate managing multiple tasks simultaneously and allows
speech control of all applications known to the System. In the
ideal embodiment of the System, the System can be con-
trolled entirely by speech, however, it should be noted that in
some instances, it is simply more practical and efficient for
the user to integrate the use of speech together with the
keyboard and pointing device.

The present invention also provides advances for general
graphic user interfaces, separate from speech enabled input.
For example, the multifaceted graphic used interface may
have independent utility.

3 DEFINITIONS

3.1 Grammar

“Grammars” are used by the speech recognition process to
generate human readable and/or binary representations of
allowable speech input corresponding to, and associating,
actions and commands, the representations being used to
functionally process the speech input, and to provide a frame-
work for interpreting the commands. The grammars can be
held within a command dictionary, discussed below, or
dynamically generated by algorithm or other means.

3.2 Command

A “command” is defined as an instruction that can be acted
upon, and may include parameters or associated data.

A command may be structured as a grammar and/or
unstructured natural language input. A command may have
an enabled or disabled state that may be acted upon based on
external conditions.

An example of a command might be “Turn Lights On”. An
example of content might be text that we are dictating into a
document in a word processing application, and in the context
of that dictation, the spoken words “Mary asked John to turn
the lights on” would be considered content.

3.3 Valid Command

A “valid command” is one that is both known and com-
plete. The command matches an entry in the CD (is known to
the system) and all the parameters needed to process the
command are present (the command is complete).

US 8,543,407 B1

9

3.4 Parameter(s)

A “Parameter” is additional information that is needed to
process a command. For example, the command “open”
needs something to open. Command parameter attributes are
contained in the CD for each command.

3.5 The Command Types

In the preferred embodiment, the system has “command
activation statement(s)” (CAS) “system commands,” “appli-
cation commands,” “current command application com-
mands” and “dictation commands,” each of which is defined
below.

3.5.1 Command Activation Statement (CAS)

A CAS is defined as a unique word/phrase/keystroke or the
like which alerts the System that a user is planning to issue a
command, and can be used to put the system in command
mode. For example, the word “computer” can be used as a
CAS.

3.5.2 System Commands

In the preferred embodiment, system commands (like the
command to launch an application) must be preceded by a
CAS. These commands are executed by the System. An
example could be “Open Calendar.”

3.5.3 Application Commands

An application Command can only be processed by an
Application (like the command to dial a number in a phone
dialer application) and is only valid within the application for
which it is intended, as defined in the CD. Note that an
application command like “print” for example, may be valid
in many applications, however, each application has defined
in the CD which application commands are valid for that
application, so a command like “print” will be executed
within the CCA unless it is specified as a system command to
print something in another application. An exit command
may be either a system command (to exit the system) or an
application command (to exit the application)

3.5.4 Current Command Application (CCA) Commands

These are application commands for the CCA within con-
tent loop. Typically, a CAS is not required before a CCA
command when the corresponding application is in Content
Loop.

3.5.5 Dictation Commands

A dictation command (DC) is one that does not affect the
function of, or control the application it is going into, but
rather modifies the data. Typically, dictation commands are
managed by the speech recognition engine, however, if
desired these commands may be handled by other elements of
the system. For example, the system may be able to receive a
subset of commands that do not control the system or an
application, but generate characters to be input into an appli-
cation, such as a word processing program. Dictation com-
mands are typically used with the system when an application
has SPOCUS and is in a content loop. An example of a DC is
the “new paragraph” command in a word processing appli-
cation that is not data, but modifies the data, in this case text.
In this example, the dictation command “new paragraph,”
results in two characters representing carriage returns being
placed in the input stream that is being passed to the CCA as
input (instead of the words “new paragraph”).

3.6 Commands Dictionary (CD)

The “Commands Dictionary” (“CD”) is a persistent data
structure or set of data structures that maintains commands
and if applicable all the information related to the commands.
3.7 Registered Applications (RAP)

A registered application (RAP) is an application in which
the functional elements of each command associated with the

20

25

30

35

40

45

50

55

60

65

10
RAP have been described to the System in the CD. After an
application is registered in the system, the application is
“known” to the System.
3.8 Active Applications

An “active application” is a Software Application that has
been started by the system and is running. The System can
send data to and get data from an Active Application. It is
important to note that an application does not need to be
visible or have focus in order to be active, and that once the
System starts an application, even though it may not have
focus or may not be visible, it remains active until the system
or the user closes it.

3.9 SPOCUS

“Speech Operational Control User Service” (SPOCUS) is
an active attention that is granted by the System to an appli-
cation, which results in directing a speech input stream to that
Application.

3.10 Current Command (CC)

The “Current Command” (CC) is defined as the command
that the system is currently processing.
3.11 Current Command Application (CCA)

The “Current Command Application” (CCA) is defined as
the application that is processing the current command, or
part thereof. For example, some commands require the sys-
tem to activate and give focus to an application that will
receive input of data from the user, such as a word processing
application that will receive dictation, and that application
then has SPOCUS. Note that it may be possible for one
application to execute a command without having SPOCUS,
and while another application has SPOCUS. For example,
issuing a command to turn on the lights while in a word
processing application would process the command without
needing to grant that application SPOCUS. Furthermore, if
multiple applications share identical commands, when such a
command is issued, it is executed in the CCA.

3.12 System State

The System State is where the system may be at any given
moment, and for example, may consist of the Input Stream,
the Data Construct, what application is the CCA, whether is
has a facet and its position, the System Mode (content loop or
not), a reference to the previous System State (thereby allow-
ing a “stack” or stack type behavior) and any other contextual
information.

The System State can be saved at any given point before the
system switches states, enabling the system to suspend appli-
cations and processes and return to them later in the same
state as they were before they were suspended.

3.13 Current Command Status

This is defined as the status of the Current Command (CC).
When the system receives input from the user, it processes
that input to search for a Command, which could include a
CAS, and the Current Command Status depends on the result
achieved when the System processes this input.

In the preferred embodiment, the Current Command Status
may be set to “unknown,” “incomplete,” “system valid,”
“application valid,” “processed,” “processed error,” or
“aborted,” “CAS” or CCA Valid.” The CC Status may also
contain information on the reason for that Command Status,
thereby enabling the system to prompt the user for input,
guide the user in the command input process, and/or advise
the user of the reason for the command status. The following
is a brief description of the Current Command Status settings
used in the preferred embodiment, although other’s may be
used in alternate embodiments, depending on the system
design:

2 <

US 8,543,407 B1

11

3.13.1 Unknown

When a command is not found in the input stream, the CC
Status is set to “Unknown.” If desired, the user can be
informed that no command was found in the input stream, and
the system can return to Wait Mode.

3.13.2 Incomplete

When a command associated with a known command has
been found, but the command has incorrect or missing param-
eters as indicated in the CD, the CC Status is set to “Incom-
plete” and the user can be informed of and prompted to input
the correct or missing parameters.
3.13.3 System Valid

When a valid Command is a System Command, the CC
Status is set to “System Valid” and the command is processed
by the system. The CC Status of “System Valid” is used only
after a command is determined to be valid (known and com-
plete), and prior to processing the command. After the com-
mand is processed, its status will be changed to “processed”
or “processed error” depending on the outcome.

3.13.4 Application Valid

When a valid Command is an Application Command, the
CC Status is set to “Application Valid” and the command is
processed in the associated application. The CC Status of
“Application Valid” is used only after a command is deter-
mined to be valid (known and complete), and prior to pro-
cessing the command. After the command is processed, its
status will be changed to “processed” or “processed error”
depending on the outcome.

3.13.5 Processed

When a valid command has been processed with no error,
the CC Status is set to “Processed,” and the success informa-
tion may be communicated to the user.

3.13.6 Processed Error

When a valid command has been processed and failed or
returned an error condition, the CC Status is set to “Processed
Error,” and the reason for the Processed Error may be com-
municated to the user.

3.13.7 Aborted

A command input can be aborted by the user or by the
system. When that happens, the CC status is set to “Aborted.”
A user may abort a command input from a command valida-
tion loop with an abort command. The system may abort a
command input for reasons including, but not limited to, a
predetermined time-out for processing a command having
passed, or cycling through a command loop a predetermined
number of times without successfully completing a valid
command.

3.13.8 CCA

When a CCA command is found while the system is in
content loop, its command status is set to “CCA” to indicate
that the command should be processed in the CCA.

3.13.9 CAS

The system is always in command mode after a CAS. In the
preferred embodiment, when a CAS is used to abort a com-
mand input or to leave a content loop for the input of a new
system or application command, the command status is set to
“CAS” so that the system will be left in command mode when
it returns to wait for the next command.
3.14 System Mode

The System Mode can be defined as “the type of data that
the System expects at this point”. In the preferred embodi-
ment, the possible values for the System Mode are “Wait
Mode”, “Command Mode”, or “Content loop,” however
alternate embodiments could have more, less or different
types of modes.

20

25

30

35

40

45

50

55

60

65

12

3.15 The Input Stream

The Input Stream is defined as raw data that the system
receives from a speech engine, keyboard, pointing device or
other input means. Typically the input stream is stored in a
memory location until it is parsed into the Data Construct, as
defined below.
3.16 The Data Construct

The Data Construct is defined as the location where the
analyzed data from the input stream is kept. Typically it is the
result of Parsing the Input Stream. In the Data Construct,
Commands and raw text may be identified as such, along with
whether they have been processed or not.
3.17 Parsing

“Parsing” is defined as the action of identifying the respec-
tive roles of uttered words consists of checking the context of
the adjacent words (and gaps) to the possible command.

4 SYSTEM MODES

The System mode is a state that determines how input is
processed. In the preferred embodiment, the system has three
modes of operation: command mode, content loop, and wait
mode.

4.1 Command Mode

Command mode is activated whenever the system detects a
CAS. When the System enters command mode, it is ready to
accept a command. In command mode, the system will only
process commands.

4.2 Wait Mode

When the system is in wait mode, it is idle and waiting for
a CAS. In wait mode, anything other than a CAS is ignored.
4.3 Content Loop (Mode)

“Content Loop” is a mode in which the System has granted
focus to an application (the CCA) and the System is continu-
ally sending the incoming input stream to the application,
while testing the incoming input stream for commands that
match a CAS or an application command, or data such as text
going to a word processing application, or data that belongs in
a field of the CCA such as a date in a contact management
application.

5 COMMANDS DICTIONARY OVERVIEW

5.1 Command Dictionary

In a typical implementation, the commands dictionary is
not a human readable, acoustically accessible or otherwise
directly comprehensible distinct set of possible commands,
but rather comprises a set of information which define a
correspondence between an input and an intended command,
and information for resolving ambiguity between the possible
available commands. As used herein, it is understood that a
“Command Dictionary” (CD) is this representation, and that
the phrases “Command Dictionary” or “representation of the
Command Dictionary” are used interchangeably.

The speech recognition process may operate using a plu-
rality of command dictionaries, each from a different source,
but preferably the available command dictionaries at any time
are processed to provide a single optimized decision space.
However, the command is preferably provided in a form
which facilitates this process as the context changes.

According to one example, a user seeks to make an
appointment in a calendar program, which must be identified
by the date and time, duration, location, participants (op-
tional), confirmation details (optional), topic (optional), and
followup (optional). The user begins by identifying the task,
such as “make an appointment” or “new appointment” or
“meeting” or other possible inputs. These may all represented

US 8,543,407 B1

13

in the commands dictionary. The user then (in no particular
required order) inputs the other details. For example, the time,
date and duration inputs may form part of a first command
dictionary, the participants a second, the topic a third, confir-
mation (and contact details) a fourth, and follow-up a fifth,
each with a possible different source of information. Since
these details may be entered in any order, or even in mixed
order, they are concurrently available; likewise, when enter-
ing a participant, an address book application or process may
initiate, and may temporarily provide additional commands
available, such as “add new entry to address book”. On the
other hand, once a user starts entering time details, the other
commands dictionaries may become inactive based on the
determined context of input.

Indeed, the commands “meeting” and “appointment” may
have different meanings in varying contexts, and thus the
commands dictionary for each respective command may dif-
fer, even if the end result could be the same. The make an
appointment example—interacts with high level and based on
the input and analysis of the input builds the grammar/repre-
sentation for the next step in the loop.

A “command” can be processed by a command processor,
and any input that is not a command or portion thereof, or a
command parameter, may be deemed to be “content”, and is
passed to an application. As discussed above, in some
embodiments, a command dictionary may also be employed
at a higher level in processing data which may be represented
as text and/or parametric information. Thus, at the speech
recognizer level, a speech input may be treated as “content™ to
be passed to a higher level application, but at the application
level, this may nevertheless be treated as a command, portion
thereof, or command parameter.

An example of a command might be “Turn Lights On”.
This input could be processed at the speech recognition
engine level, to determine if the input represents a command,
and to pass that command for processing. This input could
alternately be processed at the application level, wherein a
speech recognition process passes the literal string “TURN
LIGHTS ON”, or any other meta-data corresponding and
handled at the application level, to a command parser, which
employs data of the CD to determine if all necessary param-
eters needed for unambiguously processing the command are
available. An example of content might be text that we are
dictating into a word processing document.

Some commands are only valid while in Command mode,
others while in content mode, others in all modes. In some
embodiments, the speech commands are dynamically avail-
able. At some times, it may be desirable to limit the domain of
available speech commands dynamically based on com-
mands available to the system at that time.

Higher level attributes for commands are maintained in the
Command Dictionary (CD), and the data stored in the CD
may include (butis not limited to) what information is needed
to act upon a command, how the command is processed, and
its impact on the system. By representing the impact or result
of a processed command, the system state post command
processing may be compared with the represented impact,
and thus a failsafe mechanism provided. In some cases, for
example, if the processed command state does not correspond
to the represented impact, the system state may be reverted.
Likewise, the post-command processing impact may be used
to adapt the command processing for subsequent inputs.

In the preferred embodiment, commands associated with
applications are registered with the system. In the preferred
embodiment, an application is registered with the system by
adding each functional aspect of the application to the Com-
mands Dictionary, and when so registered it is referred to as a

20

25

30

35

40

45

50

55

60

65

14

registered application (RAP). Thus, in the preferred embodi-
ment a dictionary (the CD) corresponding to all the com-
mands required for all “known” system commands and appli-
cation commands is constructed, and that CD allows the
System to identify the commands with the corresponding
applications, commands, messages, events and methods, and
use them in processing speech input from the user. While it is
desirable to persistently maintain this information in the CD,
some of this information about commands may be generated
dynamically as needed.

The process of registering applications consists of updat-
ing the CD by adding the necessary entries required for an
application and its functional aspects with the System. This
can be done by any means that will enter the necessary data
for the application in the CD, including but not limited to
registering an applications commands in the CD at the time
the application is installed, exercising various user interface
elements to expose the command and control structures,
manually inputting data into the CD, hard-coding it into the
System program, or enabling the System to dynamically
update the CD at the time of initialization, as needed, or as
requested by the user. The process of registering application
data and commands in the CD can also utilize a combination
of' methods, for example, the System can be made aware of an
application by an entry in the CD that enables the System to
import and append data from that application into the CD at
the time of initialization or when data is updated. This is
particularly useful with applications such as contact lists,
where the application’s data changes from time-to-time.
Alternatively, a software application can guide the user by
helping him or her entering the information into the System.

For Example, one application which lends itself to voice
commands is a telephone dialer program. During registration
of the telephone dialer application, a series of command
structures are registered with the System which correspond to
commands and parameters used by the telephone dialer and,
and the CD is updated to contain the information from which
the commands or their representations are constructed, and
from which the speech recognition process builds its dictio-
nary of command representations, relevant to the telephone
dialer application. Examples of the required commands could
be keywords and phrases or grammars such as: “dial”, “call”,
“connect”, “hang-up”, “disconnect”, “hold”, “transfer”, “for-
ward”, “redial” and the like. Once the application is regis-
tered, the System knows about the commands and parameters
associated with the telephone dialer program and its func-
tional features. Further, in the case of the telephone dialer, the
contact data may be updated dynamically.

The CD is preferably stored in a persistent manner, mean-
ing that the CD survives the System being shut down and
restarted. It can be stored in any format typically used to store
data that can be read by the system and applications, includ-
ing but not limited to a file in its own format, a database file,
table, or process registration database.

5.2 Structure

The CD is a collection of instances of a data structure, and
can be in the form of a database, vocabulary table, process
registration database, other database, XML file or any other
data structure. Each entry in the CD pertains to a specific
command and its attributes. These attributes may vary
depending on the command, and may include but are not
limited to the following:

1—Grammar

2—Command

3—Command Mode (optional)

4—Context the command is relevant in.

S5—Parameters required for completing the command.

US 8,543,407 B1

15

6—Impact on System Mode.

7—A reference to another entry for cases where multiple
commands must be executed sequentially for a given spoken
command.

Depending on the needs of the system, alternate embodi-
ments could utilize other parameters not discussed here.

5.3 Grammar

This entry contains information defining the grammar of
the command.

In order to enhance the natural language processing capa-
bilities of the system, the CD can hold multiple entries or
series of entries for the same command, effectively having the
side effect of maintaining “synonyms” for commands. For
example, the user could say “Turn on the living room light”,
or “Living room light on”, or “light up living room”. The CD
has entries for “turn on”, “on”, and “light up,” and all these
commands are equivalent and give the same result.

5.4 Command

When the System finds an entry in the CD that corresponds
to a representation of the associated grammar or matching
conditions with the recognized text in the incoming input
stream related to the System or the relevant application, the
value of this field identifies the target of the operation (com-
mand) that must be processed. In other words, a Command is
the instruction a user wants the computer to process when the
user inputs a command.

5.5 Mode

This indicates the System state in which the system
searches audio input to determine whether it contains a com-
mand. For example, a system command may be valid only
while the system is in Command Mode (or it may be valid in
all modes), whereas an application command may be valid
only while its associated application has focus. Typically, the
System considers only the command types that are identified
as valid for the current System state. For example, in one
embodiment, while in a Content Loop, the system will only
consider and process application commands related to the
CCA until a CAS places the system in command mode or a
command to exit the CCA is received and processed. In
certain other embodiments, no such limitation is applicable.
5.6 Application and Points in which the Command is Rel-
evant.

Because the same speech input may correspond to different
commands in different applications, or represent a command
which is available in a plurality of applications, this field
identifies the application(s) to which this command applies.

For example, consider two commands with the grammar
“open”. One is registered as a Home Control command to
open the blinds, the other is registered by a word processing
application to open a file. When the system knows the mode
it is in and which application is the CCA, it can select which
command to execute from the CD. In addition, there may be
points in the system, such as where the user is prompted and
has only a few choices (such as a prompt to confirm or cancel
a command), in which only a few commands are applicable.
In such cases, the test for a known and valid command can be
limited to the applicable commands only, and a CAS need not
precede such commands. Likewise, the command to open a
file or perform an action may imply a default application
needs to be started if it is not already running. In many
instances, a CAS is not necessary, and the mode may be
inferred from the context, such as a hiatus of speech input
prior to and subsequent to an utterance, or based ona semantic
analysis of the input.

This field also specifies whether the Application must be
visible, and if it must be given SPOCUS and enter a content
loop.

20

25

30

35

40

45

50

55

60

65

16

5.7 Parameters Required for Completing the Command.

Some commands require more information about what
they should be acting on, and some commands may need to
call other commands. This entry enables the system to pro-
cess complex commands with multiple parts. It enables the
system to test if a command is valid and complete, and react
accordingly.

For example, the “Turn On” command by itself is not
sufficient. Therefore its entry in the CD needs to specify a
parameter that meets the criteria of something that can be
turned on or off. A dialog mode may therefore provide a
prompt to seek resolution of ambiguity or to complete entry of
required parameters. Another more complete example is
described in Example: “Make an appointment” in Section
6.4.1.

The CD may also specify that parameters must meet cer-
tain conditions, for example that the starting time of an
appointment time must be some time in the future.

5.8 Impact on System Mode:

Some commands have the capability of changing the Sys-
tem mode or switching focus to another application after they
are completed. Often, when an application is done processing
a command, it is desirable to return focus to the application
that previously had focus. In a preferred embodiment, when it
is necessary to return to the previous system state after pro-
cessing a command, information about the system or appli-
cation state may be saved prior to processing a command in
another application. The information in the CD on the impact
that a command has on the System state can also be used to
determine whether or not the System state must be restored to
the original state after processing the command, however, in
some variations, the system may be designed to return to the
last application that had focus when another application is
closed or removed from focus.

5.9 A Reference to Another Command or Commands.

This information is for cases where one command requires
that multiple commands be processed. A parameter that
enables the System to call another command or series of
commands, or to link commands together enables the System
to manage long, varying or complex spoken command state-
ments. An example of a complex command is “Go to bed”,
which may turn off the lights and the TV, turn down the heat,
and set the alarm.

6 FUNCTION OF THE SPEECH ENABLED
SYSTEM

6.1 Command Modes and the Command Activation State-
ment

Once the System is initialized, the System enters a wait
mode, waiting for user input. In a preferred embodiment,
whenever the System is in wait mode, a CAS must precede a
system command statement. Once the CAS is uttered and
detected by the System, the System goes into command
mode. Once the system goes into Command Mode, it remains
there until some condition is met which returns the system to
wait mode. This may be a time-out, command to return to wait
mode, or the completion of another event, such as the pro-
cessing of a command. In other embodiments, the CAS may
not be required.

As defined previously, a CAS is a unique word/phrase/
keystroke or the like which alerts the System that a user is
planning to issue a command. For example, a CAS could be a
word phrase, such as “computer” or “microphone on”, or the
computer could simply be placed in command mode by turn-
ing on the microphone. A command to return to wait mode
could be “microphone off” or a command which puts the

US 8,543,407 B1

17

computer into another state, such as a mode in which the
microphone is used for purposes other than processing com-
mands or entering data. Each CAS is defined in the CD, but in
alternate embodiments can also be defined in a separate CAS
dictionary.

In an alternate embodiment, the System defaults to com-
mand mode until a specific command (like “Dictation”) sets it
into a content loop or a command (like “standby”) sets it to
wait mode. In alternate embodiments, the system is in com-
mand mode at all times so that input given in the correct
context (for example, a pause, followed by a command, fol-
lowed by another pause) is searched for a matching com-
mand. In such alternate embodiments, the behavior of com-
mand statements take on the characteristics of a CAS, and if
desired the use of a CAS preceding a command is not
required, or a CAS such as “microphone on” is used to place
the system in command mode, and the system remains in
command mode processing successive commands without
returning to wait mode, until a command such as “micro-
phone off” for example returns the system to wait mode.

In a preferred embodiment, when the system is in content
loop, application commands for the CCA do not require a
preceding CAS. In alternate embodiments, it may be desir-
able to have a CAS precede both system and application
commands while in a content loop. In such alternate embodi-
ments, when a CAS is detected while in the CCA, the System
waits for input then processes the incoming input stream to
determine if it contains a CCA or System command, and if so
determines its context. [f no command is detected in the input
following a CAS, the System may: report an error condition
and prompt the user, ignore the incoming input stream, or
assume the incoming input stream is content and pass it as
data to the CCA leaving the System in content loop with
SPOCUS on the CCA. Still other alternate embodiments may
not require a CAS preceding any command while in content
loop, or the system may remain in command mode after
processing a command in order to wait for another command.
6.2 Active VS Visible Applications

All applications that are activated (either in the System
initialization process, or by command) remain active until
closed. Since the System locates the applications for the user,
it is not necessary for an application to be visible in order to
process a command.

For example, one application can retrieve data from
another application without displaying the other application,
or acommand (for example, “Turn on the kitchen lights™) can
be processed without displaying the application that controls
the lights.

6.3 The Current Command

As discussed above, when the System determines that it
has received a command, the information in the CD indicates
which application should be called on to process the com-
mand, and what parameters, if any, are required for appropri-
ately processing the command. It should be noted that some
commands impact only the system, while others require the
system to interact with one or more applications.

Ifa command is intended to be processed by an application,
and the appropriate application is not active, the System starts
the application, and that application becomes the CCA and
may be displayed in the graphic user interface and granted
focus if required or appropriate for user interaction with the
application. The CD may also indicate if the application is one
that accepts input of data, and if so, the system may enter
content loop with respect top that application.

In a preferred embodiment, the System does not execute
applications itself, but it requests the operating system (“OS”)
to execute the applications, and for that the OS loads them in

20

25

30

35

40

45

50

55

60

65

18

memory, and allocates to them some processing time. How-
ever, in some embodiments, the System is a speech enabled
operating system and performs this function.

6.4 Complex Commands

Some commands require more information about what
they should be acting upon. These commands are called
“complex” because they require other information in order to
be complete, and this other information and its nature are
maintained in the CD. A single spoken command may contain
multiple components. In the preferred embodiment, the sys-
tem is able to manage a complex incoming input stream such
as this, identify its components and route them accordingly. A
data construct derived from the speech input is analyzed to
determine a target application for the input, and the required
application is started if it is not currently active. For example,
a contact management application might be activated by the
input “Open the calendar and show me today’s appoint-
ments.”

In response, the system executes a command to “open
calendar” to ensure that the calendar application is active, and
a command to “show appointments” to trigger an action
within the calendar application. “Today” is an input to the
application, which indicates to the calendar application
which appointments to show.

The next section further illustrates how the system handles
a complex command.

6.4.1 Example: “Make an appointment™

This example illustrates the power of the System’s capa-
bility to validate complex commands by identifying and
prompting for missing parameters. The complex command
“make an appointment” that is handled by a “contact man-
agement” application has an entry in the CD that also indi-
cates that it requires four parameters (although there could be
other parameters) as follows:

The person’s name.

The date of the appointment.

The start time of the appointment.

The end time of the appointment.

The user may enter the command as:

User: “Make an appointment with John Smith on Tuesday
at 8:00 AM.”

However, in this case, the command is a known command
(make an appointment) but it is not a valid command because
it is missing an end time and is thus not complete. In this
example, the system will prompt the user for more informa-
tion:

System: “Please provide an ending time for your appoint-
ment.”

Ifthe user responds with a valid ending time (a time that is
later than the start time of the appointment) the system will
process the command by sending it to the contact manage-
ment application. If not, the system will continue to prompt
the user for a valid ending time until one is provided or the
command is aborted.

There may also be other criteria required by that command,
for example, the person’s name being in the contact list, the
date being equal to or later than the current date, the start time
being later than the current time, and as discussed above, the
end time being later than the start time. The system could also
require other parameters or relationships of parameters as
well.

Carrying this example further, when the user is prompted to
supply an ending time, and responds with “eleven am,” this
will result in the command statement being validated and
processed. But if the user responds with “Wednesday” or
“seven am” that input does not meet the test for a valid ending
time, and in the preferred embodiment the user would again

US 8,543,407 B1

19

be prompted to supply a valid ending time for the appoint-
ment. Similarly, the system tests other parameters in the same
way, for example verifying that the contact’s name is an entry
in the contact manager, that the date of the appointment is the
current date or later, and that if the appointment is on the
current date the start time is later than the current time.

In summary, in the command example described above, the
system receives the incoming input stream which is analyzed
based on the CD to determine which application the stream
should be routed to (the contact manager), starting the
required application (if it is not currently active), initiating a
command which is recognizable by the contact manager
(which is now the CCA), and giving the contact manager the
parameter (today) that it needs to process the command (to
show today’s appointments).

Another example of a complex command (in this case, one
that is processed exclusively in the CCA in a content loop) is
“save and print document” which, results in the current docu-
ment in the CCA being saved (one CCA command) and
printed (another CCA command).

6.5 Processing Commands

6.5.1 Acquiring User Input

In a high level processing schema, a user input may be
processed by acquiring the data from an input stream (for
example the output of a speech recognition process or speech
to text engine or the input from keyboard or mouse click), and
the data parsed into a data construct so that the system can act
upon that data. The data construct can be kept in a memory
queue, a memory address, a register, an operating system
pipe, a shared memory area, on a hard disk drive or any other
means of passing data from an outside resource into a pro-
gram. In instances where the system has been integrated
together with the input stream processing program (for
example, a speech recognition process, the input stream can
be passed directly into the System in memory. In any case, the
data elements received from the acquired input stream corre-
spond to the data which is being supplied by the primary
interface (i.e. in the preferred embodiment, the microphone
providing input to the speech recognition process engine
which in turn is processed and passed to the System as text or
other type of input that is usable by the System).

6.5.2 Parsing

In a preferred embodiment, the Input Stream needs to be
processed into data in a form in which that data can be used by
the System, and this is done by parsing the input stream into
a context-based data construct, and storing it in a memory
location.

In this preferred embodiment, a natural linguistic model is
used parse the speech input into a context based data construct
in order to enable the system to determine if the possible
command is within the scope of the adjacent words. The
linguistic model is used to tag verbs, nouns, adjectives etc.
However, in alternate embodiments, other forms of context-
based analysis could be utilized. Parsing is well defined in the
art, and need not be discussed in more detail here.

It is also important to note that testing the input for com-
mands, and further testing of commands for context, enables
a CAS or command to be spoken in a context unrelated to a
CAS or command. By reviewing the locus of words around a
possible CAS or command and chronology, the context may
be determined and an appropriate action taken. Accordingly,
the System will not mistake input that contains a utterances
corresponding to a CAS or command, if the utterances are
spoken in the context of a sentence. For example, if the CAS
is “Hal”, the statement “Hal needs lunch” is to be passed onto
the CCA as text.

20

25

30

35

40

45

50

55

60

65

20

One criterion for identifying a CAS or a command can be
the presence of a pause or brief silence of predetermined
length before and after speaking the CAS or a command. If no
pause or silence is detected, the speech input is assumed to be
part of the content. If the speech input is preceded and fol-
lowed by silence, it is likely to be a CAS or a command. In
alternate embodiments certain commands, like dictation
commands, will always be executed as commands. Other
embodiments, the context is determined by testing elements
of the input stream preceding and following the CAS or
command to determine if they are within the context of the
sentence being spoken, and a CAS or command not in context
is processed as a CAS or a command.

6.5.3 Validating the Command

After a command is determined to have been received, it

may be one that has a non-trivial CD entry, and requires
further validation. To validate a command, the System refers
to the CD corresponding to the command matching the one
found in the Data Construct. The CD entry for the known
command indicates the required parameters, if any, and the
data construct is further tested to determine if these param-
eters are all present and valid indicating a valid (known and
complete) command. If it is determined that the user stated a
valid command, the command is processed. Otherwise, the
system will prompt the user to input the missing information
(see below, Section 6.5.4 “Processing (validating) an incom-
plete command.” In other cases, a command may be received
which, for example, has a trivial CD entry, and therefore the
determined existence of the command itself is sufficient for
processing.
In variations of the preferred embodiment, the CD can be
organized by command groups, or into different tables or
dictionaries with limited command sets. This is useful when
the system is working in an application or process with a
limited set of commands, or when the system is being used in
a task or manner where there is a limited field of possible
commands. For example, when the system is in a dialog
which displays “Cancel” and “Continue” as the only two
options, then there is no need to search representations of all
possible commands for a matching command when the user
provides input in response to the dialog. It is only necessary to
search audio input for the commands that are currently avail-
able, in this case “Cancel” and “Continue” which are the only
two options available in this dialog which currently has focus
(active attention). Likewise, when using a calculator applica-
tion, only the subset of commands related to the calculator
and whichever system commands are then currently available
need be considered and other commands, such as the com-
mands used by a home automation application, for example,
do not need to be considered while the calculator is the active
application. If this method for organizing the CD is
employed, then when processing input in these cases, the
system searches only the representations of the applicable
portions of the CD, (or the applicable CD or table) for a
matching command, rather than searching the entire CD.

Another method for achieving this is to create and register
a representation of a grammar that has the available com-
mands based on the system state, and to do this each time the
system state or user interface changes and/or or is refreshed.
In some cases, the visible dialog menus of an application are
dynamically organized. For example, Microsoft Office 2003
provides pull-down menus which include most likely or most
frequently used options. In theory, by limiting the number of
options, presented to the user, the search time to find the
desire selection will decrease, while the ability of the user to
target a desired selection using the interface is enhanced by
the limited number of choices. In like fashion, the speech

US 8,543,407 B1

21

recognition process(es) may employ a reduced or focused set
of available choices, which will likely improve the discrimi-
nation between the choices and thus improve accuracy.

Thus, the speech interface may be responsive to changes in
the visual user interface, but the visual user interface may be
responsive to alterations in the status or context of the speech
user interface. The interaction between these may be con-
trolled at various levels, including the process, application,
operating system or speech processing components. In the
preferred case, the interaction is controlled at the operating
system level, using application API features, and thus would
be compatible with applications which are both intrinsically
speech enabled and those which are not.

6.5.4 Processing (Validating) an Incomplete Command

There are many reasons why a command statement may be
incomplete. Most often it is because the user has spoken a
command with incomplete or incorrect information (missing,
incomplete or incorrect parameters), but it can also be the
result of a speech recognition error caused by many possible
factors including but not limited to the user not speaking
clearly, not speaking into the microphone or background
noise. Or maybe the system just didn’t correctly recognize all
the words spoken by the user.

When the step of searching finds a known command, but
which is incomplete, meaning the incoming input stream did
not contain all of the required parameters needed for that
command, or otherwise not appropriate for processing, there
are a number of possible options. These options include but
are not limited to: returning to wait mode, reporting an error
condition, or as in a preferred embodiment, reporting an error
condition and prompting the user to input the missing param-
eters and cycling through at least one loop to retest the Data
Construct for a valid command. This permits the system to
process and manage complex commands that contain incom-
plete or incorrect information, and compensate for errors in
speech recognition. The system may also present a confirma-
tion dialog to the user, presenting the command and the avail-
able information, along with a prompt for the missing, incor-
rect, inconsistent or ambiguous information. How this works
is best illustrated in the Make an Appointment Example in
Section 6.4.1.

This process of prompting can be accomplished by cycling
through one or more loops, recursive calls or other algo-
rithms, and can take place at various steps in the system
according to the design of the embodiment as will be shown
in the discussion of the Figures in Section 9.2. As the user
supplies additional input, the parsing process refines the data
construct by parsing additional input into the data construct
then re-testing the data construct for validity. This process
continues until a valid command statement is found in the
data construct, or the user aborts the command input process,
which can be done by issuing an abort command, a command
activation statement (CAS), a new command, or by any other
manner which may be desirable for aborting a command
input such as a time-out, reaching a predetermined number of
cycles without finding a valid command, or the occurrence of
other predetermined events.

By being able to identify and prompt for missing command
parameters, the system guides the user through the input of
complex commands, which would otherwise fail, and the
system is able to build a valid command. An example is the
command statement: “open the garage door and turn on the
lights.” Depending on entries in the CD, this could result in
the garage door being opened and all the lights being turned
on, or in the user being prompted for which lights to turn on.

In alternate embodiments, the process of prompting the
user for additional information can be done in various ways

20

25

30

35

40

45

50

55

60

65

22

and at various places throughout the process, the object being
to enable the system to help the user to complete the input of
a command statement that can be validated and processed by
the System, or return the user to a point where he or she can
restate the command or state a new command.

For example, in alternate embodiments, when a command
is recognized, but determined to be incomplete, the system
can start over requiring the user to repeat the entire command;
it can re-validate only the missing information when the user
is prompted and supplies more input (instead of adding new
input to the data construct and re-testing the entire data con-
struct); or simply inform the user or return to wait mode
without taking any additional action.

In yet other alternate embodiments, recursive functions or
recursive functions combined with looping functions can be
used to validate known commands that have missing or incor-
rect or inconsistent parameters. In one such alternate embodi-
ment, the system uses recursive functions that each call for a
piece of missing or incorrect command component. For
example, this recursive function can operate in the following
manner: [fthere are N missing/invalid parameters, the system
launches a recursive function that launches itself again, until
N functions have been launched, each such function being
designated to prompt for and receive one component of the
missing/incorrect parameters. After all the functions have
been launched, the last one launched prompts the user for the
parameter for which it is responsible, and when that param-
eter has been received, validated and entered into the data
construct (or aborted by the user or a predetermined condi-
tion), the function exits, returning to the previous function
which does the same thing for its designated missing/incor-
rect parameter, and this process continues until all the
instances of the function have exited, so long as none of them
was aborted, and the command is thereby validated (known
and complete) and ready to be processed.

In variations of this alternate embodiment, the recursive
functions may be required only to prompt for and collect input
on missing/invalid parameter, and once all the functions have
returned, the user input received from each is parsed into the
data construct, and the data construct is again tested for a valid
command. If the data construct still has missing or invalid or
inconsistent parameters, the system cycles through another
loop and this process of launching recursive functions repeats
itself. This looping process continues until the command is
validated, or is aborted by the user or by the system after
meeting a predetermined condition (typically exceeding a
predetermined time or number of loops or a time-out condi-
tion occurs).

The dialog may also prompt the user to supply all missing,
incorrect or inconsistent information in a unitary process, and
parse the received result to determine whether the received
information satisfies all validity conditions. If not, the user
may be prompted again. If the prompts do not yield progress
toward resolution of the validation process, the system may
then revert to a set of serial prompts seeking single parameter
or issue resolution.

6.5.5 Routing the Current Command

In a preferred embodiment, if a command applies only to
the system, it will be processed by the system. I[f not, and if the
command applies to the CCA, it will be processed by the
CCA. Ifnot, and a command is valid for only one application,
the system will send the command to that application. If a
command can be processed in more than one application, and
none of those applications are the CCA, then the system will
prompt the user to select which of the valid applications will
receive the command. If an application in which a command
must be processed is inactive, the application is launched

US 8,543,407 B1

23

before processing the command. This sequencing priority
enables the system to manage commands that are valid in
multiple applications, for example “open” that can open the
garage door in one application, and open a file in another
application. In alternate embodiments, instead of, or prior to,
having the user select which of the candidate applications will
process the command, the system searches for an application
in which the command is valid. For example, if two applica-
tions can process the “Open” command, the command “Open
Garage Door” is not be valid in a word processing application,
and the system will select the application that can open the
garage door. In this alternate embodiment, if the system fails
to find an application that can successfully process the com-
mand, then the user can be prompted to select the application.

6.5.6 Processing the Current Command

In accordance with one embodiment of the invention, a
focus (an active attention) is granted to the current command
application (CCA), which is the application that corresponds
to the Current Command (CC). In the preferred embodiment,
when the System has determined that the current command
(CC) is valid (known and complete), the associated entry in
the CD indicates whether the CC is a System Command or an
Application Command, and if applicable the application that
is associated with the CC, in which case the application is
referred to as the current command application (CCA).

Ifthe CCis avalid System command, the CC it is processed
by the system.

If the CCA is not already active, it is started, and if appli-
cable, the CCA may receive the focus, although some com-
mands can be processed in the background without the need
for giving the application focus. Some commands may result
in focus being granted to another application, while in other
instances a command may be processed while focus remains
with or is returned to the previous application after the com-
mand is processed.

If the CC requires the CCA to be visible, then the CCA is
made visible and in most instances the CCA is granted focus.

If the command calls for granting SPOCUS to the CCA,
which may be independently granted from a known graphic
user interface or operating system focus, the system grants
SPOCUS to the CCA, and speech input is then directed to the
CCA. Indeed, separate applications having SPOCUS and
focus, respectively, may be concurrently active and receive
separate user inputs, without mutual interference. In some
cases, the CCA may be adapted to receive speech input as a
native data type, or the CCA may directly interact with the
speech recognition engine. Therefore, once SPOCUS is
granted to the CCA, the system may curtail processing of
commands in the speech input, and cease processing speech
as data. For example, the system may be reactivated to a
normal mode by requiring a specific CAS, and otherwise be
idle. For example, this may be useful when it is desired to
process sound as other than speech input, or when the appli-
cation having SPOCUS is capable of processing its own
speech input.

Still in other instances, it may be desirable for the system to
direct speech input to the application which has focus, and if
a command is not found in the input stream, to pass the input
stream as text or sound data by default.

If'the CC is an Application command, the CD contains the
information the System needs to determine which application
can process the command. Typically, an application com-
mand is executed in the CCA, and if two applications share
identical commands, the CCA will have priority. However,
some application commands may require the system to
switch to another application. In such instances, depending
on the nature of the command, the other application may or

—

0

20

25

30

35

40

45

50

55

60

65

24

may not receive the focus, and after processing the command
the focus may remain with the new application (in which case
it becomes the CCA) or return to the previous CCA.

6.5.7 Managing Commands that Fail at the Application
Level

There are instances where a command may be known to the
system to belong to an application, and may have the neces-
sary parameters to be a valid command, but where the com-
mand may fail at the application level. For example, in an
application that turns on the lights, the system may not always
know which lights can be turned on by the application. So a
command to “turn on the garden lights” may be validated by
the system since “turn on” is a known command, the param-
eter “light” belongs to the application that turns on the lights,
and there is an additional parameter naming a light that can be
turned on (“garden”). This command is valid at the system
level, but if the “garden lights™ are not known to that appli-
cation, then the command will fail at the application level.
When this happens, typically the application will generate an
error message (although some applications may do nothing).
In variations of a preferred embodiment, there are numerous
ways the system can deal with this. Some examples include
closing the command and prompting the user to issue another
command, reporting the error condition (which may be done
by either the system or the application) and prompting the
user to restate the command, granting SPOCUS to the appli-
cation or its child window so the user can interact with the
application and its prompts, enabling the user to modify and
retry the command, or providing the user with the option to
process the command in another valid application. In some
variations, the system may be designed to accept and process
the output from the application thereby enabling management
of failed application commands at the system level. These
examples are not intended to be all inclusive or limiting, and
are intended to demonstrate the flexibility in which the system
can be designed to manage commands and applications
where, as with a command that fails at the application level,
some of the functionality falls outside the scope of the system.
When in a content loop associated with an application, a
preferred method is for the system to set an error condition,
where the processing of the error condition is done within a
loop thatis handled by the CCA, or in a new stack managed by
the System. Since the possible command choices are typically
limited to only one or a few commands required by the error
condition, when the user responds, the system searches the
input only for the applicable commands, and the error condi-
tion can be processed without requiring a CAS to precede
such commands.

It is possible to have nested (recursive) loops, overlapping
loops, and repetitive loops. Further, in a data-driven architec-
ture, the process of waiting for a valid or complete data input
may be a different paradigm than a traditional software loop,
but it is understood that this accomplishes the same end result
and will be encompassed under the term loop as used herein.

6.5.8 Granting SPOCUS to the CCA

Typically, when an application has focus, keyboard, mouse
and speech input are directed at that application. When the
Current Command (CC) calls for the System to grant SPO-
CUS (Speech Operational Control User Service, an active
attention) to the CCA, and commands and data resulting from
speech input are directed at the CCA. Although only one
application may have SPOCUS at any given time, one appli-
cation may have SPOCUS while the other has focus, or the
same application may have SPOCUS and focus. Likewise,
the application having SPOCUS may be in a content loop, in
apreferred embodiment, all active applications and their cor-
responding facets (if any) remain known to the System as

US 8,543,407 B1

25

active. The System is able to switch to any one of the active
applications or activate other applications if a command so
requires, and the System can grant SPOCUS or focus to, and
can send and receive data to and from any one of the active
applications if it is determined that the incoming input stream
should be routed into a particular application. Likewise, the
System can retrieve data from any one of the active applica-
tions.

Because the speech input from a single user represents a
single stream, which may include data intended for the appli-
cation and commands for that application. If the system were
to try to analyze speech input for multiple tasks, inconsisten-
cies and errors are quite likely, and further, this is non-ergo-
nomic, since a normal user will typically address language
commands or data to a single task at a time, and then redirect
his focus to another or a subsequent data or command task.
Therefore, this SPOCUS model of interaction is consistent
with user expectations, and will result in lower user errors and
system errors. It is understood, however, that granting SPO-
CUS or focus to a single process or application, and analyzing
the speech input in the context of that single application or
process, is not a technological limitation of the present inven-
tion, and as appropriate, the speech input may be subject to a
plurality of simultaneously active analyzers, each with its
own properties, and to determine whether they are intended to
be invoked.

As discussed above, since all applications are still active,
the System can send data to or receive data from any one of the
active applications. Thus, the system branches into other
applications (which then become the CCA when they have
focus) without closing the current CCA), and the System can
return to any application in the same state where it was left
because the System state was saved before switching out of
that application. Typically, the System remains always active
and monitors the acquired input stream, so the System can
receive a command (preceded by a CAS in a preferred
embodiment), which is outside of the CCA, (a system com-
mand or an application command from any application
known to the System). Upon receiving this command, the
system activates another CCA, granting SPOCUS to the new
CCA, and executes the other application. When the subse-
quent application or process is closed or sent into the back-
ground, the system may return SPOCUS back to the previous
CCA. The system can perform this recursive type of behavior
over a plurality of CCA’s.

6.5.9 The System Mode and Focus or SPOCUS after Pro-
cessing a Command

With some commands, it is desirable for the system to
return to its previous state after the command is processed.
The system mode after processing a command is specified in
the CD for each specific system command, although it could
be defined elsewhere in alternate embodiments. This can
depend on what the system was doing prior to the command
statement, and the nature of the command statement itself.

Typically, System commands will either leave focus or
SPOCUS to the application that had focus or SPOCUS prior
to the command (processing the command in the back-
ground), the application associated with the command, or
grant focus or SPOCUS to the application while processing
the command and return to the previous application. For
example, the command statement to launch a second appli-
cation while focus or SPOCUS on a first application (the
CCA) typically leaves the system with focus or SPOCUS on
the second application and it becomes the CCA.

Other commands (such as a command to turn on the lights)
are processed and the System returns to its previous state
(either wait mode or the CCA that had focus or SPOCUS

20

25

30

35

40

45

50

55

60

65

26

before the command). Sometimes, these commands can be
processed in the background, giving the appearance that the
CCA before the command was executed never lost focus or
SPOCUS. For example, while in a word processing applica-
tion, the command to “turn on the kitchen lights” may be
processed in the background, thereby leaving (or returning)
return focus or SPOCUS to the word processing application
after processing the command.

Typically, Application commands will leave the system
with focus or SPOCUS on the CCA. Exceptions include when
is an application command to exit the application (the CCA),
or an application command that temporarily switches to
another application.

Some commands can operate as both system commands
and application commands. For example, the system com-
mand to open a file will give focus or SPOCUS to the appli-
cation designated for that file type and result in the desired file
being opened in that application, while the application com-
mand to open a file while in its associated CCA, will open the
file and leave the focus or SPOCUS on the CCA.

Dictation commands affect only data that is being placed in
the CCA, and typically do not affect the system mode. A
dictation command results in the dictation command data
being generated and placed in the data at the appropriate point
where the dictation command is spoken.

In some systems, a cue may be used to determine whether
ornot the system processes speech input as speech commands
or data, or even to which application the speech input is to be
directed. For example, a video camera may be provided
which is directed at the user, and determines which facet or
window the user is looking at or pointing at. Likewise, if the
user is looking away from the visual user interface, the pro-
cessing of speech by the system may be suspended. Other
cues which may alter the treatment of speech input may
include a room occupancy sensor, telephone ringing or use,
keyboard or pointing device input, or environment. For
example, in a vehicular speech recognition control system,
the context of speech input can be determined based on
vehicular data, such as speed, traffic, steering inputs, detec-
tion of increased stress in the user’s voice, or vetronics system
data, and the speech input processed accordingly, for example
to present default options which are more probable based on
the environment, or to limit options which are unsafe or
unwise.

6.5.10 Clearing the Data Construct

Typically, it is desirable for the system to clear the data
construct when a CAS is spoken, when a command has been
processed successfully, or when a command input is aborted
by the user or by the system when a predetermined condition
for aborting a command input is met. If the system is designed
to process multiple commands per input stream, it may be
desirable to clear data associated with each individual com-
mand after that command segment is processed or aborted. In
alternate embodiments it may be desirable not to clear the
data construct, to clear the data construct upon other condi-
tions being met, or to save the data from each command input
stream in a separate memory or persistent storage location. If
the latter is employed, other conditions may be used to limit
the space occupied in memory or persistent storage by the
stacks of stored data constructs, for example limiting the size
of memory or storage used, and/or limiting the number of
stacks to a fixed value.

6.5.11 Saving and Restoring the System State

Ina preferred embodiment, if it is necessary to switch focus
or SPOCUS from one application to another in order to pro-
cess a new command then return to that application at a later
time, the state of the system with respect to the application

US 8,543,407 B1

27

which has focus or SPOCUS is saved in a memory location
before placing focus or SPOCUS on the succeeding applica-
tion. When returning to the application that formerly had
focus or SPOCUS, this enables the system to restore its com-
plete State back to what it was at before switching focus or
SPOCUS to the other application. The result of saving and
restoring the system state can be compared to how systems of
the prior art switch focus or SPOCUS between application
windows, returning to an application in its previous state
when an overlapping window is closed or minimized. How-
ever, alternate embodiments may employ other means to
return to an application in its previous state after processing a
command. For example, a new command can leave focus or
SPOCUS on its application requiring the user to issue another
command to return to the previous application, or the task can
be left to the operating system.

6.5.12 Resolving Commands Ambiguity

In some cases, a given speech input may correspond to
more than one command in the system. When such ambiguity
exists, it may be desirable to prompt the user and let the user
choose which application to use, or it may be desirable to let
the system decide which application to use by assigning a
predetermined order in which applications will have the pri-
ority for processing such commands. This is important,
because the System will consider the command as success-
fully processed whenever any application has successfully
processed a command. So if a command can be successfully
processed in more than one application (or the system and two
or more applications), the disambiguation provided by sub-
sequent user input, or the order in which the system seeks to
process the command (system, CCA, active application, inac-
tive application) will ultimately determine which application
will process the command.

For example, a command may be valid only for the system,
for the system and one or more applications, for only one
application, or for more than one application. If the command
is valid for one or more applications, the application may have
focus or SPOCUS, be active and visible, active and not vis-
ible, or not active.

When a command is valid for the system and at least one
application, or when a command is valid for more than one
application, some factors that may be considered in determin-
ing the priority for which command processor will process
the command will include:

If there is ambiguity, should the user be prompted to pro-

vide disambiguation information?

If the command is valid for the System, should the system
always have the priority at processing the command?

If an application is the CCA, should it have priority over
other applications?

Should a visible active application have priority over a
non-visible active application?

Should an active application have priority over an inactive
application?

It the command is missing parameters for one of the appli-
cations, does the System try the command in the other
application instead of trying to complete/correct the
command?

When does the system prompt the user to complete/correct
the command?

Should the system prompt the user to make a choice when
there is more than one possible path for processing a
command?

Determining the priority by considering each these ques-
tions (and possibly others) enables flexibility in designing
how an embodiment of the system will process commands
which are valid in multiple instances, and can automate the

20

25

30

35

40

45

50

55

60

65

28

process to minimize the need for user intervention. In a pre-
ferred embodiment the system implements the priority algo-
rithm by answering yes to each of the questions above, and
“the last” to the last question, although alternate embodi-
ments could follow looser or stricter rules, or command-
dependent rules, depending on the needs that the system is
designed to meet.

6.5.13 Resolving Command Ambiguity vs. Resolving
Command Completeness

It should be noted that resolving command ambiguity dif-
fers from resolving command completeness.

Typically, disambiguation tales place at a lower level and
involves a command that can be processed in more than one
target, prompting the user to select a target for the command
from among the possible targets, and processing the com-
mand based on the input provided by the user.

Whereas resolving completeness typically takes place at a
higher level and involves prompting the user for elements of
missing information to build a completeness, and processing
the command when the user has supplied all the necessary
components of information needed to successfully process
the command.

6.5.14 Processing an Input Stream that Contains Multiple
Commands

Typically, the system is designed to accept one command
per input stream, and multiple commands are input one at a
time, however it may be desirable to allow the user to input
more than one command per input stream. Note that this
differs from a single command with multiple parameters. For
example, the command “open document (name) and show me
today’s appointments,” could require both a word processing
application and a calendar application. As shown in more
detail in the discussion on FIG. 6G, alternate embodiments of
the system can be designed to manage multiple commands in
a single input stream by identifying the number of known
commands in the input stream, and validating/processing
each known command parameter individually, or validating
all the known command parameters then processing all the
valid commands that have been identified.

6.6 The Content Loop

Some commands require the system to activate and give
focus or SPOCUS to an application that will receive input of
data from the user, for example a word processing application
that will receive dictation. When a current command (CC) has
activated or given focus or SPOCUS to such an application, it
becomes the CCA, and the system may enter a Content Loop
with respect to that application. If focus and SPOCUS are
granted to different applications or processes, then there are
potentially two different CCAs, CCA, (focus) and CCA,
(SPOCUR). Indeed, this schema may be extended to a larger
number, with different applications receiving or processing
user input from various sources. Typically, with a single user
and a consolidated multimedia user interface, focus and SPO-
CUS will be granted together, while in a dispersed user inter-
face, or one in which the graphic user interface is not the
primary interface, the two may diverge. Focus is at a low level
interacting with the speech engine and SPOCUS is at a high
level interacting with the system.

The incoming input stream is analyzed to determine which
application the stream should be routed to, starting the
required application if it is not currently active, and initiating
a command which is recognizable by the word processing
application which becomes the CCA. For example, a word
processing application might be activated by the user uttering
the command “Open the presentation text document.” This
phrase is parsed (divided up into system/application related
pieces) as a command to “open the word processing applica-

US 8,543,407 B1

29

tion” which is a System Command that initiates a CCA (the
word processing application) and starts a Content Loop (in
accordance with the parameters in the CD for the command
“open—text document”).

After the system enters a content loop, subsequent input is
generally routed to the CCA while continuing to parse and
test components of the incoming input stream for commands
indicating a CAS, a system command an application com-
mand, or a dictation command. Any data that is determined to
be content is passed to the CCA to be placed in the required
field of the CCA. If acommand is found in any segment of the
incoming input stream, it is further tested to determine
whether it is an actual command, or content that is within the
context of the input (data). In a preferred embodiment, this is
done using a natural linguistic model to determine if the
possible command is within the scope of prior and subsequent
words. The linguistic model is used to identify parts of
speech, such as verbs, nouns, adjectives etc. and then by
checking the context of the adjacent words to the possible
command, which may include periods of silence indicating a
pause preceding and following a command. Such periods of
silence, such as a pause in dictation before and after a com-
mand, can be one of the preferred means for determining
whether or nota command is within context of dictation or an
actual command.

If acommand is not within the context of the input, then the
system determines if the command is a CAS, an application
command, or a dictation command, and the command is
processed accordingly.

While in a preferred embodiment, a natural linguistic
model is the preferred means used to determine if the possible
command is within the scope of the adjacent words, in alter-
nate embodiments, other forms of context-based analysis or
linguistics models can be utilized. Other methods include
determining if a command is spoken in the course of continu-
ous dictation, for example without a pause before or after the
command, which indicates it is intended to be part of dicta-
tion.

When in Content Loop, the System continuously processes
the incoming speech input in this way until it is instructed to
abort or suspend the Content Loop by either an exit CCA
command or a CAS that sets command mode, which is usu-
ally followed by a new command switches focus to another
application. Alternatively, the CCA can be exited with a CAS
followed by a System command to close that CCA, however,
typically a CAS is used to precede a new command that
switches focus or SPOCUS to another application.

6.6.1 Processing Complex Content

When the system is in Content Loop, an incoming input
stream can (and with a complex or multiple part commands,
usually does) contain more than one command and/or com-
ponent of data, for example, “save and print document” which
will return from the Parse Complex process (S900) as two
components that are CCA application commands and will
result in the current document being saved (one command)
and printed (another command). As another example, the
above input stream could have included text to precede the
two commands, in which case there would have been three
data components, text to be inserted into the CCA and two
application commands save and print.

6.6.2 The Content Loop and the CAS

In a preferred embodiment, when the system is in content
loop, application commands for the CCA do not require a
preceding CAS, however, a CAS must precede a system com-
mand or a command intended for an application other than the
CCA. In alternate embodiments, it may be desirable to have a
CAS precede both system and application commands while

20

25

30

35

40

45

50

55

60

65

30

in a content loop. In such alternate embodiments, whena CAS
is detected while in the CCA, the System waits for input then
processes the incoming input stream to determine if it con-
tains a CCA or System command, and if so determines its
context. If no command is detected in the input following a
CAS, the System may either report an error condition and
prompt the user, ignore the incoming input stream, or assume
the incoming input stream is content and passes it as data to
the CCA leaving the System in content loop with SPOCUS on
the CCA. Still other alternate embodiments may not require a
CAS preceding any command while in content loop, and all
input is tested for both system and application commands.

However, while the System is in a content loop, a CAS does
not need to precede an application command statement or
DC. In alternate embodiments, a CAS may have to precede
application commands or a dictation command (DC).

In alternate embodiments, the content loop can take place
as part of the parsing process in command mode, or the
system can simply ignore the input if a command is not
detected after a CAS, in which case the system can return to
wait mode without any further action.

6.6.3 Dictation Commands in Content Mode

On a system that uses a speech to text engine, the speech to
text engine may include dictation command capability. How-
ever, there may be instances where the speech to text engine
or the CCA do not support dictation commands, or where it
may be desirable for the system to incorporate this function,
and to have the system generate dictation command data
(characters) and place those characters in the data to be passed
to the CCA. For example, the dictation command “New Para-
graph” is not a system command or application command, but
rather inserts two line breaks in place of the command words
“New Paragraph.” The processing of dictation commands is
shown in optional steps S914 and S915 in FIGS. 9A and 9B,
which illustrate the enablement of an embodiment of the
system which supports dictation commands.

7 THE MFGUI

In addition to being speech enabled, the preferred embodi-
ment combines another aspect of the present invention to
manage the display. This is referred to as the Multi Faceted
Graphical User Interface (“MFGUI”). As discussed above,
the MFGUI seeks to overcome the limitations of current
technology that uses individual windows for each applica-
tion, which inhibits easily viewing more than one application
and its contents simultaneously, and can result in a cluttered
display when too many windows are open and piled on top of
each other. Accordingly, a windowed environment that
requires a mouse and keyboard to navigate windows is not
best suited for use with speech, and it will become obvious
from the following discussion that the MFGUI of the present
invention is ideal for a speech enabled environment.

7.1 MFGUI Overview

From a visual standpoint in a Windowed GUI-based oper-
ating system the MFGUI appears like a “high-level window”.
In these Operating Systems a high-level window is defined as
one that is not a child of any other window, with the exception
of'the “desktop window”. The desktop window has no parent
window and acts as a “shell” by making child windows out of
the applications placed within. According to one embodiment
of'the invention, the MFGUI bypasses the normal application
Operating System and directly uses the graphical capabilities
of the hardware. Therefore, by making the MFGUI occupy
the entire display enables the use of the MFGUI as the main
user interface on a computer system, fitting the widely
accepted definition of a “shell”. But in a Windowed GUI-

US 8,543,407 B1

31

based operating system the MFGUI could also be one of other
high-level windows, living side-by-side or together with
other applications on the computer display.

In one alternate embodiment, the System is used as a
speech enabled operating system, and the MFGUI is the main
display, functioning as the desktop. In yet other embodi-
ments, multiple MFGUI windows can co-exist and applica-
tions are called into view by calling their respective MFGUI
window. This latter embodiment lends itself to grouping
applications, and navigating between MFGUI windows to
view those applications. For example, in a word processing
application and all of'its open documents could reside in one
MFGUI window, while the components of a contact manage-
ment application could reside in another.

7.2 MFGUI Facets

The use of a single window display with a plurality of
facets divided into a plurality of distinct viewing areas called
“Facets” (FIG. 14) enables users to view multiple applica-
tions at one time .time. The active facets of the MFGUI are
“tiled” sub-windows and are all maintained within the con-
fines of that MFGUI window. Even when additional applica-
tions are activated subsequently, the configuration and num-
ber of the facets in the MFGUI may change, but no additional
high-level windows ever appear. Moreover, once an applica-
tion is activated, it remains active until closed, even when
subsequent applications are activated and take their place in
the MFGUI. However, as with all GUI environments where
more than one application may be running, even when all
facets of the MFGUI are occupied by an active application,
only one facet can receive the input focus at one time, and that
is the facet that contains the CCA.

Each facet of the display area has an independent applica-
tion taking its input therefrom and routing its outputs thereto,
and applications and their child windows move in and out of
the facets to accommodate other applications. Applications
that move out of MFGUI can close, or can remain active in the
background waiting until they are called upon to return to the
display. All activated applications can run simultaneously to
provide the appearance of multitasking, and applications can
beused in any sequence in order to execute commands, and an
application can be used without the need for the application to
appear in the MFGUI.

The number of facets and the size and shape of the facets
within the viewing area are fixed at three in the preferred
embodiment as in the example shown in FIG. 14. Although it
is understood that any number of facets and configurations
can be utilized, it is preferred to use a maximum of three
facets at a time. The human brain can handle three facets at a
time without taxing the users. An excessive number of facets
creates cluttered view, and will eventually result in too many
small facets where it becomes difficult to keep track of the
information displayed in each application. Likewise, the prior
art methods are difficult for users to deal with because parent/
child windows appear one on top of another, creating an
obscured, cluttered look to the screens. In the present inven-
tion, each display area corresponds to one of the active facets,
which are all part of a single high-level window.

However, in alternate embodiments the number of facets
and the shape, size and placement of facets can be fixed at a
different value or variable according to the design of the
system, preferences of the user and the number of active
applications. When variable facets are utilized, as other appli-
cations are activated, each facet can also reshape (or morph)
itself to bring a new application into one of the viewing areas.
Inthe preferred embodiment, as the System State and context
of'the user input changes from one application to another, the
System manages applications within the MFGUIT and its fac-

20

25

30

35

40

45

50

55

60

65

32

ets to accommodate what is needed to accomplish the task. In
some embodiments, the facets in the MFGUI are dynamic and
change in number, size and placement according to the needs
of'the applications in use.

In the preferred embodiment, the System does not load
applications into the MFGUI, the System requests the oper-
ating system (“OS”) to execute the applications, and for that
the OS loads them in memory, and allocates to them some
processing time. However, in alternate embodiments, the
System could function as a speech enabled operating system
and perform this function.

8 BRIEF DESCRIPTION OF THE FIGURES

8.1 Overview of the Figures

The Figures shown here are not meant to be limiting, but
rather, in designing the system, different components can be
combined with each other or modified in order to achieve
desired design and functionality for the System. The steps
shown in the various Figures. can be used in different com-
binations to create other alternate embodiments.

FIG. 1 is a flow chart showing an overview of the system
main process in the preferred embodiment. All subsequent
flow charts are elements of the system main process shown in
FIG. 1.

FIG. 2 is a flow chart showing system initialization.

FIG. 3 is a flow chart depicting the activate system. At this
point the system is active, waiting for and ready to process
user input

FIG. 4A is a flow chart of the preferred embodiment show-
ing the high level overview of how the system processes user
input. This figure depicts an embodiment where the user is
prompted for missing command information and the system
waits for additional user input at this level in the system flow.

FIG. 4B is a flow chart of an alternate embodiment where
a CAS is not utilized, and the system is always in command
mode. This corresponds to the alternate embodiment in FIG.
4C in the preferred embodiment, and depicts an embodiment
where the user is prompted for missing command information
and the system waits for additional user input at this level in
the system flow. Although this FIG. 4B and succeeding fig-
ures in the B series correspond to the alternate embodiment of
FIG. 4C, the concept of the system always being in command
mode can apply to any embodiment. FIG. 4C is a flow chart
showing a high level overview of an alternate embodiment.
This figure, and the corresponding FIGS. 5C, 6D and the
other Figures of the preferred embodiment, depict an embodi-
ment where the system analyzes command input and if nec-
essary prompts the user for missing command information,
and returns to FIG. 3 to wait for the user to provide additional
input.

FIG.5A is a flow chart of the preferred embodiment depict-
ing the parsing of user input to search for a CAS and set
command mode if one is found, prior to the processing of the
incoming input stream.

FIG. 5B is a flow chart of an alternate embodiment depict-
ing the processing of an incoming input stream, and corre-
sponds to the alternate embodiment shown in FIG. 6D. In this
alternate embodiment all parsing of the incoming input
stream is done at the Process Stream step shown in this FIG.
5B. In this section of the flow, a command is verified for
processing, or returned for additional user input. FIG.5C is a
flow chart of an alternate embodiment corresponding with
FIGS. 4C, 6D and the other FIGures of the preferred embodi-
ment. This chart shows the parsing of user input to search for
a CAS and set command mode if one is found. In this FIG. 5C,
when command mode is set, only the CAS is cleared from the

US 8,543,407 B1

33

data construct leaving other command elements intact, and
allowing the system to again pass through FIG. 5C if the
system is already in command mode. This enables a CAS and
a command to be issued together in a single input stream, or
separately by prompting the user after a CAS and cycling
through another loop.

FIG. 6A is s a flow chart depicting the processing of an
incoming input stream in the preferred embodiment.

FIGS. 6B and 6C correspond to the process command steps
shown in FIGS. 7A-7H in other embodiments, for the alter-
nate embodiment where the system is always in command
mode and a CAS is not used.

FIG. 6D is a flow chart of an alternate embodiment depict-
ing the processing of an incoming input stream, and corre-
sponds to FIGS. 4C, 5C and the other Figures of the preferred
embodiment. In this alternate embodiment all parsing of the
incoming input stream is done at the FIG. 5C level and in the
course of processing a command, once placed in command
mode, the system can pass through FIG. 5C Parse Mode
multiple times while processing a CAS/command series as
long as the system is left in command mode, thus enabling an
incomplete command to be completed and validated without
starting over. In this section of the flow, a command is verified
for processing, or returned for additional user input. Note that
in this alternate embodiment in FIG. 6D, optional step 613 is
used only if optional steps 502 and 503 in FIG. 5C are used.

FIGS. 6E and 6F is a flow chart depicting an alternate
embodiment of the processing of an incoming input stream,
where the user is prompted for missing command information
atthis level in the system flow of processing user input. In this
alternate embodiment, the flow corresponds with FIGS. 4C,
5C and the other Figures of the preferred embodiment, and
steps S404 and S405 may be optional, and when used, will
typically inform the user of the reason for the Command
Status before returning to S302 to wait for user input.

FIG. 6G illustrates an embodiment where the system can
process multiple commands in a single input stream, and
corresponds with FIGS. 4C, 5C and the other Figures of the
preferred embodiment.

FIGS. 7A and 7B is a flow chart showing the various ways
in which the preferred embodiment can process a command.
A command may start an application before processing the
command, process the command in the desired application,
and if required by the command, to enter a content loop with
respectto an application as shown in FIGS. 8 A and 8B and 9A
and 9B. A command to open a certain type of file, may imply
a command to also start the corresponding application if it is
not already started.

FIGS.7C and 7D correspond to the Content [L.oop shown in
FIGS. 8A-8] in other embodiments, for the alternate embodi-
ment where the system is always in command mode and a
CAS is not used.

FIGS. 7E and 7F and the corresponding FIGS. 9C and 9D,
8E and 8F and the other Figures of the preferred embodiment
show a variation of the preferred embodiment where a CAS
must precede all commands while in content loop, thereby
allowing system commands and application commands to be
issued and processed from within content loop.

FIGS. 7G and 7H and the corresponding FIGS. 9E and 9F,
8G and 8H together with the other Figures of the preferred
embodiment depict another alternate embodiment where a
CAS must precede both system commands and CCA com-
mands while in content loop, and which is enabled for recur-
sivity. When in a content loop, the system processes system or
application commands outside of the CCA and return to the
CCA in content loop.

5

20

25

30

40

45

50

55

60

34

FIGS. 8A and 8B is a flow chart depicting the content loop
of'the preferred embodiment under which data is being tested
for commands while non-command input is passed as content
to the current command application (CCA) which has SPO-
CUS.

FIGS. 8C and 8D correspond to the Parse Complex shown
in FIGS. 9A-9H in other embodiments, for the alternate
embodiment where the system is always in command mode
and a CAS is not used.

FIGS. 8E and 8F and the corresponding FIGS. 9C and 9D,
7E and 7F and the other Figures of the preferred embodiment
show a variation of the preferred embodiment where a CAS
must precede system commands, application commands and
CCA commands while in content loop.

FIGS. 8G and 8H and the corresponding FIGS. 9E and 9F,
7G and 7H and the other Figures of the preferred embodiment
show another embodiment enabled for recursivity. In this
alternate embodiment, a CAS must precede system com-
mands, application commands and CCA commands while in
content loop.

FIGS. 81 and 87 and the corresponding FIGS. 9G and 9H,
7E and 7F and the other Figures of the preferred embodiment
show another variation of the preferred embodiment where a
CAS must precede both system commands and CCA com-
mands while in content loop.

FIGS. 9A and 9B is a flow chart of the preferred embodi-
ment showing detail of the parse process while in content
loop. This is how the system determines if the input received
by the system is content for the CCA, or a command, and if it
is a command, whether or not the command is an actual
command, or content intended for the CCA. This figure also
shows two optional steps for enabling dictation commands.

FIGS. 9C and 9D and the corresponding FIGS. 8F and 8F,
7E and 7F and the other Figures of the preferred embodiment
show a variation of the preferred embodiment where a CAS
must precede both system commands and CCA commands
while in content loop, and if there is no CAS the input is
assumed to be data for the CCA. This FIGS. 9C and 9D also
illustrates several of many possible ways to process user input
ifa CAS is found, and is not in context. These options are not
intended to be limiting, and these and other variations can be
used here or in other alternate embodiments as long as the
objects of the content loop are achieved.

FIGS. 9E and 9F and the corresponding FIGS. 8G and 8H,
7G and 7H and the other Figures of the preferred embodi-
ment, depict an alternate embodiment where a CAS must
precede both system commands and CCA commands while
in content loop, and which employs recursivity. One or more
“System State” memory locations are used to save the System
state before leaving one application to process a system com-
mand or application command for an application other than
the CCA, so that the system can return to the previous appli-
cation in the same state as it was left when the system is
finished processing command(s) in the succeeding applica-
tion. The system returns to this point after system and appli-
cation commands are processed, enabling the user to process
these commands from the CCA and continue in the CCA
without exiting or switching to other applications.

FIGS. 9G and 9H and the corresponding FIGS. 81 and 87,
7E and 7F, 6D, 5C, 4C, 3, 2 and 1 show another variation of
the preferred embodiment where a CAS must precede both
system commands and CCA commands while in content
loop, and uses a loop to validate commands at this level, thus
enabling the user to complete a command from content loop
without starting over the command input.

FIG. 10A shows an embodiment of processing a command
in the CCA (S807 in the preferred embodiment), and illus-

US 8,543,407 B1

35

trates the preferred option for managing an error condition if
the CCA command fails to process.

FIG. 10B shows another variation for processing a com-
mand in the CCA.

FIG. 10C shows yet another variation for processing a
command in the CCA, and opens a new stack at FIG. 11 to
process an error condition returned from a processing a com-
mand in the CCA.

FIG. 11 shows the flow of processing an error condition
from process command in CCA. Valid commands are
restricted to applicable commands for the error condition.

FIG. 12 is a flowchart showing an overview of how the
various charts flow together.

FIG. 13 shows an overview of the system.

FIG. 14 shows a variety of possible configurations of facets
in the MFGUIL It is not meant to be limiting, but only to
illustrate the flexibility of the MFGUI for displaying multiple
applications in one viewing area composed of multiple facets.

FIGS. 15A and 15B is a flow chart illustrating one way in
which the system can set and assign priority for processing
commands. In the preferred embodiment, an input is pro-
cessed at the highest level possible, meaning the system will
have first priority at processing a command if the command is
“System Valid”, followed by the CCA, followed by other
active applications, followed by inactive applications. In
variations of the preferred embodiment or alternate embodi-
ments, if a command is valid both to system and the CCA, or
to multiple applications, then the system can use information
in the CD to determine where the command will be processed,
or user may be prompted to make this determination.

Requiring a command activation statement (CAS) is one
method to filter input such as speech or background noise that
is not intended to be input for the system, and the system wait
mode essentially functions as a mute button. This enables the
computer to be used for other types of speech input such as
intercom or telephony functions. In some embodiments, it
may be desirable to enable the user to command the system to
enter into a wait mode. In other alternate embodiments, the
use of a wait mode may not be necessary or desired. The B
series of Figures specified below show one such alternate
embodiment. In this embodiment, the system assumes all
input is a command, so the CAS is not needed. If the user
desires to mute the system from listening or to use speech
input for another purpose besides command and control, the
system mode can be changed by a command. FIGS. 1, 2 and
3, combined with FIGS. 4B, 5B, 6B and 6C, 7C and 7D, 8C
and 8D and 10A, show an alternate embodiment where the
system is always in command mode, and the use of a CAS is
unnecessary. With the exception of input from a Content
Loop, all input to the System is assumed to be command
input. In this series, the functions of performed in FIG. 5A in
the preferred embodiment are omitted, as these steps are
unnecessary in this alternate embodiment, and FIGS. 6B and
6C, 7C and 7D and 8C and 8D correspond to the preferred
embodiment FIGS. 7A and 7B, 8A and 8B, and 9A and 9B
respectively.

8.2 Overview of the Figure Series

FIGS.1,2,3,4A,5A, 6A, 7A and 7B, 8A and 8B, 9A and
9B, 10A, referred to as the preferred embodiment or A Series,
show flowcharts detailing a first embodiment of the invention.
This embodiment employs a command validation loop at the
Process User Input level shown in FIG. 4A.

FIGS. 1, 2, 3,4B, 5B, 6B and 6C, 7C and 7D, 8C and 8D,
and 10A, referredto as the B Series, shows flowcharts accord-
ing to a second embodiment of the invention, which provide
an alternate embodiment wherein the system is always in
command mode, and the use of a CAS is unnecessary. Except

20

25

30

35

40

45

50

55

60

65

36

when in content loop, all speech input to the System is
assumed to be command input.

FIGS. 1, 2, 3,4C, 5C, 6D, 7A and 7B, 8A and 8B, 9A and
9B, and 10A, referred to as the C Series, show flowcharts
according to a third embodiment of the invention, which show
an alternate embodiment that uses a loop through the system
to validate commands.

FIGS.1,2,3,4C,5C, 6E and 6F, 7A and 7B, 8 A and 8B, 9A
and 9B and 10A, referred to as the D Series, show flowcharts
according to a fourth embodiment of the invention, which
show an alternate embodiment that uses a command valida-
tion loop within Process Stream level shown in FIGS. 6E and
6F.

FIGS.1,2,3,4A,5A, 6A, 7E and 7F, 8E and 8F, 9E and 9F,
and 10A, referred to as the E Series, show flowcharts accord-
ing to a fifth embodiment of the invention, which show an
alternate embodiment wherein a CAS must also precede all
commands from within content loop. In this series, FIGS. 9E
and 9F illustrate a command validation loop within the Parse
Complex and multiple possibilities for managing or validat-
ing a command that is not valid (complete).

FIGS. 1,2, 3,4A,5A, 6A, 7G and 7H, 8G and 8H, 9E and
9F, and 10A, referred to as the F Series, show flowcharts
according to a sixth embodiment of the invention, which
shows an alternate embodiment enabled for recursivity. As
with the E Series, all commands from within content loop
must likewise be preceded with a CAS.

FIGS. 1,2,3,4C,5C, 6D, 7E and 7F, 81 and 87, 9G and 9H,
and 10A, referred to as the G Series, show flowcharts accord-
ing to a seventh embodiment of the invention, which is a
variation of the E Series embodiment, with command valida-
tion enabled within the Parse Complex FIGS. 9G and 9H of
the content loop. If a command issued from content loop is
missing required parameters, the user can complete the com-
mand within the Parse Complex.

FIGS. 1,2, 3, 4C, 5C, 6F, 7A and 7B, 8A and 8B, 9A and
9B, and 10A, referred to as the H Series, show flowcharts
according to an eighth embodiment of the invention, which
depict an embodiment which processes input of multiple
commands in a single input stream.

9 DESCRIPTION OF THE FIGURES

9.1 Overview of Numbering Scheme

FIGS. 1-3 and 4A-10A contain a detailed flow chart for
preferred embodiment of a SPEECH INTERFACE SYSTEM
AND METHOD FOR CONTROL AND INTERACTION
WITH APPLICATIONS ON A COMPUTING SYSTEM
(the “System”) designed according to the preferred embodi-
ment of the present invention, which incorporates the com-
mand and control aspect and the multi-faceted graphical user
interface (“MFGUI”) aspect of the invention together. For
convenience, every process step is designated with a process
step identifier containing a letter ‘S’ followed by a three digit
number (i.e. S300). Each process step (“Sxyz”) uses a num-
bering convention where the three digit code (“xyz”) corre-
sponds to the figure with which the process step relates. In
every process step designated as “Sx00”, the “x” digit corre-
sponds to the figure number in which the detail of the proce-
dure is shown. For example, the “x” refers to the current
figure, and “yz” refers to a unique process step number in that
figure.

In each figure there is an end of process block which is
designated as a “return” statement. The “return” process step
in each figure specifies the figure to which to return, and
unless otherwise specified, the return is to the point of depar-

US 8,543,407 B1

37

ture. The convention used to designate process steps will
become apparent from the following discussion.
9.2 Detail Description of the Figures

FIG. 1, shows a general flow diagram for the System.

The System is started by initiating a start command. The
start command can be generated by speaking into a sound
input device like a microphone, striking a key or sequence of
keys on a keyboard, moving and clicking a pointing input
device like a mouse on an icon or menu item, or any other
known method of starting a computer software application
and executing a sequence of instructions. In embodiments
where the System is used as the operating system, the start
command occurs as part of the boot process. Once the start
command is initiated, a main process (S101, FIG. 1) is
executed by the System. The main process initializes a series
of parameters (5200, FIG. 2).

Referring to FIG. 2, a detail of the System initialization
sequence (S200) is shown. This includes initializing the view-
able graphical user interface window (S201) which in the
preferred embodiment is a multi-faceted graphical user inter-
face (“MFGUI”), opening a series of previously designated
default applications (S202), activating a speech recognition
process into the system (S203) so it is accessible to the Sys-
tem, activating a text to speech (TTS) translation engine so it
is accessible to the System (S204), loading the Commands
Dictionary (CD) from storage into a memory location (S205)
and initializing the default applications to graphical user
interface, where in the preferred embodiment, such default
applications are displayed in the default facets of the MFGUI
(S206). Both predefined commands and dynamically gener-
ated commands, as well as derived structures inferred from
these commands, may be employed, and thus step S205 may
either return the CD or provide potential synchronization
with these derived structures. The derived structures may be
context dependent. It is understood however, that steps in
FIG. 2 could be performed in any reasonable order.

In the preferred embodiment, in the above initialization
sequence in FIG. 2, steps S201 and S206 set the MFGUI as
one high-level window, which displays multiple active view-
ing areas (called “facets™). Each application that is set by
default (if any) to be displayed upon initialization occupies
one facet of the display area. The output of the applications
displayed in the MFGUI are directed to each such applica-
tions corresponding facet.

Once the initialization sequence ends, control is returned to
S102 in the Main process in FIG. 1.

Referring again to FIG. 1, after the System is initialized in
step S200, the System goes on to verify that the speech
recognition process is active, and if so sets speech as the
primary interface (S102-104). This can be done, for example,
by verifying the System has a connection to the speech rec-
ognition process and/or TTS engine(s). The system can also
verify that it is receiving input from the sound input and
processing devices (such as a microphone and sound card) to
verify that the input of sound is present and active on the
computer. If these steps are successful, then speech is set as
the primary interface (S104). When the speech recognition
process or sound input are missing or disabled, the System
bypasses speech as an input, and sets the keyboard and point-
ing device as the primary input device to the System (S105).
However, even when speech input is enabled, the keyboard
and pointing device are always active as secondary input
devices so the user is able to utilize all three methods of input
thereby increasing efficiency and flexibility of the System. At
this step, testing for the presence and availability of the TTS
may also take place, and in yet other alternate embodiments,
this step may take place as part of the process of loading the

20

25

30

35

40

45

50

55

60

65

38

speech recognition process and TTS engines. Further, if
desired, the output of the TTS engine may also be displayed
graphically and this may be by design or optional to the user.

According to alternate embodiments of the invention, the
System may test for available means of input and select one of
the available means (including but not limited to speech) as
the primary input device, the selection being made in order of
assigned priority. The System may also be designed to use any
available input method including but not limited to speech,
without checking for availability of sound or speech input or
without setting any one of the available means of input as
primary. Yet another alternative is for the System to prompt
the user to select one or more of the other available input
means as the primary input means. If speech is determined to
be an available input modality, the speech engine is initialized
in anticipation of receiving input. Other inputs may act con-
currently, and indeed, one aspect of the invention coordinates
inputs from multiple sources to ensure that the status of each
interface modality is synchronized. Thus, for example, if a
user inputs a partial command using speech, provides another
part using the keyboard and/or mouse, and the final part using
speech, the speech input system must include the non-speech
inputs within the command analysis. Therefore, both the
application and the speech interface may respond to the same
commands.

Once all the initialization parameters are set in place, the
System may greet or prompt the user (S106, FIG. 1) and the
System goes into an active mode (S300, FIG. 3) wherein the
System is active and ready to accept and process all input and
output of data through the computer. Optionally, the prompt
in S106 can be combined with the prompt at S301, although
in the preferred embodiment, the difference between the two
prompts is that S106 indicates the initialization has been
successful and S301 indicates that the System is ready to
accept input from the user. The prompt(s) can be any graphi-
cal/audio/visual prompt that is desired. For example, the TTS
engine can be used by the System to announce a greeting and
ask the user for input, a message can be displayed on the
MFGUI, or both methods can be employed. However,
prompting the user at steps S106 and S301 are not essential to
the function of the system and can be omitted or bypassed if
desired.

FIG. 3 shows a flow chart depicting the process flow in the
preferred embodiment where the System has been activated
(S300). First, the user is prompted for input (S301). In the
preferred embodiment, this prompting is not a general greet-
ing as in step S106 but instead is a request for user input. This
request can be in the form of any graphical, audio or visual
cue, which is necessary to alert the user that the system is
waiting for an input.

After S301, the System is active, and running at all times.
The speech primary interface is active and constantly moni-
tored by the System for possible commands, requests or data
input. Even when the system is in the middle of communicat-
ing with another application, the primary interface is being
polled continuously for commands. Alternatively or in addi-
tion to polling, the System can use the system interrupt
mechanism to accomplish this function, or any other means
that accomplishes similar results.

The system waits for the user to generate an input stream
(S302). The user generated input stream can be derived from
any acceptable input process including, but not limited to a
speech recognition process, a keyboard, a pointing device like
a mouse or any other input device that may be present and
active on the System. Once an input stream is supplied, the
System acquires and processes the input stream (S400, see
FIG. 4A for and beyond for details). If the System returns

US 8,543,407 B1

39

from S400 without detecting a CAS or command input, in the
preferred embodiment, the System returns to S302 to again
wait for user input, although optionally if desired, the system
canreturn to S301 to prompt the user before returning to S302
to wait for user input.

The general manner in which user input is processed is
depicted in the flow chart found in FIG. 4A. As shown in FIG.
4A, an input is processed (S400) by acquiring the data from
an input stream (like the output of a speech recognition pro-
cess, an STT engine or input received from a keyboard or
pointing device for example) (S401) and parsing that data
elements to determine what operating mode the input stream
requires for that data to be acted upon (S500, FIG. 5A).

FIG. 5A shows a flow chart depicting the parsing of an
acquired input stream in order to determine if the system
needs to be in the command mode (S500). The stream is first
parsed (divided) into a data construct (S501), which is stored
in a location in memory. The data construct is searched for a
Command Activation Statement (CAS) (S504) which in the
preferred embodiment is contained in the Commands Dictio-
nary, although it may be contained in another location if
desired. Thus, the present invention expressly contemplates
various organizations of the commands in a data structure,
ranging from a single database, to separate files, to multiple
files, representing the dictionary for each command, multiple
commands, an entire process or application, or the entire
operating system, supporting multiple applications. In some
cases, the system will be “flat”, with all commands at a single
level, while in others, the commands will be organized in a
hierarchy, facilitating resolution of ambiguity by contextual
analysis.

The use of a CAS and Command Mode are particularly
useful when the speech input for the System has other appli-
cations, such as use with a telephone system or intercom for
example. Likewise, multiple systems may receive the same
acoustic input, and thus must determine which commands are
intended for a particular system, and which are not commands
or are intended for other systems. However, in alternate
embodiments, such as one discussed below, the System may
be designed so that it always in command mode and searches
all input for one or more commands indicating the input of a
command, and in such alternate embodiments, the Parse
Mode (FIG. 5A) can be omitted with all parsing taking place
in Process Stream FIG. 6A. Such an alternate embodiment is
show in FIGS. 4B through 8D. Still, in other alternate
embodiments, the step of searching for a CAS can take place
in Process Stream (FIG. 6A), or at least some (or all) com-
mands can be given the effect of a CAS. The object and effect
of such alternate embodiments is to eliminate the need for a
CAS to precede a spoken command. In these alternate
embodiments the functions of FIGS. 5A and 6 A can be com-
bined. Finally, the input of a CAS is typically done by speech,
however, it could be done by a key stroke or combination of
keystrokes, or mouse movement or click. Keystrokes and
mouse clicks should have the same effect asa CAS for placing
the system in command mode.

Returning to the preferred embodiment, when a CAS has
been found in the data construct (S505), the system is set into
command mode (S506) and after clearing the CAS from the
data construct (S507), returns to Process User Input (FIG.
4A) where in the preferred embodiment once the System
determines it is in command mode (S402 and S403) the user
is prompted to input a command (S404) and the System waits
for user input (S405). If a CAS is not found in the data
construct, the System goes directly back to FIGS. 4A-4C and
returns to steps S402 and S403 and because a CAS is not
found the system returns to Activate System (FIG. 3), which

20

25

30

35

40

45

50

55

60

65

40

will result in returning to S302 to wait for user input. Note that
the CAS is cleared from the data construct at S507 to allow
some embodiments of the system to pass through FIGS.
5A-5C (Parse Mode) again without clearing command ele-
ments from the data construct in subsequent loops during the
process of validating a command. In some embodiments
where the command validation takes place at a higher level,
this step S507 may be omitted. Finally, in the preferred
embodiment, in order to enable the user to abort the input and
validation of a command, if the system detects a CAS or an
Abort command while in the process of validating a com-
mand (see FIG. 6A (S609-S611), the data construct is cleared
at S414 when the system cycles back to FIGS. 4A-4C, and
returns to S302 to wait for another command input, thus
enabling the user to abort the input of one command and start
another with a CAS or an abort command. The difference
between the two is that a CAS will leave the system in com-
mand mode so the user can start the command input again
without repeating the CAS, and an abort command will return
the system to wait mode. The exception to this is a CAS
detected while using an application in a content loop as shown
in FIGS. 8A and 8B, and 9A and 9B below, which depending
on the context may be handled in more than one way.

In alternate embodiments, prompting the user for a com-
mand and waiting for user input after a CAS can take place in
Parse Mode (FIG. 5A in the preferred embodiment) after
setting command mode S506, or the System can return to
S301 after S303 and prompt or inform the user at this point
and going to S302 to wait for the next input. As in the pre-
ferred embodiment, in other alternate embodiments it may be
desirable to omit the step of prompting at this point, and
simply return to S302 to wait for a command.

In the preferred embodiment, once the System is set to
command mode, it remains in command mode until a com-
mand is either processed, the command input is aborted by the
user or a predetermined event such as a time out or exceeding
a predetermined number of loops occurs, although other con-
ditions can also result in a command input being aborted,
although it may be desirable to leave the system in command
mode after a command is processed in order to wait for
another command.

Returning to FIG. 4A, after the data has been parsed and
tested fora CAS in FIG. 5A, the System tests to determine the
mode of operation (S402). If the system is set to command
mode (S403), the Data Construct is tested to see if it contains
command information S404. If no command information is
found in the Data Construct at S404, the user is prompted for
a command (S405) and the system waits for user input
(S406). In this case, the user will have only spoken a CAS as
his or her initial input. When the user provides input, the
system acquires the incoming input stream (S407) and goes
on to processes the input stream (S600 FIG. 6A), (details
found in FIG. 6A) in order to determine if the data input
following a CAS contains a valid command (known to the
system and complete with all the elements of information
needed to process that command). If the user speaks a com-
mand in the same input stream as the CAS, the Data Construct
will contain command information at S404 and the system
will go on to S600 (FIG. 6A) to process the input stream
(S600 FIG. 6A). If the System is not in command mode at
S403, the System will return to S411, the System mode is set
to “Wait”, and the System returns to FIG. 3 S303 to return to
S302 to wait for the next user input.

After returning from FIG. 6A, the System checks the com-
mand status to determine how the input stream was processed
(S408) by checking the Command Status. The command
status may also include information from the System on the

US 8,543,407 B1

41

reason for the command status, and the uses that information
to inform and/or prompt the user for a command (S410 or
S411). If the Command Status at (S409) is “Processed,”
“CAS,” “Processed Error” or “Aborted”, (meaning the Com-
mand Status is not “unknown” or “incomplete”), the system
goes on to S410 to inform the user or prompt the user based on
the command status. If the command status is “processed
error” the user may also be informed of the reason for this
status. If the command status is ‘“Processed,” “CAS,” “Pro-
cessed Error” or “Aborted” the user is informed of the com-
mand status (S410) and the system clears the data construct,
depending on the Command Status, at S414, before the Sys-
tem returns FIG. 3 to wait for the next command at (S302).
The information provided by the prompt at S414 (and S411)
assist the user in interacting with the System. If the command
status at S409 is “incomplete” or “unknown” the system
informs and/or prompts the user for command information
(S411), and if the command status is “incomplete” S412,
returns to S405 to wait for additional user input. This combi-
nation of prompting (S411) and cycling through a command
loop (back to S405) assists the user with inputting and com-
pleting incomplete commands (commands which are known,
but do not contain all the required elements of command
information needed to process the command). If the system
has not found a command (command status “unknown” at
S412), the data construct is cleared at S414 and the system
mode is set to Wait Mode, after which the system returns to
FIG. 3 S302 to wait for the next user input.

In the preferred embodiment, if the command status is
“incomplete,” S412 after the user has been prompted for a
command (S411), the System cycles back to S405 to wait for
the missing user input, and when the user provides new input,
the system cycles through another loop, again passing
through Process Stream (FIG. 6 A) to test for a valid command
(known and complete) and to process a valid command if one
is found. This process continues until the command is pro-
cessed, or the command input is aborted by the user or the
system as discussed above.

At S409, if the Command Status is set to “processed” this
typically means that a command has been successfully pro-
cessed by the system or the designated application for the
command. The Command Status of “aborted” or “CAS”
means the user has given an abort command or a CAS, or the
system has encountered a predetermined condition for abort-
ing the command such as exceeding a predetermined time-out
or number of cycles through a loop. If the command status is
set to “processed error,” this means that a command failed to
process.

Following the “yes” branch in S409 in the preferred
embodiment, if a CAS was used to abort a command input,
the command status was set to “CAS Valid” at S611, and at
S414 the data construct is cleared and the system mode is left
in “command mode,” so the user can proceed with the input of
a new command without repeating the CAS. If the command
status is other than “CAS Valid” in this branch, the System
mode is set to “Wait” and the System then returns to activate
system (FIG. 3), to wait for user input at S302. Following the
“no” branch of S409, if the command status at S412 is
“unknown” (Command Status not “incomplete”) then option-
ally, the data construct is cleared (S413) and the system still in
command mode returns to activate system FIG. 3), to wait for
user input at S302. Optionally in an alternate embodiment,
the system can skip the optional step S413 and return directly
to FIG. 3, or can pass through S414 with the options to clear
or not clear the data construct and to leave the system in
Command Mode or set the system to Wait Mode. At this stage,
another alternate embodiment determines which option to

20

25

30

35

40

45

50

55

60

65

42

follow after an unknown command, based on at least one of
the previous system state, current system state, user prefer-
ence or an instruction in the commands dictionary.

In an alternate embodiment as shown in FIG. 4C and the
corresponding FIGS. 5C and 6D, instead of requiring a CAS,
prompt, command input format, and cycling through a loop
between S410 and S405 to complete an incomplete command
asin FIG. 4A, the system is able to accept and process a CAS
and a command separately or in the same input stream, and
incomplete commands are validated by cycling through
FIGS. 3, 4C, 5C and 6D of the System as opposed to using a
command validation loop like the ones shown in FIG. 4A and
FIGS. 6E and 6F. This enables the user to either speak a CAS,
then issue a command, or to speak a CAS and a command in
the same input stream. Such a status is not generally available
in this embodiment, however, though extrinsic or modified
processes, this may be possible or even desirable.

Referring to FIG. 4C, to accomplish this, after acquiring
the incoming input stream (S401), the System cycles through
Parse Mode (S500, FIG. 5C) where optionally the system
determines the mode of operation. If the system has already
been placed in command mode (S503) by the previous utter-
ance of a CAS, then it may be desirable to bypass the remain-
der of the Parse Mode and return to FIG. 4C. Otherwise, if the
system is not already in command mode, the system searches
the Data Construct for a CAS. If a CAS is found (S505) the
System is set to command mode (S506) and the CAS is
cleared from the data construct (S507). After following either
branch from S503 FIG. 5C, the system returns to FIG. 4C
S402-S403, where if the system is in command mode it con-
tinues on to cycle through to FIG. 6D where it searches the
input stream for commands. In the first cycle, the system will
process a valid command that was issued in the same input
stream with a CAS. If no known command was contained in
the initial input stream with the CAS (the user spoke only a
CAS), or if aknown command is incomplete, the system goes
to FIG. 4C and cycles to S302 (FIG. 3), to wait for the user to
input a command (command status “unknown) or missing
parameters (command status “incomplete”). In this alternate
embodiment, once a CAS places the system in command
mode, the System stays in command mode until a command
input is processed or aborted. If the System returns to S302
because the command status is “unknown” or “incomplete,”
the user does not need to repeat a CAS and when a user
provides additional input, the System acquires the incoming
input stream S401 and passes through Parse Mode (FIG. 5C)
in this second loop without finding a CAS, detects that the
system is already in Command Mode and continues.

It should be noted that in this alternate embodiment, if
optional steps S502 and S503 in FIG. 5C are not utilized, then
a CAS cannot be used to abort acommand input as in some of
the other embodiments, as the CAS will be cleared from the
data construct each time the system passes through FIG. 5C
and there can be no CAS to detect at S610 in FIG. 6D. Such
a configuration must rely on an abort command to cancel a
command input.

Continuing on with FIG. 4C, after passing through FIG.
5C, the System returns to FIG. 4C, S402-S403, where being
in Command Mode it goes on to FIG. 6D, to test for a known
command in steps S603-S604, and a valid (known and com-
plete) command at S606-S607. The system goes on to test for
an “Abort” command or “CAS” at S609-S610, and if it does
not find a “Abort” command or “CAS” it goes on to set the
command status S612 as required for the command and the
command will be processed at S700 according to parameters
contained in the CD for that command. It should also be noted
at this point that if the command can apply to more than one

US 8,543,407 B1

43

application or to the system and at least one application, that
the system must determine which application (or the system)
in which the command will be processed. This determination
is made based on at least one of the previous system state,
current system state, user choice, user preferences, require-
ments in the commands dictionary or any other criteria which
is useful for making this determination. Continuing on with
FIG. 4C, if at any step, a command is determined to be
“unknown,” “incomplete,” “aborted” or “CAS”, the System
sets the appropriate command status at steps S605, S608 or
S611, and the System cycles through another loop and con-
tinues until the command is processed or the command input
is aborted. After a valid command is processed, the system
returns to FIG. 4C which subsequently returns at S302 with
the System set to wait mode.

The main difference between the preferred embodiment
and the alternate embodiment shown in FIGS. 4C, 5C and 6D,
are that the user can input a CAS and a command in one
command statement, and if the user inputs a CAS and a valid
(known and complete) command in a single input stream, the
command can be processed in a single loop through the sys-
tem, and if an incomplete command needs to be validated, the
system cycles through FIGS. 3 through 6D as needed until the
command is validated and processed or the command input is
aborted (as opposed to the command validation loop in FIG.
4A used in the preferred embodiment). Likewise, if a CAS
and command are spoken in separate input streams, the sys-
tem cycles through FIGS. 3 through 6D, first for the CAS,
then for the command until the command is likewise vali-
dated and processed or the command input is aborted.

This alternate embodiment illustrated in FIGS. 4C, 5C and
6D enables the system to either process a CAS spoken with no
subsequent command where the system prompts the user for
a command and cycles through another loop where the user
inputs the command (for example: User: “Computer”, Sys-
tem: “What would you like me to do?” User: “Turn on the
lights” [uses two loops]), or to process an input stream that
contains both a CAS and a command together (example:
Computer turn on the lights [uses one loop]). In the former, if
the user speaks a CAS, and waits for a prompt to input a
command, the system cycles through another loop, and when
the user inputs a command which is acquired at (S401), the
system continues on to FIG. 5C (S500) where the mode of
operation will be determined as command mode S503 or a
CAS will not be found at S505. However, following optional
steps S501-S505, the system, already being set to command
mode in the previous loop, remains in command mode when
it returns to S402-S403, and being in command mode the
system goes on to Process Stream S600. Following the latter,
(8502-S503 not used) the system remains in command mode
after S505. Either way, this looping process through FIGS. 3
through 4C, 5C and 6D continues and the system remains in
command mode until the command is validated (Command
Status set to “system valid” or “application valid”) or aborted
(Command Status set to “aborted” either by the user or a
predetermined condition (such as an abort command, exceed-
ing a predetermined number of cycles through a loop, or a
time out, for example). So accordingly, if a command input
was already started in a previous loop and a CAS is subse-
quently issued by the user, the system will remain in com-
mand mode, and data elements that were parsed into the data
construct in previous loops will remain intact.

Finally, FIGS. 4C, 5C and 6D are also used with other
alternate embodiments, and enable an incomplete command
following a CAS while in content loop to be validated at a
lower level by cycling through the system instead of using a

20

25

30

35

40

45

50

55

60

65

44

command validation loop at higher level steps as in the pre-
ferred and some of the alternate embodiments.

Returning now to FIG. 4A in the preferred embodiment,
once it is determined that the system is in command mode
S403, the system determines if the Data Construct contains
command information S404 by comparing the Data Con-
struct to Commands Dictionary to search for a matching
command. If no command information is found in the data
construct, the system prompts the user for a command S405
and waits for user input S406. When the user provides input,
the system acquires the incoming input stream S407 and
continues on to process the incoming input stream at S600 in
FIG. 6A.

Moving on to FIG. 6A, in the preferred embodiment, after
acquiring the input stream at S407, the System moves on to
S601 where the system parses (divides) the incoming input
stream acquired into a data construct, which in the preferred
embodiment is contextually based, and at S602 potentially
compares the content of the data construct to derived struc-
tures inferred from a grammar or set of grammars, or alter-
natively compares the content of the data construct to a gram-
mar or set of grammars, or alternatively searches commands
held as input streams for matches, or alternatively by using
any other mechanism that will achieve the purpose of associ-
ating a command within the command dictionary provided
the incoming input stream, all of which are derived from the
commands dictionary or dynamically generated.

Typically, a command will have a set of required or
optional elements, each of which is required or permitted.
Once a particular command is identified as intended to be
invoked, the context-based data construct then enables the
determination of the sufficiency and/or validity of input
speech. A data construct can also be interpreted variously in
dependence on the context, meaning the environment, mode,
prior commands and data, etc.

Even if a known command is found in the data construct
S604, that is not sufficient for a command to be valid. To be
valid, acommand must also be complete, meaning that it must
contain all of the parameters or elements (as indicated in the
CD) that are required to successfully process the command. If
the data construct does not contain a known command at
S604, the command status is set to “Unknown” at S605 and
the system returns to F1G. 4A S408 where the system goes on
to inform the user that no command was found and/or prompt
the user for a command at S411 before the System returns to
FIG. 3 where it will wait for the next user input at S302. It
should be noted that if the command status is set to
“unknown,” in the preferred embodiment the user is informed
of the “unknown” command status and the system returns to
S302, still in command mode, to wait for the next command
input.

If the data construct contains a known command at step
S604, then the data construct is further tested to determine if
the command is complete S606, meaning that it contains all
the parameters or elements (information) as indicated in the
CD which are needed in order to process the command. Ifthe
command is complete in S607, it is a valid command.

The scope of valid commands includes an “abort” com-
mand and a CAS. If the command is valid (known and com-
plete), the System goes on to test for an “abort” or “CAS” at
S609-S610. If the command is an “abort” or “CAS”, the
System moves to S611 where the command status is set to
“Aborted” or “CAS” and the System returns to FIG. 4A,
S408. Note that in the preferred embodiment either an abort
command or a CAS aborts the current command input and
ultimately returns the System to S302 to wait for a new
command either in wait mode (abort command) or command

US 8,543,407 B1

45

mode (CAS). While the preferred embodiment employs both
an abort command (for example a “cancel” command) and a
CAS to abort the input of the current command, some varia-
tions may use a CAS as the sole means for aborting a com-
mand input. The System can also use the occurrence of a
predetermined condition (such as a time-out or exceeding a
predetermined number of loops) to abort a command input,
and if so, these abort conditions have the same effect as a user
issued abort command.

If the command is not “Abort” or “CAS” at S610, the
Current Command (CC) Status is set to either System Valid or
Application Valid at S612 depending on the command type.
As the system proceeds in processing the command, the CC
status is used to determine how the System will then process
the command in FIGS. 7A and 7B.

Alternatively, this step in S612 can be bypassed and the
System can be designed to use predetermined parameters to
make the determination of whether the command is processed
in an application or by the system using the information
contained in the CD, the current or previous system state, user
preferences, user prompt or other applicable criteria to make
the determination. These alternatives are useful when a com-
mand can be processed in both the system and an application,
or in more than one application.

Returning back to S607, if the command is not valid
because it is not complete, the system sets the Command
Status to “incomplete” at S608, then returns to (FIG. 4A
S408, where the user is informed and/or prompted for the
missing command information at S411, and at S412, the
command status being set to “incomplete” results in a com-
mand validation loop where the System returns to S406 to
wait for the user to input the missing information. The user
can then input the required information, the system cycles
through another loop adding the new input to the data con-
struct thereby enabling the command to be tested again and
validated if all the required command information is then
present when the system cycles through another loop.

For example, the command “Turn On” is identified as a
known command at S604, because the command “Turn On”
is contained in the commands dictionary and is known to the
system. But it fails the test of complete (valid) in S607
because the command “turn on” requires the parameter of
something that the System or an Application can “turn on”
(such as the kitchen lights). It is necessary to have this infor-
mation before the system can determine which application
needs to process the command (if there is more than one
applications that can process the command “turn on”) and
what the application needs to turn on. In this example, the
command status is set to “incomplete” at S608 and when the
system has cycled through a first loop and prompted the user
for the missing command information (in this case something
to turn on), and has supplied the missing command para-
meter(s) correctly in the second loop (for example, the user
said “kitchen lights™), the command is determined to be com-
plete at S607. Since the command is not an abort or CAS the
system goes on and the command status is set to “application
valid” S612 (since the application that controls the lights is
needed), and the command is then processed in the designated
application as shown in FIGS. 7A and 7B discussed below.

However, ifin the second or subsequent loops, the user fails
to provide the required, complete or correct input after being
prompted, or if the subsequent input is still missing some of
the required parameters (as in acommand with multiple miss-
ing parameters where the user supplied some but not all of the
required command information), then after cycling through
successive loops between S411 and S405 (FIGS. 4A through
6A), continuing to prompting the user for the missing infor-

20

25

30

35

40

45

50

55

60

65

46

mation in each cycle, and repeating the process through suc-
cessive loops. This looping process continues until the com-
mand is validated (command status set to “system valid” or
“application valid”) and processed at Process Command
S700 (FIGS. 7A and 7B), or the command input is aborted
either by the user or the system upon occurrence of a prede-
termined condition (including but not limited to an abort
command or CAS, exceeding a predetermined number of
cycles through a loop, or a time out, for example).

In other variations of the preferred embodiment, if a com-
mand is missing more than one parameter, it may be desirable
to design the system so that it prompts the user for only one
such missing parameter at a time, and cycles through one or
more loops for each missing parameter, thereby enabling the
user to build a complete and valid command in a logical and
sequential order.

Returning to FIG. 4A in the preferred embodiment after
Process Stream S600, unless the command status at S408 is
set to “CAS Valid,” “unknown” or “incomplete,” the system
goes on to S414 when it clears the Data Construct, sets its
mode to “Wait” mode. If the command status is “CAS Valid”
the system clears the data construct at S414 and leaves the
System in “Command Mode.” As discussed above, a com-
mand status of “incomplete” will cycle back to S405 to wait
for user input and cycle through another loop. If the command
status is “unknown” at S412, then the system clears the data
construct at S413 leaving the system in command mode. In
variations of the preferred embodiment, S413 is omitted and
the data construct is cleared at S414, where the system may be
left in command mode or set to wait mode; the difference
being if the system is left in command mode the user will not
have to repeat the CAS to try the command again, and if the
system is set to wait mode the user will have to repeat the CAS
to start a new command. After these steps, the system returns
to Activate System (FIG. 3) which results in a return to S302
to wait for the next user input.

FIG. 6D corresponds to FIGS. 4C and 5C where the system
can accept a CAS and command in one input stream or sepa-
rately, and the command validation loop cycles through
FIGS. 3 through 6D in order to validate an incomplete or
unknown command. This is as already discussed in detail in
the discussion on FIG. 4C above and need not be discussed
further here.

While in the preferred embodiment, the System cycles to
S411-S405 when a command is incomplete or unknown, in
alternate embodiments, this can take place at other points in
the System, and the command validation loop shown in FIGS.
6F and 6F, S606-S620, is an example of an embodiment
where a command validation loop is utilized at the Process
Stream level to enable the user to build a complete and valid
command at this higher level in the System.

In this alternate embodiment, depicted in FIGS. 6E and 6F,
the process of prompting the user for more information when
a known command is incomplete can take place in a higher
level command validation loop as shown in FIGS. 6E and 6F
which starts at S606. In this alternate embodiment, the com-
mand validation loop in FIGS. 6E and 6F takes the place of
the command validation loop shown in FIG. 4A S411 to
S405, and this FIGS. 6E and 6F corresponds with FIGS. 4C
and 5C, and the other FIGures of the preferred embodiment.
In this alternate embodiment, the steps of testing for an abort
command or CAS take place in these FIGS. 6E and 6F at
S609-S610, and if an abort or CAS command are present, the
command status is set accordingly at S611. If a known com-
mand is not found at S604, the command status is set to
“unknown” at S605. In any of these cases, the System returns
to FIG. 4C which results in the user being informed of the

US 8,543,407 B1

47

command status and the system returning to S302 in Com-
mand or Wait Mode, depending on the command status, to
wait for the next user input.

If the command is known at S604, the System tests for a
complete (valid) command at S606-S607. If the known com-
mand is complete at S607, the System goes on to test for an
“Abort” command or “CAS” S609-610 and if found, the
command status is set to “Aborted” or “CAS” S6611 and the
system returns to FIG. 4C which results in the System return-
ing to FIG. 3 S302 (either in Wait Mode or Command Mode)
to wait for the next user input. Otherwise, the command is a
valid command for the system or an application, and the
system goes on to set the command status at S610 and to
process the command at S700 according to parameters con-
tained in the CD for that command.

It should be noted at this point that if the command status is
“application valid” this command status flag may also contain
information about which application should process the com-
mand. While this information is typically maintained in the
commands dictionary, or determined by the system or the user
in cases when the command is valid for more than one appli-
cation or the system and at least one application, other means
such as this for identifying where the command is to be
processed may be employed.

After a valid command is processed in FIG. 7, the system
returns to FIG. 4C which subsequently returns to FIG. 3 at
S302 with the System set to wait mode.

Returning to FIGS. 6E and 6F, if the known command is
not complete S606-S607, the System goes on to S614,
prompts the user for the missing information, and waits for
user input at S615. Subsequent user input is acquired and
parsed into the data construct at S616, and the System checks
for an “Abort Command or CAS in S617-S618. An abort
command can be one or a combination of a command to abort
the current command, a CAS, exceeding a predetermined
number of loops, or a predetermined time-out if subsequent
input is not received within a predetermined period oftime, or
other events that may be used to terminate input of a com-
mand. If neither an “Abort” command nor a “CAS” are
present at S618, the system returns to S606 where it again
cycles through another loop to test for a complete (valid)
command. This command validation looping process is
repeated until the command is either processed successfully
or aborted. If the command input is aborted by an abort
command or CAS, the command status is set to “Aborted” or
“CAS” S619 and the System returns to FIG. 4C which ulti-
mately returns the system to FIG. 3 S302 to wait for user
input, and depending on whether a abort command or a CAS
was used to abort the command input, the system is either in
wait mode or command mode.

In this alternate embodiment, steps S415 and S416 in FIG.
4C may be optional, as in this alternate embodiment the
command validation and prompting has taken place in FIGS.
6F and 6F. Ifused, these steps will typically be used to inform
the user of the reason for the command status, and to prompt
the user to input a new command,

In yet other alternate embodiments that are variations of
FIGS. 6E and 6F, it may be desirable for simplification to
eliminate the step of checking for a complete command S606
and S607, setting the Command Status to “Unknown” at S605
when a valid (known and complete) command is not found at
S604, thereby requiring the user to start over.

In other alternate embodiments, it may be desirable to
enable the user to input and the system to process multiple
known commands in a single input stream. FIG. 6G which
corresponds with FIGS. 4C, 5C and the other FIGures in the
preferred embodiment illustrates an example of one of the

20

25

30

35

40

45

50

55

60

65

48

possible methods for enabling this functionality which
employs a command validation loop between steps S627-
S636, that functions similarly to the loop shown in FIGS. 6E
and 6F S606-S618, and likewise repeats itself for each known
command found in the data construct. In this alternate
embodiment, the data construct is tested for at least one
known command S625-S627, and if at least one known com-
mand is found, then for each known command the system test
for a complete (valid) command S629-S630. The System sets
the command status of each complete (valid) command to
“System Valid” or “Application Valid” as required by the
command, and processes each such command at FIGS. 7A
and 7B S700. If a known command is not complete at S630,
then for each known command that is not complete, the Sys-
tem enters a command validation loop to validate and that
command S630-S629. This continues until all the known
commands found in the data construct are determined at S628
to have been validated and processed, or aborted. If no known
commands are found at S627, the command status is set to
“unknown” at S638 and the system returns to FIG. 4C where
it will return to FIG. 3 S302 in wait mode to wait for the next
user input.

Typically, when an input stream with multiple commands
is being processed, the commands are processed serially, and
the system is required to return to its previous state after each
command is processed, which results in the next known com-
mand in the sequence being processed, and so on until all
known commands in the data construct have been processed
or aborted, and the system state is determined by the last
command in the sequence. This is necessary in order to enable
the system to process all the known commands in a given
input stream, so for example, if multiple commands in a given
input stream each start an application that enters a content
loop, or if the first command activates or uses an application
that enters content loop or needs to wait for user input, the
system is able to go on with processing the other known
commands until all known commands in that input stream
have been processed. Alternatively, the commands can be
processed in parallel and the system state will return to its
previous state after all commands are processed, to a prede-
termined state according to parameters in the Commands
Dictionary for the commands processed, or to the state as
required by at least one of the commands in the sequence.

In yet another alternate embodiment, the system may vali-
date all known commands found in the data construct first,
then process all the valid commands after the validation pro-
cess is complete. In such an alternate embodiment, the system
assigns a Command Status of System Valid or Application
Valid to each known command in the input stream that is
determined to be valid, and after validation of all known
commands is finished, the commands that are System Valid
and Application Valid are then processed. In this variation,
unknown commands are typically ignored, and incomplete
commands must either be validated or aborted before the
system can go onto process any of the commands in that input
stream.

As indicated above, the application which receives focus
after all the known commands are processed depends on
system design, at least one of the commands in the sequence,
or user preference or choice. For example, in different varia-
tions of this alternate embodiment, the system can be
designed to grant focus to the application associated with the
first command or the last command found in the data con-
struct, to prompt the user for which application the user wants
to receives focus, or return to the application that last had
focus before the input stream was processed. These examples

US 8,543,407 B1

49

are not meant to be limiting, and are intended to demonstrate
the flexibility in which the system can be designed and imple-
mented.

Returning to FIG. 6A in the preferred embodiment, when
the System has determined that a valid command, known
S604, and complete S607, is contained in the input stream and
the command is not an abort command or CAS, the command
status is set to “System Valid” or “Application Valid” at S612,
and command is processed in S700, FIGS. 7A and 7B. Upon
successful completion of processing the command in the
input stream, the System goes to Process User Input (FIG.
4A), which returns to Activate System (FIG. 3), which returns
S302 to wait for the next user input. As a variation of the
preferred embodiment, after FIG. 4A, the System can be
designed to return to S301 (optional) and the user can be
informed of the current command (CC) Status and prompted
for input or the next command at this step S301 in place of or
in addition to being prompted as S410 or S411 in FIG. 4A.

In order to process a command in the preferred embodi-
ment, which once validated is known as the Current Com-
mand (CC) the System must perform a series of tasks as
shown in FIGS. 7A and 7B Process Command. Which steps
are taken at this point depends in part on the CC status.

After a CC is processed, the CD indicates whether the
System should return to wait for user input FIG. 3 S302,
return to the previous application that was in use before the
CC or enter a content loop as shown in FIGS. 8A and 8B and
9A and 9B and other FIGS. 8C-8J and 9C-9H. There are
instances when the system itself may need information about
its state with respect to an application so it can return to the
same state when it comes back to that application (for
example whether the application is in content loop or not and
which facet of the MFGUT it is assigned to). This may also be
necessary when the system itself is being used as the operat-
ing system or a component of the operating system.

In the preferred embodiment, when it is necessary or desir-
able to maintain such information, preserving the information
about the system state that is needed in order to return to the
previous state takes place in S701, if required, and enables the
System to return to the previous application in the same state
it was at prior to switching to another application, when the
subsequent application is closed or focus is returned to the
previous application. Preserving system states, for example
returning focus to a previous application that had focus when
a subsequent application window is closed, is well known in
the art and need not be discussed in great detail herein.

In alternate embodiments, preserving the system state or
the state of an application to which the system may return
after using another application may be done at other steps or
accomplished in other ways such as employing recursive calls
or stacks, the object being to enable the System to receive a
new command while in one application, process a System
command or an application command in another application,
and then return to the former application in its previous state
at the same point where it left. In yet other alternate embodi-
ments, particularly where the system is a stand-alone appli-
cation or shell, returning the System to its previous state may
be left to the operating system, or if the System itself'is being
used as an operating system, this function may be done by the
System, similar to the way current state-of-the-art operating
systems return to the previous application that had focus
when a foreground application is closed or minimized.

Returning to FIGS. 7A and 7B, after preserving the system
state S701, the System then needs to determine ifthe CC is a
system command that impacts only the system (for example a
command to change the number of facets in the MFGUI), or
an application command that impacts a registered application

20

25

30

35

40

45

50

55

60

65

50

(for example, a command to launch an application), and this
is done at steps S702-703. In the preferred embodiment, this
is done by testing for the command status, which was set to
either “System Valid” or “Application Valid” in FIG. 6A
S612.

In steps S702-S703, if the CC is determined to impact only
the system, (command status “system valid”) the command is
sent directly to be processed. In this preferred embodiment,
prior to processing a system command, the system needs to
determine if the command is a command to return to a previ-
ous state S713, for example a “go back” command, or if the
command is a command to exit or shutdown the system S714.
Note that an exit command can be one to exit, suspend,
shutdown, logoffor restart the system, and that the system can
be required to perform a set of at least one function prior to
completing any exit/shutdown command, for example pre-
serving the system state and/or other information. If the com-
mand is to return to a previous state, the previous state is
restored S725. It should be noted at this point that a system
state prior to processing a CC for restoring the previous
system state was preserved in S701 prior to the system leav-
ing that state, and that once this command is processed at
8725, this now becomes the previous system state, allowing
the user to go back to that system state if desired.

If the command is to exit or shutdown the system, the
system exits or shuts down S715 after performing any
required exit or shutdown tasks, such as preserving informa-
tion that needs to be preserved. Otherwise, the command is
processed at S716. Note that in some variations of the pre-
ferred or alternate embodiments, it may be desirable to pre-
serve some or all aspects of the system state before exiting so
that if desired, either by default or as determined by the user,
the system can return to the state it was in prior to exiting the
next time it is started. It may also be optional and desirable to
prompt the user to confirm an exit system command prior to
it being processed in order to minimize the potential of an
unintentional exit from the system. Also note that in some
variations of this preferred or alternate embodiments, these
tests for restoring a previous state and exit/shutdown the
system can be omitted and these commands can just be pro-
cessed by the system at S716.

In variations of the preferred and alternate embodiments,
the system can be designed to use only one of either command
status “system valid” or “application valid” where the choice
is one or the other, and if the command status is not set to one,
then it is the other is assumed. For example, if “system valid”
is used, and there is no command status set, then in this
alternate embodiment the system should treat the command
as “application valid.”

If at S703 the command status is set to “Application Valid”
the CC is determined to be a command associated with a
registered application (referred to as the Current Command
Application or CCA). If there is more than one application
that can be associated with the command and disambiguation
is required, this step may include prompting the user to
resolve this ambiguity by giving the user a choice from
among the possible applications which can be processed by
the command, and processing said command based upon
subsequent user input. If there is no ambiguity or once the
ambiguity is resolved, the System then goes on to determine
if the CCA is an application which is already active S704-
S705. When a CCA is already active, and if the application is
one that needs to be displayed in one of the facets of the
MFGUI and it is not already so displayed the active applica-
tion is set to one of the facets of the MFGUI 8710, the facet is
given the focus and the CCA is granted SPOCUS and
becomes speech activated. If a CCA is not active, the CCA is

US 8,543,407 B1

51

started S706, and if the CCA starts successtully S707-S708,
then if required, the CCA is set to one of the facets in the
MFGUI S710, the facet has focus and CCA is granted SPO-
CUS and becomes speech activated. Typically, the CCA has
focus and is placed in a default facet, or any available facet. It
may also replace another visible application if all facets are
being used. If desired in step S710, the System can prompt the
user to select a facet in the MFGUI in which to display the
application.

If the CCA does not start successtully (S708), the System
sets the Command Status to ‘“Processed Error” S709, and
goes back to (FIG. 6A) which returns to FIG. 4A S408 and
leads to the user being informed at S4410 that the application
failed to start, and the system ultimately returns to FIG. 3
S302 to wait for the next command.

Ifthe CCA was already started (active) S705, or is started
successfully S708, the system goes to S710 to select a facet
and display the application in the MFGUI (if required) and
goes on to determine if the command was a command to start
or switch to an application S711-S712. If the command was a
command to start or switch to an application, the command
was completed when the application was displayed and/or
given focus on the MFGUI, and the system goes to S718 to set
the command status to “processed.”

If'the command was not to start or switch to an application,
the system goes to S716 to process the command. It should be
noted at this point that the step of processing the command
may include a step of disambiguation, when a recognized
command may apply to more than one possible application
and process. If such disambiguation is required, then the
system can prompt the user to make a choice (or obtain other
disambiguation information) and the command is processed
accordingly. It should also be noted that the command input
can also be aborted at this step of disambiguation.

After a command has been sent for processing S716, the
system determines if the command was processed success-
fully or not S717, and the CC status is either set to “pro-
cessed” S718 or “processed error” S719, so that the user can
be informed and/or prompted in FIG. 4A when the system
returns at S410.

Moving on to S717, if the CC was not successfully pro-
cessed, the Command Status is set to “Processed Error” at
S719 optionally the data construct is cleared S726 and the
System goes to (FIG. 6A) which returns to FIG. 4A S408
where the user is informed at S410 that the CC was not
processed successfully. At this point, System returns to FIG.
3 waiting for user input at S302, although in some alternate
embodiments the user may be prompted to reenter the com-
mand. Optionally, instead of prompting the user at S410, the
System can return to S301 and from that point either inform
the user that the command was not processed successfully, or
prompt the user to reenter the command or to enter a new
command.

It at S717, the system determines that the command is
successfully processed, the command status is set to “pro-
cessed” S718 and the System goes on to S720-S721 where it
determines from information in the CD associated with the
CC, whether or not the CC required starting a content loop,
and if “yes” the system goes onto FIGS. 8A and 8B S800 and
starts a content loop for the CCA. The function of the content
loop is discussed in detail below under FIGS. 8 A and 8B, and
9A and 9B. Alternatively, the steps of determining if the CC
starts a content loop S720-S721 and starting of the content
loop S800 can take place within S716 as steps of processing
the CC, and in this alternate embodiment (not shown) those
steps are part of the steps for processing a command S716.

20

25

30

35

40

45

50

55

60

65

52

Ifthe CC did not require starting a content loop, the system
determines from information in the CD associated with the
CC, whether or not the CC required restoring the System to its
previous state S722-S723. If not, then optionally the data
construct is cleared at S726, and the System goes on to FIG.
6A which returns to FIG. 4A S408 and ultimately returns to
FIG. 3 to wait for user input at S302. Alternatively, at this
point, the System can go to S301, and the user can be
informed and prompted at this point instead of at S408 as in
the preferred embodiment.

If the CC required returning to the previous state as indi-
cated in the CD for that command, S722-S723, then at option-
ally the user is informed of the command status S724, the
previous system state is restored and if required the system
sets SPOCUS to the previous application as its system state
was preserved in step S701, thereby restoring the previous
CCA as it was before the command and if the previous CCA
was in content loop then placing the CCA from the previous
system state back in a content loop S800. An example of this
is while in a word processing application, the user speaks a
CAS followed by the command “turn on the kitchen lights.” If
after the kitchen lights are turned on, information in the CD
for that command indicates that the System should return to
the previous state, then in this example the system returns to
the word processing application in content loop as it was left.
If the previous CCA was not in content loop as determined at
S720-S721, then the System goes on to FIG. 6 A which returns
to FIG. 4A S408 and ultimately returns to FIG. 3 to wait for
user input S302 with the focus on the previous CCA as it was
before the CC.

FIGS. 7E and 7F corresponds to an alternate embodiment
with a content loop that requires a CAS before any command,
and thus enables system commands and application com-
mands to given and processed from content loop, and corre-
sponds to FIGS. 8E and 8F and 9C and 9D. The main differ-
ence here is that a CAS is used preceding all commands, and
the command status is set to System Valid, Application Valid
or CCA valid. When returning to FIGS. 8E and 8F, if a
command status is CCA valid, it is processed in the CCA
within content loop. Otherwise, when the system returns to
FIGS. 7E and 7F from content loop, the system tests for
command status at S728-S729, and if the command status is
System Valid or Application Valid, the system goes to S703 to
begin processing the system command or application com-
mand that was issued from and identified in content loop, and
when the system is finished processing the command, it S723-
S725 and returns to the content loop S800 in its previous state.
Note that after a command to start another application, the
system will not always return to the previous system state
directly after starting that application, but rather will go that
application, and the previous state will be restored after the
user is finished with the second application. For example, if
while in content loop in application one, the user issues a
command to start application two which also requires a con-
tent loop, then application two will start and enter content
loop. When the user is finished with application two (the user
closes or releases focus from application two), then the sys-
tem will return to S722-S723 and will be required to return to
the previous state (application 1), and at S725 the system will
return to application one in content loop.

FIGS. 7G and 7H corresponds to an alternate embodiment
employing a CAS prior to any command (system application
or CCA) while in content loop (similar to FIGS. 7E and 7F),
and uses saved System States to process system commands
and application commands outside of the CCA, thereby
enabling the system to process commands from content loop
in a recursive manner and return to the previous State when

US 8,543,407 B1

53

each command is finished processing. The difference
between FIGS. 7E and 7F and FIGS. 7G and 7H, is that the
former exits the CCA to process system and application com-
mands and returns to content loop by way of S800, and the
latter uses a stack of system states to accomplish recursive
behavior, enabling the user to leave one application from
content loop, work with successive applications and exit them
in reverse order when done with each succeeding application.
In this alternate embodiment (FIGS. 7G and 7H), if the CC is
nota CCA command (meaning the CC is a System Command
or an Application Command for an application other than the
CCA), the system saves its current state in a stack in FIGS. 9E
and 9F (discussed below) at S932, sets the command status to
“system valid” or “application valid” S933 and goes to FIGS.
7G and 7H S702 in a new stack to process the command. If
command completion requires a return to the previous state
(S724-S724), then at S731 the system returns to the previous
stack at FIGS. 9E and 9F S935 when processing of the com-
mand is complete, the data construct is cleared at S936, and
the system returns to FIGS. 8G and 8H where the system will
return to S803, at which no CCA S803-S819 or data input
S805 will be found and the system returns to S801-S802 to
wait for the next user input.

Moving on to FIGS. 8A and 8B, which illustrates the
content loop as used in the preferred embodiment by the
system to speech enable applications which receive input of
both data and commands. FIGS. 8A and 8B and 9A and 9B
illustrate the Content Loop where the CCA receives focus,
has SPOCUS, and processes the incoming input stream with
respect to that application. In content loop, the incoming
input stream from speech input received by the System is
parsed to determine if it is data for the CCA, or if it contains
a command and if so, is the command a known command
(CCA command, dictation command, CAS or exit com-
mand), and if so does the command include all the necessary
parameters needed to process the command successfully. The
system searches the input stream for command, and if the
input stream does not contain commands, the input stream is
passed to the CCA as data or ignored (depending on the
embodiment). If the input stream contains commands, then
the System must then determine if the commands are CCA
commands, or if they belong in the context of data for the
CCA, and in alternate embodiments if they are commands for
the system or applications other than the CCA. If the com-
mand is not in context of the input, then it is determined to be
a command, and if it is in context it is passed to the CCA as
data. The function of a Content Loop will become clear from
the following discussion.

As shown in FIGS. 8A and 8B, when an application has
entered content loop, the CCA has SPOCUS and the CCA is
speech enabled. As the system enters and cycles through the
content loop, the system clears the data construct S801, waits
for and receives the input stream from the user input S802.
When user input is received, the system enters the Parse
Complex (FIGS. 9A and 9B) S900 (as described below)
which parses and analyzes the input stream to determine if it
contains data or a command. Upon returning from the Parse
Complex process in S900, the System has parsed components
of the input stream in a data construct, and for each parsed
component the system determines if the data construct con-
tains a CCA command or a CAS S803-S804. If data is
present, and if a component of the streamed data in the data
construct does not contain a CCA command or a CAS, it is
data that belongs in the CCA and it is passed to the CCA to be
placed in the required field of the CCA at S805, and the
System returns to S801 to clear the data construct, and then to
S802 to await the next input from the user.

20

25

30

35

40

45

50

55

60

65

54

If a command is found in the data construct at S804, then
the system determines if the command is a CAS at S806, and
if the command is a CAS (command status CAS Valid) the
system will remain in command mode when it cycles through
FIGS. 7A and 7B, FIG. 6 A and FIG. 4A and returns to FIG. 3
8302 in command mode to wait for the next command input.
In the preferred embodiment, when the system is in content
loop, a CAS is required before the user can issue a system
command or an application command for an application other
than the CCA, and if a CAS is spoken the system leaves
content loop to process the system command or application
command, returning to content loop in the CCA only if infor-
mation in the commands dictionary indicates so after the next
command is processed. Optionally, if the System returns to
FIG. 3 while in command mode, the System may go to S301
to prompt the user to input a command, in place of processing
that step at S410.

If a CAS is not found at S806, then the command found in
the data construct is a CCA command (command status CCA
valid as set in FIGS. 9A and 9B) S909. Optionally, the step
S909 can be omitted and if a command is nota CAS itis a
CCA command by default. A CCA Command is an applica-
tion command that belongs to the CCA, for example, a com-
mand to save the text that has been written in a word process-
ing application which is currently in content loop and has
focus. When a CCA command is present it is processed in the
CCA at S807, and if the CCA command is other than an exit
CCA command S808-S809, after processing the command in
the CCA, the system remains in content loop and returns to
S801 where it clears the data construct and goes to S802 to
wait for and receive the next input from the user.

Ifthe CCA command is a command to exit the CCA S808-
S809, the CCA exits and the command status having been set
to “processed” before entering content loop S718 the system
branches back through FIGS. 6A and 4A, returning to FIG. 3
S302 to wait for the user to input the next command. Note that
there is a difference between a command to exita CCA S808
and the command to exit/shutdown the System S714. The
former closes the CCA and the system returns to S302 to wait
for the next command input, and the latter exits or shuts down
the system at S715 after performing any required exit/shut-
down functions. Also note that a CCA command within an
application can exit the CCA, or a system command from
outside an application can exit the system or any application
including the CCA.

It should be noted at this point, as will become evident in
the discussion on FIGS. 9A and 9B below, that the Parse
Complex process S900 can return multiple components of the
input stream, and each component is processed separately in
the Content Loop of FIGS. 8A and 8B. For example, a com-
plex command might contain data that goes into several dif-
ferent fields of the CCA, and might also contain one or more
CCA application commands. In order to enable the System to
process complex commands, the Content Loop S800 pro-
cesses each component of the data returned from the Parse
Complex process S900 so that each such component is routed
and processed as required by the CCA. For example, an input
stream may contain data, and the commands to save and print
the data, and in this example all three are acted upon by the
CCA so that the data is entered in the CCA, the data is saved
and the data is printed.

In alternate embodiments, while in content loop the system
may be designed to determine if a command belongs to
another application without the need for a preceding CAS,
and if so start that application if required and grant focus to
that other application after saving the current System state in
a “System State” memory location stack, thereby suspending

US 8,543,407 B1

55

the CCA and current content loop. If employed in the System,
this behavior enables the system to have multiple applications
running in content loops at any given time, allowing the user
to switch between applications in content loop by restoring
the System State for the desired application that was saved in
its System State memory location stack. When multiple con-
tent loops are suspended, there is a corresponding amount of
memory locations where each has its System State saved.
This behavior has a similar effect to changing focus between
windows in systems of the non-speech enabled prior art.

In a variation of the preferred embodiment, it may also be
desirable to limit the scope of commands while in content
loop to the commands that are applicable only to the CCA.

In some embodiments, while the system is in content loop,
it may be desirable to have a CAS precede all commands
(system, application and CCA) both system commands and
application commands. FIGS. 8E and 8F and the correspond-
ing FIGS. 7E and 7F and 9C and 9D show an alternate
embodiment with a content loop that requires a CAS to pre-
cede all commands. The benefit of this alternate embodiment
is that all input that occurs without a preceding CAS is
assumed to be data for the CCA. In a variation of this alternate
embodiment, a CAS or variations of the CAS can be a com-
mand that switches the system between modes for accepting
only data or only commands, and dependent on that mode the
input to the CCA is processed accordingly. In this variation, if
the system is in data mode, then it is not necessary to test the
input for command and whether or not those commands are in
context.

In the alternate embodiment shown in FIGS. 8E and 8F, if
the data construct contains a command at S812, the command
is further tested to determine if the command status is incom-
plete S813. If the command status is “incomplete,” the user is
prompted at S814, and the system loops back to S802 to wait
for input of the required command information. After the user
provides the next input, the system cycles back through FIGS.
9C and 9D parse complex. If the command status is not
“incomplete,” the system tests for the command status
“unknown” at S815, optionally the user is informed of the
command status at S817, and the system cycles back to S801-
S802 to wait for the next user input. Otherwise, at S816-S818
the command is tested to determine if it is a CCA command.
If the command is not a CCA command at S818, (command
status “System Valid” or “Application Valid”) the system will
returnto FIGS. 7E and 7F to process the system or application
command. If the command status is “CAS Valid” the system
will return through FIGS. 6A, 4A and 3 ending up at S302 in
command mode to wait for the next user input.

The steps S813 and S815 in FIGS. 8E and 8F are optional
and are intended to be used only if the path employing steps
8924 and S925 are taken in FIGS. 9C and 9D. These steps
enable processing of incomplete or unknown commands
within content loop FIGS. 8E and 8F.

It should be noted that in yet another variation of this
alternate embodiment, the use of a CAS while in content loop
can also be eliminated, and in this variation the System deter-
mines if a command belongs to the CCA, the system or
another application based on information in the Commands
Dictionary, giving priority to the CCA if an application com-
mand is valid in more than one application and the application
is not specified. In another variation, the system can also be
designed so that a CAS will result in the command status
being set to “unknown” so the user is prompted for a com-
mand at S410, and returns to S302 to wait for the user to
respond. The variations discussed here are not meant to be
limiting, but rather intended to illustrate the flexibility in

20

25

30

35

40

45

50

55

60

65

56

which the System can be designed with variations to achieve
desired design objectives and results.

FIGS. 8G and 8H and the corresponding FIGS. 7G and 7H
and 9E and 9F, and enable recursive behavior in content loop
to process any command (system application or CCA) while
in content loop, which uses a stack of saved System States to
process system commands and application commands out-
side of the CCA, thereby enabling the system to process
commands from content loop in a recursive manner and
return to the previous state when each command is finished
processing. In this recursive preferred embodiment, there is
no need to test for a CAS in FIG. 8, as input of a CAS is
managed in FIG. 9 parse complex. The system never leaves
content loop with a CAS, but only by a command initiated by
a CAS or by an exit CCA command. In the multitasking
environment of modern operating systems, this recursive
behavior for processing some commands may be user trans-
parent.

FIGS. 81 and 87 corresponds to another alternate embodi-
ment in which a CAS precedes all commands while in content
loop, and the system can cycle through one or more command
validation loops in FIGS. 9G and 9H if a known command is
not valid (incomplete), thereby enabling the user to validate
commands within content loop. This is discussed in more
detail below in the discussion of FIGS. 9G and 9H.

Returning to the preferred embodiment, the analysis and
parsing of the incoming input stream when the system is in a
content loop (FIGS. 9A and 9B, Parse Complex process)
S900 is a step in the Content Loop and is related to the CCA.
Referring now to the Parse Complex process in FIGS. 9A and
9B, as each phrase received from the incoming input stream is
parsed into the data construct, the system searches the data
construct to determine if commands are present, and if they
are CCA commands, a CAS or belong in the context of input
of'data that belongs in the CCA. Each component of the input
stream is returned as data components and/or command com-
ponents, and if command components the type of command,
which in the preferred embodiment are either a CAS (which
will leave content loop to allow the user to input system
commands or application commands for applications other
than the CCA) or CCA commands (which belong to the CCA
that is currently in content loop). Therefore, in the preferred
embodiment, while the CCA 1is in content loop, the system
does not require a CAS to precede CCA commands and a
CAS must used to precede input of a command that is
intended for the system or another application.

Moving on to steps S901-S905, the incoming input stream
is parsed into a context based data construct S901 and the
components are tested for a command at S902 by comparing
the data construct to the CD to search for a matching com-
mand. If the data construct does not contain a command
(S903) the input stream set to be passed as data for the CCA
S912, and the System goes back to (FIGS. 8A and 8B) where
it returns to S803 and the data is placed in the required field of
the CCA in step S805. In the preferred embodiment, the input
of'incomplete or invalid commands is typically passed to the
CCA as data. However, optionally the user can be informed of
the input of an incomplete or invalid command at S913, and if
desired the optional path shown by the dotted line coming
from S913 can be taken so that no data is passed to the CCA
from a failed command input within content loop.

Returning back to FIGS. 9A and 9B, if the data construct
contains a command S903, then the System searches the locus
of words around the command to determine if the command
is within the scope of those words S904. Natural language
modeling or other context based analysis can be used in this

US 8,543,407 B1

57

process. Alternatively, a pause before and/or after speaking a
command can be used to make this determination.

For example, if the system uses the word “computer” as a
CAS, then an example of a command that is within context of
the input stream while the user is in a dictation program, is the
statement “My computer needs a new modem.” In this
instance, the word “computer” is known to the system as a
CAS, but is passed through to the CCA as data because it has
been determined to be within the context of a sentence being
input into the dictation application that is currently the CCA
in content loop. In this example, if the user had said “com-
puter” without an accompanying sentence, or in some varia-
tions of the system, if the user had paused before and/or after
saying “computer” then the system would have instead deter-
mined that the utterance was a CAS, and would have pro-
ceeded accordingly. Other examples are the statement “I will
need to start a new paragraph and print my document when [
get to the end of this topic” or “I will have to exit this appli-
cation when I’m finished.” Each of these statements contains
acommand word that corresponds to commands available for
processing, but the command is determined by the system to
be within the context of dictation, and is accordingly set to be
passed on to the CCA as data in S912.

The use of a basic natural language model, or the use of a
pause before and after a command are the preferred means to
determine if a command is in context or not, however, to
improve speech recognition accuracy, the speech to text
engine and/or the system can use more sophisticated means
including but not limited to variations of natural language
modeling, statistical analysis and/or biasing, or any algorithm
that enables the system to determine the context of commands
found within the input stream. Such statistical models and/or
biases may be derived empirically to optimize system perfor-
mance, or employ an expert-type system.

Returning to FIGS. 9A and 9B, if the data construct is
found to contain a match to a command in S903 and the
command is determined not to be in context (outside the
scope of the context of adjacent words spoken) S904 and
S905, then that component of the input stream is determined
to be a command, and in the preferred embodiment, the Sys-
tem must determine if it is valid (complete) S906-S907,
meaning that it has all the command information needed for
the command to be processed. This is accomplished by refer-
ring to the CD where the System checks to determine if all the
required parameters needed for processing that command are
present. When determining if acommand is present and valid,
it may be desirable to limit the system to checking only for
commands which are applicable to the CCA as indicated in
the commands dictionary, thereby speeding up the process
and requiring less processing power.

Referring to the CD to search for a matching command
may be performed by at least one of referring to the CD
directly, building at least one of grammars and representa-
tions from the CD, and by other means such as dynamically
generating at least one of grammars and representations for
the purpose of such comparison and searching.

Typically, CCA commands are not complex, and in the
preferred embodiment, if the command of a data component
contains a known CCA command but is not valid because it is
notcomplete S906-S907, then optionally the user is informed
S913, and depending on the embodiment, the data in the input
stream may be passed to the CCA as data S912, or it is not set
to be passed to the CCA as data and will be ignored when the
system returns to FIGS. 8A and 8B. If the command is valid,
the system goes on to optional steps S914 and S915 of the
preferred embodiment in FIGS. 9A and 9B, which show the
use of Dictation Commands (DC) in content loop. Typically,

20

25

30

35

40

45

50

55

60

65

58

speech to text engines manage dictation commands, so these
steps are optional, and used if the speech to text engine used
with the system is not enabled for dictation commands, or if
it is desirable for the system to manage this function. This
enables the system to use Dictation Commands (DC’s) with a
CCA in content loop.

When employing these steps to enable the system for DC’s,
the Parse complex also identifies DC’s S914, generates the
associated dictation command data and places it at the appro-
priate point in the input stream S915 so it can be passed to the
CCA as part of the input stream S912. An example of this is
the dictation command “new paragraph” which is not an
actual command, but results in two carriage return characters
being inserted at the point where this DC was spoken, which
when passed to the CCA results in a new paragraph at that
point in the input stream. Another example is the dictation
command “period” which if not in context of the words being
spoken will generate the character “” instead of the word
“period.” For example, if the user says “Jane was late for her
second period class period” the first occurrence of the word
“period” is in context of the sentence, and the second occur-
rence is determined to be a dictation command to insert a
period. In this example, the following data would be passed to
the CCA: “Jane was late for her second period class”.

In a variation of the preferred embodiment as shown in
FIGS. 9C and 9D and discussed in more detail below, the
system may find a Dictation Command (DC) that is in con-
text. When the system uses DC’s, if potential commands (or
DC’ in FIGS. 9C and 9D) including DC commands are deter-
mined to be in context S905 (meaning the input was intended
to be part of the input stream and not a command), then that
input is set to be passed to the CCA as a data element S912 and
the system goes to S913-S803 (FIGS. 8A and 8B) where it
returns to S803 and the data is placed in the required field of
the CCA at S805. Otherwise, the DC characters are generated
and placed at the appropriate point in the input stream to be
placed as data in the CCA at S805.

If the command is valid S907, and is not a dictation com-
mand S914, or if the system does not use dictation commands
or relies on the text to speech engine for that functionality,
then the system goes on to S908 to determine if the command
is a CAS. If the command is a CAS, the system state is
preserved S910, and the command status is set to CAS valid
S911, and the system will branch back through FIGS. 6 A, 4A
and 3, returning to S302 to wait for the user to input a com-
mand. If the command is not a CAS at S908, then itis a CCA
command, and the command status is set to “CCA Valid” at
S909. When the system returns to FIGS. 8A and 8B a com-
mand status of “CAS Valid” at S806 will result in returning to
S302 to wait for a command, and a command status of “CCA
Valid” will result in the command being processed in the CCA
at S807.

In alternate embodiments, some of which are discussed
below, the system may be dealing with applications that
include complex application commands, and it may be desir-
able to design the system to include a command validation
loop after S905, as shown in FIGS. 9E and 9F and 9G and 9H.
This command validation loop can be similar to the loop
illustrated in FIGS. 6E and 6F S607-S618, so that if a known
command is found but the command is not valid because the
input stream does not include the required command ele-
ments (parameters) needed for processing that command,
then the system can prompt the user for the missing command
information, thereby enabling the user to complete the com-
mand.

In the preferred embodiment, the system must leave a
content loop in order to process a system command or an

US 8,543,407 B1

59

application command for an application other than the CCA,
and a CAS is required in order to do this. Thus, if the com-
mand is determined to be a CAS at S908, then the system state
(CCA, Content Loop) is preserved S910, so that if it is
required later, the System can return to this CCA content loop
as it left it. The System then goes on to S911 where the
command status is set to “CAS” and proceeds to FIGS. 8A
and 8B where it returns to S803. The command status CAS
Valid is detected as S806 and the system ultimately returns to
through FIG. 6A and FIG. 4A leading back to FIG. 3 S302 to
wait for the user to input a command, where the system is left
in command mode (because the command status is CCA), and
the system behaves as if a CAS had been spoken from S302
and the system had cycled through FIG. 5A to set command
mode. Optionally, instead of prompting the user at S410, it
may be desirable to return to S301 and prompt the user for
command information from this step.

In one or more variations of this preferred embodiment, the
steps of setting command status to “CAS Valid” may take
place at a lower level, such as in FIGS. 8A and 8B in the
branch following S806 (instead of at FIGS. 9A and 9B, S911).

Finally, ifa command is valid to both an application and the
system, typically the system is given priority in the preferred
embodiment, although in some embodiments it may be desir-
able to give an application or CCA command priority over the
system, particularly while in content loop, depending on one
or more of the operating objectives for the system, the appli-
cation being used or user preference, particularly when the
system is in content loop and the command is applicable to
both the CCA and the system. It may also be desirable to
prompt the user to choose which application (or the system)
should be used to process the command.

FIGS. 9C and 9D, and the corresponding FIGS. 8E and 8F,
7E and 7F together with the other FIGures of the preferred
embodiment show an alternate embodiment that employs a
CAS prior to any command (system, application or CCA)
while in content loop, and the system assumes that any input
not preceding a CAS is intended as data input for the CCA. In
this alternate embodiment, a CAS must be spoken before
issuing any system, application or CCA command; however,
it should be noted that the command status CAS valid is not
required to be used at this point in the System, as a CAS must
precede all commands, and as opposed to the preferred
embodiment, system commands and application commands
for other than the CCA can be initiated directly from the
current content loop.

When the system detects a CAS S917 the CAS is tested to
determine if it is in context of the input or not S918-S905. If
the CAS is determined to be in context S905, it is passed to the
CCA as data S912. If the CAS is not in context of the input
S905 the system prompts the user for a command S919. The
then system waits for user input S920, and when the user
inputs a command, the input stream is parsed into the data
construct S921. At S903 the system determines if the data
construct contains a command and if so the command type
and if the command is valid (complete) S922-S907. If the data
construct does not contain a command S903 or if the com-
mand is not valid S907 the system can follow any one of the
options shown from S924 and described above.

Step S924 of FIGS. 9C and 9D illustrates several variations
of alternate embodiments. Each variation provides a different
option for processing the input of a command following a
CAS. These options are taken as a path from S924 when the
data construct does not contain a command at S903 or when
the command is not valid at S907. One such option is to return
to S919 which results in a command validation loop, and if
applicable at S919 the user is promoted for the missing com-

20

25

30

35

40

45

50

55

60

65

60

mand information. Another option is to inform the user of no
command found S925, and to set the command status to
unknown or incomplete S926 which will result in a command
validation loop at steps S813 and S815 in FIGS. 8E and 8F.
Another option is to pass the invalid command input to the
CCA as data at S912. Still another option, shown by the
dotted line leaving S925 is to optionally clear the data con-
struct at S927 so as to not pass the invalid command input to
the CCA and return to FIGS. 8E and 8F which cycles through
S811, S812 and S805 where there will be no data. Alterna-
tively, S927 can be omitted and the invalid command input
can be set to be ignored at S805 which will result in the invalid
command data being cleared from the data construct at S801.
If this latter option is taken, the step of informing the user at
8925 is also optional.

The system design options shown in step S924 in this
FIGS. 9C and 9D are not intended to be limiting, but rather to
illustrate the flexibility in the design and implementation of
the system. Additionally, it should also be noted that while
these options are illustrated only in this FIGS. 9C and 9D,
these or similar options can be applied to variations of the
preferred embodiment, or likewise to alternate embodiments
when desired and determined that the system design and
performance will benefit from these alternatives.

Moving on to the alternate embodiment shown in FIGS. 9E
and 9F, which corresponds to FIGS. 8G and 8H, 7G and 7H,
and the other Figures from the preferred embodiment, and
which enables the System with recursive behavior. This stack
behavior enables the user to leave one application in content
loop for another, and another (and so on) in sequence, return-
ing to the previous application in the state in which it was left
when the user closes each succeeding application. The behav-
ior of this alternate embodiment is much like that of “win-
dowed” systems of the non-speech enabled prior art where
closing one window returns focus to the window that had
focus before it. However, when the system and MFGUT are
used together, focus may move from one application to
another while both remain visible, or an application may be
closed or moved to the background where in which case the
application that previously had active focus will then again
receive active focus.

As in some of the other alternate embodiments, in this
embodiment a CAS must precede any command issued from
content loop, and commands which are known and incom-
plete can be validated or aborted directly within the Parse
Complex. Also, in this alternate embodiment, the System will
not leave the content loop witha CAS, but only by acommand
initiated with a CAS or by an exit CCA command. If a CAS
is found at S930, it results in a command input and validation
loop following S905. Recursive behavior is accomplished by
preserving system states in memory stacks, leaving the cur-
rent stack to process a system command or application com-
mand for other than the CCA at S934 and returning at S935
when the succeeding stack is closed.

In this alternate embodiment, if the command is a system
command or application command, the system state is pre-
served in a stack S932, the command status is set to “System
Valid” or “Application Valid” S933, and at S934 the com-
mand is processed in a new stack starting at FIGS. 7G and 7H
S702. When the system command or application command is
processed, the system may stay in the new stack (for example
as in a command to start or switch to another application).
When that stack is closed, or if the new stack was needed only
for processing the command, the system returns to S935 and
restores the system state for the CCA Content Loop from
which the command was issued. The data construct is cleared

US 8,543,407 B1

61

at S936, and returning to S803 without any input present for
the CCA, the System cycles back to S802 to wait for the next
command input.

FIGS. 9G and 9H corresponds to another alternate embodi-
ment in which a CAS must precede all commands while in
content loop, and which corresponds to FIGS. 81 and 8], 7E
and 7F, 6A, 5A, 4A, 3, 2, and 1. In this alternate embodiment
the system enables the user to complete an incomplete com-
mand issued while in content loop within the parse complex
FIGS. 9G and 9H, by employing a command validation loop
within said parse complex. System commands and applica-
tion commands can be given and validated from within con-
tent loop, and processed by the system outside of the current
content loop.

If the data construct contains a CAS S916-917, and the
CAS is not in context S918-S905, the data construct is cleared
and the user is prompted for a command. Ifthe data construct
does not contain a command after a CAS S903, the user is
prompted for a command S937, the data construct is cleared
S931, and the system returns to S803 where no input will be
present, thereby returning to S802 to wait for the next input.

If the data construct contains a command at S903, the
system determines the command type and if the command is
valid 8$922-S907. If the command is not valid (incomplete) at
S907, the system can cycle through one or more command
validation loops in FIGS. 9G and 9H S938 to S930, thereby
enabling the user to validate commands within content loop.
When a command is not valid as determined in S907, the user
is prompted for the missing command information at S923,
and the system goes back to S920 to wait for user input. A
command input can be canceled and restarted by a CAS,
which if detected at S930 returns to S938 where the data
construct is cleared and the user can restart his or her com-
mand input. The user can abort the command input with an
abort command S939, which clears the data construct at
S931, and returns to FIGS. 81 and 8] S803 where no input will
be present, thereby returning to S802 to wait for the next
input.

When a command is valid S907, not a CAS S930 and not an
abort command S939, the command status will be set depend-
ing on the command at S909 or S940, which will result in a
CCA command being processed in the CCA in FIGS. 81 and
8] if the command status was set to CCA Valid at S909 (CCA
command). If the command status was set to “System Valid”
or “Application Valid” in S940, (system commands or appli-
cation commands for applications other than the CCA) the
command will be processed in FIGS. 7E and 7F.

Moving on to the alternate embodiment illustrated by
FIGS.1,2,3,4B, 5B, 6B and 6C, 7C and 7D, 8C and 8D and
10A, this series of flowcharts details an alternate embodiment
where the System is in command mode all the time, and
assumes all input outside of content loop is a command. In
this embodiment, a CAS is not utilized, and the flow is much
like the flow in the preferred embodiment, with the exception
that the steps in the Parse Mode to search for a CAS (FIG.5A)
is omitted and the parsing of the input stream into a data
construct is done in FIG. 5B S551 which step corresponds to
the similar step S601in FI1G. 6 A in the preferred embodiment.

In this alternate embodiment, when in content loop, a com-
mand for the CCA is applicable to more than one application,
the CCA will have the priority, and the command will be
processed in the CCA. Accordingly, for some commands, the
user must switch to the System or to another application to
issue the desired command. Optionally, this alternate
embodiment can be designed to give the user a choice if a
command is applicable to more than one application, and to
allow the choice to be remembered at any given point in the

20

25

30

35

40

45

50

55

60

65

62

system by adding information to the commands dictionary or
otherwise storing this information.

In another variation from the preferred embodiment,
within FIGS. 8C and 8D in the Parse Complex, shows two
possible options for proceeding after S863, and either option
is a variation of this embodiment. In one variation, if a com-
mand is not valid at S857, then the system optionally informs
the user of command failure and returns to Content Loop
FIGS. 7C and 7D. Alternately, the system can be designed to
enable the user to complete a command which is not valid. If
this path is followed, the system prompts the user for com-
mand information and waits for user input at S864. When the
user provides new input, the system acquires the input and
loops back to S851 where the input is parsed into the context
based data construct repeating the command validation pro-
cess.

Another variation of this alternate embodiment employs a
CAS or series of CASs to toggle the system between com-
mand mode, wait mode and other possible modes. For
example, when the system placed in command mode, all input
is assumed to be command input. If the system is placed in
some other mode, it can be used for other functions which
utilize speech input, for example, conferencing, telephony,
etc., with reduced risk of the input stream being misinter-
preted or taken out of context.

FIGS. 10A, 10B and 10C show variations of the steps for
possible processing of an application command in the CCA
(S807 in the preferred embodiment), and how the System can
manage processing of CCA commands. FIGS. 10A, 10B and
10C are not intended to show the exclusive methods useful in
accordance with the invention for processing commands, and
are merely exemplary of various schemas. In fact, it is pos-
sible for command processing to be assumed by an applica-
tion, without departing from the spirit of the present applica-
tion. It should also be noted that while in content loop in the
CCA, available commands may be limited to CCA com-
mands and certain system commands in order to minimize the
possibility of command ambiguity.

If a CCA command is processed successfully, the system
continues on in content loop, moving to S808 in the preferred
embodiment. When the CCA fails to process a command,
typically an error condition is set and the user is prompted. In
this case, the command choices for the error condition are
typically limited to a few simple commands, and the system
searches only for applicable command in the input stream.
For example, if an application failed to process a command,
the application or the system may present the user with a
dialog that displays two options, cancel and retry. These are
the only two commands the system will look for or respond to
while this dialog is displayed. Therefore, a CAS does not need
to precede a command at this state in the System.

FIG. 10A shows the preferred embodiment for processing
acommand inthe CCA. InFIG. 10B anew stack is opened for
the error condition at S302 (alternately S601), and the error
condition is processed at the System level. In FIG. 100, a new
stack is opened and the error condition is processed in a new
process (FIG. 11), which is similar to an application or sub-
process of the CCA.

In the error condition stack (FIG. 11), the system waits for
user input, parses the user input into a data construct S1102,
and determines if the data construct contains a command
applicable to the error condition. If so, the error command is
processed in the new stack at S716, and the system returns to
S1006, and continues on to S808 in content loop. If a valid
command is not contained in the data construct, the system
continues to cycle through the error condition until the user
responds with a valid command. Alternately the error condi-

US 8,543,407 B1

63

tion can be processed entirely within in the new stack (not
shown), and when the error condition is cleared the new stack
closes leaving S807 and going to S808 to continue the content
loop.

FIG. 12 shows an overall view of the system flow.

FIG. 13 shows an overview of the System.

FIG. 14 shows some examples of possible facet configu-
rations in the MFGUI, which can change as needed to accom-
modate the desired number of applications.

FIGS. 15A and 15B shows a decision chart for priorities at
executing commands. As discussed in Section 6.5.12 above,
some commands may be valid for both the system and one or
more applications. FIGS. 15A and 15B illustrates one of the
ways the system may the resulting command ambiguities
based on the order of priorities between the various types of
commands at various points in the system. Note that every
time the system prompts the user, the user may abort the
command input. The abort would be represented by arrows to
the Return box, but have been omitted from these FIGS. 15A
and 15B. FIGS. 15A and 15B are not intended to be limiting,
but rather to show one of the possible ways in which the
system can be designed to automate or assign command pri-
ority. It should be noted that alternate embodiments and varia-
tions may be designed differently to meet a wide variety of
design objectives.

In alternate embodiments (some of which are shown and
discussed above), the system is not restricted to processing
commands only in the CCA while it is in content loop. In such
embodiments, the system gives priority to the CCA for any
command associated with the CCA, but can process a known
command belonging to the system or another application at
any point. For example, in such an alternate embodiment, if a
command is not associated the CCA, but is known to be valid
to the system or to another application, the system processes
that command and depending on the parameters for that com-
mand leaves focus with the other application (making it the
CCA) when done, or returns to the CCA that had focus when
the command was issued. If a command is not valid in the
CCA, but valid for more than one other application or valid
within for the system, the user can be prompted in these
alternate embodiments to choose an application (or the sys-
tem) in which the command will be processed, or the system
can be designed so that it makes the decision based on pre-
determined parameters which may be designed into the sys-
tem or as variables that can be modified. In such alternate
embodiments the system ability to detect, manage and pro-
cess commands outside ofthe CCA has the effect of replacing
the need for a CAS before issuing and processing commands
for the system or applications other than the CCA.

The chart in FIGS. 15A and 15B can be better understood
with a few of examples that illustrate how command priority
can be determined.

In the first example, the user utters the command “Open
Garage Door”. The command “Open” is valid to both the
System (Open (Application Name), the Home Control appli-
cation (Open Garage Door), and many other applications (for
example Open File Name). According to the order of priori-
ties illustrated by in FIGS. 15A and 15B, the system itself will
first try to process the command “Open” with the parameter
“Garage Door”. So it will search the CD for a “Garage Door”
command that can be acted upon by the system. When it does
not find one, it will search the CD for an application that can
process the command “Open” with a parameter of “Garage
Door” as something that can be opened, and if the parameter
“Garage Door” is registered with the system in the CD, the
system find and process the command in the Home Control
Application.

20

25

30

35

40

45

50

55

60

65

64

Another example is a command that is invalid, such as
“Open Jelly Jar.” In this case, the system will fail to find an
application that can process the command, and the command
status will be set to “processed error.”

In a third example, the user utters the command “Open File
Name”. According to the above, the command will be sub-
mitted to the System, which typically does not open a file, and
accordingly the System will then find the file and search for an
application that can open the specified file. As with the pre-
vious example, this can be done by searching the CD to
determine which application can open the requested file, or by
tryingto open the file in successive applications, or by search-
ing applications until it finds one that can open the requested
file. Alternatively, the system may prompt the user to choose
the application if more than one application can open the
desired file. If the system finds more than one file with the
same name, the user may be prompted to choose one, and may
also be prompted to select the desired application in which to
open the file. Alternatively, the system may be designed to
make the determination based on the information registered
inthe CD or some other location indicating which application
was last used to open the requested file.

If more than one application can process a command, then
the priority of for choosing an application will depend upon
the system design, which may enable the system to select the
application according to a predetermined priority, or the sys-
tem may be designed to prompt the user to choose an appli-
cation. In some embodiments, the system may be designed to
register and use information about the application previously
processed that command, and select the application accord-
ingly. Although these are some methods for resolving the
order in which the system and applications have priority over
processing commands, the system can be designed in other
ways, including but not limited to prompting the user, letting
the system decide, or not resolving the ambiguities.

Returning to the first example, in alternate embodiments, if
the parameter “Garage Door” is not registered or associated
with the Home Control Application in the CD, the system
may continue searching and testing for the application that
can process this command by attempting to process the com-
mand in various applications in which the “open” command is
valid, and the system continues this “search and test” process
until it either finds the right application and succeeds in pro-
cessing the command, or has exhausted the possibilities.
Alternatively, the system may submit the command to appli-
cations in which the “Open” command is valid, until this
“polling” finds an application where “Garage Door” is some-
thing that can be opened, and in this case the system does this
without actually trying to process the command in each appli-
cation. When the correct application is found, the system
processes the command in that application (possibly with a
request for user confirmation).

In yet other alternate embodiments, the system may do a
combination of both “searching and testing” and “polling,”
using information in the CD to narrow the list of possible
applications.

In yet another alternate embodiment (or variations of the
preferred and alternate embodiments discussed herein), it
may be desirable to enable the system to register commands
and their associated applications in the CD, so that each time
the system processes a previously unregistered command or
uses a previously unregistered application, it can “learn” from
this process and use this information to process the same
command next time it is found in the input stream. This
alternate embodiment, when employed enables the system to
adapt to a wide range of users who may be running a wide
variety of applications in a wide variety of configurations. In

US 8,543,407 B1

65

this alternate embodiment, it may even be desirable to break
the CD into multiple tables or data structures, or to structure
the CD and searching of the CD in a hierarchal fashion in
order to increase the efficiency of searching and the scope of
the system.

Returning back to FIGS. 15A and 15B, there are 5 decision
diamonds on the left, and these illustrate the possibilities of
command priority in the preferred embodiment. The first
decision, “CAS” is typically determined at S505. The second
decision “System Command” is typically determined at
8702, and the remaining decisions are made at S705. At these
points, FIGS. 15A and 15B illustrate how the system is
enabled to resolve command ambiguities using some of the
methods discussed in the examples above, and shows where
the system can be adapted to use some of the alternative
methods also discussed.

10 CLOSING

Examples of alternate embodiments and variations thereof
are not intended to be limiting, but to demonstrate the flex-
ibility in which the System of the present invention can be
structured and designed to function in order to perform its
objectives, as they may vary according to system design or
implementation. Having described the preferred and some
alternate embodiments of the invention with reference to the
accompanying drawings, it is to be understood that the inven-
tion is not limited to those precise embodiments, and that
various changes and modifications may be effected therein by
one skilled in the art without departing from the scope or spirit
of the invention as defined in the appended claims.

What is claimed is:

1. A speech processing method, comprising:

determining a set of available instructions;

determining data structures corresponding to the available

instructions;

processing a natural language speech input representing at

least one instruction with respect to the determined data
structures;

determining if the natural language speech input likely

represents an instruction;
determining a completeness and an ambiguity of the likely
represented instruction with respect to the data struc-
tures, and if the likely represented instruction is too
ambiguous or incomplete for proper execution, prompt-
ing for further speech input to reduce ambiguity or
incompleteness;
targeting a likely represented instruction which is suffi-
ciently complete and unambiguous for proper execution
to one of a plurality of respective applications;

preserving a system state prior to at least partially execut-
ing the sufficiently complete and unambiguous instruc-
tion;

executing the sufficiently complete and unambiguous

instruction by the one of the plurality of applications;
and

restoring the preserved system state after execution of the

sufficiently complete and unambiguous instruction.

2. The method according to claim 1, further comprising
extracting non-instruction words from the natural language
speech input, and passing the non-instruction words to the
one of the plurality of applications.

3. The method according to claim 1, wherein the data
structures represent at least a status of the natural language
speech input with respect to a plurality of predetermined

5

20

25

30

35

40

45

50

55

60

65

66

instruction grammars associated with the available instruc-
tions, and the status is updated based on the natural language
speech input and a context.

4. The method according to claim 1, wherein said deter-
mining if the natural language speech input likely represents
an instruction is dependent on a context of use.

5. The method according to claim 3, wherein the set of
available instructions is determined dynamically.

6. The method according to claim 1, wherein a plurality of
applications are concurrently available, further comprising
determining a respective application which is targeted by the
likely represented instruction.

7. The method according to claim 1, further comprising
determining whether a portion of the natural language speech
input represents unstructured language input not representing
an instruction, and if not representing an instruction, sup-
pressing the prompting.

8. A speech processing method, comprising:

receiving a natural language speech input representing one

or more instructions and one or more words;

analyzing the natural language speech for contextual indi-

cia to distinguish between the one or more instructions,
instructing a device at take automated action, and the one
or more words intended as data;

determining whether a respective instruction is sufficiently

complete to permit at least partial execution, or whether
additional input is required to permit at least partial
execution;

at least partially executing the sufficiently complete

respective instruction; and

passing the one or more words intended as data to a data

sink,

wherein the one or more instructions are targeted to one of

aplurality of respective applications, further comprising
preserving a respective system state prior to at least
partially executing the sufficiently complete respective
instruction; and restoring a stored system state after
execution of the sufficiently complete respective
instruction.

9. The method according to claim 8, wherein at least one
analysis selected from the group consisting of (a) a temporal
analysis, (b) a natural language analysis, and (c) a syntactic
analysis, is used to determine a context of the speech input.

10. The method according to claim 8, further comprising
maintaining a plurality of data structures representing at least
astatus of a plurality of grammars, wherein the data structures
are dynamically updated based on the natural language
speech input and a context.

11. The method according to claim 8, further comprising
employing a non-linguistic implicit input as a cue to deter-
mine a context.

12. The method according to claim 9, further comprising
determining the targeted one of the plurality of applications
based on the determined context.

13. The method according to claim 8, further comprising
determining an ambiguity of a respective instruction, and
generating a prompt seeking clarification of the ambiguity.

14. The method according to claim 8, further comprising
determining an inconsistency of a respective instruction with
prior stored information, and generating a prompt seeking
resolution of the inconsistency.

15. A speech processing apparatus, comprising:

an input port configured to receive a natural language

speech input representing one or more instructions and
one or more words;

US 8,543,407 B1

67

at least one processor, configured to:

analyze the natural language speech for contextual indi-
cia to distinguish between the one or more instruc-
tions, instructing a device at take automated action,
and the one or more words intended as data;

determine whether a respective instruction is sufficiently
complete to permit at least partial execution, or
whether additional input is required to permit at least
partial execution;

preserve a respective system state prior to at least partial
execution of the sufficiently complete respective
instruction;

target the sufficiently complete respective instruction to
one of a plurality of respective applications;

at least partially execute the sufficiently complete
respective instruction by the one of the plurality of
respective applications;

pass the one or more words intended as data to a data
sink; and

restore the preserved system state after the at least partial
execution of the sufficiently complete respective
instruction; and

a memory configured to store information selectively

based on the at least partially executed respective
instruction.

16. The speech processing apparatus according to claim
15, wherein the at least one processor is further configured to
determine a context of the natural language speech input
perform at least one analysis selected from the group consist-
ing of:

15

20

25

68
a temporal analysis,
a natural language analysis, and
a syntactic analysis.

17. The speech processing apparatus according to claim
16, wherein the at least one processor is further configured to
maintain a plurality of data structures representing at least a
status of a plurality of grammars, and to dynamically update
the data structures based on at least the natural language
speech input and the determined context.

18. The speech processing apparatus according to claim
15, wherein the at least one processor is further configured to
determine a context of the natural language speech input, and
to target the one of the plurality of applications based on at
least the determined context.

19. The speech processing apparatus according to claim
15, wherein the at least one processor is further configured to
extract at least one of dictation and instruction parameters
from the natural language speech input, and to pass the at least
one of the dictation and the instruction parameters to the
targeted one of the plurality of applications.

20. The speech processing apparatus according to claim
15, wherein the at least one processor is further configured to
determine an ambiguity of a respective instruction or an
inconsistency of a respective instruction with respect to infor-
mation stored in a memory, and to generate a prompt seeking
clarification of the ambiguity or inconsistency.

#* #* #* #* #*

