
(12) United States Patent
Fultheim et a1.

US008544004B2

US 8,544,004 B2
*Sep. 24, 2013

(10) Patent N0.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(63)

(60)

(51)

(52)

(58)

CLUSTER-BASED OPERATING
SYSTEM-AGNOSTIC VIRTUAL COMPUTING
SYSTEM

Shai Fultheim, Revava (IL); Herb
Zlotogorski, New York, NY (US); Yaniv
Romem, Jerusalem (IL)

Inventors:

Assignee: Scalemp Inc., Cupertino, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 229 days.

This patent is subject to a terminal dis
claimer.

Appl. N0.: 13/290,087

Filed: Nov. 6, 2011

Prior Publication Data

US 2012/0054748 A1 Mar. 1, 2012

Related US. Application Data

Continuation of application No. 10/828,465, ?led on
Apr. 21, 2004.

Provisional application No. 60/494,392, ?led on Aug.
11, 2003, provisional application No. 60/499,646,
?led on Sep. 2, 2003.

Int. Cl.
G06F 9/455
US. Cl.
USPC 718/1

Field of Classi?cation Search
USPC 718/1

(2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

4,253,145 A 2/1981 Goldberg
5,488,716 A 1/1996 Schneider et a1.
5,511,217 A 4/1996 Nakajima et al.
5,553,291 A 9/1996 Tanaka et al.
5,829,041 A 10/1998 Okamoto et al.
5,991,893 A 11/1999 Snider
6,075,938 A * 6/2000 Bugnion et al. 703/27
6,336,170 B1 1/2002 Dean et al.
6,397,242 B1 5/2002 Devine et al.
6,496,847 B1 12/2002 Bugnion et al.
6,542,926 B2 4/2003 Zalewski et a1.
6,601,183 B1 7/2003 Larson et al.
6,681,238 B1 1/2004 Brice, Jr. et al.
6,862,735 B1 3/2005 Slaughter et al.
7,158,972 B2 1/2007 Marsland
7,191,440 B2 * 3/2007 Cota-Robles et al. 718/1
7,203,944 B1 * 4/2007 van Rietschote et a1. 718/104

(Continued)
OTHER PUBLICATIONS

Hu et al., “The Memory and Communication Subsystem of Virtual
Machines for Cluster Computing”, Jan. 2002.

(Continued)
Primary Examiner * Jennifer To

(74) Attorney, Agent, orFirm * D. Kligler1.P. Services Ltd.

(57) ABSTRACT
According to a disclosed embodiment of the invention, an
improved cluster-based collection of computers (nodes) is
realized using conventional computer hardware. Software is
provided that enables at least one virtual machine to be pre
sented to guest operating systems, wherein each node partici
pating with the virtual machine has its own emulator or virtual
machine monitor. VM memory coherency and 1/ O coherency
are provided by hooks, which result in the manipulation of
internal processor structures. A private network provides
communication among the nodes.

See application ?le for complete search history. 28 Claims, 5 Drawing Sheets

TO VM

56 54
(/

VMM
MANAGEMENT SYSTEM

55/\ VIRTUAL PC!
CONTROLLER

60 "\.. VIRTUAL DMA
———— CONTROLLER

62 A 44

5 ' DATA

‘” PC HARDWARE NETWCDRK

US 8,544,004 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

7,213,246 B1* 5/2007 van Rietschote et a1. 718/1

7,596,654 B1 9/2009 Wong
2002/0052914 A1 5/2002 Zalewskiet al.
2003/0005068 A1 1/2003 Nickel et al.
2003/0037089 A1 2/2003 Cota-Robles et al.
2003/0061254 A1 3/2003 Lindwer et al.
2004/0054517 A1 3/2004 Altman et a1.
2005/0039180 A1 2/2005 Fultheim et al.
2005/0044301 A1 2/2005 Vasilevsky et a1.

OTHER PUBLICATIONS
Radovic et al., “DSZoom-Low Latency Software-Based Shared
Memory”, Royal Institute of Technology and Uppsala University,
Parallel and Scienti?c Computing Institute, Report No. 2001 :03, Apr.
2001.
Munro, J ., “Virtual Machines and VMWare, part 1”, EXtremeTech,
Wireless Messaging, Dec. 21, 2001.
Noordergraaf et al., “Performance Experiences on Sun’s Wild?re
Prototype”, ACM/IEEE Conference on Supercomputing, Nov.
13-18, 1999.
Laudon et al., “The SGI Origin: A ccNUMA Highly Scalable
Server”, Proceedings of the 24th Annual International Symposium on
Computer Architecture, pp. 241-251, Jun. 2-4, 1997.
Govil et al., “Cellular Disco: Resource Management using Virtual
Clusters on Shared-Memory Multiprocessors”, ACM Transactions
on Computer Systems, vol. 18, No. 3, pp. 229-262, Aug. 2000.

US. Appl. No. 10/828,465 Of?cial Action dated Aug. 6, 2007.
US. Appl. No. 10/828,465 Of?cial Action dated Jan. 28, 2008.
Bugnion et al., “Disco: Running Commodity Operating Systems on
Scalable Multiprocessors”, Proceedings of 16th Symposium on
Operating Systems Principles, Saint-Malo, France, Oct. 1997.
Bugnion et al., “Disco: Running Commodity Operating Systems on
Scalable Multiprocessors”, ACM Transactions on Computer Sys
tems, vol. 15, No. 4, pp. 412-447, Nov. 1997.
Govil et al., “Cellular Disco: Resource Management using Virtual
Clusters on Shared-Memory Multiprocessors”, 17th ACM Sympo
sium on Operating Systems Principles, Operating Systems Review,
vol. 34, No. 5, pp. 154-169, Dec. 1999.
US. Appl. No. 10/828,465 Of?cial Action dated Jun. 5, 2008.
US. Appl. No. 10/828,465 Of?cial Action dated Nov. 26, 2008.
US. Appl. No. 10/828,465 Of?cial Action dated May 18, 2009.
US. Appl. No. 10/828,465 Of?cial Action dated Dec. 30, 2009.
isidehpc.com, Q&A With HPC VirtualiZation software maker
ScaleMP, May 29, 2009 (http://insidehpc.com/2009/05/29/qa-With
hpc-virtualiZation-softWare-maker-scalemp/).
U.S. Appl. No. 10/828,465 Of?cial Action dated Jul. 16, 2010.
US. Appl. No. 10/ 828,465 EXaminer’sAnsWer on Appeal dated May
20, 201 1.
VMWare Inc., “WMWare Workstation: User’s Manual”, version 3 .2,
year 2002.
US. Appl. No. 10/828,465 Advisory Action dated Feb. 25, 2009.

* cited by examiner

US. Patent Sep. 24, 2013 Sheet 1 of5 US 8,544,004 B2

A3

g @QQKWM Z QLIFAQQ

A3

\ _ @255 Inn v3 \ _ @655 Jun Ma y 2555 Jmm mum 225i 8 E25,: 2 35; E
:55: <2 E2? in E2? <3

:5: Eu: as: 2% Eu: 5% i E: a; i 52 E; i E: a; A2, A2. Q” Q, A? 9” A2 A2, A;

E f\/

a

mo 58 S

2

22.55% 25552 Z2522: 2v 2v NV

2\\\ P .o_|._

US. Patent Sep. 24, 2013 Sheet 2 of5 US 8,544,004 B2

magma/E HE
$430528 / as 52123

m .oE $53.58

E 3;; 2% =55 5232; is w

E\\ < 3

E 2

VEQELFMZ MEEEE HE
@PQQQ _

a,

35% 5 mg a; 1 1.

$\\\ N .01 2, a,

US. Patent Sep. 24, 2013 Sheet 3 of5 US 8,544,004 B2

64
FIG. 4 /

g1.2 §13 gm §15 gm g1?
APP APP APP APP APP APP

0s es

178 Virtual Machine 1% Virtual Machine
Q {21 ,21 , Y ,21 21 ,21
as vCPU vCPU vCPU 8B vCPU vCPU vCPU

/23 [23
Virtual Memory Virtual Memory

/25 ,25
Virtual 10 Devices Virtual 10 Devices

VM imp. r_VM imp. Vlljmp; XM_i_l_nB._ VM imp. KVM imp.v
76> so) [78> ; i so’ ‘, 78> err

74 Machine (Node) | 74, Machi e|(Node) l 74 Machine (Node)
1 4 | | CPU f CPU vPU CPU CPU r CPU

76 : i 76
Memory I Memory l Memory

72> 85;. : 72> g I as? (84 : 72> 85?
I0 DEVICES : I0 I); VIIICES ’ : l0 DEVICES

66> "_3—_">L—'$——J 70>
44 90 68 92

V Data Network

US. Patent Sep. 24, 2013 Sheet 4 of5 US 8,544,004 B2

64
FIG. 5 /

12 13 14 15 16 1? § § § § € €
APP APP APP APP APP App

0s 0s

1% Virtual Machine 1% Virtual Machine
§ ,21 ,21 ,21 ,21 /21 /21 [21
95 vCPU vCPU vCPU vCPU 97 vCPU vCPU vCPU

/23 L /23
Virtual Memory Virtual Memory

/25 [25
Virtual I0 Devices Virtual I0 Devices

78> B0’ 1075 109 I i
74) Machine (Node) 74) Machine (Nqde)

CPU CPU CPU éP w? 1
74) Machine (Node)

76
Memory Memory I

72> B5P | 72> 05? 72> 85?
I0 DEVICEjS I0 DEVICES 10 DEVICES I l

663 L-S"___—' LS" 70>
44 103 s 105

\A Data Network

(04
I

US 8,544,004 B2
1

CLUSTER-BASED OPERATING
SYSTEM-AGNOSTIC VIRTUAL COMPUTING

SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of US. patent applica
tion Ser. No. 10/828,465, ?led Apr. 21, 2004, which claims
the bene?t of Provisional Application No. 60/494,392, ?led
Aug. 11, 2003, and of Provisional Application No. 60/499,
646, ?led Sep. 2, 2003.

REFERENCE TO COMPUTER PROGRAM
LI STING APPENDIX

A computer program listing appendix is submitted here
with on one compact disc and one duplicate compact disc.
The total number of compact discs including duplicates is
two. The ?les on the compact disc are software object code
and accompanying ?les for carrying out the invention. Their
names, dates of creation, directory locations, and siZes in
bytes are:
.CONFIG of Aug. 27, 2003 located in the root folder and of

length 28,335 bytes;
BIOSHEX of Aug. 27, 2003 located in the root folder and

of length 241,664 bytes;
SCMPVMMOHEX of Aug. 27, 2003 located in the root

folder and of length 201,603 bytes;
SCMPVMMSHEX of Aug. 27, 2003 located in the root

folder and of length 20,119 bytes; and
USERMODEHEX of Aug. 27, 2003 located in the root

folder and of length 37,170 bytes.
The material on the compact discs is incorporated by ref

erence herein.

Installation and execution instructions for the material on
the compact disks are provided hereinbelow at Appendix 1.

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to virtual computers. More particu

larly, this invention relates to improvements in a cluster-based
symmetric multiprocessor.

2. Description of the Related Art
The meanings of certain acronyms and terminology used

herein are given in Table 1.

TABLE 1

API Application programming interface
CPU Central processing unit
DMA Direct Memory Access — used by hardware devices,

which are required to copy data to
and from main system memory. DMA is used to
relieve the CPU from Waiting during memory
accesses.

False sharing In shared memory multiprocessors, when processors
make references to different data
items within the same block even though
there is no actual dependence between the
references.

FSB Front-side bus
NIC Network interface card
NUMA Non-uniform memory access
PCI Peripheral Component Interconnect — a standard

for peripheral software and hardware
interfaces.

SMP Symmetric multiprocessor
TLB Translation lookaside buffer

20

25

30

35

40

45

50

55

60

65

2
TABLE 1-continued

VM
VMM

Virtual machine
Virtual machine monitor

A portion of the disclosure of this patent document, which
includes a CD-ROM appendix, contains material that is sub
ject to copyright protection. The copyright owner has no
objection to the facsimile reproduction by anyone of the
patent document or the patent disclosure, as it appears in the
Patent and Trademark O?ice patent ?le or records, but other
wise reserves all copyright rights whatsoever.

The use of virtual computers (generally referred to as “vir
tual machines”) to enhance computing power has been known
for several decades. For example, a classic system, VM, pro
duced by IBM, enabled multiple users to concurrently use a
single computer by running multiple copies of the operating
system. Virtual computers have been realiZed on many dif
ferent types of computer hardware platforms, including both
single-processor and multi-processor units.
Some virtual machine monitors are able to provide concur

rent support for diverse operating systems. This requires the
virtual machine monitor to present a virtual machine, that is a
coherent view of the hardware, to each operating system. The
above-noted VM system has evolved to the point where it is
asserted that in one version, Z/VM®, available from IBM,
New Orchard Road, Armonk, N.Y., multiple operating sys
tems can execute on a single server.

Despite these achievements in virtual computing, practical
issues remain. The currently dominant personal computer
architecture, X86/IA32, which is used in the Intel PentiumTM
and other Intel microprocessors, is not conducive to virtual
iZation techniques for two reasons: (1) the instruction set of
the CPU is not natively virtualiZable; and (2) the X86/IA32
architecture has an open I/O architecture, which complicates
the sharing of devices among different operating systems.
This has been an impediment to continued advancements in
the ?eld. In general, it is inef?cient, and probably impractical,
for multiple operating systems to concurrently share common
X86/IA32 hardware directly. System features of the X86/
IA32 CPU are designed to be con?gured and used in a coor
dinated effort by only one operating system, e.g., paging and
protection mechanisms, and segmentation.

Limitations of the X86/IA32 architecture can be appreci
ated by a brief explanation of one known approach to virtual
computers, in which a virtual machine monitor is used to
provide a uniform execution environment within a computer.
A virtual machine monitor is a software layer that in this
approach is interposed between hardware of a single com
puter and one or more guest operating systems that support
different applications. In this arrangement the virtual
machine monitor interacts directly with the hardware, and
exposes an expected interface to the guest operating systems.
This interface includes normal hardware facilities, e. g., CPU,
I/O, and memory.
When virtualiZation is properly done, the guest operating

systems are unaware that they are interacting with a virtual
machine instead of directly with the hardware. For example,
low level disk operations invoked by the operating systems,
interaction with system timers, interrupts and exception han
dling are all managed transparently by the guest operating
systems via the virtual machine monitor. To accomplish this,
it is necessary that the virtual machine monitor be able to trap
and execute certain hardware instructions dealing with the
state of the processor.

Signi?cantly, the X86/IA32 employs four modes of pro
tected operation, which are conveniently conceptualiZed as

US 8,544,004 B2
3

rings of protection, known as protection rings 0-3. Protection
ring 0 is the most protected, and Was designed for execution of
the operating system kernel. Privileged instructions available
only under protection ring 0 include instructions dealing With
interrupt handling, and the modi?cation of processor ?ags
and page tables. Typical examples are store instructions for
the global descriptor table (SGDT) and interrupt descriptor
table (SIDT). Protection rings 1 and 2 Were designed for other
operating system services, e.g., device drivers. Protection
ring 3, the least privileged, Was intended for applications, and
is also referred to as user mode. If it Were possible to trap all
of the privileged X86/IA32 instructions in user mode, it
Would be relatively straightforward for the virtual machine
monitor to handle them using ordinary exception-handling
techniques. Unfortunately, there are many privileged instruc
tions of the X86/IA32 instruction set, Which cannot be
trapped under protection ring 3. Attempts to naively execute
privileged instructions under protection ring 3 typically result
in a general protection fault.

Because of the importance of the X86/IA32 architecture,
considerable effort has been devoted to overcoming its limi
tations With regard to virtualiZation. Virtual machines have
been proposed to be implemented by softWare emulation of at
least the privileged instructions of the X86/IA32 instruction
set. Alternatively, binary translation techniques can be uti
liZed in the emulator. Binary translation techniques in con
nection With a virtual machine monitor are disclosed in US.
Pat. No. 6,397,242, the disclosure of Which is incorporated
herein by reference. Additionally or alternatively, combina
tions of direct execution and binary translation can be imple
mented. The open source Bochs IA-32 Emulator, doWnload
able via the Internet, is an example of a complete emulator.
Another example is the SimOS environment, available via the
Internet. The SimOS environment is adapted to the MIPS
R4000 and Rl0000 and Digital Alpha processor families.
Generally, the performance of emulators is relatively sloW.

Another knoWn approach employs a hosted architecture. A
virtual machine application uses a VM driver to load a virtual
machine monitor at a privileged level. Typical of this
approach are the disclosures of US. Pat. Nos. 6,075,938 and
6,496,847, Which are incorporated herein by reference. The
virtual machine monitor then uses the I/O services of a host
operating system to accommodate user-level VM applica
tions. Current examples of this approach include the VMWare
WorkstationTM, the VMWare GSX ServerTM, both available
from VMWare, Inc., 3145 Porter Drive, Palo Alto, Calif.
94304, and the Connectix Virtual PCTM, available from
Microsoft Corporation, One Microsoft Way, Redmond,
Wash. 98052-6399. Another example is the open source
Plex86 Virtual Machine, available via the Internet. The hosted
architecture is attractive due to its simplicity. HoWever, it
incurs a performance penalty because the virtual machine
monitor must itself run as a scheduled application under the
host operating system, and could even be sWapped out. Fur
thermore, it requires emulators to be Written and maintained
for diverse I/ O devices that are invoked by the virtual machine
monitor.

It is knoWn in the art to use multiple processors in a single
computer in order to enhance overall system performance.
One knoWn architecture is symmetric multiprocessing
(SMP), in Which application programs are processed by mul
tiple processors that share a common operating system and
memory. Typically, the processors share memory and the I/O
bus or data path, and are controlled by a single instance of an
operating system. In order to enhance performance, SMP

20

25

30

35

40

45

50

55

60

65

4
systems may employ non-uniform memory access (NU MA),
a method of con?guring the microprocessors so that they can
share memory locally.

In a variation of multiprocessing systems, multiple rela
tively small computers, either uniprocessors or multiproces
sors having relatively feW processors, are linked together and
coordinated to execute multiple applications, While serving
one or more users. This arrangement is knoWn as a cluster, or

scaled-out arrangement. Some systems of this type can out
perform corresponding SMP con?gurations. HoWever, in the
past it has been necessary that applications for cluster-based
systems be specialiZed, so that they are cluster-aWare. This
has increased development expense, and in some cases, has
impeded the use of standard commercial softWare on cluster
based systems.
An unsuccessful attempt to implement a VM computing

paradigm on cluster-based systems is disclosed in the docu
ment The Memory and Communication Sub system of Virtual
Machines for Cluster Computing, Shiliang Hu and Xidong
Wang, January 2002 (Hu et al.), published on the Internet. In
this proposed arrangement, multiple SMP clusters of
NUMA-like processors are monitored by virtual machine
monitors. A cluster interconnect deals With message passing
among the clusters. The system consists of multiple virtual
machines that operate under a single operating system, and
support parallel programming models. While a virtual com
puter built according to this paradigm Would initially appear
to be highly scalable, preliminary simulations of the commu
nication and memory subsystems Were discouraging. A fur
ther dif?culty is posed by limitations of current operating
systems, Which are generally unaWare of the locality of
NUMA-type memory. According to Hu et al., the proposed
paradigm could not be reduced to practice until substantial
technological changes occur in the industry. Thus Hu et al.
appears to have encountered a Well-knoWn dif?culty: cluster
machines generally, and NUMA machines in particular, can
be scaled up successfully only if some Way is found to ensure
a high computation to communication ratio in regard to both
data distribution and explicit communication among the clus
ters and processors.
The most successful of the solutions noted above, in the

case of the IBM Z/V M product, have relied upon revisions and
optimiZations of the underlying computer hardWare in order
to overcome the issues encountered by Hu et al., and to
increase performance generally, or have required kernel
modi?cations of operating system softWare, in the case of the
above-noted VMWare products. These approaches are costly
in terms of product development, marketing, and mainte
nance, and often commercially impracticable, due to secrecy
policies of operating system softWare vendors.

SUMMARY OF THE INVENTION

According to a disclosed embodiment of the invention, an
improved cluster-based collection of computers (nodes) is
realiZed using unmodi?ed conventional computer hardWare
and unmodi?ed operating system softWare. SoftWare is pro
vided that enable a virtual machine to be presented to a guest
operating system, Wherein each node participating With the
virtual machine has its oWn emulator or virtual machine
monitor. VM memory coherency and I/O coherency are pro
vided by hooks, Which result in the manipulation of internal
processor structures. A private netWork provides communi
cation among the nodes.
The invention provides a method for executing a softWare

application in a plurality of computing nodes has node
resources, Wherein the nodes include a ?rst node and a second

US 8,544,004 B2
5

node that intercommunicate over a network, and the nodes is
operative to execute a virtual machine that runs under a guest
operating system. The method is carried out by running at
least a ?rst virtual machine implementer and a second virtual
machine implementer on the ?rst node and the second node,
respectively, and sharing the virtual machine betWeen the ?rst
virtual machine implementer and the second virtual machine
implementer.
An aspect of the method includes running the softWare

application over the guest operating system, so that com
mands invoked by the softWare application are monitored or
emulated by the ?rst virtual machine implementer and by the
second virtual machine implementer on the ?rst node and the
second node, While the node resources of the ?rst node and the
second node are shared by communication over the netWork.

According to an additional aspect of the method, at least
one of the ?rst virtual machine implementer and the second
virtual machine implementer is a virtual machine monitor.

According to one aspect of the method, at least one of the
?rst virtual machine implementer and the second virtual
machine implementer is an emulator.

According to still another aspect of the method, at least the
?rst node has a ?rst virtual node that includes a ?rst physical
CPU of the ?rst node and has a second virtual node that
includes a second physical CPU of the ?rst node.

According to another aspect of the method, there are a
plurality of virtual machines including a ?rst virtual machine
and a second virtual machine, Wherein the ?rst virtual
machine and the second virtual machine have a plurality of
virtual CPU’s that are virtualiZed by the ?rst virtual machine
implementer in the ?rst node based on a ?rst physical CPU
and by the second virtual machine implementer in the second
node based on a second physical CPU, respectively.

According to yet another aspect of the method, and a ?rst
virtual node includes the ?rst physical CPU and the second
physical CPU.

According to a further aspect of the method, the ?rst virtual
machine implementer virtualiZes at least one of the virtual
CPU’s of the ?rst virtual machine based on the ?rst physical
CPU and virtualiZes at least one of the virtual CPU’s in the
second virtual machine based on the second physical CPU.

Another aspect of the method includes providing a man
agement system for the ?rst virtual machine implementer and
the second virtual machine implementer to control the ?rst
node and the second node, respectively, Wherein the manage
ment system includes a Wrapper for receiving calls to a device
driver from the ?rst virtual machine implementer, the Wrap
per invoking the device driver according to a requirement of
the ?rst virtual machine implementer.
A further aspect of the method includes providing a virtual

PCI controller for the management system to control a physi
cal PCI controller in one of the nodes.

Yet another aspect of the method includes providing a
virtual DMA controller for the management system to control
a physical DMA controller in one of the nodes.

Still another aspect of the method includes providing a
virtual PCI controller to control a physical PCI controller in
one of the nodes, and during a bootup phase of operation
scanning a device list With the virtual PCI controller to remap
memory regions and resources and identify devices having
on-board DMA controllers.

In one aspect of the method the virtual machine imple
menter maintains mirrors of a memory used by the guest
operating system in each of the nodes, the method further
including Write-invalidating at least a portion of a page of the

20

25

30

35

40

45

50

55

60

65

6
memory in one of the nodes, and transferring a valid copy of
the portion of the page to the one node from another of the
nodes via the netWork.

The invention provides a computer softWare product,
including a computer-readable medium in Which computer
program instructions are stored, Which instructions, When
read by a computer, cause the computer to perform a method
for executing a softWare application in a plurality of comput
ing nodes has node resources, Wherein the nodes include a
?rst node and a second node that intercommunicate over a

netWork, and the nodes is operative to execute a virtual
machine that runs under a guest operating system. The
method is carried out by running at least a ?rst virtual
machine implementer and a second virtual machine imple
menter on the ?rst node and the second node, respectively,
and sharing the virtual machine betWeen the ?rst virtual
machine implementer and the second virtual machine imple
menter.

The invention provides a computer system for executing a
softWare application, including a plurality of computing
nodes, the plurality of computing nodes including at least a
?rst node and a second node, a netWork connected to the ?rst
node and the second node providing intercommunication
therebetWeen, a ?rst virtual machine implementer and a sec
ond virtual machine implementer executing on the ?rst node
and the second node, respectively. The system further
includes a virtual machine implemented concurrently by at
least the ?rst virtual machine implementer and the second
virtual machine implementer, and a guest operating system
executing over the virtual machine, Wherein the software
application executes over the guest operating system, so that
commands invoked by the softWare application are received
by the ?rst virtual machine implementer and the second vir
tual machine implementer on the ?rst node and the second
node, While the node resources of the ?rst node and the second
node are shared by communication over the netWork.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention, refer
ence is made to the detailed description of the invention, by
Way of example, Which is to be read in conjunction With the
folloWing draWings, Wherein like elements are given like
reference numerals, and Wherein:

FIG. 1 is a block diagram of a cluster-based virtual com
puting arrangement that is constructed and operative in accor
dance With a disclosed embodiment of the invention;

FIG. 2 is a detailed block diagram of a virtual machine
monitor that is constructed and operative in accordance With
an alternate embodiment of the invention;

FIG. 3 is a detailed block diagram of an alternate virtual
machine monitor that is constructed and operative in accor
dance With an alternate embodiment of the invention;

FIG. 4 is a block diagram of a cluster-based virtual com
puting arrangement employing multiprocessors and virtual
nodes in Which there are a plurality of virtual machine imple
menters per node that is constructed and operative in accor
dance With an alternate embodiment of the invention;

FIG. 5 is a block diagram of a cluster-based virtual com
puting arrangement employing multiprocessors and virtual
nodes having a plurality of virtual machine implementers per
CPU that is constructed and operative in accordance With an
alternate embodiment of the invention; and

FIG. 6 is a block diagram of a cluster-based virtual com
puting arrangement that employs a virtual machine monitor

US 8,544,004 B2
7

having a management system, that is constructed and opera
tive in accordance With an alternate embodiment of the inven
tion.

DETAILED DESCRIPTION OF THE INVENTION

In the following description, numerous speci?c details are
set forth in order to provide a thorough understanding of the
present invention. It Will be apparent to one skilled in the art,
hoWever, that the present invention may be practiced Without
these speci?c details. In other instances Well-knoWn circuits,
control logic, and the details of computer program instruc
tions for conventional algorithms and processes have not been
shoWn in detail in order not to unnecessarily obscure the
present invention.

Software programming code, Which embodies aspects of
the present invention, is typically maintained in permanent
storage, such as a computer readable medium. In a client/
server environment, such softWare programming code may
be stored on a client or a server. The software programming
code may be embodied on any of a variety of knoWn media for
use With a data processing system. This includes, but is not
limited to, magnetic and optical storage devices such as disk
drives, magnetic tape, compact discs (CD’s), digital video
discs, (DVD’s), and computer instruction signals embodied
in a transmission medium With or Without a carrier Wave upon
Which the signals are modulated. For example, the transmis
sion medium may include a communications netWork, such
as the Internet.
Introductory Comments.
A virtual node is the combination of a dedicated memory

segment, a dedicated device group (Which can contain no
devices), and at least one CPU. A virtual machine imple
menter, such as a virtual machine monitor or machine emu

lator or simulator, disguises the virtual machine, so that an
operating system that issues calls to the virtual machine can
use only the virtual node resources.
A virtual CPU is an object that appears to be a CPU from

the perspective of a virtual machine. The operating system is
unaWare that it is controlling a virtual CPU rather than a
physical CPU. The virtual machine implementer can replace
the CPU context With several virtual CPU contexts, hence
virtualiZing more than one CPU based on one physical CPU.

Embodiment 1

Turning noW to the draWings, reference is initially made to
FIG. 1, Which is a block diagram of a cluster-based virtual
computing system 10 that is constructed and operative in
accordance With a disclosed embodiment of the invention. A
plurality of user applications 12, 14, 16 execute simulta
neously, supported by a guest operating system 18, Which can
be any conventional unmodi?ed operating system supported
by the instruction set architecture (ISA) of a plurality of nodes
22, 24, 26, e.g., Microsoft WindoWs®, Unix®, Linux®, or
Solar‘is® X86 in the case of the X86/IA32 ISA. The guest
operating system 18 controls a virtual machine 20, Which
presents itself to the guest operating system 18 as though it
Were a conventional real machine. While the system 10 is
disclosed With reference to the X86/IA32 family of proces
sors, the invention is not limited to the X86/IA32 family of
processors, but is applicable to other computer architectures.

While three nodes are shoWn, the system 10 is scalable, and
any number of nodes may be present, depending on the needs
of a particular application and the performance desired. The
nodes 22, 24, 26 each comprise computer hardWare 28, Which
in a current embodiment use the X86/IA32 ISA. Instructions

20

25

30

35

40

45

50

55

60

65

8
of the guest operating system 18 are distributed for execution
among the nodes 22, 24, 26 as though the system 10 Were a
single SMP machine With NUMA-like shared memory. This
“virtual SMP” operation is transparent to the guest operating
system 18 and to the applications 12, 14, 16, Which conse
quently bene?t from enhanced computing speed Without hav
ing to be “cluster-aware.”
The hardWare 28 includes nodal memory 30 and may also

be provided With many other types of conventional personal
computer devices 32, for example, I/O devices and NIC’s or
other netWork communications facilities. Different versions
of the X86/IA32 ISA compatible processor may be placed in
different nodes, and various other aspects of the computer
hardWare may vary in different nodes. For example, the pro
cessor speed, bus speed, memory con?guration, and I/O
facilities may vary among the different nodes. It is only nec
essary that the different nodes all support a common ISA.
Even this limitation can removed by using a full machine
emulator to emulate an ISA that differs from the ISA of the
system on Which it is running.
The system 10 is not dependent on any particular virtual

machine implementation technique in any particular node.
This point is emphasiZed in the exemplary con?guration
shoWn in FIG. 1, in Which the nodes 22, 24 are provided With
virtual machine monitors 34, 36, Which can differ in imple
mentation technique or hardWare. For example, the virtual
machine monitors 34, 36 could be different products, such as
the above noted plex86, Xen (available via the Internet,
VMWare Workstation, Microsoft virtual server, or any other
similar product. The node 26 does not have a virtual machine
monitor. Instead, it is virtualiZed by an emulator 38, Which
can be the Bochs IA-32 Emulator.
One of the main functions of a virtual computer is virtual

iZed execution of the kernel code. V1rtualiZed execution
means that the guest operating system 18 receives effectively
the same results from having its code executed on a virtual
computer as on a real computer. Code of the guest operating
system 18 is ultimately executed via the virtual machine 20 on
the CPU’s of the hardWare 28. Therefore, a core element in
the functionality of a virtual computer is the virtualiZation of
the CPU instructions, the execution of Which Would other
Wise break the virtualiZation and cause inconsistent operation
or even total breakdoWn of the guest operating system. To this
end, virtualiZed kernel code execution is performed in the
virtual machine monitors 34, 36, and emulated in the emula
tor 38. The virtual machine monitors 34, 36 catch faults,
exceptions and interrupts generated in the hardWare 28,
Whether arising in the CPU or in other components of the
hardWare 28. The main task of the virtual machine monitors
34, 36 is to handle the faults, exceptions and interrupts in a
manner that leads the guest operating system 18 to perceive
that its oWn execution is as expected. Thus, the virtual
machine can be implemented using any combination of the
above-noted knoWn techniques, e.g., virtual machine moni
tor, emulation With or Without binary translation, or combi
nations thereof, or variants of a hosted architecture. The sys
tem 10 can be constructed using different types of emulators
and different types of virtual machine monitors in many com
binations.
Memory coherence among the nodes 22, 24, 26 is achieved

by a memory management module 40, Which maintains cop
ies of all memory content on each instance of the memory 30,
and maintains a record of page or sub-page validations and
invalidations. Similarly, a single coherent I/ O vieW is
achieved by an I/ O management module 42. The details of the
memory management module 40 and the I/O management
module 42 are disclosed in further detail hereinbeloW.

US 8,544,004 B2

A private network 44 provides rapid internodal communi
cation, Which is necessary for diverse functions of the virtual
machine monitors 34, 36 and the emulator 38, including
operation of the memory management module 40, the I/O
management module 42, and processing of hardWare and
softWare interrupts betWeen the nodes 22, 24, 26. The private
netWork 44 may be realiZed using standard networking equip
ment. High band-Width, loW-latency netWork elements are
used to boost performance. Standard host operating system
NIC drivers, for example Linux NIC drivers, can be used to
operate NIC’ s for the private netWork 44 as one of the devices
32 in each of the nodes 22, 24, 26. Other NlC’s may also be
included among the devices 32 for guest operating system
outbound netWork communications beyond the cluster of the
system 10.
Virtual Machine Monitor.
As shoWn in FIG. 1, the virtual machine monitor 34 runs on

bare hardWare. It is capable of supporting one or more virtual
machines, but has the disadvantage that I/O devices must be
supported by this type of virtual machine monitor. Reference
is noW made to FIG. 2, Which is a detailed block diagram of an
alternate virtual machine monitor 46 that is constructed and
operative in accordance With a disclosed embodiment of the
invention, and Which is suitable for use as the virtual machine
monitor 34 in the system 10 (FIG. 1), and in the other embodi
ments of a virtual computing system disclosed herein. The
virtual machine monitor 46 either integrally includes, or can
access a VM driver 48 that loads the virtual machine monitor
46 into kernel memory, so that it can run at a privileged level.
The virtual machine monitor 46 employs the services of an
unmodi?ed full host operating system 47 to control the hard
Ware 5. This method of operation is similar to the approach of
the above-noted US. Pat. No. 6,496,847, in Which a user
level emulator accepts commands from a virtual machine
monitor via a specialized system-level driver and processes
these commands as remote procedure calls. The emulator is
able to issue host operating system calls and thereby access
the physical system devices via the host operating system.
The host operating system itself thus handles execution of
certain virtual machine instructions, such as accessing physi
cal devices. HoWever, the technique of US. Pat. No. 6,496,
847 is only disclosed With respect to a single hardWare node.
The system 10 (FIG. 1) also differs from the disclosure of the
above-noted US. Pat. No. 6,075,938, in Which the virtual
machine monitor is only shoWn to run on bare hardWare, and
to control a single multiprocessing computer. Furthermore,
the system disclosed in US. Pat. No. 6,075,938 requires
kernel modi?cations of the host operating system to operate
successfully. An implementation of the virtual machine
monitor 46 is found in the computer program listing appen
dix.

Reference is noW made to FIG. 3, Which is a detailed block
diagram of an alternate virtual machine monitor 54 that is
constructed and operative in accordance With a disclosed
embodiment of the invention. The virtual machine monitor 54
can be used in any of the embodiments of a virtual computing
system disclosed herein. The virtual machine monitor 54 does
not rely upon the host operating system, but instead includes
a management system 56, Which is mainly used during boot
up and for coordinating private netWork communications dur
ing normal operation.

The management system 56 maintains a virtual PCI con
troller 58, Which serves as a proxy betWeen the guest operat
ing system and the physical PCI controllers. During boot-up,
the virtual PCI controller 58 collects hardWare information
from the underlying hardWare 5. Exploiting ?exibilities of the
PCI speci?cation, it rearranges the PCI devices in the local

20

25

30

35

40

45

50

55

60

65

10
node and throughout the cluster, using virtual PCl-to-PCI
bridges. The virtual PCI controller 58 also ascertains that
there are no con?icts in the I/O ports and memory regions
used by the physical PCI devices on the individual hardWare
5 or elseWhere in the cluster. Thus, the virtual PCI controller
58 makes the separate PCI buses of the individual nodes 22,
24, 26 (FIG. 1) appear to the guest operation system 18 as a
single PCI address space, i.e., a single bridged virtual PCI
bus. Currently prevalent commodity operating systems do not
support multiple PCI buses. Nevertheless, in some embodi
ments, the virtual PCI controller 58 may have the capability of
implementing multiple virtual PCI buses in anticipation that
they may be supported by future commodity operating sys
tems.

Subsequently, the virtual PCI controller 58 serves as a
sniffer for PCI con?guration actions taken by the guest oper
ating system, and tracks any changes made by the guest
operating system to the PCI devices’ I/O ports and memory
regions. It respects such changes and forWards them to the
PCI host of the appropriate physical node. It is also respon
sible for updating internal tables regarding I/O port and
memory region assignments Within the cluster.
The virtual PCI controller 58 emulates hot-pluggable PCI

events for the guest operating system. This alloWs for
dynamic node addition and removal. If and When the physical
hardWare generates hot-pluggable PCI events, it is the respon
sibility of the virtual machine monitor 54 to forWard these
events to the guest operating system.
The management system 56 includes a virtual DMA con

troller 60, Which is a virtual layer that is capable of forWarding
remote DMA requests betWeen the guest operating system
and remote nodes. The virtual DMA controller 60 is imple
mented by catching (intercepting) exceptions relating to
reserved I/O ports assigned to a corresponding physical DMA
Controller, Which may be a third party device. It is possible to
differentiate DMA operations that can be performed entirely
locally from those in Which either or both the device or the
memory area are remote. DMA operations, Which are entirely
local, are forWarded as quickly as possible to a physical DMA
controller of the local hardWare 5, and are performed With
almost no delay. DMA operations that involve memory and a
device that does not reside on the same node are handled by
transferring remote pages to the node Where the device
resides via the private netWork 44, and executing the DMA
operation on that node.

In a normal PCI environment, multiple DMA controllers
exist concurrently; possibly different DMA controllers may
exist on different add-on cards, i.e., “?rst party” DMA con
trollers. Therefore, there needs to be a general solution to deal
With the multitude of controllers. Each card may have its oWn
rules and semantics for communicating With its respective
DMA controller. HoWever, there are a feW commonly-used
methods, each having its oWn semantics. The virtual DMA
controller 60 (FIG. 3) may provide a high-level language for
de?ning in a uni?ed manner, Which I/O Ports, memory
addresses, and sequences are required to be intercepted by the
virtual machine monitor 54. Such values are monitored and
recorded by the virtual machine monitor 54 during normal
operation.
When a DMA operation involving a ?rst party DMA con

troller is initiated, usually by Writing a certain value to a DMA
controller port or memory register, the DMA operation is
performed and the memory is marked by the virtual DMA
controller 60 as invalid or locked on all other machines except
the machine on Which the DMA controller resides. Once
noti?cation of a successful DMA operation from a card is
detected in a virtual machine monitor, either by an interrupt or

US 8,544,004 B2
11

by polling the appropriate I/O ports or memory ranges, that
memory is again marked as unlocked, and available for access
by remote machines. An alternate optimiZation method may
be offered to alloW incoming DMA operations, i.e., device to
memory, to instantiate the operation in prede?ned reserve
memory and copy the reserve memory to the guest operating
system memory area once the operation is completed. This
Will prevent locking the memory accessed by the DMA
operation for a long time.
Bootup.
When poWer is initially applied to a PCI device, the hard

Ware remains inactive. In other Words, the device only
responds to con?guration transactions. At poWer-on, the
device has no memory and no I/O ports mapped in the com
puter’s address space; every other device-speci?c feature,
such as interrupt reporting, is disabled as Well. Fortunately,
every PCI mother-board is equipped With PCI-aWare ?rm
Ware: the BIOS. The ?rmware offers access to the device
con?guration address space by reading and Writing registers
in the PCI controller.
At system boot, the ?rmWare or the OS, for example the

Linux kernel, performs con?guration transactions With every
PCI peripheral in order to allocate a safe place for any address
region it offers. By the time a device driver accesses the
device, its memory and I/O regions have already been
mapped into the processor’s address space. While a device
driver can change this default assignment, in practice this is
not done.

The virtual PCI controller 58 takes control at this stage,
reading all of the device con?guration data, storing it in one
node, e.g., a master node, and performs a remapping of all
regions and resources.After this remapping is completed, it is
delegated to the actual physical PCI controllers. The virtual
PCI controller 58 scans the device list, and deals specially
With certain device ID’s that are knoWn to have onboard
DMA controllers, e.g., IDE cards, NIC’s, and SCSI Control
lers. Such DMA controllers are virtualiZed by the virtual
DMA controller 60 so that DMA operations on these cards
can take place.

Eventually, the management system 56 requests con?gu
ration data for all devices, Which is supplied by the virtual PCI
controller 58.

During normal operation the virtual PCI controller 58 con
tinually tracks hardWare con?guration changes, including
requests by the guest operating system to map or remap
hardWare regions. A table, mapping regions to actual node
ID’s, is maintained and updated.
Memory Coherence.

Each virtual machine presents a single coherent shared
memory to the guest operating system, While physical
memory 30 may be distributed across multiple nodes. To
support this functionality transparently to the guest operating
system, several techniques are used in different combina
tions, as may required to optimiZe the performance and reli
ability of a particular cluster-based system.

Referring again to FIG. 1 and FIG. 3, in one embodiment
memory mirroring is used across all the nodes 22, 24, (FIG.
1). Memory mirroring provides protection for memory analo
gous to the protection afforded hard disk drives by RAID-l
disk mirroring. Reliability may be enhanced by using Chip
killTM memory, available from IBM, NeW Orchard Road,
Armonk, N.Y., Which alloWs multiple errors to be corrected.
Another technique that can be employed to enhance reliabil
ity is elliptical curve cryptography (ECC) of data.

Page or sub-page validations and Write-invalidations are
performed by the virtual machine monitor 34, and communi
cated to the other nodes using the private netWork 44. When

20

25

30

35

40

45

50

55

60

65

12
an invalid page is required by a particular node, memory
migration is performed, originating from a node having a
valid copy of that page. As CPU’s provide page-based
memory access protection, implementation of page level
granularity is suf?cient in most cases. That is to say, page-siZe
internodal memory transfers are performed. In some cases,
Where only a portion of a page is frequently invalidated,
sub-page granularity can be achieved adaptively using the
same page level granularity mechanism With additional soft
Ware. This prevents false sharing and has the additional ben
e?t of reducing internodal traf?c on the private netWork 44.

Further aspects of the coherent memory system used in
embodiments of the present invention are described beloW in
the subsection entitled “Memory Management Subsystem.”

Embodiment 2

Reference is noW made to FIG. 4, Which is a block diagram
of a cluster-based virtual computing system 64 that is con
structed and operative in accordance With an alternate
embodiment of the invention. In this embodiment there are a
plurality of nodes 66, 68, 70 that are realiZed as multiproces
sor computer hardWare, including memory 72, I/O devices 85
and at least tWo CPUs 74, 76 per node. In one con?guration of
the system 64, each CPU in a node is included in a different
virtual node, and is controlled by a different virtual machine.
One virtual machine implementer is thus capable of using one
physical CPU to virtualiZe a plurality of virtual CPU’s.

The system 64 employs tWo guest operating systems 18, 19
to concurrently execute multiple applications 12 13, 14, 15,
16, 17. Applications 12, 13, 14 are supported by the guest
operating system 18.Applications 15, 16, 17 are supported by
the guest operating system 19.
The guest operating systems 18, 19 control virtual

machines 86, 88, respectively. Each virtual machine has a
plurality of virtual CPU’ s 21. Three virtual CPU’ s are shoWn;
hoWever, larger numbers of CPU’s can be virtualiZed. Fur
thermore, none of the nodes 66, 68, 70, the virtual nodes 90,
92 or the virtual machines 86, 88 needs to be con?gured
identically. In fact, the virtual machines 86, 88 can have
different numbers of virtual CPU’s. The virtual machines 86,
88 are provided With virtual memory 23, and virtual I/O
devices 25.
TWo virtual machine implementers 78, 80 are included

With each of the nodes 66, 68, 70 to implement the virtual
machines 86, 88. The virtual machine implementers 78, 80
can be virtual machine monitors or emulators in any combi
nation. The number of virtual machine implementers is only
partially related to the number of CPU’s in a node. The
number of virtual machine implementers more closely relates
to the implementation method itself. For example, multiple
emulators can run over one CPU. Alternatively, each emulator
can provide multiple virtual CPU’s, as is disclosed beloW
(Embodiment 3).
A unit comprising the CPU 76, and a dedicated segment of

the memory 72 makes use of only part of the computing
resource of the hardWare, such a device group, and is knoWn
as a virtual node. A virtual node may make use of one CPU of
a multiprocessor, or more. The node 68, for example, has tWo
virtual nodes 90, 92, Which are enclosed by broken lines. The
system 64 is ?exible in its ability to deal with I/O devices that
are physically distributed among the nodes 66, 68, 70 trans
parently to the guest operating systems 18, 19. To support this
functionality, in the node 68 the virtual machine implementer
78 is associated With the virtual node 90, and the virtual
machine implementer 80 With the virtual node 92. The I/O
devices 85 in the node 68 may be arbitrarily segmented into

US 8,544,004 B2
13

device groups 82, 84, Which are accessible to the virtual
machines 86, 88, (in addition to the I/O devices in the nodes
66, 70). The I/O devices 85 in the node 68 are also accessible
by the nodes 66, 70, using the private network 44. The device
groups 82, 84 are controlled respectively by the virtual
machine implementers 78, 80. In the node 68, the CPU 74 is
controlled by the virtual machine implementer 78, the virtual
machine 86, and the guest operating system 18. The CPU 76
is controlled by the virtual machine implementer 80, the
virtual machine 88, and the guest operating system 19. Thus,
tWo operating systems simultaneously control one physical
node.

Embodiment 3

Reference is noW made to FIG. 5, Which is a block diagram
of a cluster-based virtual computing system 94 that is con
structed and operative in accordance With an alternate
embodiment of the invention. The system 94 is similar to the
system 64 (FIG. 4), but has even ?ner granularity. As in the
system 64, the system 94 is provided With nodes in Which
there is more than one virtual machine implementer per
physical node. In addition, one physical CPU is used to vir
tualiZe a plurality of virtual CPU’s, Which are distributed in
the same or different virtual nodes.

The system 94 has a node 69, Which has a hardWare con
?guration that is identical to the node 68 (FIG. 4). HoWever,
a virtual machine implementer 107 in the node 69 virtualiZes
the CPU 74 and participates in a virtual machine 95. A virtual
machine implementer 109 virtualiZes the CPU 76, and par
ticipates in tWo virtual machines 95, 97. It Will be noted that
the virtual machine 95 contains four virtual CPU’s 21, While
the virtual machine 97 has three virtual CPU’s 21. A virtual
node 103 includes the CPU 74 and shares the CPU 76 With
another virtual node 105. Thus, in the system 94, the CPU 76
participates in tWo virtual nodes 103, 105, and is simulta
neously controlled by the tWo guest operating systems 18, 19.
It is the role of the virtual machine implementer to alloW such
coparticipation in an e?icient Way.

It is possible to con?gure the nodes of the system 94 in
many combinations. For example, all of the nodes may be
con?gured With a plurality of virtual CPUs per physical CPU,
Which may belong to same or different virtual nodes. Further
more, it is possible to increase the number of virtual CPUs
virtualiZed by one single processorbeyond those shoWn in the
tWo virtual machines 95, 97, subject to practical limitations of
overhead. Furthermore, the number of virtual nodes sharing
one physical node can be increased, again subject to limita
tions of overhead.

Embodiment 4

Reference is noW made to FIG. 6 Which is a block diagram
of a cluster-based virtual computing system 120 in accor
dance With a disclosed embodiment of the invention. A plu
rality of user applications 12, 14, 16 execute simultaneously,
supported by the guest operating system 18, Which can be any
conventional operating system, e.g., Microsoft WindoWs®,
Linux, Solaris® X86. The guest operating system 18 controls
the virtual machine 20, Which presents itself to the guest
operating system 18 as though it Were a conventional real
machine.

The system 120 has aplurality ofnodes 122,124, 126, 128.
While four nodes are shoWn, the system 120 is scalable, and
any number of nodes may be present, depending on the needs
of a particular application and the performance desired. The
nodes 122, 124, 126, 128 each comprise computer hardWare

20

25

30

35

40

45

50

55

60

65

14
28, Which in a current embodiment has the X86/IA32 archi
tecture. HoWever, as noted above, the invention is not limited
to the X86/IA32 family of processors, but is applicable to
other computer architectures. The hardWare 28 includes
nodal memory 30, and may also be provided With a NIC 130
or other netWork communications facilities, and With many
other types of conventional personal computer I/O devices
132. The nodes 122, 124, 126, 128 may be identically con
?gured. Altematively, different versions of the X86/IA32
processor may be placed in different nodes. Other aspects of
the computer hardWare in different nodes may also vary in
different nodes, e.g., processor speed, bus speed, memory
con?guration, and I/O facilities.

In the nodes 122, 126, 128, each of the CPU’s is provided
With a virtual machine monitor 134. The node 124 is provided
With tWo virtual machine monitors 136, 138, Which share the
resources of the hardWare 28, as shoWn in the foregoing
embodiments.

In this embodiment, the virtual machine monitors 134, 13 6,
138 are driven entirely by interrupts, and do not schedule for
themselves any processing slots. They only re-act to actions
taken by the guest operating system 18 or by the applications
12, 14, 16, and to interrupts generated in the hardWare 28.
The virtual machine monitors 134, 136, 138 have a ?exible

policy for handling faults, exceptions and interrupts depend
ing on their individual characteristics. This may be effected
by a mechanism knoWn as “scan before execute”, Which, as
implied by its name, scans the code prior to execution and
causes softWare interrupts to occur at the relevant places.
Alternatively, the policy may be effected by a mechanism
knoWn as dynamic translation. Both of these techniques scan
the code, differentiating betWeen code that can be run
natively, i.e., directly on the hardWare 28, and the code that
should not be run natively. For the latter, the code is altered
either to generate a trap to the virtual machine monitor or to
jump directly to a virtual machine monitor function. The
virtual machine monitor can then emulate a current instruc
tion that should not be run natively. These techniques yield
reasonable e?iciency, as in practice most code can be run
natively and only a small portion need to be emulated. Scan
ning the code prior to execution is not expensive, as the same
code is often run many times, in Which case only one scan is
needed.

In some cases, the X86/IA32 architecture permits passing
faults, exceptions and interrupts to the guest operating system
18 Without modi?cation. In other cases, faults, exceptions and
interrupts may be hidden from the guest operating system 18.
In still other cases, faults, exceptions and interrupts are pro
cessed internally by the virtual machine monitors 134, 136,
138, Which may direct subsequent actions to be taken With
respect to the guest operating system 18. For instance, a neW
interrupt may be generated and sent to the guest operating
system 18 for processing. Generating an interrupt is done by
emulating the CPU behavior While getting an interrupt.

For those instructions that require emulation or other modi
?cation, an integrated machine emulator, Which is part of the
virtual machine monitor is used.
Memory Management Subsystem.

Continuing to refer to FIG. 6, memory coherence among
the memory 30 ofthe nodes 122, 124, 126, 128 is achieved by
a memory management subsystem 140, Which is integrated in
the virtual machine implementers 134, 136, 138. The virtual
machine implementers 134, 136, 138 are each provided With
a memory access hook and I/O access for the memory man
agement subsystem 140. The private netWork 44 provides
rapid internodal communication that is necessary for the
operation of the memory management subsystem 140. The

US 8,544,004 B2
15

virtual machine implementers 134, 136, 138 typically use a
paging mechanism When the implementer is implemented as
a virtual machine monitor to synchronize the memory 30.
Memory caches are established on different nodes 122, 124,
126, 128 in order to alloW faster access to recently used
segments of the memory 30.
The virtual machine implementers 134, 136, 138 initialiZe

the memory management sub system 140 using the call INIT(
). During initialiZation, the memory management subsystem
140 invalidates all local pages of the memory 30 for read and
Write access.

During subsequent operation, the virtual machine imple
menters 134, 136, 138 calls the memory management sub
system 140 in order to obtain read or Write access to a physical
page, Which is currently marked as invalid for the speci?ed
access type. The memory management subsystem 140 also
calls the virtual machine implementers 134, 136, 138 When
required in order to invalidate a page for a speci?ed access
type, provided that the page should no longer be accessed by
the CPU in the hardWare 28 for that particular type of access.
Alternatively, the page is validated for a speci?ed access type
if it has become available for that type of access. The memory
management subsystem 140 requests page invalidation or
validation using a physical address. Virtual machine moni
tors, Which are used as the virtual machine implementers 134,
136, 138 use a reverse page lookup mechanism in order to
update the processor paging table and invalidate the processor
translation lookaside buffer (TLB). A description of the inter
face used for page access control and retrieval by the memory
management subsystem 140 is found in Table 2.

TABLE 2

INVLPAGE (PHYLADD,
RW)

Invalidate request for a physical
page using its physical address and
access type
Validate request for a physical page
using its physical address and access
type
Get read or Write access to physical
memory address using its physical address
and access type.

VLDLPAGE (PHYLADD,
RW)

GETLPAGE (PHYLADD,
RW, BUFFER, LENGTH,
OP)

In the function GET_PAGE, the parameter RW is a ?ag
indicating the type of access intended. The parameters
BUFFER and LENGTH are used to pass data in the case of a
Write operation and return data for a read operation. In case of
read-modify-Write operation, the function is called With the
parameter RW set to a value of RMW. The parameter OP is
processor dependent, and Would thus be different in a proces
sor outside the X86/IA32 family. It can indicate any of several
operations, for example, increment, decrement, store and
return previous value, and test and set.

For embodiments in Which one or more emulators are used

as the virtual machine implementers 134, 136, 138, the above
techniques can also be used. The virtual machine implement
ers 134, 136, 138 in such embodiments call the memory
management subsystem 140 each time physical memory
access is needed. AnAPI MEM_ACCESS(PHY_ADD, RW)
provides memory access for a physical page using its physical
address and access type as a replacement for the CPU paging
mechanism used in the virtual machine monitor.

It Will be appreciated by persons skilled in the art that the
present invention is not limited to What has been particularly
shoWn and described hereinabove. Rather, the scope of the
present invention includes both combinations and sub-com
binations of the various features described hereinabove, as
Well as variations and modi?cations thereof that are not in the

20

25

30

35

40

45

50

55

60

65

16
prior art, Which Would occur to persons skilled in the art upon
reading the foregoing description.

APPENDIX 1

The computer softWare on the compact disks containing
the computer program listing appendix hereof may be
installed and executed as folloWs:
HardWare.

Provide an IBM compatible personal computer With a
minimum of 512 MB RAM and an Intel Pentium IV central
processing unit, tWo IDE hard disks With a minimum of 40
Gigabytes of disk space. Each IDE hard disk should be con
nected to its oWn individual IDE controller.

SoftWare (Installation).
Host Operating System (Located on the First IDE Controlled
Hard Disk).
Copy the ?le .CONFIG in the root folder stored in the

appended CD-ROM into a temporary directory.
Install the Linux 2.4.20 kernel available from Redhat, Cor

porate HQ: 1801 Varsity Drive, Raleigh, NC. 27606, USA.
Install and Compile the Linux 2.4.21 kernel patch available

from Kernel Dot Org OrganiZation, 3990 Freedom Circle,
Santa Clara, Calif. 95054, USA using the .CONFIG ?le men
tioned above.
Add the mem:200M argument to the Linux boot command

and reboot the Computer.
Copy the ?les BIOS.HEX, SCMPVMMO.HEX,

SCMPVMMS.HEX and USERMODE.HEX in the root
folder stored in the appended CD-ROM into a temporary
directory.
Unhex the computer listing BIOS.HEX, SCMPVMMO.

HEX, SCMPVMMS.HEX and USERMODE.HEX using
HEX IT V1.8 or greater by John Augustine, 3129 Earl St.,
Laureldale, Pa. 19605, USA creating the ?les BIOS,
SCMPVMM.O, SCMPVMM.SH and USERMODE, respec
tively.
Guest Operating System (Located on the Second IDE Con
trolled Hard Disk).

Install the Linux 2.4.20 kernel available from Redhat, Cor
porate HQ: 1801 Varsity Drive, Raleigh, NC. 27606, USA.

Install and Compile the Linux 2.4.21 kernel patch available
from Kernel Dot Org OrganiZation, 3990 Freedom Circle,
Santa Clara, Calif. 95054, USA using the above-noted .CON
FIG ?le.

Reboot the Computer.
Running Instructions.
The system should be run by a user With supervisor privi

leges on the Linux system (typically root).
The system must be run from a text mode screen (not from

Within a X-WindoWs terminal) on the host.
Run the scmpvmm.sh shell script With a single parameter

of start.
Typically ‘sh scmpvmm.sh start’
Run the usermode program, Typically ‘./usermode’.
The invention claimed is:
1. A computer system, comprising:
a cluster of computing nodes, each computing node com

prising:
a memory;
a netWork interface device, Which connects the comput

ing node to a netWork interconnecting the computing
nodes in the cluster; and

at least one CPU, Which is con?gured to run a respective
virtual machine implementer program on the comput
ing node, While communicating via the netWork inter
face device With other computing nodes in the cluster,

US 8,544,004 B2
17

wherein the other computing nodes run respective
virtual machine implementer programs, so that the
respective virtual machine implementer programs
jointly support a shared virtual machine implemented
concurrently on tWo or more of the computing nodes,
Wherein a guest operating system runs on the shared
virtual machine, and instructions of the guest operat
ing system are distributed for execution among the
nodes as though the system Were a single symmetric
multiprocessing machine With shared memory.

2. The system according to claim 1, Wherein the computing
nodes are con?gured to support the shared virtual machine so
that a software application running over the guest operating
system need not be cluster-aWare.

3. The system according to claim 1, Wherein each of the
computing nodes comprises multiple CPUs, Which run the
virtual machine implementer programs.

4. The system according to claim 1, Wherein the shared
virtual machine includes a plurality of virtual CPUs, Which
are controlled by the guest operating system.

5. The system according to claim 1, Wherein the virtual
machine implementer program on at least one of the nodes
comprises multiple virtual machine implementer programs,
Which are con?gured to provide multiple, respective virtual
nodes, and Wherein the virtual machine is supported by the
virtual nodes.

6. The system according to claim 1, Wherein the computing
nodes comprise physical peripheral component interconnect
controllers, and Wherein the virtual machine implementer
programs comprise a virtual peripheral component intercon
nect controller, Which serves as a proxy betWeen the guest
operating system and the physical peripheral component
interconnect controllers.

7. The system according to claim 6, Wherein the virtual
peripheral component interconnect controller is con?gured to
emulate hot-pluggable events for the guest operating system,
so as to alloW dynamic addition and removal of one or more
of the nodes While running the shared virtual machine and the
guest operating system.

8. The system according to claim 1, Wherein the virtual
machine implementer programs maintain mirrors of the
memory used by the guest operating system in each of the
nodes, and are con?gured to Write-invalidate at least a portion
of a page of the memory in one of the nodes and to transfer a
valid copy of the portion of the page to the one of the nodes
from another of the nodes via the netWork.

9. A method for computing, comprising:
providing a cluster of computing nodes interconnected by

a netWork, each computing node comprising at least one
CPU, a memory, and a netWork interface device, Which
connects the computing node to the netWork intercon
necting the plurality of the computing nodes; and

running respective virtual machine implementer programs
on the at least one CPU in tWo or more of the computing
nodes, While communicating among the tWo or more of
the computing nodes via the netWork interface device,
Wherein the respective virtual machine implementer
programs jointly support a shared virtual machine
implemented concurrently on the tWo or more of the
computing nodes, Wherein a guest operating system runs
on the shared virtual machine, and instructions of the
guest operating system are distributed for execution
among the nodes as though the system Were a single
symmetric multiprocessing machine With shared
memory.

10. The method according to claim 9, Wherein running the
respective virtual machine implementer programs comprises

20

25

30

35

40

45

50

55

60

65

18
supporting the shared virtual machine so that a softWare
application running over the guest operating system need not
be cluster-aWare.

11. The method according to claim 9, Wherein running the
respective virtual machine implementer programs comprises
running virtual machine implementer programs on multiple
CPUs in each of the tWo or more of the computing nodes.

12. The method according to claim 9, Wherein the shared
virtual machine includes a plurality of virtual CPUs, Which
are controlled by the guest operating system.

13. The method according to claim 9, Wherein running the
respective virtual machine implementer programs comprises
running, on at least one of the nodes, multiple virtual machine
implementer programs, Which are con?gured to provide mul
tiple, respective virtual nodes, and Wherein the virtual
machine is supported by the virtual nodes.

14. The method according to claim 9, Wherein the comput
ing nodes comprise physical peripheral component intercon
nect controllers, and Wherein running the respective virtual
machine implementer programs comprises running a virtual
peripheral component interconnect controller, Which serves
as a proxy betWeen the guest operating system and the physi
cal peripheral component interconnect controllers.

15. The method according to claim 14, and comprising
emulating, using the virtual peripheral component intercon
nect controller, hot-pluggable events for the guest operating
system, so as to alloW dynamic addition and removal of one or
more of the nodes While running the shared virtual machine
and the guest operating system.

16. The method according to claim 9, and comprising,
using the virtual machine implementer programs, maintain
ing mirrors of the memory used by the guest operating system
in each of the nodes, Write-invalidating at least a portion of a
page of the memory in one of the nodes, and transferring a
valid copy of the portion of the page to the one of the nodes
from another of the nodes via the netWork.

17. A computer softWare product, comprising a non-tran
sitory computer-readable medium in Which program instruc
tions are stored, Which instructions are con?gured to run on a

cluster of computing nodes, each computing node including a
memory, a netWork interface device, Which connects the com
puting node to a netWork interconnecting the computing
nodes in the cluster, and at least one CPU,

Wherein the instructions cause the at least one CPU to run
a respective virtual machine implementer program on
the computing node, While communicating via the net
Work interface device With other computing nodes in the
cluster, Wherein the other computing nodes run respec
tive virtual machine implementer programs, so that the
respective virtual machine implementer programs
jointly support a shared virtual machine implemented
concurrently on tWo or more of the computing nodes,
Wherein a guest operating system runs on the shared
virtual machine, and instructions of the guest operating
system are distributed for execution among the nodes as
though the system Were a single symmetric multipro
cessing machine With shared memory.

18. The product according to claim 17, Wherein the instruc
tions cause the computing nodes to support the shared virtual
machine so that a software application running over the guest
operating system need not be cluster-aWare.

19. The product according to claim 17, Wherein each of the
computing nodes include multiple CPUs, and Wherein the
instructions cause the multiple CPUs to run the virtual
machine implementer programs.

US 8,544,004 B2
19

20. The product according to claim 17, wherein the shared
virtual machine includes a plurality of virtual CPUs, which
are controlled by the guest operating system.

21. The product according to claim 17, wherein the virtual
machine implementer program on at least one of the comput
ing nodes comprises multiple virtual machine implementer
programs and causes the computing nodes to provide mul
tiple, respective virtual nodes, and wherein the virtual
machine is supported by the virtual nodes.

22. The product according to claim 17, wherein the com
puting nodes include physical peripheral component inter
connect controllers, and wherein the instructions cause the
computing nodes to provide a virtual peripheral component
interconnect controller, which serves as a proxy between the
guest operating system and the physical peripheral compo
nent interconnect controllers.

23. The product according to claim 17, wherein the virtual
peripheral component interconnect controller is con?gured to
emulate hot-pluggable events for the guest operating system,
so as to allow dynamic addition and removal of one or more
of the nodes while running the shared virtual machine and the
guest operating system.

24. The product according to claim 17, wherein the instruc
tions cause the computing nodes to maintain mirrors of the
memory used by the guest operating system in each of the
nodes, and to write-invalidate at least a portion of a page of the
memory in one of the nodes and to transfer a valid copy of the
portion of the page to the one of the nodes from another of the
nodes via the network.

25. A computer system, comprising:
a cluster of computing nodes, each computing node com

prising:
a physical memory;
a network interface device, which connects the comput

ing node to a network interconnecting the computing
nodes in the cluster; and

20

25

30

20
at least one CPU, which is con?gured to run a respective

virtual machine implementer program on the comput
ing node, while communicating via the network inter
face device with other computing nodes in the cluster,
wherein the other computing nodes run respective
virtual machine implementer programs, so that the
respective virtual machine implementer programs
jointly support a shared virtual machine implemented
concurrently on two or more of the computing nodes,
wherein a guest operating system runs on the shared
virtual machine, which presents a single coherent
shared memory to the guest operating system, using
the physical memory that is distributed across mul
tiple nodes.

26. The system according to claim 25, wherein the com
puting nodes are con?gured to support the shared virtual
machine so that a software application running over the guest
operating system need not be cluster-aware.

27. The system according to claim 25, wherein the com
puting nodes comprise physical peripheral component inter
connect controllers, and wherein the virtual machine imple
menter programs comprise a virtual peripheral component
interconnect controller, which serves as a proxy between the
guest operating system and the physical peripheral compo
nent interconnect controllers.

28. The system according to claim 25, wherein the virtual
machine implementer programs maintain mirrors of the
memory used by the guest operating system in each of the
nodes, and are con?gured to write-invalidate at least a portion
of a page of the memory in one of the nodes and to transfer a
valid copy of the portion of the page to the one of the nodes
from another of the nodes via the network.

* * * * *

