
(12) United States Patent
Helal et al.

US008631063B2

US 8,631,063 B2
*Jan. 14, 2014

(10) Patent N0.:
(45) Date of Patent:

(54)

(76)

(*)

(21)

(22)

(65)

(63)

(60)

(51)

(52)

MODULAR PLATFORM ENABLING
HETEROGENEOUS DEVICES, SENSORS AND
ACTUATORS TO INTEGRATE
AUTOMATICALLY INTO HETEROGENEOUS
NETWORKS

Inventors: Abdelsalam Helal, Gainesville, FL
(US); Jeffrey Craig King, Gainesville,
FL (US); Raja Bose, Gainesville, FL
(US); Steven Lee Pickles, Wellington,
FL (US); James A. Russo, Clermont, FL
(US); Steve Vander Ploeg, Hillsboro,
OR (US); Hicham Mahmoud El
Zabadani, Dubai (AE); Ahmad Hassan
El Kouche, Kingston (CA)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. l54(b) by 88 days.

This patent is subject to a terminal dis
claimer.

Appl. N0.: 12/986,301

Filed: Jan. 7, 2011

Prior Publication Data

US 2011/0154375 A1 Jun. 23, 2011

Related US. Application Data

Continuation of application No. ll/ 677,372, ?led on
Feb. 21, 2007, now Pat. No. 7,895,257.

Provisional application No. 60/775,372, ?led on Feb.
21, 2006.

(58) Field of Classi?cation Search
USPC 709/220, 246; 705/3; 726/22
See application ?le for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,553,336 Bl 4/2003 Johnson et a1.
6,624,760 Bl * 9/2003 KinZel et al. 340/870.ll

6,826,607 Bl 11/2004 Gelvin et al.
6,948,002 B2 * 9/2005 Chan et al. 709/246

2002/0038307 Al 3/2002 Obradovic et al.

(Continued)
OTHER PUBLICATIONS

Ali, M.H. et al., “NILE-PDT: A Phenomenon Detection and Tracking
Framework for Data Stream Management Systems,” Proceedings of
the 31 5’ VLDB Conference, Trondheim, Norway, 2005.

(Continued)

Primary Examiner * Tammy Nguyen
(74) Attorney, Agent, or Firm * Saliwanchik, Lloyd &
Eisenschenk

(57) ABSTRACT
A system includes a hardware platform, at least one driver, a
plurality of devices connected to the hardware platform, a
middleware interface, and a plurality of software services.
Each of the plurality of devices is selected from the group
consisting of sensors and actuators. The plurality of software
services is generated by the at least one driver, wherein a
software service associates with a device, and wherein each of
the software services complies with the middleware interface.
A method for interfacing a plurality of devices to a hardware
platform includes communicably connecting each of the plu
rality of devices to the hardware platform, converting each of

Int- Cl- the plurality of devices into a programmable software service
G06F 15/16 (200601) using a driver, and programming each of the software services
U-S- Cl- to comply with a middleware interface.
USPC 709/201; 709/225; 709/246; 705/3;

726/22 43 Claims, 9 Drawing Sheets

3s
28 28
l I

30 Hiram“ jApplicaiion‘i {Application} jApplication‘if
onlext Module Servicés Layer cvmnvsit?erviies Knowledge'lllodule

->

aintenance Engine
0 O

\

, Service 1’ l4 , ‘I, \\
Se '\ n'DeviceDriverServices (l

" * ervice

I . Service

Reasoning Enu'ne Registration
) 6i Diswvery

Knowledge 6(
Service Semantics

u l
Atlas Plal'form Aria; (5551f: (gs-5;}
Node Layer Node {Trailing

; i %

Physical
Layer Sensorslllctuatnrslayed ékens ASensor lQ/ictuator (girl/Biol Q4

i

curator Sensor

Physical World layer/
l l

12 22

“enamel-5* m CIQPllBMES/DGWCES m p/ \
\ If \ 14 \ 14/

US 8,631,063 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2002/0136214 A1 9/2002 Do et al.
2003/0014521 A1* 1/2003 Elson et a1. 709/225

2003/0114959 A1* 6/2003 Sakamoto et al. 700/245
2003/0200299 A1
2004/0103139 A1

10/2003 Jamison, III
5/ 2004 Hubbard et al.

2005/0149363 A1* 7/2005 Loiterman et al. 705/3
2005/0188111 A1 8/2005 Armstrong et al.
2006/0085852 A1* 4/2006 Sima 726/22

2006/0200542 A1 9/2006 Willig
2007/0011676 A1* 1/2007 Sahita et al. 718/100
2009/0132070 A1 5/2009 Ebrom et al.

OTHER PUBLICATIONS

BalaZinska, M. et al., “INS/Twine: A Scalable Peer-to-Peer Architec
ture for Intentional Resource Discovery,” Lecture Notes in Computer

Science, Pervasive Computing.‘ First International Conference, Per
vasive 2002, Zurich, Switzerland, Aug. 26-28, 2002, pp. 149-153,
vol. 2414.

Bonnet, P. et al., “Towards Sensor Database Systems,” Lecture Notes
in Computer Science, Cornell University, 2001, pp. 3-14, vol. 1987.
Elson, J. et al., “Time Synchronization for Wireless Sensor Net
works,” Proceedings of the 2001 International Parallel and Distrib
uted Processing Symposium, 2001, pp. 1-6.

Enwall, T., “Understanding Wireless Sensor and Control Networks,”
RFDesign, Jan. 2006, pp. 6-11.
Enwall, T. et al., “Building Large-Scale ZigBee Systems with Web
Services,” Sensors, May 1, 2005, vol. 22, No. 5.
Hammad, M.A. et al., “Stream Window Join: Tracking Moving
Objects in Sensor-Network Databases,” Proceedings of the 15’h Inter
national Conference on Scienti?c and Statistical Database Manage
ment, IEEE, 2003, pp. 75-84.
Helal, S., et al., “The Gator Tech Smart House: A Programmable
Pervasive Space,” Computer, Mar. 2005, pp. 50-60, vol. 38, No. 3.
Howard, A. et al., “Mobile Sensor Network Deployment using Poten
tial Fields: A Distributed, Scalable Solution to the Area Coverage
Problem,” Proceedings of the 6’h International Symposium on Dis
tributed Autonomous Robotics Systems (DARSOZ), Fukuoka, Japan,
Jun. 25-27, 2002.
KotZ, D. et al., “The mistaken axioms of wireless-network research,”
Dartmouth College Computer Science Technical Report, Jul. 18,
2003, TR2003-467, pp. 1-14.
Sachenko, A. et al., “Sensor Errors Prediction Using Neural Net
works,” IEEE -INNS-ENNS International Joint Conference on Neural
Networks (IJCNN’OO), Jul. 24-27, 2000, vol. 4, pp. 441-446.
Wilson, A., “Gator Innovators Create Smarter Smart Space Technol
ogy,” University of F lorida Engineering Publications, Sep. 28, 2005.
Yarvis, MD. et al., “Real-World Experiences with an Interactive Ad
Hoc Sensor Network,” Proceedings of the International Conference
on Parallel Processing Workshops, IEEE, Aug. 18-21, 2002, pp.
143 -151 .

* cited by examiner

US. Patent Jan. 14, 2014 Sheet 3 of9 US 8,631,063 B2

54

US. Patent Jan. 14, 2014 Sheet 4 of9 US 8,631,063 B2

60

16
74

Extremely power efficient Extremely low power

RFTX Sensor
Radio - ‘

, Signal l Energy

5232; »—> n’ t *
l/_ T} Microprocessor

76 '

78

Oscillator

VCO Filter Splitter > Antenna

' - > ‘ Array

Ampli?er \ Attenuator \
88 V

82 84 86 9O
80

FIG. 5

US. Patent Jan. 14, 2014 Sheet 5 of9 US 8,631,063 B2

@ .UE

35656 La

US. Patent Jan. 14, 2014 Sheet 7 of9 US 8,631,063 B2

k installs

I l

I :
' l
' l
l l
' l
‘ l
‘ I
' I
' l
' I
' l
' l
l

I
1 Atlas Network I
' l
' I
‘ l
‘ l
' l
' I
' I
l

' I
' I
' l
' I
' l
l
I I

Network
Packet
Reader Manager

Service Bundle(s)T
spawns Network

Atlas Network Packet
Manager Reader

4- Atlas 4____ Service Driver Node Application

command

Network Packet Reader ‘_'_" Atlas Network Manager

' I

l l
I

l --——--P I
1 usable data I
I command processed data ;
l raw data I
' I

I l
: I
I l ___________________ _..".“-§E9‘l5f________ I

command raw data / response

Atlas Node
(3)

FIG. 8

US. Patent Jan. 14, 2014 Sheet 9 of9 US 8,631,063 B2

2 .UE

N2 2

m2

682 9% 5% 26c 52

o2

US 8,631,063 B2
1

MODULAR PLATFORM ENABLING
HETEROGENEOUS DEVICES, SENSORS AND

ACTUATORS TO INTEGRATE
AUTOMATICALLY INTO HETEROGENEOUS

NETWORKS

CROSS REFERENCE TO RELATED
APPLICATION

The subject application is a continuation of US. Ser. No.
11/677,372, ?led Feb. 21, 2007, Which claims the bene?t of
US. Provisional Application Ser. No. 60/775,372, ?led Feb.
21, 2006, the disclosures of Which are both incorporated
herein by reference in their entirety.

The subject invention Was made With government support
under a research project supported by a Department of Edu
cation Grant No. H133E010106. The government has certain
rights in this matter.

BACKGROUND OF THE INVENTION

Home automation systems, or smart homes, offer a Wide
variety of functions. Some include remotely controllable
appliances, such as lights, doors, coffee machines, tempera
ture controls, home theatre systems, communication systems,
security cameras, surveillance equipment, and the like. Con
trolled appliances typically either include integrated circuitry
through Which operative states can be controlled, or are
coupled to control modules, such as an X10TM module from
X10 Wireless Technology, Inc. of Seattle, Wash. Often, con
trolled appliances can be manipulated using remote control
units and/ or control panels. Further, controlled appliances can
be centrally controlled by a computer executing appliance
automation softWare. For example, a smart home can provide
automatic timed control of lights and appliances. Addition
ally, a smart home can alloW a homeoWner to remotely moni
tor and/or control household devices, such as doors, Win
doWs, thermostats, consumer electronics, or the like. Smart
home products can also provide a range of intelligent security
functions.

Given the convenience of controlling one’s home from a
central location, and the enhanced security features, smart
home technology is ideally suited for individuals Who suffer
from diminished mental capacities or are physically chal
lenged. For example, individuals experiencing fading sensory
and cognitive skills, such as the elderly, commonly forget to
close a door or WindoW or turn off an appliance. Further, an
elderly person may desire the ability to open a curtain to let in
light upon Waking Without having to rise from bed, or con
versely, to close the curtain at bedtime. Moreover, automatic
noti?cation of emergency events, such as a Water leak, alloWs
an elderly person to seek help upon detection, reducing the
probability of severe damage or injury.

Individuals suffering from physical or mental challenges,
such as elderly persons, commonly require a caregiver to
provide assistance With daily activities. HoWever, in cases
Where the elderly person is high functioning and desires to
maximiZe independence, a fulltime, onsite caregiver can be
unnecessary, costly, and/or intrusive. Thus, the elder may
prefer a remote caregiver Who can assist the elder only When
the elder asks for, or requires, help.

Conventional methods of providing remote care typically
employ the use of portable communication devices. HoWever,
typical portable communication devices, such as pagers and
cell phones, are limited. For example, in the case of a paging
device, the elder must Wait for a call back from the caregiver.
Similarly, in the case of a cell phone, the caregiver may be out

10

20

25

30

35

40

45

50

55

60

65

2
of range or unavailable, requiring the elder to leave a message
and Wait until the caregiver responds.
A further shortcoming of conventional remote care is the

inability of the caregiver to make an immediate visual assess
ment of the elder’s condition. For instance, in order to deter
mine the elder’s condition upon receiving a request for help,
the caregiver must typically converse With the elder tele
phonically, Which can be problematic if the elder is unable to
speak or physically get to a phone. Further, the caregiver often
must physically travel to the location of the elder to determine
the nature of the help request, Which can delay necessary
treatment for the elder. The inability of the caregiver to have
immediate knoWledge of the elder’s condition may result in
the caregiver underestimating the gravity of the elder’s con
dition. Conversely, the caregiver may overestimate the sever
ity of the elder’s condition, Which may result in unnecessary
and costly calls to emergency personnel, such as the ?re
department, ambulance, or the like.

Additionally, an elder may need a caregiver to unobtru
sively check in on the elder from time to time. Optimally, the
caregiver should be able to observe the elder Without causing
a disruption in the elder’ s day. HoWever, conventional human
surveillance mechanisms have many shortcomings. For
example, typical remote vieWing mechanisms, such as a
monitor or dedicated display screen, are not portable and are
operable only at a ?xed location.
Most ?rst-generation pervasive space prototypes in exist

ence noW are the result of massive ad-hoc system integration.
Introducing a neW device to the environment is a laborious
process. After the initial decision on Which particular com
ponent to purchase, the smart space developers must research
the device’s characteristics and operation, determining hoW
to con?gure it and interface With it. The device must then
somehoW be connected and physically integrated into the
space. Any applications using the neW device must be Written
With knoWledge of the resources assigned to connect the
device, signals to query and control the device, and the mean
ing of any signals returned. Finally, tedious and repeated
testing is required to guard against errors or indeterminate
behavior that could occur if, for example, applications make
con?icting requests of devices, or if devices or connection
resources themselves con?ict. Any change in deployed
devices or applications requires repeating the process. This is
the problem With conventional integrated pervasive spaces.

Pervasive computing environments such as smart spaces
require a mechanism to integrate, manage and use numerous
and heterogeneous sensors and actuators. There has been a
dramatic increase during recent years in the number of sensor
platforms in development or commercially available. One of
these has been the Mote family, developed by the University
of California at Berkeley as part of the SMART DUSTTM
project. Motes such as the MICATM, MICA2TM, and
MICA2DOTTM are available commercially from CrossboW
Technology, Inc., San Jose, Calif. Some versions of the plat
form, such as MICA2TM, offer limited modularity in the form
of daughter cards, containing different sensor arrays, Which
can be plugged into the platform. Other versions lack this
modularity. For example, TELOWSTM, as developed by the
SMART DUSTTM team, is a completely integrated platform
based on the TI MSP430TM microcontroller. (J. Polastre, R.
SZeWcZyk, and D. Culler, “TeloW: Enabling ultra-loW poWer
Wireless research,” in Proceedings of the 4th Intl. Conf. on
Information Processing in Sensor NetWorks, April, 2005.) It
offers higher performance and consumes less poWer than
other Mote platforms, but comes at a higher cost, and the
available sensors are integrated into the device and cannot be
changed by users.

US 8,631,063 B2
3

Motes are currently the de facto standard platform for
sensor networks.Although the Mote was primarily developed
for use in wireless ad-hoc networks for applications such as
remote monitoring, researchers in many unrelated areas have
used Mote primarily because of its commercial availability
and its ability to integrate numerous sensors into a system.
Many groups are working with Motes either as the basis for
other projects or to further the sensor platform itself. For
example, Intel and Berkeley have worked together on
iMOTETM, a high-power Bluetooth-enabled version of the
wireless sensor node. (L. Nachman, R. Kling, J. Huang andV.
Hummel, “The Intel mote platform: a Bluetooth-based sensor
network for industrial monitoring,” in Proceedings of the 4th
Intl. Conf. on Information Processing in Sensor Networks,
April, 2005.) An another example, College of the Atlantic
collaborated with Berkeley to use wireless sensor networks
for habitat monitoring on Great Duck Island. (A. Mainwar
ing, J. Polastre, R. SZewcZyk, D. Culler and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in Pro
ceedings of 1st ACM Intl. Workshop on Wireless Sensor
Networks and Applications, pp. 88-97, September 2002.)
PHIDGETSTM, developed by the University of Calgary, is

another widely used, commercially available platform. (S.
Greenberg and C. Fitchett, “Phidgets: easy development of
physical interfaces through physical widgets,” in Proceedings
of 14thACM Symp. on User Interface Software and Technol
ogy, pp. 209-218, November 2001 .) The PHIDGETSTM sup
port a large variety of sensors and actuators. However, they
are not fully modular, and they only support communication
to a Windows desktop computer via USB, which leads to
scalability problems.
Some groups have worked on creating a more modular

sensor network platform. The CUBETM, developed by Uni
versity College Cork, (B. O’Flynn et al., “The development of
a novel miniaturized modular platform for wireless sensor
networks,” in Proceedings of the 4th Intl. Conf. on Inforrna
tion Processing in Sensor Networks, April, 2005.) and
MASSTM, a Sandia National Laboratory project, (N.
Edmonds, D. Stark and J. Davis, “MASS: modular architec
ture for sensor systems,” in Proceedings of the 4th Intl. Conf.
on Information Processing in Sensor Networks, April, 2005 .)
have modular architectures allowing users to develop appli
cations and recon?gure platforms. However, the CUBETM
platform, for example, must be hardcoded to each device.
Other sensor network platforms, such as NIMSTM (R. Pon et
al., “Networked infomechanical systems: a mobile embedded
networked sensor platform,” in Proceedings of the 4th Intl.
Conf. on Information Processing in Sensor Networks, April,
2005.), XYZTM (D. Lymberopoulos and A. Savvides, “XYZ:
a motion-enabled power aware sensor node platform for dis
tributed sensor network applications,” in Proceedings of the
4th Intl. Conf. on Information Processing in Sensor Net
works, April, 2005.), and ECOTM (C. Park, J. Liu and P. Chou,
“Eco: an ultra-compact low-power wireless sensor node for
real-time motion monitoring,” in Proceedings of the 4th Intl.
Conf. on Information Processing in Sensor Networks, April,
2005.) were designed for speci?c applications: environmen
tal monitoring (NIMSTM, XYZTM) and health monitoring
(ECOTM).
The SMART-ITSTM, developed jointly by Lancaster Uni

versity and the University of Karlsruhe, offer some features
that could facilitate the development of pervasive spaces. (H.
Gellerson, G. Kortuem, A. Schmidt and M. Beigl, “Physical
prototyping with Smart-Its,”IEEE Pervasive Computing, vol.
3, no. 3, pp. 74-82, July-September 2004.) They have a some
what modular hardware design and a template-based soft
ware design process, which allows rapid application devel

20

25

30

35

40

45

50

55

60

65

4
opment. But the SMART-ITSTM platform is still not
completely modular, with an integrated processing and com
munication board. Furthermore, devices connected through
SMART-ITSTM are constrained to a single application (run
ning on the SMART-ITSTM hardware). This does not allow for
service-rich environments in which applications can be
developed using service composition.
None of the available sensor network platforms are fully

adequate for the scalable development of pervasive spaces.
Most of the platforms focus only on sensors, and barely touch
upon the issue of actuators. In a pervasive space, actuators
play as important a role as sensors, as actuators are used to
in?uence the space. NIMSTM and XYZTM make use of actua
tors, but only for the speci?c purpose of making the platforms
mobile. PHIDGETSTM support a large number of actuators,
but are constrained by scalability issues and a ?xed hardware
con?guration.

Additionally, none of these platforms have the capability to
represent automatically their connected devices as software
services to programmers and users. Instead, programmers
must write distributed applications that query hard-coded
resources to access the devices connected to the platform.
Except for the larger number of devices supported, this is no
better than connecting sensors and actuators directly to the
input/output (I/O) ports of a computer. It is a development
method that does not scale as more devices and services are
added to a smart space.

Thus, there remains a need for a modular, service-oriented
sensor and actuator platform speci?cally designed to support
the development of scalable pervasive computing spaces.

BRIEF SUMMARY

A system includes a hardware platform, at least one driver,
a plurality of devices connected to the hardware platform, a
middleware interface, and a plurality of software services.
Each of the plurality of devices is selected from the group
consisting of sensors and actuators. The plurality of software
services is generated by the at least one driver, wherein a
software service associates with a device, and wherein each of
the software services complies with the middleware interface.
A method for interfacing a plurality of devices to a hardware
platform includes communicably connecting each of the plu
rality of devices to the hardware platform, converting each of
the plurality of devices into a programmable software service
using a driver, and programming each of the software services
to comply with a middleware interface.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic view of one embodiment of a middle
ware architecture for “programmable pervasive spaces,”
which are spaces built using the disclosed platform.

FIG. 2 shows one embodiment of a layered software archi
tecture of the disclosed platform and an in-network server that
hosts a service framework.

FIG. 3 is a perspective view of one embodiment of a plat
form node con?guration consisting of a communication mod
ule, a processing module, and a connection interface module.

FIG. 4 shows the overall system design of the passive
sensors in one embodiment of a wireless device connection
layer.

FIG. 5 shows an exemplary radio frequency generator.
FIG. 6 is a perspective view of one application embodi

ment, where a platform node is using a Local Connection
Layer to communicate wirelessly with multiple Remote Con
nection Layers, each attached to a number of sensors.

US 8,631,063 B2
5

FIG. 7 is a diagram of information How through nodes and
middleWare in one embodiment of the present disclosure.

FIG. 8 is a diagram of a middleWare framework in one
embodiment of the present disclosure.

FIG. 9 is a diagram of a system architecture in one embodi
ment of the present disclosure.

FIG. 10 is a perspective vieW of a smart plug utiliZing one
embodiment of a platform node of the present disclosure.

While the above-identi?ed draWing ?gures set forth sev
eral exemplary embodiments of the disclosure, other embodi
ments are also contemplated. This disclosure presents illus
trative embodiments of the present disclosure by Way of
representation and not limitation. Numerous other modi?ca
tions and embodiments can be devised by those skilled in the
art Which fall Within the scope and spirit of the principles of
the present disclosure. The draWing ?gures are not draWn to
scale.

DETAILED DISCLOSURE

Development of smart spaces is very different in goals and
requirements from the typical sensor netWork application.
Speci?cally, the manual integration of sensors and actuators
is preferably replaced by a scalable, plug-and-play mecha
nism. Additionally, the smart space is preferably assembled
programmatically by softWare developers instead of hard
Wired by engineers and system integrators. This alloWs for
cost-effective development, enables extensibility, and simpli
?es change management. The present disclosure relates to a
service-oriented sensor and actuator platform that enables the
concepts of self-integrative, programmable pervasive spaces.
In the present disclosure, a pervasive space exists as both a
runtime environment and a softWare library.

The present disclosure relates to embodiments of a univer
sal platform that can provide a uniform interface to any type
of sensor, actuator, or connected device. The universal plat
form can include both hardWare and softWare. In one embodi
ment, a platform converts one or more sensors or actuators

into one or more softWare services that can be programmed or
composed into other services. In a speci?c embodiment, the
platform architecture includes a processing module for pro
cessing the ?rmWare and other programs that send data
betWeen a sensor or actuator and the platform, a communica
tions module for transmitting data to a surrogate platform,
and an interface module for connecting sensors, actuators,
and other devices. In a further embodiment, the platform
architecture includes a poWer module for the processing and/
or communication modules. In further embodiments, the plat
form architecture includes additional processing modules for
increased computation capabilities and/or other expansion
modules.

Advantages provided by embodiments of the present dis
closure include alloWing the interchangeability of various
sensors and actuators Without the need for cumbersome
reworking of the platform and/or associated softWare and the
enabling of users of the platform to control, and interact With,
the sensors and actuators in a higher level language, Without
the need to program at the hardWare level of the devices.
Another advantage lies in the interchangeability of the hard
Ware modules. For example, one communication module can
be interchanged With another to alloW for the use of one
netWorking technology or another, Without requiring the
reWorking of the other modules.

The present disclosure discusses models, methodologies,
and processes for creating programmable pervasive spaces. In
an exemplary embodiment, a smart space exists, in addition to
its physical entity, as a runtime environment and a softWare

20

25

30

35

40

45

50

55

60

65

6
library. Service discovery and gateWay protocols and frame
Works, such as Open Services GateWay Initiative (OSGi) or
Microsoft .NET, for example, automatically integrate system
components using a generic middleWare that maintains a
service de?nition for each sensor and actuator in the space.
(D. Maples and P. Kriends, “The Open Services GateWay
Initiative: An introductory overvieW,” IEEE Comm. Maga
zine, vol. 39, no. 12, pp. 110-114, 2001.) Once poWered on,
the platform registers by sending its OSGi service bundle
de?nition. Programmers assemble services into composite
applications using various programming models, tools, and
features of the middleWare, Which can be easily implemented
or extended.

In one embodiment, programming an intelligent space
involves three activities. First, context engineering involves
interpreting sensory data. Second, softWare engineering
includes describing various softWare component’s behavior.
Third, associating behavior With context includes de?ning
Which pieces of softWare can execute in a particular context
and Which pieces the system should invoke upon a contextual
change.
The platform described in the present disclosure, referred

to as “Atlas,” is the basic building block for programmable
pervasive spaces. In an exemplary embodiment, the platform
provides physical nodes for connecting various heteroge
neous devices, a system for translating those devices into
softWare services, a system for maintaining a library of device
services and their interfaces, and a runtime environment for
accessing services and composing applications.

In one embodiment, the entities of a pervasive space
include living beings and objects. The living beings interact
With each other and With the objects. In a pervasive space, the
living beings are users, and the objects canbe divided into tWo
categories: passive objects and active objects. Passive objects
are objects that cannot be queried or controlled by the smart
space. At best, passive objects may be recogniZed by the
space, but only users can manipulate them. Passive objects
therefore are not key entities in a smart space. Active objects,
hoWever, can provide information to, or be manipulated by,
the smart space. Active objects are key entities.

Active objects are further divided into tWo classes: sensors
and actuators. Sensors provide information about a particular
domain, supplying data to the system about the current state
of the space. Sensors only provide measurement; they cannot
directly alter the state of the space. Actuators are the active
objects that alter the space. They activate devices that perform
certain functions. Sensors and actuators are the foundations
of a pervasive space, as they provide the means for gathering
information about the state of the space and for controlling
devices that can modify the state of the space. In one embodi
ment, the platform connects numerous and heterogeneous
sensors and actuators to the services and applications that
monitor and control the space.

For example, active objects may include and are not limited
to the folloWing: a smart mailbox that senses mail arrival and
noti?es the occupant; a smart front door that includes a radio
frequency identi?cation (RFID) tag for keyless entry by resi
dents and authorized personnel, including, for example, a
microphone, camera, text LCD, automatic door opener, elec
tric latch, or speakers; a garage With a driving simulator that
evaluates elderly driving abilities and gathers data; smart
WindoW coverings such as blinds that be can preset or
adjusted to control light and privacy; a smart bed that moni
tors and tracks sleep patterns; a smart closet that makes cloth
ing suggestions based on Weather conditions; a smart laundry
that Works With the smart closet to notify users When it is time
to do laundry or helps to sort the laundry; a smart mirror that

US 8,631,063 B2
7

displays messages or reminders, such as those related to
taking medication; a smart bathroom that includes a toilet
paper sensor; a ?ush detector; a temperature-regulated, scald
resistant shoWer or bath or faucet; a soap dispenser that moni
tors user cleanliness and re?ll requirements; display devices
that alloW information to folloW an occupant from room to
room; a smart microWave oven that automatically adjusts for
the particular food; a smart refrigerator or pantry that moni
tors food availability and consumption, detects expired items,
creates shopping lists, and provides meal advice based on
stored food items; a smart phone that alloWs for remote con
trol of devices or conveys reminders to occupants in the space
or users Who are aWay from the space; smart thermostats that
can personaliZe cooling and heating settings according to
daily tasks or contexts; sensors for detecting Water leaks;
smart stoves that alert a user if left on and unused; smart
projectors that display information on a Wall currently faced
by an occupant; a security system that alerts the occupant if
WindoWs or doors are open; and an emergency system that
queries the resident if it suspects a problem and contacts help
When necessary.

Connecting sensors and actuators to applications implies
more than simply physically coupling these devices to a com
puter platform, although this is certainly important. In some
applications, the space requires more devices than could be
connected to the limited I/O ports for a single machine or even
a small cluster. Connecting devices With applications means
providing some mechanism for the applications to make use
of devices and services directly. In one embodiment, the
platform of the present disclosure is a netWork-enabled, ser
vice-oriented platform that automatically “converts” the vari
ous sensors and actuators to software services that are easily
composed into composite services and applications. In this
disclosure, such automatic conversion and service composi
tion is referred to as “pervasive space programmability.”

In an exemplary embodiment, a system of the present dis
closure alloWs hardWare platforms, connected devices, and
associated softWare services to appear as a single, homoge
neous environment even if actual the environment employs
heterogeneous netWorks. SoftWare on a server provides mul
tiple, dynamic, and expandable modules to connect simulta
neously With hardWare platforms using various netWork tech
nologies (e.g., Wired Ethernet; Wireless ?delity (WiFi), such
as the 802.11 suite of Wireless protocols; ZigBeeTM; and
USB). In an exemplary embodiment, the system makes het
erogeneous connections transparent to the softWare services,
applications, users and programmers.

FIG. 1 shoWs one embodiment of a middleWare architec
ture 10 for programmable pervasive spaces. The physical
layer 12 consists of the various, phenomena, appliances, and
devices in the space. The physical layer contains passive and
active objects. The phenomena, devices and appliances of
interest are active objects 14. Through sensors 16 and actua
tors 18, active objects 14 are captured into the smart space for
observation and control.

The platform node layer 20 contains the sensor and actua
tor platform nodes 22 and 24, respectively, in the environ
ment. These nodes 22, 24 automatically integrate the sensors
16 and actuators 18 (and hence their respective active objects
14) from the layer beneath and export their service represen
tations to the layers above. The teens “above,” “beloW,”
“beneath,” “top,” “bottom,” “left,” “right,” “behind” and the
like are used herein for simplicity of reference. They do not
limit the disclosure in terms of orientation of the discussed
elements. The platform layer 20 converts any sensor or actua
tor in the physical environment into a softWare service 26 that
can be programmed or composed into other services. Pro

20

25

30

35

40

45

50

55

60

65

8
grammers can thus de?ne services 26 Without having to
understand the physical World.
The service layer 28, Which resides above the platform

layer 20, holds the registry of the softWare service 26 repre
sentation of the sensors 16 and actuators 18 connected to the
platform nodes 20. In one embodiment, the service layer 28,
Which runs on a centraliZed server, also contains the service
discovery, composition, and invocation mechanisms for
applications to locate and make use of particular sensors 16 or
actuators 18. In an exemplary embodiment, the service layer
28 contains a context management module 30 as Well as a
knoWledge representation and storage module 32.
The knoWledge module 32 contains an ontology of the

various services 26 offered and the appliances and devices 14
connected to the system. This makes it possible to reason
about services 26; for example, that the system should convert
output from a Celsius temperature sensor to Fahrenheit
before feeding it to another service. Service advertisement
and discovery protocols use both service de?nitions and
semantics to register or discover a service 26. The reasoning
engine determines Whether certain composite services are
available.
The context management module 30 alloWs programmers

to create and register contexts 34 of interest. In one embodi
ment, each context 34 is a graph implemented as an OSGi
service Wire API linking various sensors 16 together. A con
text 34 can de?ne or restrict service activation for various
applications; it can also specify states that a pervasive space
cannot enter. The context engine 36 is responsible for detect
ing, and possibly recovery from, such states.

In an exemplary embodiment, the application layer 38 sits
at the top and consists of an integrated development environ
ment (IDE) 40 that provides access to a softWare library of
sensor, actuator, and other services. It also contains the actual
applications and composed services that monitor and control
elements of the pervasive space. In the illustrated embodi
ment, the sensor and actuator platform covers the outlined
layers in FIG. 1.

FIG. 2 shoWs one embodiment of a layered softWare plat
form node architecture 42 and an in-netWork middleWare
architecture 44 supporting the platform, including a server
that hosts a service frameWork 48. In an exemplary embodi
ment, one or more drivers 46 is used as a template by a
programmer to generate softWare services representing each
associated device. In one embodiment, multiple softWare ser
vices can be generated from a single driver. In an exemplary
embodiment, the system takes the driver 46 and annotates it
With con?guration information from the hardWare platform,
such as a unique platform identi?er or an interface to Which
the associated device is connected, for example. This thus
creates a unique softWare service that the server binds to the
associated device.

In the illustrated embodiment, a driver 46 runs on the
platform node 42. On poWer-up, the platform 42 transmits an
associated sensor or actuator service driver 46 to the frame
Work server 48 and establishes it as a device service 50.
Optionally, a processing agent 52 is dynamically loaded onto
the platform node 42 to alloW for on-node processing (such as
data ?ltering, data aggregation and query processing, for
example). In other embodiments, a driver may be stored on an
associated device (e.g., sensor or actuator), a media storage
device (e.g., a compact disc With read-only memory (CD
ROM) or a digital versatile disc (DVD)) on a local repository
or local netWork, or on a remote repository (e.g., a Wide area
netWork such as a point-to-point netWork or the intemet).

In an exemplary embodiment, the platform is a combina
tion of hardWare, ?rmWare running on the hardWare, and a

US 8,631,063 B2

software middleWare that provides services and an execution
environment. Together these components allow virtually any
kind of sensor, actuator, or other device to be integrated into
a netWork of devices, all of Which can be queried or controlled
through a common interface, and facilitates the development
of applications that use the devices.

In one embodiment, the platform represents any attached
object in a pervasive space as a computer program. In an
exemplary embodiment, that program is a Java program and
the object is represented as a OSGi service bundle.
A. HardWare

FIG. 3 is a perspective vieW of one embodiment of a hard
Ware platform 54 con?guration. In the illustrated embodi
ment, the platform node consists of three modules con?gured
as board layers: the Communication Layer 56, the Processing
Layer 58, and the Device Connection or Interface Layer 60. In
an exemplary embodiment, each platform node is a modular
hardWare device 54 composed of stackable, sWappable lay
ers, With each layer providing speci?c functionality. In one
embodiment, an approximately 2 inch><2 inch platform form
factor uses DF17-series board-to-board connectors to com

municably connect each device to the platform in 54 and
alloW signals to be used on any layer. The modular design and
easy, reliable quick-connect system alloW users to change
platform 54 con?gurations easily and quickly as needed. In
one embodiment, the layered boards comprise a stack, and
board may be added to or removed from the stack as required.

In the illustrated embodiment, the board layers are con
nected by universal connector buses 62. In an exemplary
embodiment, communication layer 56 includes antenna con
nector 64 for Wireless communication and communication
module 66. In an exemplary embodiment, processing layer 58
includes microprocessor 68 and poWer jacks 70. In one
embodiment, poWer jacks 70 are provided for AC and/or
battery poWer. In another embodiment, secondary poWer
jacks 70 can be used for daisy chaining multiple nodes. In an
exemplary embodiment, device connection/interface layer 60
includes device connectors 72.

1) Processing Layer
The processing layer 58 is responsible for the main opera

tion of the hardWare platform node 54. In the illustrated
embodiment, the design is based around the Atmel
ATmega128L microprocessor 68. The ATmega128L is an 8
MHZ chip that includes 128 KB Flash memory, 4 KB SRAM,
4 KB electrically erasable programmable read-only memory
(EEPROM), and an 8-channel 10-bit A/D-converter. The
microprocessor 68 can operate at a core voltage betWeen 2.7
and 5.5V. In one embodiment, the processing layer 58
includes tWo RS232 ports, a Joint Test Action Group (IEEE
1 149) an ISP port, and more than 50 programmable I/O pins.
This chip possesses the desirable characteristics of loW poWer
consumption, ample SRAM and program space, and readily
available tools and information resources. An exemplary
embodiment of a processing layer 58 additionally includes a
real-time clock for accurate timing. The clock can also be
used to aWaken the microprocessor 68 from a sleep state at
speci?ed intervals. In other embodiments, the processing
layer 58 includes a processor or controller such as the Intel
PXA255 microprocessor, the Texas Instruments OMAP or
TI-MSP430 microprocessor, one of the PIC suite of proces
sors, a custom processor, or a loW-poWer processor, for
example.

In an exemplary embodiment, the processing layer 58
stores both the ?rmWare that integrates the hardWare platform
node 54 With the middleWare framework and the device driver
bundles that run in the frameWork. In an exemplary embodi
ment, the processing layer 58 supports poWer operation rang

20

25

30

35

40

45

50

55

60

65

10
ing from ultra-loW for long operation on battery poWer to full
operation on Wired poWer. The version of the processing layer
shoWn in FIG. 3 also includes tWo plugs 70 for Wired poWer,
and this layer provides all 3.3V poWer via a loW-dropout
linear voltage regulator. The platform 54 can be poWered by a
single 3.3V or greater poWer supply. The peak current con
sumption in active mode is 86 mA. In an exemplary embodi
ment, even though the main poWer for the platform 54 is 3 .3V,
it is possible to integrate sensors that require 5V or more by
using an octal translator.

In one embodiment, a driver is surrogate softWareiJava
byte code that contains information about a device such as a
sensor and the services it providesistored in an electrically
erasable programmable read-only memory (EEPROM) on
the platform node 54.
The second plug can be used to daisy-chain nodes together,

reducing the number of outlets used in a smart house envi
ronment. The number of nodes that can be chained to a single
poWer supply depends on the number and type of devices
connected to the platforms 54. For example, in a SMART
FLOORTM, discussed beloW, each node is connected to 32
pressure sensors and 15 platform nodes 54 can be daisy
chained.

2) Communication Layer
Data transfer over the netWork is handled by the commu

nication layer 56. In an exemplary embodiment, the commu
nication layer 56 uses a Cirrus Logic Crystal LAN CS8900a
netWork interface controller (NIC) IC and a standard RJ45
connector for basic 10 Base-T Wired Ethernet netWorking.
Light Emitting Diodes (LEDs) provide instant feedback as to
poWer, connectivity, and LAN activity. In one embodiment,
interfacing the CS8900a to the processing layer 58 is done in
I/O mode; no memory mapping is required. One embodiment
uses a simpli?ed IPv4 stack.

Alternative embodiments include Wireless communication
layer options in addition to, or in place of a Wired Ethernet. In
one embodiment, the communication layer 56 uses a univer
sal serial bus (USB) connection. In another embodiment, the
communication layer 56 is a BLUETOOTHTM communica
tion layer based on the Blue Radios BR-C30 Bluetooth IC. In
yet other embodiments, the communication layer 56 is con
?gured to use ZIGBEETM or 802.11b Wireless communica
tion. In another embodiment, the communication layer 56 is a
poWerline communication layer.

3) Device Connection Layer
The interface or connection layer 60 is used to connect the

various sensors and actuators to the platform 54. Integrating
any number of analog and digital sensors is possible. In an
exemplary embodiment, the platform 54 is capable of con
necting: up to 8 analog single-Wire sensors; up to 8 analog
three-Wire sensors; and up to 32 analog three-Wire sensors. In
one embodiment, a connection layer 60 for analog sensors
routes to the ATmega128L’ s 8-channel ADC (on a port of the
microprocessor 68 of the processing layer 58). In such an
embodiment, connecting more than 8 sensors is accom
plished by multiplexing the connections. Digital sensors may
use custom connection layers.
IEEE 1451 de?nes a standard for sensor or actuator (or any

transducer) connections, including support for providing a
transducer electronic data sheet (TEDS) at the connection
level. (K. Lee, “IEEE 1451: a standard in support of smart
transducer netWorking,” 17th Instrumentation and Measure
ment Technology Conf., vol. 2, pp. 525-528, May 2000.) An
exemplary embodiment of the platform 54 of the present
disclosure supports this standard. One example of a suitable
actuator is a simple current sWitch (With optional manual
control).

US 8,631,063 B2
11

In some applications, wiring devices to the device connec
tion layer 60 may be cumbersome or impractical due to place
ment of the devices or the number of devices being connected
to a platform node 54. A wireless device connection layer 60
eliminates the need for devices to be physically connected to
the platform node. FIG. 4 shows the overall system design of
the passive sensors in one embodiment of a wireless device
connection layer 60. In an exemplary embodiment, a pas
sively powered wireless connection layer 60 is designed for
remotely connecting devices such as sensors 16 and actuators
18 to the platform 54. In one embodiment, the passively
powered sensors 16 and actuators 18 are remotely charged
and powered via a radio frequency energy source 74, pro
vided by a radio frequency generator, which is transformed
into a usable DC energy storage 76. This allows for battery
free sensors that can last years without requiring a battery
charge or replacement.

FIG. 5 shows an exemplary radio frequency generator 78.
In an exemplary embodiment, the radio frequency generator
78 is composed of a voltage controlled oscillator (VCO) 80,
high power ampli?er 82, high quality factor ?lter 84, attenu
ator 86, a splitter 88, and antenna arrays 90. The VCO 80
generates the high frequency signal, either 916 MHZ or 2.45
GHZ, which is amplitude modulated via the VCC power input
pin. The high frequency source is ampli?ed by the high power
ampli?er 82 to about +30 dBm signal. The signal is then split
into multiple output sources via a signal splitter 88 and fed to
a high directivity gain antenna 90 with an effective intrinsic
radiated power of 4 Watts.

In one embodiment, a Remote Connection Layer connects
to the various devices, and a Local Connection Layer con
nects to a platform node. The Remote and Local Connection
Layers communicate wirelessly, supporting the same detec
tion and control mechanisms as the standard Device Connec
tion Layer. Such an arrangement is especially suitable in
closed environments, such as underneath a raised ?oor,
behind walls, ceilings, sinks, bathtubs, cabinets, and other
areas.

The Remote Connection Layer and the devices connected
to it may be passive, powered via traditional mechanisms
such as batteries or power outlets, or may make use of power
scavenging techniques, using resources such as solar or radio
frequency power. FIG. 6 is a perspective view of one appli
cation embodiment, where a platform node 54 is using a
Local Connection Layer 92 to communicate wirelessly with
multiple Remote Connection Layers 94, each attached to a
number of sensors 16. In this example, the Remote Connec
tion Layers 94 are charged using power scavenging tech
niques by using radio frequency energy being broadcast by an
RF generator 78 in the ceiling. In one embodiment, some
devices are attached to a remote connection layer 92 by Smart
Plugs.

4) Other Layers
The platform 54 of the present disclosure is not limited to

three layers. Additional layers may be added to provide extra
processing power, security features, multiple communication
mediums, network switching, memory, or alternative power
options, for example. One example of an additional layer is a
combined Power and Communication Layer using the Power
over-Ethemet standard. In one embodiment, a memory mod
ule provides a mechanism for easily modifying an EEPROM
store used for read and write capabilities on the platform node
54. This storage contains bootstrap data that speci?es general
sensor 16 and actuator 18 information. In one embodiment,
when the platform 54 is powered up, its EEPROM data acts as
a bootstrap mechanism that provides the larger systemifor
example, a network server or home PCiwith the information

20

25

30

35

40

45

50

55

60

65

12
and behavioral components required to interact with a spe
ci?c device, appliance, sensor, or actuator. The data can be
speci?ed as higher human-readable @(ML or text with a
URL, for example) or machine-readable (for example, Java
byte code), depending on the speci?c application. In addition
to byte code, stored data includes device-speci?c information
such as the manufacturer’s name, product serial number, and
sensor type.
The platform 54 of this disclosure is not limited to a layered

design. In one embodiment, a speci?c platform con?guration
is referred to herein as a Smart Plug (further discussed with
reference to FIG. 10), in which several layers are integrated
tightly to achieve a small form factor. In the Smart Plug, a
processing layer, a powerline communication layer and a
RFID reader (as a physical sensor) are all integrated into a
single board. In an exemplary embodiment, such tight inte
gration does not alter the ?rmware or the software architec
ture of the disclosed platform.

In one embodiment, a platform of the present disclosure is
mounted on a development and debugging board, which is
used for con?guration, programming and debugging the plat
form. In one example of such an embodiment, the develop
ment and debugging board uses RS232 ports for online
debugging.
B. Firmware

In an exemplary embodiment, the ?rmware runs on the
processing layer of the platform hardware and allows the
various sensors, actuators, and the platform itself to automati
cally integrate into the middleware framework.

In one embodiment, the structure of the ?rmware is dic
tated by the choice of network stack. One example of a suit
able network stack is an open-source uIP stack for IP net
working developed by Adam Dunkels at the Swedish Institute
of Computer Science. uIP is a platform-neutral ANSI C TCP/
IP stack intended for embedded devices. It maintains its neu
trality by containing a platform-independent core and provid
ing a framework for users to write the devicei
(microprocessor and NIC) speci?c code necessary to operate
their components. The framework also de?nes how to
develop applications using uIP. In an exemplary embodiment,
uIP itself is the main executable and begins to run when a
node is turned on. The uIP framework, during its main execu
tion loop, calls a function that executes the desired code, in
one case, the ?rmware of the present disclosure. It takes
approximately 2-3 seconds for a node of the present disclo
sure to start up, join the network, upload its services to the
framework, and begin sending data and receiving commands.

In an exemplary embodiment, each platform node, and
therefore each connected sensor, actuator, or other device, is
directly connected to the internet through this internet proto
col (IP). In another embodiment, the network stack is NUT
FLASHNET, developed by the Ethernut Open Source Hard
ware and Software Project and supported by Egnite Software
GmbH. In yet other embodiments, the network interface sup
ports ad-hoc networking protocols or mesh networking pro
tocols, for example. In exemplary embodiments, a micropro
ces sor drives a network interface controller either directly or
through a Universal Asynchronous Receiver/ Transmitter
(UART) interface.

FIG. 7 is a diagram of information ?ow through nodes 54
and middleware 10 in one embodiment of the present disclo
sure. In an exemplary embodiment, each node 54 of the
present disclosure is given a unique identi?er. When a node
54 comes online, it sends its identi?cation or other data 96 to
the middleware 10. When this is acknowledged, it sends the
driver bundle 98 for the attached devices 16, 18. After this, the
application function loops, handling any incoming network

US 8,631,063 B2
13

packets, periodically sampling the sensors 16, sending sig
nals to actuators 18, transmitting sensor data, and sleeping.
This process is shown in FIG. 7. In an exemplary embodi
ment, the platform 54 also performs data ?ltering functions.
In an exemplary embodiment, the ?rmware is a modular,
plug-and-play operating system for the platform nodes 54. In
one embodiment, the ?rmware includes a bootloader that
allows remote replacement of the operating system. A boot
loader also allows nodes 54 to automatically detect the cur
rent hardware con?guration (Communication Layer, Device
Connection Layer, etc.) and accordingly update the ?rmware.

The platform 54 of the present disclosure allows for plug
and-play development of pervasive spaces, which makes it
very easy to add new devices 16, 18 into the space. In an
exemplary embodiment, the middleware server can be used as
a central authority for the network.
C. Middleware

FIG. 8 is a diagram of a middleware framework in one
embodiment of the present disclosure.

1) Services
In an exemplary embodiment, although the middleware

does, in part, run on the platform nodes, the majority of the
framework operates on a stand-alone server. Thus, the soft
ware services are registered and hosted in an industry-stan
dard service framework. A particularly suitable service
framework is based on the Open Services Gateway initiative
(OSGi) standard speci?cations, governed by the OGSi Alli
ance. OSGi provides service discovery and con?guration
mechanisms for creating a programmable pervasive space.
Another suitable service framework is the .net environment
developed by Microsoft Corporation.

In an exemplary embodiment, when a platform node comes
online, it negotiates with the middleware to connect to the
Atlas Network Manager (ANM) bundle running in the
middleware, which is listening on a dedicated port.
As shown in FIG. 8(1), after the initial contact, the ANM

spawns two new software services, a Network Packet Reader
(NPR) and an Atlas Node (AN). Separating the NPR and AN
services in the middleware allows a user to easily program a
service to change either the communication protocol or the
functioning of the Atlas platform without affecting the other.
Once the AN is registered in the middleware (i.e., it has

been identi?ed and the device driver bundle it hosts has been
transmitted), the ANM starts the device driver as a new Sensor
or Actuator Service Driver (SD), as shown in FIG. 8(2). This
therefore creates in the middleware a unique SD service for
each device attached to the Atlas node. The AN itself provides
node-speci?c data processing that is too complex or expen
sive for the node’s onboard microprocessor. Applications are
then able to locate and use the services provided by the new
devices (see FIG. 8(3)).

In an exemplary embodiment, a driver represents each of
the hardware sensors, actuators, or other devices connected to
the platform as a software service on a software interface,
such as the middleware. These services are then made avail
able to client programs or users through the middleware, such
as by applications and other services. The interface hides the
low-level hardware details of the devices in the network,
allowing users to develop, extend or modify applications on a
higher level. Thus, in an exemplary embodiment, each soft
ware service, regardless of the type of associated device,
complies with a standard, uniform interface such as the
middleware. The software services can be discovered and
accessed through this interface by applications and other
services using standard mechanisms, such as those provided
by an industry-standard service framework.

20

25

30

35

40

45

50

55

60

65

14
Users and programmers are able to develop applications by

composing software services using logic suitable for the par
ticular application. In an exemplary embodiment, the system
allows users to compose applications by utilizing connected
devices via their associated software services. The system
also allows users to compose applications that include high
level processes or computational structure (program, func
tion, etc.) at a software level. In an exemplary embodiment,
all three levels of the system (e.g., server, hardware, and
associated devices) have processing capabilities. Thus, pro
cesses can be delegated among the levels as desired. More
over, processes can alter operation of the server, hardware
platforms, or connected devices. Processes can also ?lter or
otherwise alter data entering or leaving the server, hardware
platforms, or connected devices. Processes can also encom
pass general-purpose computation.

In an exemplary embodiment, the system includes a
mechanism to automatically decompose a process into sets of
instructions that can run on the server, and sets of instructions
that can be delegated to run on the hardware platforms. Then
the server automatically pushes appropriate instructions to
the appropriate hardware platforms. This allows for ef?cient
and scalable computation (such as managing platforms and
implementing data streams) that takes advantage of all hard
ware resources, without requiring users to develop distributed
computing processes or know the details about the hardware
platforms and connected devices used.

In an exemplary embodiment, users and programmers are
able to develop and deploy multiple applications that share
common hardware platforms, connected devices, and/or
associated software services. In one embodiment, this is
achieved when users and programmers use standard Inte
grated Development Environments (IDE) to develop applica
tions utilizing the software services, hardware platforms and
devices in a standardized way. Suitable IDE’s include, for
example, the Eclipse Development Environment developed
by the Eclipse Foundation, Inc. and the .net development and
run time environment developed by the Microsoft Corpora
tion.
An exemplary method of using the platform includes moni

toring a device, generating monitoring data for the device,
and controlling the device using the monitoring data. In an
exemplary embodiment, a driver for a device is transmitted to
the platform middleware through the platform hardware. The
drivers for devices may be stored directly on the platform
hardware (a surrogate architecture) or on the sensor, actuator,
or other device itself, which is read by the platform hardware
and relayed to the middleware. In one embodiment, either the
platform or a device connected to it contains a URL to the
driver. This URL would be passed to the middleware, which
would then download the driver from the intemet. In another
embodiment, the platform uploads the drivers of the devices
connected to it to the middleware when the platform is turned
on.

In an exemplary embodiment, a running platform also
monitors for the connection of new devices or disconnection
of existing devices. If a new device is connected, the platform
will transmit the driver for that device. If an existing device is
disconnected, the platform noti?es the middleware that the
device is no longer available.

In an exemplary embodiment, the system provides for local
and/ or remote con?guration and management of the software,
hardware platforms, and associated devices. For example,
editing of software services may be performed locally or
remotely. In exemplary embodiments, access is based on the
internet, a graphical user interface (GUI), or a command-line
interface.

US 8,631,063 B2
15

In an exemplary embodiment, the system provides self
recovery mechanisms. Server and software services are able
to automatically query the status of hardware platforms and
connected devices. In an exemplary embodiment, the system
is also able to automatically send control commands to hard
ware platforms and connected devices to alter operations
based on status or other factors. In an exemplary embodiment,
the system is able to also automatically create composition of
software services. Composition allows errors in particular
hardware platforms and devices to be detected and repaired or
prevented from in?uencing other software services. This pro
longs availability, increases reliability, and provides fault
tolerance and self-recovery.

FIG. 9 is a diagram of a system architecture in one embodi
ment of the present disclosure. Users of the network create
programs that run in the middleware. These programs are
called “clients.” Each client encapsulates the functionality of
a particular application, acts as a server or proxy to transmit
data between the network and external services (programs
running outside the middleware), or both. In an exemplary
embodiment, the platform middleware has a client registra
tion server which downloads and installs clients in a plug
and-play manner and automatically con?gures any network
or interprocess communication facilities needed.

2) Execution Environment
In one embodiment, applications directly using a platform

based network are OSGi bundles implementing the Atlas
Network Application interface. They listen for SD services
using standard OSGi routines. OSGi also handles the appear
ance and disappearance of SD services and ensures that appli
cations using those services do not crash or become unstable.
One embodiment of the middleware also includes func

tionality that allows users to download proxy applications
(i.e., OSGi bundles that implement a proxy interface) into the
framework. This system gives programmers developing
applications that run outside the framework an easy way to
make use of the various services running in the framework.

Additionally, a single pervasive space may cover many
geographically dispersed areas. In one embodiment, the
middleware is distributed to solve these issues. This architec
ture allows a hierarchical grouping of middleware servers,
each of which can connect to platform nodes and other serv
ers, feeding information to a parent server.

Moreover, in exemplary embodiments the operating sys
tem also handles functions such as security, privacy, data
processing, and running user-de?ned programs.
D. Exemplary Applications

1) Smart Floor
In an exemplary application, a platform node of the present

disclosure is mounted to an underside of a tile of a smart ?oor.
In one embodiment, a smart ?oor is an indoor location-track
ing system. An effective pervasive space desirably makes use
of information about where its users are located, as this posi
tional knowledge can be used to increase the performance of
many services in the space. One application of the platform
node of the present disclosure is in a pressure-sensitive raised
?oor. In one embodiment, one pressure sensor under each
block of the ?oor detects a step anywhere on that block (about
2 square feet of ?oor space). In one embodiment, the platform
node of the present disclosure is used by ?rst creating a sensor
connection layer that interfaces with the existing sensors.
Each node, when deployed, connects to 32 sensors and is
programmed with the identity and location of each associated
block. Since each sensor appears as a unique service in the
middleware, and since the location information for each sen
sor is available from its service, the ?oor using the platform
node of the present disclosure facilitates the mapping of the

20

25

30

35

40

45

50

55

60

65

16
sensors to physical space. The data ?ltering capability of the
platform node of the present disclosure allows nodes to trans
mit data only when pressure sensor readings change, prevent
ing the smart ?oor information from ?ooding the network.

2) Smart Plug
FIG. 10 is a perspective view of a smart plug using one

embodiment of a platform node 54 of the present disclosure.
In one embodiment, a smart plug 100 offers a controllable
interface and allows a smart space, the space’s resident, or
remote or local caregivers to identify, locate, and control
devices such as electrical appliances, and monitor and control
their power usage, as the devices enter and leave the space.
Each appliance is marked in such a way that the device can be
sensed, recognized and controlled. In one embodiment, each
power outlet 102 in a house is equipped with a layer that can
sense, control and communicate with the appliances 104
plugged into the outlet 102, and connects physically or wire
lessly to a platform node 54 of the present disclosure.
The platform node 54 of the present disclosure is used by

?rst creating a sensor connection layer that interfaces with a
sensor or sensors that detect the marking on the devices. In
one embodiment, where the plug of each appliance 104 is
marked with an RFID tag 106, the sensors used are RFID
readers, and the sensor connection layer interfaces with the
readers. In this embodiment, the sensor connection layer also
interfaces with the power outlet 102, supporting the monitor
ing and modi?cation of powerusage. Then, a device driver for
the RFID reader is created or taken from an existing library of
drivers. The driver detects when an RFID tag 106 is present in
the reader’ s sensing range (approx. 8 inch3), and can provide
the tag data and device location to other services or alert these
services when an appliance 104 is removed. Communication
between the appliance 104 and the middleware framework of
the present disclosure, or between the platform node 54 and
the middleware, occurs over any mechanism supported by the
platform 54, such as wired Ethernet, WiFi, or Power Line
Communication.

In one embodiment, the information contained within the
RFID tag 106 on the appliance represents a device driver for
the appliance, or a URL pointing to such a driver. The driver
describes various properties of the device 104, and allows the
space to integrate the device 104 automatically and to control
the device using a software interface. This software interface
can be used to provide an automatically updating interface for
remote caregivers to control devices 104 in the space, or to
allow smart space programmers to develop applications that
monitor power usage and develop power saving algorithms
that can run in the middleware or on the platform node of the
current disclosure.

3) Geriatric Assessment Console
A Comprehensive Geriatric Assessment Console applica

tion monitors the Instrumental Activities of Daily Living of a
resident and helps a professional caregiver make decisions
regarding whether the resident is capable of continuing to live
independently or requires additional human assistance. (M. P.
Lawton and E. M. Brody, “Assessment of older people: self
maintaining and instrumental activities of daily living,” Ger
onlologisl, 91179-186, 1969.)

Monitoring an instrumental activity of daily living involves
the use of many different sensors. For example, monitoring
laundry activity may employ sensing the transfer of clothes to
the laundry room with RFID, the use of the washing machine
and dryer with contact sensors, and the retrieval of laundered
clothes with RFID. Use of a platform node of the present
disclosure in this application allows for the easy interface of
heterogeneous sensors in a uniform fashion. In an exemplary
embodiment, the Geriatric Assessment Console provides an

US 8,631,063 B2
17

IDE for a domain expert (such as a healthcare professional).
The IDE provides a user with a view of all available sensor
services in space, to allow the user to determine new activities
that should be monitored for a particular resident. Building an
IDE is straightforward using a platform node of the present
disclosure because each sensor is already an independent
service running in the framework.

4). Purdue NILE-PDT
The NILE-PDT (Phenomena Detection and Tracking) sys

tem was developed by the Indiana Database Center at Purdue
University to detect and track environmental phenomena (gas
clouds, oil spills, etc.). The node platform of the present
disclosure, used with NILE-PDT, allows the system to sample
data streams from many different sensors. Additionally, the
platform node of the present disclosure allows a user to con
trol the data streams by altering the sampling rate of the
sensors using feedback algorithms, a mechanism that
requires uniform interfacing with every sensor in the network.

In addition to providing a uniform interface to heteroge
neous sensors, the platform node of the present disclosure
also offers a plug-and-play development model, even for
applications written outside the disclosed framework. A
proxy system in the framework can be created to resolve
issues such as the following con?icts: NILE-PDT uses UDP
for communication and the platform node of the present dis
closure uses TCP in its communication layer; moreover, the
device drivers for the sensors of the platform node provide
raw data readings, while NILE-PDT expects time-stamped
data. These types of con?icts are expected to be common
when the platform node of the present disclosure is used with
existing third-party applications. The NILE-PDT developers
were able to create a proxy in our framework that formed the
bridge between the sensor services and the NILE-PDT
engine. The disclosed middleware allows external applica
tions to upload and register these proxy services into the
framework.

All patents, patent applications, provisional applications,
and publications referred to or cited herein are incorporated
by reference in their entirety, including all ?gures and tables,
to the extent they are not inconsistent with the explicit teach
ings of this speci?cation.

It should be understood that the examples and embodi
ments described herein are for illustrative purposes only and
that various modi?cations or changes in light thereof will be
suggested to persons skilled in the art and are to be included
within the spirit and purview of this application.
We claim:
1. A system, comprising:
a hardware platform, wherein the hardware platform is

adapted to be communicably connected to an active
object, wherein the active object is selected from the
group consisting of a device comprising a sensor, a
device comprising an actuator, and a device comprising
both a sensor and an actuator;

a middleware module, wherein at least a portion of the
middleware module resides in and/ or is executed on the
hardware platform; and

at least one software service generated by the middleware
module, wherein each of the at least one software service
represents the active object,

wherein the active object is a device comprising an actuator
and wherein the middleware module is con?gured to:

receive commands from one or more applications written
in a high level language via each of the at least one
software service;

convert the commands into low-level commands that can
be understood by the active object, and

20

25

30

35

40

45

50

55

60

65

18
transmit the low-level commands to the active object via

the hardware platform, wherein the low-level com
mands are capable of controlling the active object

wherein the active object is a device comprising a sensor
and wherein the hardware platform is con?gured to
receive raw data from the active object and pass the raw
data to the middleware module, and the middleware
module is con?gured to convert the raw data into useable
data and pass the usable data to the at least one software

service,
further comprising one or more applications written in a

higher level language, wherein at least one of the one or
more applications is con?gured to receive the useable
data from one or more of the at least one software ser

vice,
wherein the hardware platform is adapted to be communi

cably connected to at least one additional active object,
wherein each of the at least one additional active object
is selected from the group consisting of a device com
prising a sensor, a device comprising an actuator, and a
device comprising both a sensor and an actuator,

wherein the middleware module generates at least one
additional software service, wherein each of the at least
one additional software service represents one or more

of the at least one additional active object and wherein
each of the at least one additional active object is repre
sented by one or more of the at least one additional

software service,
wherein the at least one additional active object comprises

one or more devices comprising an actuator,
wherein the middleware module is con?gured to:
receive commands from one or more applications written

in a high level language via each of the at least one
additional software service representing the one or more
devices comprising an actuator;

convert the commands into low-level commands that can
be understood by at least one of the one or more devices
comprising an actuator; and

transmit the low-level commands to the at least one of the
one or more devices comprising an actuator via the
hardware platform, wherein the low-level commands
are capable of controlling the at least one of the one or
more devices comprising an actuator.

2. The system of claim 1,
wherein the at least one additional active object comprises

one or more devices comprising a sensor,
wherein the hardware platform is con?gured to receive raw

data from each object of the one or more devices com
prising a sensor and pass the raw data to the middleware
module, and the middleware module is con?gured to
convert the raw data into useable data and pass the usable
data to the one or more of the at least one additional

software service that represents the object, wherein the
useable data can be used by one or more applications
written in a higher level language.

3. The system of claim 1, wherein the middleware module
is con?gured to generate each of the at least one software
service after the active object is communicably connected to
the hardware platform.

4. The system of claim 1, wherein all of the at least one
software service and the at least one additional software ser
vice comply with a standard, uniform interface.

5. The system of claim 1, wherein the active object and
each of the at least one additional active object are located in
a pervasive space.

6. The system of claim 5, further comprising the active
object and each of the at least one additional active object.

