Foreign object detection in wireless energy transfer systems
First Claim
1. A wireless power transfer system comprising:
- a wireless power transfer source configured to generate a source magnetic field at a first frequency to transfer power to a wireless power receiver;
an auxiliary magnetic field source configured to generate an auxiliary magnetic field at a second frequency;
at least one detector configured to generate an electrical signal in response to perturbations in the auxiliary magnetic field generated by the auxiliary magnetic field source; and
a controller configured to determine whether foreign object debris is present around the wireless power transfer system based on the electrical signal.
1 Assignment
0 Petitions

Accused Products

Abstract
Systems and methods for detecting foreign object debris around a wireless power transfer system include a plurality of detectors, each detector featuring one or more loops of conducting material, and a controller configured to measure at least one of a voltage and a current in each detector and to determine, based on the measurements, whether foreign object debris is present around the wireless power transfer system, where at least some of the plurality of detectors include a first number of loops of the conducting material, and at least some of the plurality of detectors include a second number of loops of the conducting material larger than the first number.
717 Citations
SAFETY PROTECTION METHOD OF DYNAMIC DETECTION FOR MOBILE ROBOTS | ||
Patent #
US 20180333869A1
Filed 10/08/2016
|
Current Assignee
Zhejiang Guozi Robot Technology Co. Ltd.
|
Original Assignee
Zhejiang Guozi Robot Technology Co. Ltd.
|
Vehicle architectures, devices and control algorithms for managing wireless vehicle charging | ||
Patent #
US 10,245,966 B2
Filed 04/11/2017
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
GM Global Technology Operations LLC
|
Charging ports with integrated contactless communication units | ||
Patent #
US 10,468,919 B2
Filed 08/24/2017
|
Current Assignee
Keyssa Systems Inc.
|
Original Assignee
Keyssa Systems Inc.
|
Safety protection method of dynamic detection for mobile robots | ||
Patent #
US 10,723,029 B2
Filed 10/08/2016
|
Current Assignee
Zhejiang Guozi Robot Technology Co. Ltd.
|
Original Assignee
Zhejiang Guozi Robot Technology Co. Ltd.
|
Q-factor determination for foreign object detection circuit in wireless charging system | ||
Patent #
US 10,833,540 B2
Filed 01/09/2019
|
Current Assignee
NXP Semiconductors GPS USA Inc.
|
Original Assignee
NXP USA Inc.
|
Method of foreign object detection and foreign object detection device | ||
Patent #
US 10,886,789 B2
Filed 12/27/2018
|
Current Assignee
Automotive Research Testing Center
|
Original Assignee
Automotive Research Testing Center
|
TUNING AND GAIN CONTROL IN ELECTRO-MAGNETIC POWER SYSTEMS | ||
Patent #
US 20110018361A1
Filed 10/01/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q CAPACITIVELY LOADED CONDUCTING LOOPS | ||
Patent #
US 20110043046A1
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Tunable embedded inductor devices | ||
Patent #
US 7,884,697 B2
Filed 02/26/2008
|
Current Assignee
Industrial Technology Research Institute
|
Original Assignee
Industrial Technology Research Institute
|
High power wireless resonant energy transfer system | ||
Patent #
US 7,880,337 B2
Filed 10/25/2007
|
Current Assignee
Leslie Farkas
|
Original Assignee
Laszlo Farkas
|
WIRELESS DELIVERY OF POWER TO A FIXED-GEOMETRY POWER PART | ||
Patent #
US 20110049998A1
Filed 11/04/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device | ||
Patent #
US 7,885,050 B2
Filed 07/29/2005
|
Current Assignee
Andong National University Industry Academic Cooperation Foundation, JC Protek Company Limited
|
Original Assignee
JC Protek Company Limited
|
RESONATORS FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20110012431A1
Filed 09/10/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110074347A1
Filed 11/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS DESKTOP IT ENVIRONMENT | ||
Patent #
US 20110049996A1
Filed 08/25/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
VEHICLE CHARGER SAFETY SYSTEM AND METHOD | ||
Patent #
US 20110074346A1
Filed 10/06/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
NONCONTACT ELECTRIC POWER FEEDING APPARATUS, NONCONTACT ELECTRIC POWER RECEIVING APPARATUS, NONCONTACT ELECTRIC POWER FEEDING METHOD, NONCONTACT ELECTRIC POWER RECEIVING METHOD, AND NONCONTACT ELECTRIC POWER FEEDING SYSTEM | ||
Patent #
US 20110049995A1
Filed 07/30/2010
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110074218A1
Filed 11/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Soldier system wireless power and data transmission | ||
Patent #
US 20110031928A1
Filed 10/13/2010
|
Current Assignee
Cynetic Designs Ltd.
|
Original Assignee
Cynetic Designs Ltd.
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q RESONATORS USING FIELD SHAPING TO IMPROVE K | ||
Patent #
US 20110043049A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING OBJECT POSITIONING FOR LOW LOSS | ||
Patent #
US 20110043048A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
PACKAGING AND DETAILS OF A WIRELESS POWER DEVICE | ||
Patent #
US 20110025131A1
Filed 10/01/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
IMPLANTABLE PULSE GENERATOR FOR PROVIDING FUNCTIONAL AND/OR THERAPEUTIC STIMULATION OF MUSCLES AND/OR NERVES AND/OR CENTRAL NERVOUS SYSTEM TISSUE | ||
Patent #
US 20110004269A1
Filed 06/28/2010
|
Current Assignee
Medtronic Urinary Solutions Inc.
|
Original Assignee
Medtronic Urinary Solutions Inc.
|
WIRELESS ENERGY TRANSFER USING FIELD SHAPING TO REDUCE LOSS | ||
Patent #
US 20110043047A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Contactless battery charging apparel | ||
Patent #
US 7,863,859 B2
Filed 06/28/2006
|
Current Assignee
Cynetic Designs Ltd.
|
Original Assignee
Cynetic Designs Ltd.
|
WIRELESS ENERGY TRANSFER RESONATOR THERMAL MANAGEMENT | ||
Patent #
US 20110121920A1
Filed 02/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110089895A1
Filed 11/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
SELECTIVE WIRELESS POWER TRANSFER | ||
Patent #
US 20110115431A1
Filed 08/04/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER USING REPEATER RESONATORS | ||
Patent #
US 20110095618A1
Filed 04/13/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTIPLE USE WIRELESS POWER SYSTEMS | ||
Patent #
US 20110115303A1
Filed 11/18/2010
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Noncontact power transmission system and power transmitting device | ||
Patent #
US 7,923,870 B2
Filed 03/13/2008
|
Current Assignee
Seiko Epson Corporation
|
Original Assignee
Seiko Epson Corporation
|
Wireless charger system for battery pack solution and controlling method thereof | ||
Patent #
US 7,948,209 B2
Filed 09/13/2007
|
Current Assignee
Intel Corporation
|
Original Assignee
Hanrim Postech Co. Ltd.
|
Inductive power source and charging system | ||
Patent #
US 7,952,322 B2
Filed 01/30/2007
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
System, an inductive power device, an energizable load and a method for enabling a wireless power transfer | ||
Patent #
US 7,932,798 B2
Filed 03/09/2006
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Foreign Object Detection in Inductive Coupled Devices | ||
Patent #
US 20110128015A1
Filed 10/29/2010
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Installation | ||
Patent #
US 7,969,045 B2
Filed 05/10/2007
|
Current Assignee
Sew-Eurodrive GmbH Company KG
|
Original Assignee
Sew-Eurodrive GmbH Company KG
|
Intra-abdominal medical method and associated device | ||
Patent #
US 7,963,941 B2
Filed 03/22/2006
|
Current Assignee
WILK Patent LLC
|
Original Assignee
Peter J. Wilk
|
ADAPTIVE WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20110140544A1
Filed 02/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
SHORT RANGE EFFICIENT WIRELESS POWER TRANSFER | ||
Patent #
US 20110148219A1
Filed 02/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Power receiving device and power transfer system | ||
Patent #
US 7,919,886 B2
Filed 08/29/2008
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
POWER SUPPLY SYSTEM AND METHOD OF CONTROLLING POWER SUPPLY SYSTEM | ||
Patent #
US 20110221278A1
Filed 05/20/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
METHOD AND APPARATUS OF LOAD DETECTION FOR A PLANAR WIRELESS POWER SYSTEM | ||
Patent #
US 20110169339A1
Filed 03/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
FLAT, ASYMMETRIC, AND E-FIELD CONFINED WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20110198939A1
Filed 03/04/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110193419A1
Filed 02/28/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESSLY POWERED SPEAKER | ||
Patent #
US 20110181122A1
Filed 04/01/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wirelessly-chargeable stretch-resistant light-emitting or heat-emitting structure | ||
Patent #
US 20110215086A1
Filed 02/23/2011
|
Current Assignee
WindStream Technology Co. Ltd.
|
Original Assignee
Winharbor Technology Co. Ltd.
|
System to automatically recharge vehicles with batteries | ||
Patent #
US 7,999,506 B1
Filed 04/09/2008
|
Current Assignee
SeventhDigit Corporation
|
Original Assignee
SeventhDigit Corporation
|
ADAPTIVE MATCHING, TUNING, AND POWER TRANSFER OF WIRELESS POWER | ||
Patent #
US 20110227528A1
Filed 05/13/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Energy transferring system and method thereof | ||
Patent #
US 7,994,880 B2
Filed 06/19/2008
|
Current Assignee
Darfon Electronics Corporation
|
Original Assignee
Darfon Electronics Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20110193416A1
Filed 01/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSMISSION FOR PORTABLE WIRELESS POWER CHARGING | ||
Patent #
US 20110227530A1
Filed 05/26/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,022,576 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
NONCONTACT ELECTRIC POWER RECEIVING DEVICE, NONCONTACT ELECTRIC POWER TRANSMITTING DEVICE, NONCONTACT ELECTRIC POWER FEEDING SYSTEM, AND ELECTRICALLY POWERED VEHICLE | ||
Patent #
US 20110162895A1
Filed 03/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Transmitters and receivers for wireless energy transfer | ||
Patent #
US 20110266878A9
Filed 09/16/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
WIRELESS POWER TRANSMISSION SYSTEM | ||
Patent #
US 20110248573A1
Filed 04/06/2011
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Panasonic Corporation
|
WIRELESS POWER TRANSMISSION IN ELECTRIC VEHICLES | ||
Patent #
US 20110254377A1
Filed 04/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
METHODS AND SYSTEMS FOR WIRELESS POWER TRANSMISSION | ||
Patent #
US 20110241618A1
Filed 06/17/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
System including wearable power receiver and wearable power-output device | ||
Patent #
US 20110278943A1
Filed 05/11/2010
|
Current Assignee
Searete LLC
|
Original Assignee
Searete LLC
|
WIRELESS POWER ANTENNA ALIGNMENT ADJUSTMENT SYSTEM FOR VEHICLES | ||
Patent #
US 20110254503A1
Filed 04/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
Wireless energy transfer using planar capacitively loaded conducting loop resonators | ||
Patent #
US 8,035,255 B2
Filed 11/06/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
OPTIMIZATION OF WIRELESS POWER DEVICES | ||
Patent #
US 20100244576A1
Filed 02/25/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
PHASED ARRAY WIRELESS RESONANT POWER DELIVERY SYSTEM | ||
Patent #
US 20100033021A1
Filed 09/30/2008
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20100164296A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH FEEDBACK CONTROL FOR LIGHTING APPLICATIONS | ||
Patent #
US 20100201203A1
Filed 02/02/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR REFRIGERATOR APPLICATION | ||
Patent #
US 20100181843A1
Filed 03/11/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER FOR CHARGEABLE AND CHARGING DEVICES | ||
Patent #
US 20100225272A1
Filed 01/28/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
REDUCED JAMMING BETWEEN RECEIVERS AND WIRELESS POWER TRANSMITTERS | ||
Patent #
US 20100151808A1
Filed 11/05/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS HIGH POWER TRANSFER UNDER REGULATORY CONSTRAINTS | ||
Patent #
US 20100117596A1
Filed 07/06/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
Self-Charging Electric Vehicles and Aircraft, and Wireless Energy Distribution System | ||
Patent #
US 20100231163A1
Filed 09/26/2008
|
Current Assignee
Paradigm Shift Solutions
|
Original Assignee
Governing Dynamics LLC
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100289449A1
Filed 12/18/2008
|
Current Assignee
Nokia Corporation
|
Original Assignee
Nokia Technologies Oy
|
WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20100187913A1
Filed 04/06/2010
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
EFFICIENCY INDICATOR FOR INCREASING EFFICIENCY OF WIRELESS POWER TRANSFER | ||
Patent #
US 20100201513A1
Filed 10/16/2009
|
Current Assignee
Avago Technologies International Sales Pte Limited
|
Original Assignee
Broadcom Corporation
|
WIRELESS TRANSFER OF INFORMATION USING MAGNETO-ELECTRIC DEVICES | ||
Patent #
US 20100015918A1
Filed 07/17/2009
|
Current Assignee
Ferro Solutions Inc.
|
Original Assignee
Ferro Solutions Inc.
|
METHOD AND APPARATUS FOR SUPPLYING ENERGY TO A MEDICAL DEVICE | ||
Patent #
US 20100234922A1
Filed 10/10/2008
|
Current Assignee
Kirk Promotion Ltd.
|
Original Assignee
Teslux Holding SA
|
WIRELESS POWER TRANSFER SYSTEM AND A LOAD APPARATUS IN THE SAME WIRELESS POWER TRANSFER SYSTEM | ||
Patent #
US 20100164295A1
Filed 11/16/2009
|
Current Assignee
Maxell Ltd.
|
Original Assignee
Hitachi Consumer Electronics Company Limited
|
Security for wireless transfer of electrical power | ||
Patent #
US 20100276995A1
Filed 04/29/2009
|
Current Assignee
Alcatel-Lucent USA Inc.
|
Original Assignee
Alcatel-Lucent USA Inc.
|
WIRELESS POWER TRANSFER FOR FURNISHINGS AND BUILDING ELEMENTS | ||
Patent #
US 20100201202A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESSLY POWERED SPEAKER | ||
Patent #
US 20100081379A1
Filed 09/25/2009
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
ELECTRICAL POWERED VEHICLE AND POWER FEEDING DEVICE FOR VEHICLE | ||
Patent #
US 20100225271A1
Filed 09/25/2008
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
APPLICATIONS OF WIRELESS ENERGY TRANSFER USING COUPLED ANTENNAS | ||
Patent #
US 20100117456A1
Filed 01/15/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER AND DATA TRANSFER FOR ELECTRONIC DEVICES | ||
Patent #
US 20100194335A1
Filed 11/06/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
EFFICIENT NEAR-FIELD WIRELESS ENERGY TRANSFER USING ADIABATIC SYSTEM VARIATIONS | ||
Patent #
US 20100148589A1
Filed 10/01/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
INDUCTIVELY RECHARGEABLE EXTERNAL ENERGY SOURCE, CHARGER, SYSTEM AND METHOD FOR A TRANSCUTANEOUS INDUCTIVE CHARGER FOR AN IMPLANTABLE MEDICAL DEVICE | ||
Patent #
US 20100076524A1
Filed 10/28/2009
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
SYSTEM FOR ELECTRICAL POWER SUPPLY AND FOR TRANSMITTING DATA WITHOUT ELECTRICAL CONTACT | ||
Patent #
US 20100104031A1
Filed 03/10/2008
|
Current Assignee
Delachaux SA
|
Original Assignee
Delachaux SA
|
RESONANCE-TYPE NON-CONTACT CHARGING APPARATUS | ||
Patent #
US 20100156346A1
Filed 12/23/2009
|
Current Assignee
Toyota Jidoshi Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Jidoshokki
|
INCREASING EFFICIENCY OF WIRELESS POWER TRANSFER | ||
Patent #
US 20100201313A1
Filed 10/16/2009
|
Current Assignee
Avago Technologies International Sales Pte Limited
|
Original Assignee
Broadcom Corporation
|
BIDIRECTIONAL WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100148723A1
Filed 09/01/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Narrow spectrum light source | ||
Patent #
US 7,835,417 B2
Filed 07/15/2008
|
Current Assignee
OctroliX B.V.
|
Original Assignee
OctroliX B.V.
|
WIRELESS POWER TRANSFER IN PUBLIC PLACES | ||
Patent #
US 20100201201A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
NONCONTACT ELECTRIC POWER RECEIVING DEVICE, NONCONTACT ELECTRIC POWER TRANSMITTING DEVICE, NONCONTACT ELECTRIC POWER FEEDING SYSTEM, AND ELECTRICALLY POWERED VEHICLE | ||
Patent #
US 20100065352A1
Filed 08/27/2009
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
WIRELESS POWER TRANSFER FOR CHARGEABLE DEVICES | ||
Patent #
US 20100225270A1
Filed 10/22/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
PACKAGING AND DETAILS OF A WIRELESS POWER DEVICE | ||
Patent #
US 20100327661A1
Filed 09/10/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER USING COUPLED RESONATORS | ||
Patent #
US 20100117455A1
Filed 01/15/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RETROFITTING WIRELESS POWER AND NEAR-FIELD COMMUNICATION IN ELECTRONIC DEVICES | ||
Patent #
US 20100194334A1
Filed 11/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20100141042A1
Filed 09/25/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER OVER DISTANCES TO A MOVING DEVICE | ||
Patent #
US 20100187911A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSFER WITH LIGHTING | ||
Patent #
US 20100194207A1
Filed 02/04/2010
|
Current Assignee
David S. Graham
|
Original Assignee
David S. Graham
|
WIRELESS POWER TRANSFER FOR PORTABLE ENCLOSURES | ||
Patent #
US 20100201312A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Coupling system | ||
Patent #
US 7,825,544 B2
Filed 11/29/2006
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
RESONATORS AND THEIR COUPLING CHARACTERISTICS FOR WIRELESS POWER TRANSFER VIA MAGNETIC COUPLING | ||
Patent #
US 20100327660A1
Filed 08/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ADAPTIVE MATCHING AND TUNING OF HF WIRELESS POWER TRANSMIT ANTENNA | ||
Patent #
US 20100117454A1
Filed 07/17/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER DISTRIBUTION SYSTEM AND METHOD FOR POWER TOOLS | ||
Patent #
US 20100181964A1
Filed 01/22/2010
|
Current Assignee
Techtronic Power Tools Technology Limited
|
Original Assignee
Techtronic Power Tools Technology Limited
|
SYSTEMS AND METHODS FOR ELECTRIC VEHICLE CHARGING AND POWER MANAGEMENT | ||
Patent #
US 20100017249A1
Filed 07/13/2009
|
Current Assignee
Charge Fusion Technologies LLC
|
Original Assignee
Charge Fusion Technologies LLC
|
Resonator for wireless power transmission | ||
Patent #
US 20100156570A1
Filed 12/17/2009
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
WIRELESS ENERGY TRANSFER OVER A DISTANCE WITH DEVICES AT VARIABLE DISTANCES | ||
Patent #
US 20100207458A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Method and Apparatus of Load Detection for a Planar Wireless Power System | ||
Patent #
US 20100066349A1
Filed 09/12/2008
|
Current Assignee
University of Florida Research Foundation Incorporated
|
Original Assignee
University of Florida Research Foundation Incorporated
|
Multilayer structures for magnetic shielding | ||
Patent #
US 7,795,708 B2
Filed 06/02/2006
|
Current Assignee
Honeywell International Inc.
|
Original Assignee
Honeywell International Inc.
|
CONCURRENT WIRELESS POWER TRANSMISSION AND NEAR-FIELD COMMUNICATION | ||
Patent #
US 20100190436A1
Filed 08/25/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20100109445A1
Filed 11/06/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Short Range Efficient Wireless Power Transfer | ||
Patent #
US 20100038970A1
Filed 04/21/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
Wireless energy transfer | ||
Patent #
US 7,825,543 B2
Filed 03/26/2008
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
APPARATUS FOR DRIVING ARTIFICIAL RETINA USING MEDIUM-RANGE WIRELESS POWER TRANSMISSION TECHNIQUE | ||
Patent #
US 20100094381A1
Filed 06/04/2009
|
Current Assignee
Electronics and Telecommunications Research Institute
|
Original Assignee
Electronics and Telecommunications Research Institute
|
RECEIVE ANTENNA ARRANGEMENT FOR WIRELESS POWER | ||
Patent #
US 20100210233A1
Filed 09/04/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
RESONATOR ARRAYS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100237709A1
Filed 05/28/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wirelessly Powered Medical Devices And Instruments | ||
Patent #
US 20100179384A1
Filed 08/21/2009
|
Current Assignee
KARL Storz Development Corp.
|
Original Assignee
KARL Storz Development Corp.
|
MULTI POWER SOURCED ELECTRIC VEHICLE | ||
Patent #
US 20100109604A1
Filed 05/09/2008
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
WIRELESS ENERGY TRANSFER WITH FREQUENCY HOPPING | ||
Patent #
US 20100171368A1
Filed 12/31/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER INFRASTRUCTURE | ||
Patent #
US 20100256831A1
Filed 04/03/2009
|
Current Assignee
International Business Machines Corporation
|
Original Assignee
International Business Machines Corporation
|
Apparatus and system for transmitting power wirelessly | ||
Patent #
US 7,843,288 B2
Filed 04/30/2008
|
Current Assignee
Samsung Electronics Co. Ltd., Postech Academy-Industry Foundation
|
Original Assignee
Samsung Electronics Co. Ltd., Postech Academy-Industry Foundation
|
WIRELESS ENERGY TRANSFER BETWEEN A SOURCE AND A VEHICLE | ||
Patent #
US 20100277121A1
Filed 04/29/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q TO MORE THAN ONE DEVICE | ||
Patent #
US 20100127575A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ADAPTIVE WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20100045114A1
Filed 08/20/2009
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
WIRELESS POWER TRANSFER SYSTEM | ||
Patent #
US 20100201310A1
Filed 04/10/2009
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
Apparatus for wireless power transmission using high Q low frequency near magnetic field resonator | ||
Patent #
US 20100123530A1
Filed 11/17/2009
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
ANTENNA SHARING FOR WIRELESSLY POWERED DEVICES | ||
Patent #
US 20100222010A1
Filed 01/28/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
MAGNETIC INDUCTIVE CHARGING WITH LOW FAR FIELDS | ||
Patent #
US 20100244767A1
Filed 03/27/2009
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
MAXIMIZING POWER YIELD FROM WIRELESS POWER MAGNETIC RESONATORS | ||
Patent #
US 20100171370A1
Filed 03/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER APPARATUS AND WIRELESS POWER-RECEIVING METHOD | ||
Patent #
US 20100244583A1
Filed 03/31/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
SYSTEM AND METHOD FOR CHARGING A PLUG-IN ELECTRIC VEHICLE | ||
Patent #
US 20100156355A1
Filed 12/19/2008
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
GM Global Technology Operations Incorporated
|
POWER TRANSMITTING APPARATUS | ||
Patent #
US 20100244839A1
Filed 03/15/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
PASSIVE RECEIVERS FOR WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100190435A1
Filed 08/24/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
SPREAD SPECTRUM WIRELESS RESONANT POWER DELIVERY | ||
Patent #
US 20100034238A1
Filed 09/30/2008
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
NON-CONTACT POWER TRANSMISSION DEVICE | ||
Patent #
US 20100052431A1
Filed 09/01/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
NON-CONTACT POWER TRANSMISSION APPARATUS AND METHOD FOR DESIGNING NON-CONTACT POWER TRANSMISSION APPARATUS | ||
Patent #
US 20100115474A1
Filed 11/03/2009
|
Current Assignee
Toyota Industries Corporation
|
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
|
TRANSMITTERS AND RECEIVERS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100237708A1
Filed 03/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Noncontact Electric Power Transmission System | ||
Patent #
US 20100219696A1
Filed 02/19/2010
|
Current Assignee
Murata Manufacturing Co Limited
|
Original Assignee
TOKO Incorporated
|
PARASITIC DEVICES FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20100277120A1
Filed 04/08/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q SUB-WAVELENGTH RESONATORS | ||
Patent #
US 20100123355A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q AT HIGH EFFICIENCY | ||
Patent #
US 20100127574A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSMISSION SCHEDULING | ||
Patent #
US 20100253281A1
Filed 03/02/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Power Transfer Apparatus | ||
Patent #
US 20100244582A1
Filed 03/30/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS POWERING AND CHARGING STATION | ||
Patent #
US 20100277005A1
Filed 07/16/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
NONCONTACT POWER RECEIVING APPARATUS AND VEHICLE INCLUDING THE SAME | ||
Patent #
US 20100295506A1
Filed 09/19/2008
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
TRANSMITTERS FOR WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100184371A1
Filed 09/16/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
TRACKING RECEIVER DEVICES WITH WIRELESS POWER SYSTEMS, APPARATUSES, AND METHODS | ||
Patent #
US 20100248622A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
GLAZING | ||
Patent #
US 20100060077A1
Filed 11/07/2007
|
Current Assignee
Pilkington Automotive Deutschland GmbH
|
Original Assignee
Pilkington Automotive Deutschland GmbH
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q DEVICES AT VARIABLE DISTANCES | ||
Patent #
US 20100123354A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
IMPEDANCE CHANGE DETECTION IN WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100217553A1
Filed 12/17/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
INTEGRATED WIRELESS RESONANT POWER CHARGING AND COMMUNICATION CHANNEL | ||
Patent #
US 20100036773A1
Filed 09/30/2008
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
FLAT, ASYMMETRIC, AND E-FIELD CONFINED WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20100052811A1
Filed 08/20/2009
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20100102639A1
Filed 09/03/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES | ||
Patent #
US 20100102641A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q SIMILAR RESONANT FREQUENCY RESONATORS | ||
Patent #
US 20100096934A1
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER TO A MOVING DEVICE BETWEEN HIGH-Q RESONATORS | ||
Patent #
US 20100102640A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSMISSION FOR ELECTRONIC DEVICES | ||
Patent #
US 20100109443A1
Filed 07/27/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER OVER A DISTANCE AT HIGH EFFICIENCY | ||
Patent #
US 20100127573A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSMISSION FOR PORTABLE WIRELESS POWER CHARGING | ||
Patent #
US 20100127660A1
Filed 08/18/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q FROM MORE THAN ONE SOURCE | ||
Patent #
US 20100123353A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Power supply system and method of controlling power supply system | ||
Patent #
US 20100123452A1
Filed 10/13/2009
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES WITH HIGH-Q CAPACITIVELY-LOADED CONDUCTING-WIRE LOOPS | ||
Patent #
US 20100133919A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Magnetic Induction Devices And Methods For Producing Them | ||
Patent #
US 20100188183A1
Filed 06/12/2008
|
Current Assignee
Advanced Magnetic Solutions Limited
|
Original Assignee
Advanced Magnetic Solutions Limited
|
Wireless non-radiative energy transfer | ||
Patent #
US 7,741,734 B2
Filed 07/05/2006
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER OVER VARIABLE DISTANCES BETWEEN RESONATORS OF SUBSTANTIALLY SIMILAR RESONANT FREQUENCIES | ||
Patent #
US 20100133918A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ADAPTIVE POWER CONTROL FOR WIRELESS CHARGING | ||
Patent #
US 20100181961A1
Filed 11/10/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER ACROSS A DISTANCE TO A MOVING DEVICE | ||
Patent #
US 20100133920A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER USING MAGNETIC MATERIALS TO SHAPE FIELD AND REDUCE LOSS | ||
Patent #
US 20100164298A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TEMPERATURE COMPENSATION IN A WIRELESS TRANSFER SYSTEM | ||
Patent #
US 20100181845A1
Filed 03/30/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING CONDUCTING SURFACES TO SHAPE FIELDS AND REDUCE LOSS | ||
Patent #
US 20100164297A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
HIGH EFFICIENCY AND POWER TRANSFER IN WIRELESS POWER MAGNETIC RESONATORS | ||
Patent #
US 20100181844A1
Filed 03/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSFER FOR VEHICLES | ||
Patent #
US 20100201189A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER FOR CHARGING DEVICES | ||
Patent #
US 20100194206A1
Filed 11/13/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER CHARGING TIMING AND CHARGING CONTROL | ||
Patent #
US 20100213895A1
Filed 10/30/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
BIOLOGICAL EFFECTS OF MAGNETIC POWER TRANSFER | ||
Patent #
US 20100201205A1
Filed 04/23/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
INDUCED POWER TRANSMISSION CIRCUIT | ||
Patent #
US 20100213770A1
Filed 09/15/2008
|
Current Assignee
Hideo Kikuchi
|
Original Assignee
Hideo Kikuchi
|
NON-CONTACT POWER TRANSMISSION APPARATUS | ||
Patent #
US 20100201316A1
Filed 02/08/2010
|
Current Assignee
Toyota Industries Corporation
|
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
|
NON-CONTACT POWER TRANSMISSION APPARATUS | ||
Patent #
US 20100201204A1
Filed 02/08/2010
|
Current Assignee
Toyota Industries Corporation
|
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
|
INCREASING THE Q FACTOR OF A RESONATOR | ||
Patent #
US 20100237707A1
Filed 02/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ELECTRIC POWER SUPPLYING APPARATUS AND ELECTRIC POWER TRANSMITTING SYSTEM USING THE SAME | ||
Patent #
US 20100219695A1
Filed 02/18/2010
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
COIL UNIT, AND POWER TRANSMISSION DEVICE AND POWER RECEPTION DEVICE USING THE COIL UNIT | ||
Patent #
US 20100244579A1
Filed 03/19/2010
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Seiko Epson Corporation
|
WIRELESS ELECTRIC POWER SUPPLY METHOD AND WIRELESS ELECTRIC POWER SUPPLY APPARATUS | ||
Patent #
US 20100244581A1
Filed 03/29/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS ENERGY TRANSFER RESONATOR ENCLOSURES | ||
Patent #
US 20100231340A1
Filed 03/10/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER SYSTEM AND PROXIMITY EFFECTS | ||
Patent #
US 20100237706A1
Filed 02/19/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER IN LOSSY ENVIRONMENTS | ||
Patent #
US 20100219694A1
Filed 02/13/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
POWER TRANSMMISSION APPARATUS, POWER TRANSMISSION/RECEPTION APPARATUS, AND METHOD OF TRANSMITTING POWER | ||
Patent #
US 20100244578A1
Filed 03/16/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS POWER BRIDGE | ||
Patent #
US 20100225175A1
Filed 05/21/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER SUPPLY APPARATUS | ||
Patent #
US 20100244580A1
Filed 03/24/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS POWER RANGE INCREASE USING PARASITIC RESONATORS | ||
Patent #
US 20100231053A1
Filed 05/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER SUPPLY SYSTEM AND WIRELESS POWER SUPPLY METHOD | ||
Patent #
US 20100244577A1
Filed 03/11/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
Method and Apparatus for Automatic Charging of an Electrically Powered Vehicle | ||
Patent #
US 20100235006A1
Filed 04/22/2009
|
Current Assignee
Wendell Brown
|
Original Assignee
Wendell Brown
|
WIRELESS ENERGY TRANSFER CONVERTERS | ||
Patent #
US 20100264747A1
Filed 04/26/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
POWER TRANSMISSION DEVICE, POWER TRANSMISSION METHOD, POWER RECEPTION DEVICE, POWER RECEPTION METHOD, AND POWER TRANSMISSION SYSTEM | ||
Patent #
US 20100259109A1
Filed 04/06/2010
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
WIRELESS POWER TRANSMITTING SYSTEM, POWER RECEIVING STATION, POWER TRANSMITTING STATION, AND RECORDING MEDIUM | ||
Patent #
US 20100264746A1
Filed 03/30/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
LONG RANGE LOW FREQUENCY RESONATOR | ||
Patent #
US 20100253152A1
Filed 03/04/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER USING REPEATER RESONATORS | ||
Patent #
US 20100259108A1
Filed 03/10/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Method and Apparatus for Providing a Wireless Multiple-Frequency MR Coil | ||
Patent #
US 20100256481A1
Filed 09/29/2008
|
Current Assignee
University of Florida Research Foundation Incorporated
|
Original Assignee
University of Florida Research Foundation Incorporated
|
RESONATORS FOR WIRELESS POWER APPLICATIONS | ||
Patent #
US 20100264745A1
Filed 03/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RESONATOR OPTIMIZATIONS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100259110A1
Filed 04/09/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
PLANAR COIL AND CONTACTLESS ELECTRIC POWER TRANSMISSION DEVICE USING THE SAME | ||
Patent #
US 20100277004A1
Filed 12/24/2008
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Panasonic Corporation
|
MOBILE TERMINALS AND BATTERY PACKS FOR MOBILE TERMINALS | ||
Patent #
US 20100295505A1
Filed 05/24/2010
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Hanrim Postech Co. Ltd.
|
Power transmission network | ||
Patent #
US 7,844,306 B2
Filed 05/22/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Corporation
|
ADAPTIVE IMPEDANCE TUNING IN WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100277003A1
Filed 02/25/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
SYSTEMS AND METHODS RELATING TO MULTI-DIMENSIONAL WIRELESS CHARGING | ||
Patent #
US 20100289341A1
Filed 09/25/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
FLOOR COVERING AND INDUCTIVE POWER SYSTEM | ||
Patent #
US 20100314946A1
Filed 10/23/2007
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
INDUCTIVE POWER SYSTEM AND METHOD OF OPERATION | ||
Patent #
US 20100328044A1
Filed 10/16/2007
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
INTEGRATED RESONATOR-SHIELD STRUCTURES | ||
Patent #
US 20100308939A1
Filed 08/20/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Inductively powered secondary assembly | ||
Patent #
US 7,474,058 B2
Filed 11/10/2006
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
INDUCTIVE POWER SUPPLY, REMOTE DEVICE POWERED BY INDUCTIVE POWER SUPPLY AND METHOD FOR OPERATING SAME | ||
Patent #
US 20090010028A1
Filed 09/25/2008
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Wireless Energy Transfer Using Coupled Antennas | ||
Patent #
US 20090015075A1
Filed 07/09/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Wireless Power System and Proximity Effects | ||
Patent #
US 20090045772A1
Filed 06/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Transmitter head and system for contactless energy transmission | ||
Patent #
US 7,492,247 B2
Filed 02/20/2004
|
Current Assignee
Sew-Eurodrive GmbH Company KG
|
Original Assignee
Sew-Eurodrive GmbH Company KG
|
INCREASING THE Q FACTOR OF A RESONATOR | ||
Patent #
US 20090051224A1
Filed 08/11/2008
|
Current Assignee
Nigel Power LLC
|
Original Assignee
Nigel Power LLC
|
INDUCTIVE POWER TRANSFER SYSTEM FOR PALATAL IMPLANT | ||
Patent #
US 20090038623A1
Filed 08/15/2008
|
Current Assignee
Pavad Medical Inc.
|
Original Assignee
Pavad Medical Inc.
|
Deployable Antennas for Wireless Power | ||
Patent #
US 20090033564A1
Filed 08/02/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
CONTACT-LESS POWER SUPPLY, CONTACT-LESS CHARGER SYSTEMS AND METHOD FOR CHARGING RECHARGEABLE BATTERY CELL | ||
Patent #
US 20090033280A1
Filed 01/23/2007
|
Current Assignee
LS Cable And System Limited
|
Original Assignee
LS Cable Limited
|
POWER TRANSMISSION CONTROL DEVICE, POWER TRANSMITTING DEVICE, POWER-TRANSMITTING-SIDE DEVICE, AND NON-CONTACT POWER TRANSMISSION SYSTEM | ||
Patent #
US 20090079387A1
Filed 09/25/2008
|
Current Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
LONG RANGE LOW FREQUENCY RESONATOR AND MATERIALS | ||
Patent #
US 20090058189A1
Filed 08/11/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
CONTACTLESS POWER SUPPLY | ||
Patent #
US 20090067198A1
Filed 08/28/2008
|
Current Assignee
Powercast Corporation
|
Original Assignee
Michael Thomas Mcelhinny, David Jeffrey Graham, Jesse Frederick Goellner, Alexander Brailovsky
|
High Efficiency and Power Transfer in Wireless Power Magnetic Resonators | ||
Patent #
US 20090072629A1
Filed 09/16/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
VERSATILE APPARATUS AND METHOD FOR ELECTRONIC DEVICES | ||
Patent #
US 20090072782A1
Filed 03/05/2007
|
Current Assignee
Pure Energy Solutions Inc.
|
Original Assignee
Pure Energy Solutions Inc.
|
Antennas for Wireless Power applications | ||
Patent #
US 20090072628A1
Filed 09/14/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Systems and Methods for Wireless Power | ||
Patent #
US 20090058361A1
Filed 06/02/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Maximizing Power Yield from Wireless Power Magnetic Resonators | ||
Patent #
US 20090072627A1
Filed 09/14/2008
|
Current Assignee
Nigel Power LLC
|
Original Assignee
Nigel Power LLC
|
Transmitters and receivers for wireless energy transfer | ||
Patent #
US 20090079268A1
Filed 09/16/2008
|
Current Assignee
Nigel Power LLC
|
Original Assignee
Nigel Power LLC
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20090108679A1
Filed 10/30/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
ATI Technologies ULC
|
Power supply system | ||
Patent #
US 7,514,818 B2
Filed 10/24/2006
|
Current Assignee
Panasonic Electric Works Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
System and method for selective transfer of radio frequency power | ||
Patent #
US 7,521,890 B2
Filed 12/27/2005
|
Current Assignee
Power Science Inc.
|
Original Assignee
Power Science Inc.
|
SYSTEM AND METHOD FOR INDUCTIVE CHARGING OF PORTABLE DEVICES | ||
Patent #
US 20090096413A1
Filed 05/07/2008
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
Power adapter for a remote device | ||
Patent #
US 7,518,267 B2
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
SYSTEM, DEVICES, AND METHOD FOR ENERGIZING PASSIVE WIRELESS DATA COMMUNICATION DEVICES | ||
Patent #
US 20090108997A1
Filed 10/31/2007
|
Current Assignee
Intermec IP Corporation
|
Original Assignee
Intermec IP Corporation
|
APPARATUS AND METHOD FOR WIRELESS ENERGY AND/OR DATA TRANSMISSION BETWEEN A SOURCE DEVICE AND AT LEAST ONE TARGET DEVICE | ||
Patent #
US 20090085408A1
Filed 08/29/2008
|
Current Assignee
Maquet GmbH Company KG
|
Original Assignee
Maquet GmbH Company KG
|
PRINTED CIRCUIT BOARD COIL | ||
Patent #
US 20090085706A1
Filed 09/24/2008
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Biological Effects of Magnetic Power Transfer | ||
Patent #
US 20090102292A1
Filed 09/18/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
Contact-less power transfer | ||
Patent #
US 7,525,283 B2
Filed 02/28/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless Power Range Increase Using Parasitic Antennas | ||
Patent #
US 20090134712A1
Filed 11/26/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
SYSTEMS AND METHODS FOR WIRELESS PROCESSING AND ADAPTER-BASED COMMUNICATION WITH A MEDICAL DEVICE | ||
Patent #
US 20090115628A1
Filed 10/23/2007
|
Current Assignee
Medapps Incorporated
|
Original Assignee
Medapps Incorporated
|
Wireless Power Bridge | ||
Patent #
US 20090127937A1
Filed 02/29/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
NON-CONTACT WIRELESS COMMUNICATION APPARATUS, METHOD OF ADJUSTING RESONANCE FREQUENCY OF NON-CONTACT WIRELESS COMMUNICATION ANTENNA, AND MOBILE TERMINAL APPARATUS | ||
Patent #
US 20090146892A1
Filed 11/14/2008
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated
|
ENERGY TRANSFERRING SYSTEM AND METHOD THEREOF | ||
Patent #
US 20090153273A1
Filed 06/19/2008
|
Current Assignee
Darfon Electronics Corporation
|
Original Assignee
Darfon Electronics Corporation
|
Projector, and mobile device and computer device having the same | ||
Patent #
US 20090161078A1
Filed 12/21/2007
|
Current Assignee
OCULON OPTOELECTRONICS INC.
|
Original Assignee
OCULON OPTOELECTRONICS INC.
|
Antenna arrangement for inductive power transmission and use of the antenna arrangement | ||
Patent #
US 7,545,337 B2
Filed 11/13/2006
|
Current Assignee
Vacuumschmelze GmbH Company KG
|
Original Assignee
Vacuumschmelze GmbH Company KG
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20090160261A1
Filed 12/19/2007
|
Current Assignee
Nokia Corporation
|
Original Assignee
Nokia Corporation
|
Controlling inductive power transfer systems | ||
Patent #
US 7,554,316 B2
Filed 05/11/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless powering and charging station | ||
Patent #
US 20090179502A1
Filed 01/14/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Wireless Power Transfer using Magneto Mechanical Systems | ||
Patent #
US 20090167449A1
Filed 10/13/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
VEHICLE POWER SUPPLY APPARATUS AND VEHICLE WINDOW MEMBER | ||
Patent #
US 20090189458A1
Filed 01/21/2009
|
Current Assignee
Nippon Soken Inc., Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
OVEN WITH WIRELESS TEMPERATURE SENSOR FOR USE IN MONITORING FOOD TEMPERATURE | ||
Patent #
US 20090188396A1
Filed 08/05/2008
|
Current Assignee
Premark FEG LLC
|
Original Assignee
Premark FEG LLC
|
INDUCTIVE POWER SUPPLY WITH DUTY CYCLE CONTROL | ||
Patent #
US 20090174263A1
Filed 01/07/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090195333A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090195332A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless desktop IT environment | ||
Patent #
US 20090212636A1
Filed 01/11/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Antennas and Their Coupling Characteristics for Wireless Power Transfer via Magnetic Coupling | ||
Patent #
US 20090213028A1
Filed 02/26/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
APPARATUS, A SYSTEM AND A METHOD FOR ENABLING ELECTROMAGNETIC ENERGY TRANSFER | ||
Patent #
US 20090237194A1
Filed 09/11/2007
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20090224856A1
Filed 05/08/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Packaging and Details of a Wireless Power device | ||
Patent #
US 20090224609A1
Filed 03/09/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Contactless Battery Charging Apparel | ||
Patent #
US 20090218884A1
Filed 06/28/2006
|
Current Assignee
Cynetic Designs Ltd.
|
Original Assignee
Cynetic Designs Ltd.
|
CHARGING APPARATUS | ||
Patent #
US 20090224723A1
Filed 03/06/2009
|
Current Assignee
Canon Kabushiki Kaisha
|
Original Assignee
Canon Kabushiki Kaisha
|
Ferrite Antennas for Wireless Power Transfer | ||
Patent #
US 20090224608A1
Filed 02/23/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
INDUCTIVE POWER SUPPLY SYSTEM WITH MULTIPLE COIL PRIMARY | ||
Patent #
US 20090230777A1
Filed 03/12/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power Transmitting Apparatus, Power Transmission Method, Program, and Power Transmission System | ||
Patent #
US 20090271048A1
Filed 04/27/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
POWER TRANSMITTING APPARATUS, POWER RECEIVING APPARATUS, POWER TRANSMISSION METHOD, PROGRAM, AND POWER TRANSMISSION SYSTEM | ||
Patent #
US 20090271047A1
Filed 04/23/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Tuning and Gain Control in Electro-Magnetic power systems | ||
Patent #
US 20090243394A1
Filed 03/28/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Power Exchange Device, Power Exchange Method, Program, and Power Exchange System | ||
Patent #
US 20090251008A1
Filed 04/01/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Non-Contact Charger Available Of Wireless Data and Power Transmission, Charging Battery-Pack and Mobile Device Using Non-Contact Charger | ||
Patent #
US 20090261778A1
Filed 10/25/2006
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Hanrim Postech Co. Ltd.
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090267709A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090267710A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Low frequency transcutaneous energy transfer to implanted medical device | ||
Patent #
US 7,599,743 B2
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Packaging and Details of a Wireless Power device | ||
Patent #
US 20090243397A1
Filed 03/04/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Wireless Power Charging System | ||
Patent #
US 20090267558A1
Filed 06/26/2008
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Spacon Co. Ltd.
|
WIRELESS CHARGING MODULE AND ELECTRONIC APPARATUS | ||
Patent #
US 20090289595A1
Filed 10/09/2008
|
Current Assignee
Darfon Electronics Corporation
|
Original Assignee
Darfon Electronics Corporation
|
Inductively powered apparatus | ||
Patent #
US 7,615,936 B2
Filed 04/27/2007
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power Transmission Device, Power Transmission Method, Program, Power Receiving Device and Power Transfer System | ||
Patent #
US 20090281678A1
Filed 05/06/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
REVERSE LINK SIGNALING VIA RECEIVE ANTENNA IMPEDANCE MODULATION | ||
Patent #
US 20090286476A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
SIGNALING CHARGING IN WIRELESS POWER ENVIRONMENT | ||
Patent #
US 20090286475A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
TIME REMAINING TO CHARGE AN IMPLANTABLE MEDICAL DEVICE, CHARGER INDICATOR, SYSTEM AND METHOD THEREFORE | ||
Patent #
US 20090273318A1
Filed 04/30/2008
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
METHOD AND APPARATUS FOR AN ENLARGED WIRELESS CHARGING AREA | ||
Patent #
US 20090284218A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER TRANSFER FOR APPLIANCES AND EQUIPMENTS | ||
Patent #
US 20090284245A1
Filed 11/07/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
TRANSMIT POWER CONTROL FOR A WIRELESS CHARGING SYSTEM | ||
Patent #
US 20090284369A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
METHOD AND APPARATUS FOR ADAPTIVE TUNING OF WIRELESS POWER TRANSFER | ||
Patent #
US 20090284220A1
Filed 11/06/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER, INCLUDING INTERFERENCE ENHANCEMENT | ||
Patent #
US 20090284083A1
Filed 05/14/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RECEIVE ANTENNA FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20090284227A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless Delivery of power to a Fixed-Geometry power part | ||
Patent #
US 20090273242A1
Filed 05/05/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
REPEATERS FOR ENHANCEMENT OF WIRELESS POWER TRANSFER | ||
Patent #
US 20090286470A1
Filed 11/06/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
METHOD AND APPARATUS WITH NEGATIVE RESISTANCE IN WIRELESS POWER TRANSFERS | ||
Patent #
US 20090284082A1
Filed 11/06/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless power receiving device | ||
Patent #
US 20090308933A1
Filed 11/13/2007
|
Current Assignee
Semiconductor Energy Laboratory Co. Ltd.
|
Original Assignee
Semiconductor Energy Laboratory Co. Ltd.
|
Adaptive inductive power supply | ||
Patent #
US 7,639,514 B2
Filed 03/12/2007
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
CONTROLLING INDUCTIVE POWER TRANSFER SYSTEMS | ||
Patent #
US 20090322158A1
Filed 09/09/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless delivery of power to a mobile powered device | ||
Patent #
US 20090299918A1
Filed 05/28/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
POWER TRANSMISSION CONTROL DEVICE, POWER TRANSMISSION DEVICE, POWER RECEIVING CONTROL DEVICE, POWER RECEIVING DEVICE, AND ELECTRONIC APPARATUS | ||
Patent #
US 20090322280A1
Filed 06/23/2009
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Seiko Epson Corporation
|
Downhole Coils | ||
Patent #
US 20080012569A1
Filed 09/25/2007
|
Current Assignee
Schlumberger Technology Corporation
|
Original Assignee
Schlumberger Technology Corporation
|
Method and apparatus for delivering energy to an electrical or electronic device via a wireless link | ||
Patent #
US 20080014897A1
Filed 01/17/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ELECTROMAGNETIC PARASITIC POWER TRANSFER | ||
Patent #
US 20080036588A1
Filed 06/25/2007
|
Current Assignee
Securaplane Technologies Inc.
|
Original Assignee
Securaplane Technologies Inc.
|
MRI COMPATIBLE IMPLANTED ELECTRONIC MEDICAL DEVICE WITH POWER AND DATA COMMUNICATION CAPABILITY | ||
Patent #
US 20080051854A1
Filed 08/24/2007
|
Current Assignee
Kenergy Inc.
|
Original Assignee
Kenergy Inc.
|
ELECTRICAL WIRE AND METHOD OF FABRICATING THE ELECTRICAL WIRE | ||
Patent #
US 20080047727A1
Filed 10/31/2007
|
Current Assignee
Newire Incorporated
|
Original Assignee
Newire Incorporated
|
Flexible Circuit for Downhole Antenna | ||
Patent #
US 20080030415A1
Filed 08/02/2006
|
Current Assignee
Schlumberger Technology Corporation
|
Original Assignee
Schlumberger Technology Corporation
|
Method and apparatus for wireless power transmission | ||
Patent #
US 20080067874A1
Filed 09/14/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Biothermal power source for implantable devices | ||
Patent #
US 7,340,304 B2
Filed 09/13/2004
|
Current Assignee
Biomed Solutions LLC
|
Original Assignee
Biomed Solutions LLC
|
Inductive power adapter | ||
Patent #
US 7,378,817 B2
Filed 12/12/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Inductive battery charger | ||
Patent #
US 7,375,493 B2
Filed 12/12/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Inductively charged battery pack | ||
Patent #
US 7,375,492 B2
Filed 12/12/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Device for multicentric brain modulation, repair and interface | ||
Patent #
US 20080154331A1
Filed 12/21/2006
|
Current Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Original Assignee
E-Soc, University of Pittsburgh of The Commonwealth System of Higher Education
|
Portable electromagnetic navigation system | ||
Patent #
US 20080132909A1
Filed 12/01/2006
|
Current Assignee
Medtronic Navigation Incorporated
|
Original Assignee
Medtronic Navigation Incorporated
|
Inductively coupled ballast circuit | ||
Patent #
US 7,385,357 B2
Filed 11/28/2006
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
System and method for powering a load | ||
Patent #
US 7,382,636 B2
Filed 10/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
METHOD AND SYSTEM FOR POWER SAVING IN WIRELESS COMMUNICATIONS | ||
Patent #
US 20080176521A1
Filed 01/15/2008
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic instrument | ||
Patent #
US 20080197802A1
Filed 02/15/2008
|
Current Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
INDUCTIVELY COUPLED BALLAST CIRCUIT | ||
Patent #
US 20080191638A1
Filed 02/25/2008
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Transmission Of Power Supply For Robot Applications Between A First Member And A Second Member Arranged Rotatable Relative To One Another | ||
Patent #
US 20080197710A1
Filed 11/30/2005
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
WIRELESS POWER APPARATUS AND METHODS | ||
Patent #
US 20080211320A1
Filed 01/22/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
SYSTEM FOR INDUCTIVE POWER TRANSFER | ||
Patent #
US 20080238364A1
Filed 04/02/2007
|
Current Assignee
Visteon Global Technologies Incorporated
|
Original Assignee
Visteon Global Technologies Incorporated
|
Amplification Relay Device of Electromagnetic Wave and a Radio Electric Power Conversion Apparatus Using the Above Device | ||
Patent #
US 20080266748A1
Filed 07/29/2005
|
Current Assignee
Andong National University Industry Academic Cooperation Foundation, JC Protek Company Limited
|
Original Assignee
Andong National University Industry Academic Cooperation Foundation, JC Protek Company Limited
|
No point of contact charging system | ||
Patent #
US 7,443,135 B2
Filed 04/11/2005
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Hanrim Postech Co. Ltd.
|
High power wireless resonant energy transfer system | ||
Patent #
US 20080265684A1
Filed 10/25/2007
|
Current Assignee
Leslie Farkas
|
Original Assignee
Laszlo Farkas
|
Kiosk systems and methods | ||
Patent #
US 20080255901A1
Filed 03/26/2008
|
Current Assignee
Ryko Manufacturing Co.
|
Original Assignee
Ryko Manufacturing Co.
|
Monocular display device | ||
Patent #
US 20080291277A1
Filed 01/08/2008
|
Current Assignee
Kopin Corporation
|
Original Assignee
Kopin Corporation
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20080278264A1
Filed 03/26/2008
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Directional Display Apparatus | ||
Patent #
US 20080273242A1
Filed 05/28/2008
|
Current Assignee
AU Optronics Corporation
|
Original Assignee
Jonathan Harrold, Graham J. Woodgate
|
Tunable Dielectric Resonator Circuit | ||
Patent #
US 20080272860A1
Filed 05/01/2007
|
Current Assignee
Cobham Defense Electronic Systems Corporation
|
Original Assignee
MA Com
|
THERAPY SYSTEM | ||
Patent #
US 20080300657A1
Filed 11/20/2007
|
Current Assignee
ReShape LifeSciences Inc.
|
Original Assignee
ReShape LifeSciences Inc.
|
Resonator structure and method of producing it | ||
Patent #
US 7,466,213 B2
Filed 09/27/2004
|
Current Assignee
Qorvo Inc.
|
Original Assignee
NXP B.V.
|
Wireless battery charging | ||
Patent #
US 7,471,062 B2
Filed 06/12/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Portable inductive power station | ||
Patent #
US 7,462,951 B1
Filed 08/11/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power generation for implantable devices | ||
Patent #
US 20080300660A1
Filed 06/02/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Power transmission system, apparatus and method with communication | ||
Patent #
US 20070010295A1
Filed 07/06/2006
|
Current Assignee
Powercast Llc
|
Original Assignee
Firefly Power Technologies LLC
|
Passive dynamic antenna tuning circuit for a radio frequency identification reader | ||
Patent #
US 20070013483A1
Filed 06/29/2006
|
Current Assignee
Allflex USA Incorporated
|
Original Assignee
Allflex USA Incorporated
|
Implantable device for vital signs monitoring | ||
Patent #
US 20070016089A1
Filed 07/15/2005
|
Current Assignee
Angel Medical Systems Inc., Hi-Tronics Designs Inc.
|
Original Assignee
Angel Medical Systems Inc., Hi-Tronics Designs Inc.
|
Wireless power transmission systems and methods | ||
Patent #
US 20070021140A1
Filed 07/22/2005
|
Current Assignee
Emerson Process Management Power Water Solutions Incorporated
|
Original Assignee
Emerson Process Management Power Water Solutions Incorporated
|
Battery Chargers and Methods for Extended Battery Life | ||
Patent #
US 20070024246A1
Filed 07/27/2006
|
Current Assignee
David Flaugher
|
Original Assignee
David Flaugher
|
Inductively coupled ballast circuit | ||
Patent #
US 7,180,248 B2
Filed 10/22/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductive power transfer units having flux shields | ||
Patent #
US 20070064406A1
Filed 09/08/2004
|
Current Assignee
Amway Corporation
|
Original Assignee
Amway Corporation
|
Spatially decoupled twin secondary coils for optimizing transcutaneous energy transfer (TET) power transfer characteristics | ||
Patent #
US 7,191,007 B2
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Resonator system | ||
Patent #
US 7,193,418 B2
Filed 06/13/2005
|
Current Assignee
Bruker Switzerland AG
|
Original Assignee
Bruker Biospin AG
|
CHARGING APPARATUS AND CHARGING SYSTEM | ||
Patent #
US 20070069687A1
Filed 08/09/2006
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated
|
HIGH PERFORMANCE INTERCONNECT DEVICES & STRUCTURES | ||
Patent #
US 20070105429A1
Filed 11/06/2006
|
Current Assignee
Georgia Tech Research Corporation
|
Original Assignee
Georgia Tech Research Corporation
|
Radio-frequency (RF) power portal | ||
Patent #
US 20070117596A1
Filed 11/17/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Llc
|
Adaptive inductive power supply | ||
Patent #
US 7,212,414 B2
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
RADIO TAG AND SYSTEM | ||
Patent #
US 20070096875A1
Filed 05/22/2006
|
Current Assignee
Visible Assets Incorporated
|
Original Assignee
Visible Assets Incorporated
|
System and method for contact free transfer of power | ||
Patent #
US 20070145830A1
Filed 12/27/2005
|
Current Assignee
Power Science Inc.
|
Original Assignee
MOBILEWISE INC.
|
Antenna Arrangement For Inductive Power Transmission And Use Of The Antenna Arrangement | ||
Patent #
US 20070126650A1
Filed 11/13/2006
|
Current Assignee
Vacuumschmelze GmbH Company KG
|
Original Assignee
Vacuumschmelze GmbH Company KG
|
Power supply system | ||
Patent #
US 7,233,137 B2
Filed 09/23/2004
|
Current Assignee
Sharp Electronics Corporation
|
Original Assignee
Sharp Electronics Corporation
|
ADAPTIVE INDUCTIVE POWER SUPPLY | ||
Patent #
US 20070171681A1
Filed 03/12/2007
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method for monitoring end of life for battery | ||
Patent #
US 7,251,527 B2
Filed 07/31/2003
|
Current Assignee
Cardiac Pacemakers Incorporated
|
Original Assignee
Cardiac Pacemakers Incorporated
|
Primary units, methods and systems for contact-less power transfer | ||
Patent #
US 7,239,110 B2
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Portable contact-less power transfer devices and rechargeable batteries | ||
Patent #
US 7,248,017 B2
Filed 11/22/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
SPASHPOWER LIMITED
|
Electric machine signal selecting element | ||
Patent #
US 20070164839A1
Filed 06/13/2005
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Multi-receiver communication system with distributed aperture antenna | ||
Patent #
US 20070176840A1
Filed 02/06/2003
|
Current Assignee
Hamilton Sundstrand Corporation
|
Original Assignee
Hamilton Sundstrand Corporation
|
INDUCTIVE POWER SOURCE AND CHARGING SYSTEM | ||
Patent #
US 20070182367A1
Filed 01/30/2007
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
Method and system for powering an electronic device via a wireless link | ||
Patent #
US 20070178945A1
Filed 04/21/2006
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Systems and methods of medical monitoring according to patient state | ||
Patent #
US 20070208263A1
Filed 02/27/2007
|
Current Assignee
Angel Medical Systems Inc.
|
Original Assignee
Angel Medical Systems Inc.
|
Wireless non-radiative energy transfer | ||
Patent #
US 20070222542A1
Filed 07/05/2006
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless battery charger via carrier frequency signal | ||
Patent #
US 7,288,918 B2
Filed 03/02/2004
|
Current Assignee
Michael Vincent Distefano
|
Original Assignee
Michael Vincent Distefano
|
Device and Method of Non-Contact Energy Transmission | ||
Patent #
US 20070267918A1
Filed 04/29/2005
|
Current Assignee
Geir Gyland
|
Original Assignee
Geir Gyland
|
HOLSTER FOR CHARGING PECTORALLY IMPLANTED MEDICAL DEVICES | ||
Patent #
US 20070257636A1
Filed 04/27/2007
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Tool for an Industrial Robot | ||
Patent #
US 20070276538A1
Filed 04/06/2004
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Adaptive pulse width modulated resonant Class-D converter | ||
Patent #
US 5,986,895 A
Filed 06/05/1998
|
Current Assignee
Astec International Limited
|
Original Assignee
Astec International Limited
|
Coaxial cable | ||
Patent #
US 5,959,245 A
Filed 05/29/1997
|
Current Assignee
CommScope Inc.
|
Original Assignee
CommScope Inc.
|
Structure of signal transmission line | ||
Patent #
US 6,683,256 B2
Filed 03/27/2002
|
Current Assignee
Ta-San Kao
|
Original Assignee
Ta-San Kao
|
Tunable ferroelectric resonator arrangement | ||
Patent #
US 7,069,064 B2
Filed 02/20/2004
|
Current Assignee
Telefonaktiebolaget LM Ericsson
|
Original Assignee
Telefonaktiebolaget LM Ericsson
|
Planar resonator for wireless power transfer | ||
Patent #
US 6,960,968 B2
Filed 06/26/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Transponders, Interrogators, systems and methods for elimination of interrogator synchronization requirement | ||
Patent #
US 5,541,604 A
Filed 09/03/1993
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Operation in very close coupling of an electromagnetic transponder system | ||
Patent #
US 6,703,921 B1
Filed 04/05/2000
|
Current Assignee
Stmicroelectronics SA
|
Original Assignee
Stmicroelectronics SA
|
Systems and methods for automated resonant circuit tuning | ||
Patent #
US 20060001509A1
Filed 06/29/2005
|
Current Assignee
Stheno Corp.
|
Original Assignee
Phillip R. Gibbs
|
Thermal therapeutic method | ||
Patent #
US 20060010902A1
Filed 09/19/2005
|
Current Assignee
Dennis Sam Trinh, Albert Long Trinh, David Lam Trinh
|
Original Assignee
Dennis Sam Trinh, Albert Long Trinh, David Lam Trinh
|
Wireless and powerless sensor and interrogator | ||
Patent #
US 6,988,026 B2
Filed 11/04/2003
|
Current Assignee
American Vehicular Sciences LLC
|
Original Assignee
Automotive Technologies International Incorporated
|
Pulse frequency modulation for induction charge device | ||
Patent #
US 20060022636A1
Filed 07/30/2004
|
Current Assignee
KYE Systems Corporation
|
Original Assignee
KYE Systems Corporation
|
Method for authenticating a user to a service of a service provider | ||
Patent #
US 20060053296A1
Filed 05/23/2003
|
Current Assignee
Telefonaktiebolaget LM Ericsson
|
Original Assignee
Telefonaktiebolaget LM Ericsson
|
Contact-less power transfer | ||
Patent #
US 20060061323A1
Filed 10/28/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Self-adjusting RF assembly | ||
Patent #
US 20060066443A1
Filed 09/13/2005
|
Current Assignee
Tagsys SA
|
Original Assignee
Tagsys SA
|
Method and apparatus for a wireless power supply | ||
Patent #
US 7,027,311 B2
Filed 10/15/2004
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
Feedthrough filter capacitor assembly with internally grounded hermetic insulator | ||
Patent #
US 7,035,076 B1
Filed 08/15/2005
|
Current Assignee
Greatbatch Limited
|
Original Assignee
Greatbatch-Sierra Inc.
|
Ultrasonic rod waveguide-radiator | ||
Patent #
US 20060090956A1
Filed 11/04/2004
|
Current Assignee
Sergei L. Peshkovsky
|
Original Assignee
Advanced Ultrasound Solutions Inc.
|
Contact-less power transfer | ||
Patent #
US 7,042,196 B2
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Heating system and heater | ||
Patent #
US 20060132045A1
Filed 12/17/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Philips IP Ventures B.V.
|
Method and apparatus for a wireless power supply | ||
Patent #
US 20060164866A1
Filed 02/17/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Corporation
|
Device for brain stimulation using RF energy harvesting | ||
Patent #
US 20060184209A1
Filed 09/02/2005
|
Current Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Original Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Explantation of implantable medical device | ||
Patent #
US 20060184210A1
Filed 04/13/2006
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Sensor apparatus management methods and apparatus | ||
Patent #
US 20060181242A1
Filed 03/01/2006
|
Current Assignee
KLA-Tencor Corporation
|
Original Assignee
KLA-Tencor Corporation
|
Energy harvesting circuit | ||
Patent #
US 7,084,605 B2
Filed 10/18/2004
|
Current Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Original Assignee
University Of Pittsburgh
|
Actuator system for use in control of a sheet or web forming process | ||
Patent #
US 20060185809A1
Filed 02/23/2005
|
Current Assignee
ABB Limited
|
Original Assignee
ABB
|
Battery charging assembly for use on a locomotive | ||
Patent #
US 20060214626A1
Filed 03/25/2005
|
Current Assignee
KIM HOTSTART MANUFACTURING COMPANY
|
Original Assignee
KIM HOTSTART MANUFACTURING COMPANY
|
Adapting portable electrical devices to receive power wirelessly | ||
Patent #
US 20060205381A1
Filed 12/16/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method, apparatus and system for power transmission | ||
Patent #
US 20060199620A1
Filed 02/16/2006
|
Current Assignee
Powercast Llc
|
Original Assignee
Firefly Power Technologies LLC
|
Inductive powering surface for powering portable devices | ||
Patent #
US 20060202665A1
Filed 05/13/2005
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Inductively powered apparatus | ||
Patent #
US 7,126,450 B2
Filed 02/04/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Electric vehicle having multiple-use APU system | ||
Patent #
US 20060219448A1
Filed 03/08/2006
|
Current Assignee
Aptiv Technologies Limited
|
Original Assignee
Delphi Technologies Inc.
|
Inductive coil assembly | ||
Patent #
US 7,116,200 B2
Filed 04/27/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductively powered apparatus | ||
Patent #
US 7,118,240 B2
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Short-range wireless power transmission and reception | ||
Patent #
US 20060238365A1
Filed 09/12/2005
|
Current Assignee
Elio Vecchione, Conor Keegan
|
Original Assignee
Elio Vecchione, Conor Keegan
|
Biothermal power source for implantable devices | ||
Patent #
US 7,127,293 B2
Filed 03/28/2005
|
Current Assignee
Biomed Solutions LLC
|
Original Assignee
Biomed Solutions LLC
|
Inductive coil assembly | ||
Patent #
US 7,132,918 B2
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power transmission network | ||
Patent #
US 20060270440A1
Filed 05/22/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
High Q factor sensor | ||
Patent #
US 7,147,604 B1
Filed 08/07/2002
|
Current Assignee
St. Jude Medical Luxembourg Holdings Ii S.A.R.L.
|
Original Assignee
CardioMEMS Incorporated
|
Powering devices using RF energy harvesting | ||
Patent #
US 20060281435A1
Filed 06/06/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
System, method and apparatus for contact-less battery charging with dynamic control | ||
Patent #
US 6,844,702 B2
Filed 05/16/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Method of rendering a mechanical heart valve non-thrombogenic with an electrical device | ||
Patent #
US 20050021134A1
Filed 06/30/2004
|
Current Assignee
JS Vascular Inc.
|
Original Assignee
JS Vascular Inc.
|
Magnetically coupled antenna range extender | ||
Patent #
US 6,839,035 B1
Filed 10/07/2003
|
Current Assignee
CTT Corporation Systems
|
Original Assignee
CTT Corporation Systems
|
Vehicle interface | ||
Patent #
US 20050007067A1
Filed 06/18/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Multi-frequency piezoelectric energy harvester | ||
Patent #
US 6,858,970 B2
Filed 10/21/2002
|
Current Assignee
The Boeing Co.
|
Original Assignee
The Boeing Co.
|
Temperature regulated implant | ||
Patent #
US 20050033382A1
Filed 08/04/2004
|
Current Assignee
Cochlear Limited
|
Original Assignee
Peter Single
|
Energy transfer amplification for intrabody devices | ||
Patent #
US 20050027192A1
Filed 07/29/2003
|
Current Assignee
Biosense Webster Incorporated
|
Original Assignee
Biosense Webster Incorporated
|
Energy harvesting circuits and associated methods | ||
Patent #
US 6,856,291 B2
Filed 07/21/2003
|
Current Assignee
University Of Pittsburgh
|
Original Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Method and apparatus for efficient power/data transmission | ||
Patent #
US 20050085873A1
Filed 10/14/2004
|
Current Assignee
Alfred E. Mann Foundation For Scientific Research
|
Original Assignee
Alfred E. Mann Foundation For Scientific Research
|
Semiconductor photodetector | ||
Patent #
US 20050104064A1
Filed 03/03/2003
|
Current Assignee
The Provost Fellows and Scholars of the College of the Holy and Undivided Trinity of Queen Elizabeth near Dublin
|
Original Assignee
The Provost Fellows and Scholars of the College of the Holy and Undivided Trinity of Queen Elizabeth near Dublin
|
Inductively coupled ballast circuit | ||
Patent #
US 20050093475A1
Filed 10/22/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method and apparatus for a wireless power supply | ||
Patent #
US 20050104453A1
Filed 10/15/2004
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
Method of manufacturing a lamp assembly | ||
Patent #
US 20050116650A1
Filed 10/29/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Contact-less power transfer | ||
Patent #
US 20050140482A1
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Lily Ka-Lai Cheng, James Westwood Hay, Pilgrim Giles William Beart
|
Contact-less power transfer | ||
Patent #
US 20050116683A1
Filed 05/13/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Contact-less power transfer | ||
Patent #
US 6,906,495 B2
Filed 12/20/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Opportunistic power supply charge system for portable unit | ||
Patent #
US 20050127866A1
Filed 12/11/2003
|
Current Assignee
Symbol Technologies LLC
|
Original Assignee
Symbol Technologies Inc.
|
Inductively powered apparatus | ||
Patent #
US 20050127849A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Relaying apparatus and communication system | ||
Patent #
US 20050125093A1
Filed 09/21/2004
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Inductively powered apparatus | ||
Patent #
US 20050122059A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Inductively powered apparatus | ||
Patent #
US 20050122058A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Inductively powered apparatus | ||
Patent #
US 20050127850A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Contact-less power transfer | ||
Patent #
US 20050135122A1
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Lily Ka-Lai Cheng, James Westwood Hay, Pilgrim Giles William Beart
|
Inductively powered lamp assembly | ||
Patent #
US 6,917,163 B2
Filed 02/18/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Mach-Zehnder interferometer using photonic band gap crystals | ||
Patent #
US 6,917,431 B2
Filed 05/15/2002
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Charging apparatus by non-contact dielectric feeding | ||
Patent #
US 20050156560A1
Filed 04/04/2003
|
Current Assignee
ALPS Electric Company Limited
|
Original Assignee
ALPS Electric Company Limited
|
Transferring power between devices in a personal area network | ||
Patent #
US 20050151511A1
Filed 01/14/2004
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
Magnetic field production system, and configuration for wire-free supply of a large number of sensors and/or actuators using a magnetic field production system | ||
Patent #
US 6,937,130 B2
Filed 09/16/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Method and apparatus of using magnetic material with residual magnetization in transient electromagnetic measurement | ||
Patent #
US 20050189945A1
Filed 01/18/2005
|
Current Assignee
Baker Hughes Incorporated
|
Original Assignee
Baker Hughes Incorporated
|
Wireless battery charger via carrier frequency signal | ||
Patent #
US 20050194926A1
Filed 03/02/2004
|
Current Assignee
Michael Vincent Di Stefano
|
Original Assignee
Michael Vincent Di Stefano
|
Non-contact pumping of light emitters via non-radiative energy transfer | ||
Patent #
US 20050253152A1
Filed 05/11/2004
|
Current Assignee
Los Alamos National Security LLC
|
Original Assignee
Los Alamos National Security LLC
|
Subcutaneously implantable power supply | ||
Patent #
US 6,961,619 B2
Filed 07/08/2002
|
Current Assignee
Don E. Casey
|
Original Assignee
Don E. Casey
|
Charging of devices by microwave power beaming | ||
Patent #
US 6,967,462 B1
Filed 06/05/2003
|
Current Assignee
NasaGlenn Research Center
|
Original Assignee
NasaGlenn Research Center
|
Transcutaneous energy transfer primary coil with a high aspect ferrite core | ||
Patent #
US 20050288742A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Medical implant having closed loop transcutaneous energy transfer (TET) power transfer regulation circuitry | ||
Patent #
US 20050288739A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Incorporated
|
Low frequency transcutaneous energy transfer to implanted medical device | ||
Patent #
US 20050288741A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Inductive coil assembly | ||
Patent #
US 6,975,198 B2
Filed 04/27/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Low frequency transcutaneous telemetry to implanted medical device | ||
Patent #
US 20050288740A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Planar resonator for wireless power transfer | ||
Patent #
US 20040000974A1
Filed 06/26/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Radio frequency identification system for a fluid treatment system | ||
Patent #
US 6,673,250 B2
Filed 06/18/2002
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Low voltage electrified furniture unit | ||
Patent #
US 20040026998A1
Filed 06/12/2003
|
Current Assignee
Kimball International Incorporated
|
Original Assignee
Kimball International Incorporated
|
Coaxial cable and coaxial multicore cable | ||
Patent #
US 6,696,647 B2
Filed 05/23/2002
|
Current Assignee
Hitachi Cable Limited
|
Original Assignee
Hitachi Cable Limited
|
Oscillator module incorporating looped-stub resonator | ||
Patent #
US 20040100338A1
Filed 11/13/2003
|
Current Assignee
Microsemi Corporation
|
Original Assignee
Phasor Technologies Corporation
|
Inductively powered lamp assembly | ||
Patent #
US 6,731,071 B2
Filed 04/26/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Antenna with near-field radiation control | ||
Patent #
US 20040113847A1
Filed 12/12/2002
|
Current Assignee
Blackberry Limited
|
Original Assignee
Blackberry Limited
|
System for a machine having a large number of proximity sensors, as well as a proximity sensor, and a primary winding for this purpose | ||
Patent #
US 6,749,119 B2
Filed 12/11/2001
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Adaptive inductive power supply with communication | ||
Patent #
US 20040130915A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Enhanced RF wireless adaptive power provisioning system for small devices | ||
Patent #
US 20040130425A1
Filed 08/12/2003
|
Current Assignee
MOBILEWISE INC.
|
Original Assignee
MOBILEWISE INC.
|
Adaptive inductive power supply | ||
Patent #
US 20040130916A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Remote power recharge for electronic equipment | ||
Patent #
US 20040142733A1
Filed 12/29/2003
|
Current Assignee
Ronald J. Parise
|
Original Assignee
Ronald J. Parise
|
Adapter | ||
Patent #
US 20040150934A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Transmission of information from an implanted medical device | ||
Patent #
US 6,772,011 B2
Filed 08/20/2002
|
Current Assignee
TC1 LLC
|
Original Assignee
Thoratec LLC
|
System and method for wireless electrical power transmission | ||
Patent #
US 6,798,716 B1
Filed 06/19/2003
|
Current Assignee
BC SYSTEMS INC.
|
Original Assignee
BC SYSTEMS INC.
|
System and method for inductive charging a wireless mouse | ||
Patent #
US 20040189246A1
Filed 12/16/2003
|
Current Assignee
SelfCHARGE Inc.
|
Original Assignee
SelfCHARGE Inc.
|
Starter assembly for a gas discharge lamp | ||
Patent #
US 6,806,649 B2
Filed 02/18/2003
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Charging system for robot | ||
Patent #
US 20040201361A1
Filed 11/14/2003
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Alignment independent and self aligning inductive power transfer system | ||
Patent #
US 6,803,744 B1
Filed 10/31/2000
|
Current Assignee
Anthony Sabo
|
Original Assignee
Anthony Sabo
|
Inductively powered lamp assembly | ||
Patent #
US 6,812,645 B2
Filed 06/05/2003
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Communication system | ||
Patent #
US 20040233043A1
Filed 11/13/2003
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
Starter assembly for a gas discharge lamp | ||
Patent #
US 20040222751A1
Filed 05/20/2004
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Scott A. Mollema, Roy W. Kuennen, David W. Baarman
|
Inductive coil assembly | ||
Patent #
US 20040232845A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductively coupled ballast circuit | ||
Patent #
US 6,825,620 B2
Filed 09/18/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless power transmission | ||
Patent #
US 20040227057A1
Filed 04/07/2004
|
Current Assignee
AILOCOM OY
|
Original Assignee
AILOCOM OY
|
Sensor apparatus management methods and apparatus | ||
Patent #
US 20040267501A1
Filed 07/10/2004
|
Current Assignee
KLA-Tencor Corporation
|
Original Assignee
KLA-Tencor Corporation
|
Method of manufacturing a lamp assembly | ||
Patent #
US 6,831,417 B2
Filed 06/05/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method and apparatus for supplying contactless power | ||
Patent #
US 6,515,878 B1
Filed 08/07/1998
|
Current Assignee
MEINS-SINSLEY PARTNERSHIP
|
Original Assignee
MEINS-SINSLEY PARTNERSHIP
|
Proximity sensor | ||
Patent #
US 20030038641A1
Filed 09/03/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Vehicle slide door power supply apparatus and method of supplying power to vehicle slide door | ||
Patent #
US 6,535,133 B2
Filed 11/15/2001
|
Current Assignee
Yazaki Corporation
|
Original Assignee
Yazaki Corporation
|
Resonant frequency tracking system and method for use in a radio frequency (RF) power supply | ||
Patent #
US 20030071034A1
Filed 11/25/2002
|
Current Assignee
Ambrell Corporation
|
Original Assignee
Daniel J. Lincoln, Gary A. Schwenck, Leslie L. Thompson
|
Magnetic field production system, and configuration for wire-free supply of a large number of sensors and/or actuators using a magnetic field production system | ||
Patent #
US 20030062794A1
Filed 09/16/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Configuration for producing electrical power from a magnetic field | ||
Patent #
US 20030062980A1
Filed 09/09/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
RFID passive repeater system and apparatus | ||
Patent #
US 6,563,425 B2
Filed 08/08/2001
|
Current Assignee
Datalogic IP Tech S.r.l.
|
Original Assignee
Escort Memory Systems
|
Method and apparatus for communicating with medical device systems | ||
Patent #
US 6,561,975 B1
Filed 10/25/2000
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
High purity fine metal powders and methods to produce such powders | ||
Patent #
US 20030126948A1
Filed 12/10/2002
|
Current Assignee
PPG Industries Ohio Incorporated
|
Original Assignee
NanoProducts Corporation
|
Post-processed nanoscale powders and method for such post-processing | ||
Patent #
US 20030124050A1
Filed 03/29/2002
|
Current Assignee
PPG Industries Ohio Incorporated
|
Original Assignee
NANOPRODUCT CORPORATION
|
System for wirelessly supplying a large number of actuators of a machine with electrical power | ||
Patent #
US 6,597,076 B2
Filed 12/11/2001
|
Current Assignee
ABB Patent GmbH
|
Original Assignee
ABB Patent GmbH
|
System for the detection of cardiac events | ||
Patent #
US 6,609,023 B1
Filed 09/20/2002
|
Current Assignee
Angel Medical Systems Inc.
|
Original Assignee
Angel Medical Systems Inc.
|
Method and apparatus for charging sterilizable rechargeable batteries | ||
Patent #
US 20030160590A1
Filed 02/25/2003
|
Current Assignee
LIVATEC CORPORATION
|
Original Assignee
LIVATEC CORPORATION
|
Apparatus for energizing a remote station and related method | ||
Patent #
US 20030199778A1
Filed 06/11/2003
|
Current Assignee
University Of Pittsburgh
|
Original Assignee
Leonid Mats, Carl Taylor, Minhong Mi, Dmitry Gorodetsky, Lorenz Neureuter, Marlin Mickle, Chad Emahizer
|
Charge storage device | ||
Patent #
US 6,631,072 B1
Filed 08/24/2001
|
Current Assignee
Cap-Xx Ltd.
|
Original Assignee
Energy Storage Systems Inc.
|
Inductively powered apparatus | ||
Patent #
US 20030214255A1
Filed 02/04/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Reader for a radio frequency identification system having automatic tuning capability | ||
Patent #
US 6,650,227 B1
Filed 12/08/1999
|
Current Assignee
Assa Abloy AB
|
Original Assignee
HID Corporation
|
Wireless power transmission system with increased output voltage | ||
Patent #
US 6,664,770 B1
Filed 10/10/2001
|
Current Assignee
IQ-MOBIL ELECTRONICS GMBH.
|
Original Assignee
IQ- MOBIL GMBH
|
Low-power, high-modulation-index amplifier for use in battery-powered device | ||
Patent #
US 20020032471A1
Filed 08/31/2001
|
Current Assignee
Boston Scientific Neuromodulation Corporation
|
Original Assignee
Advanced Bionics Corporation
|
System for wirelessly supplying a large number of actuators of a machine with electrical power | ||
Patent #
US 20020118004A1
Filed 12/11/2001
|
Current Assignee
ABB Patent GmbH
|
Original Assignee
ABB Patent GmbH
|
Water treatment system with an inductively coupled ballast | ||
Patent #
US 6,436,299 B1
Filed 06/12/2000
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Amway Corporation
|
System for a machine having a large number of proximity sensors, as well as a proximity sensor, and a primary winding for this purpose | ||
Patent #
US 20020105343A1
Filed 12/11/2001
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Food intake restriction with wireless energy transfer | ||
Patent #
US 6,450,946 B1
Filed 02/11/2000
|
Current Assignee
Obtech Medical AG
|
Original Assignee
Obtech Medical AG
|
High quality-factor tunable resonator | ||
Patent #
US 6,452,465 B1
Filed 06/27/2000
|
Current Assignee
M-SQUARED FILTERS L.L.C.
|
Original Assignee
M-SQUARED FILTERS LLC
|
Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings | ||
Patent #
US 20020130642A1
Filed 02/27/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Detection of the distance between an electromagnetic transponder and a terminal | ||
Patent #
US 6,473,028 B1
Filed 04/05/2000
|
Current Assignee
Stmicroelectronics SA
|
Original Assignee
Stmicroelectronics SA
|
Inductively powered lamp unit | ||
Patent #
US 6,459,218 B2
Filed 02/12/2001
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
Control of inductive power transfer pickups | ||
Patent #
US 6,483,202 B1
Filed 07/24/2000
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
Rechargeable power supply system and method of protection against abnormal charging | ||
Patent #
US 20020167294A1
Filed 03/20/2002
|
Current Assignee
Acer Inc.
|
Original Assignee
International Business Machines Corporation
|
Reader/writer having coil arrangements to restrain electromagnetic field intensity at a distance | ||
Patent #
US 6,176,433 B1
Filed 05/15/1998
|
Current Assignee
Hitachi Ltd.
|
Original Assignee
Hitachi America Limited
|
Contactless battery charger with wireless control link | ||
Patent #
US 6,184,651 B1
Filed 03/20/2000
|
Current Assignee
Google Technology Holdings LLC
|
Original Assignee
Motorola Inc.
|
Miniature milliwatt electric power generator | ||
Patent #
US 6,207,887 B1
Filed 07/07/1999
|
Current Assignee
HI-Z Technology Inc.
|
Original Assignee
HI-Z Technology Inc.
|
Electrosurgical generator | ||
Patent #
US 6,238,387 B1
Filed 11/16/1998
|
Current Assignee
Microline Surgical Inc.
|
Original Assignee
Team Medical LLC
|
Integrated tunable high efficiency power amplifier | ||
Patent #
US 6,232,841 B1
Filed 07/01/1999
|
Current Assignee
OL Security LLC
|
Original Assignee
Rockwell Science Center LLC
|
Rechargeable hybrid battery/supercapacitor system | ||
Patent #
US 6,252,762 B1
Filed 04/21/1999
|
Current Assignee
Rutgers University
|
Original Assignee
Telcordia Technologies Incorporated
|
Method for discriminating between used and unused gas generators for air bags during car scrapping process | ||
Patent #
US 6,012,659 A
Filed 09/12/1997
|
Current Assignee
Daicel Chemical Industries Limited, Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Daicel Chemical Industries Limited, Toyota Jidosha Kabushiki Kaisha
|
System and method for powering, controlling, and communicating with multiple inductively-powered devices | ||
Patent #
US 6,047,214 A
Filed 06/09/1998
|
Current Assignee
North Carolina State University
|
Original Assignee
North Carolina State University
|
Adaptive brain stimulation method and system | ||
Patent #
US 6,066,163 A
Filed 02/02/1996
|
Current Assignee
Michael Sasha John
|
Original Assignee
Michael Sasha John
|
Implantable medical device using audible sound communication to provide warnings | ||
Patent #
US 6,067,473 A
Filed 03/31/1999
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Battery monitoring apparatus and method for programmers of cardiac stimulating devices | ||
Patent #
US 6,108,579 A
Filed 04/11/1997
|
Current Assignee
Pacesetter Incorporated
|
Original Assignee
Pacesetter Incorporated
|
Method and apparatus for wireless powering and recharging | ||
Patent #
US 6,127,799 A
Filed 05/14/1999
|
Current Assignee
Raytheon BBN Technlogies Corp.
|
Original Assignee
GTE Internetworking Incorporated
|
Ring antennas for resonant circuits | ||
Patent #
US 5,864,323 A
Filed 12/19/1996
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Inc.
|
Non-contact power distribution system | ||
Patent #
US 5,898,579 A
Filed 11/24/1997
|
Current Assignee
Auckland UniServices Limited, Daifuku Company Limited
|
Original Assignee
Auckland UniServices Limited, Daifuku Company Limited
|
Inductive battery charger | ||
Patent #
US 5,903,134 A
Filed 05/19/1998
|
Current Assignee
Tdk-Lambda Corporation
|
Original Assignee
Nippon Electric Industry Company Limited
|
Noncontact power transmitting apparatus | ||
Patent #
US 5,923,544 A
Filed 07/21/1997
|
Current Assignee
TDK Corporation
|
Original Assignee
TDK Corporation
|
Method and apparatus for controlling country specific frequency allocation | ||
Patent #
US 5,940,509 A
Filed 11/18/1997
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Intermec IP Corporation
|
Implantable cardioverter defibrillator having a smaller mass | ||
Patent #
US 5,957,956 A
Filed 11/03/1997
|
Current Assignee
Ela Medical S.A.
|
Original Assignee
Angeion Corporation
|
Carbon supercapacitor electrode materials | ||
Patent #
US 5,993,996 A
Filed 09/16/1997
|
Current Assignee
INORGANIC SPECIALISTS INC.
|
Original Assignee
INORGANIC SPECIALISTS INC.
|
Methods and systems for introducing electromagnetic radiation into photonic crystals | ||
Patent #
US 5,999,308 A
Filed 04/01/1998
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
H-field electromagnetic heating system for fusion bonding | ||
Patent #
US 5,710,413 A
Filed 03/29/1995
|
Current Assignee
3M Company
|
Original Assignee
3M Company
|
Nanostructure multilayer dielectric materials for capacitors and insulators | ||
Patent #
US 5,742,471 A
Filed 11/25/1996
|
Current Assignee
Lawrence Livermore National Security LLC
|
Original Assignee
Regents of the University of California
|
Connection system and connection method for an electric automotive vehicle | ||
Patent #
US 5,821,731 A
Filed 01/30/1997
|
Current Assignee
Sumitomo Wiring Systems Limited
|
Original Assignee
Sumitomo Wiring Systems Limited
|
Armature induction charging of moving electric vehicle batteries | ||
Patent #
US 5,821,728 A
Filed 07/22/1996
|
Current Assignee
Stanley A. Tollison
|
Original Assignee
Stanley A. Tollison
|
Method and apparatus for the suppression of far-field interference signals for implantable device data transmission systems | ||
Patent #
US 5,630,835 A
Filed 07/24/1995
|
Current Assignee
SIRROM CAPITAL CORPORATION
|
Original Assignee
CARDIAC CONTROL SYSTEMS INC.
|
Implantable stimulation device having means for optimizing current drain | ||
Patent #
US 5,697,956 A
Filed 06/02/1995
|
Current Assignee
Pacesetter Incorporated
|
Original Assignee
Pacesetter Incorporated
|
Transmitter-receiver for non-contact IC card system | ||
Patent #
US 5,703,573 A
Filed 01/11/1996
|
Current Assignee
Sony Chemicals Company Limited
|
Original Assignee
Sony Chemicals Company Limited
|
Inductive coupler for electric vehicle charger | ||
Patent #
US 5,703,461 A
Filed 06/27/1996
|
Current Assignee
KABUSHIKI KAIHSA TOYODA JIDOSHOKKI SEISAKUSHO
|
Original Assignee
Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
|
Oscillator-shuttle-circuit (OSC) networks for conditioning energy in higher-order symmetry algebraic topological forms and RF phase conjugation | ||
Patent #
US 5,493,691 A
Filed 12/23/1993
|
Current Assignee
BARRETT HOLDING LLC
|
Original Assignee
Terence W. Barrett
|
Inductive power pick-up coils | ||
Patent #
US 5,528,113 A
Filed 10/21/1994
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
Pacemaker with improved shelf storage capacity | ||
Patent #
US 5,522,856 A
Filed 09/20/1994
|
Current Assignee
VITATRON MEDICAL B.V.
|
Original Assignee
VITATRON MEDICAL B.V.
|
Induction charging apparatus | ||
Patent #
US 5,550,452 A
Filed 07/22/1994
|
Current Assignee
Kyushu Hitachi Maxell Ltd., Nintendo Company Limited
|
Original Assignee
Kyushu Hitachi Maxell Ltd., Nintendo Company Limited
|
Thermoelectric method and apparatus for charging superconducting magnets | ||
Patent #
US 5,565,763 A
Filed 11/19/1993
|
Current Assignee
General Atomics Inc.
|
Original Assignee
Lockheed Martin Corporation
|
Cooled secondary coils of electric automobile charging transformer | ||
Patent #
US 5,408,209 A
Filed 11/02/1993
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
Hughes Aircraft Company
|
Wireless communications using near field coupling | ||
Patent #
US 5,437,057 A
Filed 12/03/1992
|
Current Assignee
Xerox Corporation
|
Original Assignee
Xerox Corporation
|
Power connection scheme | ||
Patent #
US 5,455,467 A
Filed 03/02/1994
|
Current Assignee
Apple Computer Incorporated
|
Original Assignee
Apple Computer Incorporated
|
High speed read/write AVI system | ||
Patent #
US 5,287,112 A
Filed 04/14/1993
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Inc.
|
Contactless battery charging system | ||
Patent #
US 5,341,083 A
Filed 10/20/1992
|
Current Assignee
Electric Power Research Institute
|
Original Assignee
Electric Power Research Institute Incorporated
|
System for charging a rechargeable battery of a portable unit in a rack | ||
Patent #
US 5,367,242 A
Filed 09/18/1992
|
Current Assignee
Ascom Tateco AB
|
Original Assignee
Ericsson Messaging Systems Incorporated
|
High speed read/write AVI system | ||
Patent #
US 5,374,930 A
Filed 11/12/1993
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Separable inductive coupler | ||
Patent #
US 5,216,402 A
Filed 01/22/1992
|
Current Assignee
General Motors Corporation
|
Original Assignee
Hughes Aircraft Company
|
Non-contact data and power connector for computer based modules | ||
Patent #
US 5,229,652 A
Filed 04/20/1992
|
Current Assignee
Wayne E. Hough
|
Original Assignee
Wayne E. Hough
|
Dual feedback control for a high-efficiency class-d power amplifier circuit | ||
Patent #
US 5,118,997 A
Filed 08/16/1991
|
Current Assignee
General Electric Company
|
Original Assignee
General Electric Company
|
Christmas-tree, decorative, artistic and ornamental object illumination apparatus | ||
Patent #
US 5,034,658 A
Filed 01/12/1990
|
Current Assignee
Roland Hierig, Vladimir Ilberg
|
Original Assignee
Roland Hierig, Vladimir Ilberg
|
Magnetic induction mine arming, disarming and simulation system | ||
Patent #
US 5,027,709 A
Filed 11/13/1990
|
Current Assignee
Glenn B. Slagle
|
Original Assignee
Glenn B. Slagle
|
Device for transmission and evaluation of measurement signals for the tire pressure of motor vehicles | ||
Patent #
US 5,033,295 A
Filed 02/04/1989
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Transponder arrangement | ||
Patent #
US 5,053,774 A
Filed 02/13/1991
|
Current Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Original Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Electric power transmitting device with inductive coupling | ||
Patent #
US 5,070,293 A
Filed 03/02/1990
|
Current Assignee
Nippon Soken Inc., Nippondenso Co. Ltd.
|
Original Assignee
Nippon Soken Inc., Nippondenso Co. Ltd.
|
Remote switch-sensing system | ||
Patent #
US 4,588,978 A
Filed 06/21/1984
|
Current Assignee
CONCHA CORPORATION A CA CORPORATION
|
Original Assignee
TRANSENSORY DEVICES INC.
|
Condition monitoring system (tire pressure) | ||
Patent #
US 4,450,431 A
Filed 05/26/1981
|
Current Assignee
Aisin Seiki Co. Ltd.
|
Original Assignee
Peter A Hochstein
|
Variable mutual transductance tuned antenna | ||
Patent #
US 4,280,129 A
Filed 09/10/1979
|
Current Assignee
WELLS FAMILY CORPORATION THE
|
Original Assignee
Donald H. Wells
|
Alarm device for informing reduction of pneumatic pressure of tire | ||
Patent #
US 4,180,795 A
Filed 12/12/1977
|
Current Assignee
Bridgestone Tire Company Limited, Mitaka Instrument Company Limited
|
Original Assignee
Bridgestone Tire Company Limited, Mitaka Instrument Company Limited
|
RF beam center location method and apparatus for power transmission system | ||
Patent #
US 4,088,999 A
Filed 05/21/1976
|
Current Assignee
Fletcher James C Administrator of The National Aeronautics and Space Administration With Respect To An Invention of, Richard M. Dickinson
|
Original Assignee
Fletcher James C Administrator of The National Aeronautics and Space Administration With Respect To An Invention of, Richard M. Dickinson
|
Thermoelectric voltage generator | ||
Patent #
US 4,095,998 A
Filed 09/30/1976
|
Current Assignee
The United States Of America As Represented By The Secretary Of The Army
|
Original Assignee
The United States Of America As Represented By The Secretary Of The Army
|
Wireless energy transfer, including interference enhancement | ||
Patent #
US 8,076,801 B2
Filed 05/14/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless Power Harvesting and Transmission with Heterogeneous Signals. | ||
Patent #
US 20120007441A1
Filed 08/29/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,076,800 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Inductive power transfer apparatus | ||
Patent #
US 20120025602A1
Filed 02/05/2010
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
APPARATUS FOR POWER WIRELESS TRANSFER BETWEEN TWO DEVICES AND SIMULTANEOUS DATA TRANSFER | ||
Patent #
US 20120001593A1
Filed 06/30/2011
|
Current Assignee
STMicroelectronics SRL
|
Original Assignee
STMicroelectronics SRL
|
Wireless energy transfer | ||
Patent #
US 8,097,983 B2
Filed 05/08/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
POWER GENERATOR AND POWER GENERATION SYSTEM | ||
Patent #
US 20120007435A1
Filed 06/28/2011
|
Current Assignee
Panasonic Intellectual Property Management Co. Ltd.
|
Original Assignee
Panasonic Corporation
|
INCREASING THE Q FACTOR OF A RESONATOR | ||
Patent #
US 20120001492A9
Filed 08/11/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Systems and methods for wireless power | ||
Patent #
US 8,115,448 B2
Filed 06/02/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,084,889 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER FOR IMPLANTABLE DEVICES | ||
Patent #
US 20120032522A1
Filed 06/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer for refrigerator application | ||
Patent #
US 8,106,539 B2
Filed 03/11/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
FLUSH-MOUNTED LOW-PROFILE RESONANT HOLE ANTENNA | ||
Patent #
US 20120038525A1
Filed 09/10/2009
|
Current Assignee
Advanced Automotive Antennas S.L.
|
Original Assignee
Advanced Automotive Antennas S.L.
|
Inductive repeater coil for an implantable device | ||
Patent #
US 8,131,378 B2
Filed 10/28/2007
|
Current Assignee
Second Sight Enterprises Incorporated
|
Original Assignee
Second Sight Enterprises Incorporated
|
LOW RESISTANCE ELECTRICAL CONDUCTOR | ||
Patent #
US 20120062345A1
Filed 08/31/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER, INCLUDING INTERFERENCE ENHANCEMENT | ||
Patent #
US 20120068549A1
Filed 11/03/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS TRANSMISSION OF SOLAR GENERATED POWER | ||
Patent #
US 20120086284A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MODULAR UPGRADES FOR WIRELESSLY POWERED TELEVISIONS | ||
Patent #
US 20120086867A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWERED TELEVISION | ||
Patent #
US 20120091795A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWERED PROJECTOR | ||
Patent #
US 20120091796A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSFER WITHIN A CIRCUIT BREAKER | ||
Patent #
US 20120091820A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESSLY POWERED LAPTOP AND DESKTOP ENVIRONMENT | ||
Patent #
US 20120091794A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
ENERGIZED TABLETOP | ||
Patent #
US 20120091797A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
POSITION INSENSITIVE WIRELESS CHARGING | ||
Patent #
US 20120091950A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR ENERGIZING POWER TOOLS | ||
Patent #
US 20120091949A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
COMPUTER THAT WIRELESSLY POWERS ACCESSORIES | ||
Patent #
US 20120091819A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR PHOTOVOLTAIC PANELS | ||
Patent #
US 20120098350A1
Filed 10/19/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH MULTI RESONATOR ARRAYS FOR VEHICLE APPLICATIONS | ||
Patent #
US 20120112534A1
Filed 10/17/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLE APPLICATIONS | ||
Patent #
US 20120112538A1
Filed 11/03/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SECURE WIRELESS ENERGY TRANSFER FOR VEHICLE APPLICATIONS | ||
Patent #
US 20120112531A1
Filed 11/03/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120112535A1
Filed 10/19/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120112536A1
Filed 10/19/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR IN-VEHICLE APPLICATIONS | ||
Patent #
US 20120112532A1
Filed 11/03/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120112691A1
Filed 10/18/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Power supply system and method of controlling power supply system | ||
Patent #
US 8,178,995 B2
Filed 10/13/2009
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER INSIDE VEHICLES | ||
Patent #
US 20120119569A1
Filed 10/17/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120119575A1
Filed 10/18/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SAFETY SYSTEMS FOR WIRELESS ENERGY TRANSFER IN VEHICLE APPLICATIONS | ||
Patent #
US 20120119576A1
Filed 10/18/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120119698A1
Filed 10/17/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Inductively chargeable audio devices | ||
Patent #
US 8,193,769 B2
Filed 01/25/2010
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Technologies Ltd.
|
WIRELESS ENERGY TRANSFER FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120139355A1
Filed 04/20/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q RESONATORS USING FIELD SHAPING TO IMPROVE K | ||
Patent #
US 20120153735A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING CONDUCTING SURFACES TO SHAPE FIELD AND IMPROVE K | ||
Patent #
US 20120153734A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING OBJECT POSITIONING FOR IMPROVED K | ||
Patent #
US 20120153736A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR COMPUTER PERIPHERAL APPLICATIONS | ||
Patent #
US 20120153732A1
Filed 11/05/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20120153733A1
Filed 12/14/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER OVER DISTANCE USING FIELD SHAPING TO IMPROVE THE COUPLING FACTOR | ||
Patent #
US 20120153737A1
Filed 12/30/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES USING FIELD SHAPING WITH MAGNETIC MATERIALS TO IMPROVE THE COUPLING FACTOR | ||
Patent #
US 20120153738A1
Filed 12/30/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR SUPPLYING POWER AND HEAT TO A DEVICE | ||
Patent #
US 20120153893A1
Filed 12/31/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
IMPLANTABLE WIRELESS POWER SYSTEM | ||
Patent #
US 20120146575A1
Filed 03/02/2011
|
Current Assignee
Corvion Incorporated
|
Original Assignee
Everheart Systems LLC
|
Resonant, contactless radio frequency power coupling | ||
Patent #
US 8,212,414 B2
Filed 05/29/2009
|
Current Assignee
Lockheed Martin Corporation
|
Original Assignee
Lockheed Martin Corporation
|
INTEGRATED REPEATERS FOR CELL PHONE APPLICATIONS | ||
Patent #
US 20120184338A1
Filed 03/23/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SYSTEMS AND METHODS FOR WIRELESS POWER | ||
Patent #
US 20120206096A1
Filed 01/20/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Non-contact wireless communication apparatus, method of adjusting resonance frequency of non-contact wireless communication antenna, and mobile terminal apparatus | ||
Patent #
US 8,260,200 B2
Filed 11/14/2008
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications AB
|
FLEXIBLE RESONATOR ATTACHMENT | ||
Patent #
US 20120223573A1
Filed 01/30/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR APPLIANCES | ||
Patent #
US 20120228952A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR FURNITURE APPLICATIONS | ||
Patent #
US 20120228953A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR CLOTHING APPLICATIONS | ||
Patent #
US 20120228954A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY DISTRIBUTION SYSTEM | ||
Patent #
US 20120235500A1
Filed 09/14/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING REPEATER RESONATORS | ||
Patent #
US 20120235505A1
Filed 02/08/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR OUTDOOR LIGHTING APPLICATIONS | ||
Patent #
US 20120235567A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR LIGHTING APPLICATIONS | ||
Patent #
US 20120235566A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH VARIABLE SIZE RESONATORS FOR IMPLANTED MEDICAL DEVICES | ||
Patent #
US 20120235633A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR IMPLANTED MEDICAL DEVICES | ||
Patent #
US 20120235502A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120235501A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR SENSORS | ||
Patent #
US 20120235504A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SECURE WIRELESS ENERGY TRANSFER IN MEDICAL APPLICATIONS | ||
Patent #
US 20120235503A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH VARIABLE SIZE RESONATORS FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120235634A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH RESONATOR ARRAYS FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120239117A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR APPLIANCES | ||
Patent #
US 20120242159A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR EXTERIOR LIGHTING | ||
Patent #
US 20120242225A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120256494A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSMITTER TUNING | ||
Patent #
US 20120267960A1
Filed 02/17/2012
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless energy transfer using field shaping to reduce loss | ||
Patent #
US 8,304,935 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Low AC resistance conductor designs | ||
Patent #
US 20120280765A1
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using magnetic materials to shape field and reduce loss | ||
Patent #
US 8,324,759 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
RESONATOR OPTIMIZATIONS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20120313449A1
Filed 06/22/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Compact resonators for wireless energy transfer in vehicle applications | ||
Patent #
US 20120313742A1
Filed 06/28/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Load impedance decision device, wireless power transmission device, and wireless power transmission method | ||
Patent #
US 8,334,620 B2
Filed 11/04/2010
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
WIRELESS ENERGY TRANSFER FOR PERSON WORN PERIPHERALS | ||
Patent #
US 20130007949A1
Filed 07/09/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER COMPONENT SELECTION | ||
Patent #
US 20130020878A1
Filed 07/23/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Efficient near-field wireless energy transfer using adiabatic system variations | ||
Patent #
US 8,362,651 B2
Filed 10/01/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
TUNABLE WIRELESS POWER ARCHITECTURES | ||
Patent #
US 20130033118A1
Filed 08/06/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER COMPONENT SELECTION | ||
Patent #
US 20130038402A1
Filed 08/20/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
RESONATOR ENCLOSURE | ||
Patent #
US 20130057364A1
Filed 09/04/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer over a distance at high efficiency | ||
Patent #
US 8,395,283 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,395,282 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RECONFIGURABLE CONTROL ARCHITECTURES AND ALGORITHMS FOR ELECTRIC VEHICLE WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130062966A1
Filed 09/12/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSMISSION APPARATUS | ||
Patent #
US 20120248884A1
Filed 05/06/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer for computer peripheral applications | ||
Patent #
US 8,400,017 B2
Filed 11/05/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer with high-Q similar resonant frequency resonators | ||
Patent #
US 8,400,022 B2
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q sub-wavelength resonators | ||
Patent #
US 8,400,021 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q devices at variable distances | ||
Patent #
US 8,400,020 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q at high efficiency | ||
Patent #
US 8,400,018 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q from more than one source | ||
Patent #
US 8,400,019 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q capacitively loaded conducting loops | ||
Patent #
US 8,400,023 B2
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer across variable distances | ||
Patent #
US 8,400,024 B2
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
FOREIGN OBJECT DETECTION IN WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130069441A1
Filed 09/10/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
HIGH FREQUENCY PCB COILS | ||
Patent #
US 20130069753A1
Filed 09/17/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Low AC resistance conductor designs | ||
Patent #
US 8,410,636 B2
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR PACKAGING | ||
Patent #
US 20130099587A1
Filed 10/18/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR SENSORS | ||
Patent #
US 20120248887A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR LIGHTING | ||
Patent #
US 20120248981A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH RESONATOR ARRAYS FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120248888A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER TO MOBILE DEVICES | ||
Patent #
US 20120248886A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Multi-resonator wireless energy transfer for exterior lighting | ||
Patent #
US 8,441,154 B2
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Magnetic induction signal repeater | ||
Patent #
US 8,457,547 B2
Filed 04/28/2009
|
Current Assignee
Cochlear Limited
|
Original Assignee
Cochlear Limited
|
Wireless energy transfer using conducting surfaces to shape field and improve K | ||
Patent #
US 8,461,722 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer systems | ||
Patent #
US 8,461,719 B2
Filed 09/25/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using conducting surfaces to shape fields and reduce loss | ||
Patent #
US 8,461,720 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Method and apparatus for providing wireless power to a load device | ||
Patent #
US 8,461,817 B2
Filed 09/10/2008
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Corporation
|
Wireless energy transfer using object positioning for low loss | ||
Patent #
US 8,461,721 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Tunable wireless energy transfer for outdoor lighting applications | ||
Patent #
US 8,466,583 B2
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SYSTEM AND METHOD FOR LOW LOSS WIRELESS POWER TRANSMISSION | ||
Patent #
US 20130154383A1
Filed 09/12/2012
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130154389A1
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER MODELING TOOL | ||
Patent #
US 20130159956A1
Filed 11/05/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer over distance using field shaping to improve the coupling factor | ||
Patent #
US 8,471,410 B2
Filed 12/30/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer with high-Q resonators using field shaping to improve K | ||
Patent #
US 8,476,788 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Increasing the Q factor of a resonator | ||
Patent #
US 8,482,157 B2
Filed 08/11/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless energy transfer using variable size resonators and system monitoring | ||
Patent #
US 8,482,158 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130175875A1
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR PROMOTIONAL ITEMS | ||
Patent #
US 20130175874A1
Filed 01/09/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer resonator kit | ||
Patent #
US 8,487,480 B1
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer converters | ||
Patent #
US 8,497,601 B2
Filed 04/26/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER RESONATOR KIT | ||
Patent #
US 20130200716A1
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qiang Li, David A. Schatz, Katherine Hall, Konrad J. Kulikowski, Marin Soljacic, Eric R. Giler, Morris P. Kesler, Andre B. Kurs, Andrew J. Campanella, Aristeidis Karalis, Ron Fiorello
|
WIRELESS ENERGY TRANSFER WITH REDUCED FIELDS | ||
Patent #
US 20130200721A1
Filed 01/28/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MECHANICALLY REMOVABLE WIRELESS POWER VEHICLE SEAT ASSEMBLY | ||
Patent #
US 20130221744A1
Filed 03/15/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer with feedback control for lighting applications | ||
Patent #
US 8,552,592 B2
Filed 02/02/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20130278074A1
Filed 06/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20130278075A1
Filed 06/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20130278073A1
Filed 06/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using object positioning for improved k | ||
Patent #
US 8,569,914 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
LOW AC RESISTANCE CONDUCTOR DESIGNS | ||
Patent #
US 20130300353A1
Filed 03/29/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using high Q resonators for lighting applications | ||
Patent #
US 8,587,153 B2
Filed 12/14/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using repeater resonators | ||
Patent #
US 8,587,155 B2
Filed 03/10/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER CONVERTERS | ||
Patent #
US 20130307349A1
Filed 07/19/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Resonator arrays for wireless energy transfer | ||
Patent #
US 8,598,743 B2
Filed 05/28/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR IMPLANTABLE DEVICES | ||
Patent #
US 20130320773A1
Filed 08/07/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER CONVERTERS | ||
Patent #
US 20130334892A1
Filed 07/19/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR RECHARGEABLE BATTERIES | ||
Patent #
US 20140002012A1
Filed 06/27/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer systems | ||
Patent #
US 8,629,578 B2
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Tunable wireless energy transfer systems | ||
Patent #
US 8,643,326 B2
Filed 01/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSFER SYSTEM COIL ARRANGEMENTS AND METHOD OF OPERATION | ||
Patent #
US 20140070764A1
Filed 03/08/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
Methods And Systems For Detecting Foreign Objects In A Wireless Charging System | ||
Patent #
US 20140084857A1
Filed 09/27/2012
|
Current Assignee
ConvenientPower HK Limited
|
Original Assignee
ConvenientPower HK Limited
|
Wireless energy transfer systems | ||
Patent #
US 8,618,696 B2
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
FOREIGN OBJECT DETECTION IN WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20140111019A1
Filed 10/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
THERMOELECTRIC UNITS | ||
Patent #
US 3,780,425 A
Filed 01/25/1971
|
Current Assignee
United Kingdom Atomic Energy Authority
|
Original Assignee
United Kingdom Atomic Energy Authority
|
LARGE SODIUM VALVE ACTUATOR | ||
Patent #
US 3,871,176 A
Filed 03/08/1973
|
Current Assignee
Glen Elwin Schukei
|
Original Assignee
Combustion Engineering Incorporated
|
ENERGY TRANSLATING DEVICE | ||
Patent #
US 3,517,350 A
Filed 07/07/1969
|
Current Assignee
William D. Beaver
|
Original Assignee
William D. Beaver
|
MICROWAVE POWER RECEIVING ANTENNA | ||
Patent #
US 3,535,543 A
Filed 05/01/1969
|
Current Assignee
Carroll C. Dailey
|
Original Assignee
Carroll C. Dailey
|
NONLINEAR SYSTEM IDENTIFICATION FOR OBJECT DETECTION IN A WIRELESS POWER TRANSFER SYSTEM | ||
Patent #
US 20140167704A1
Filed 12/16/2013
|
Current Assignee
Indigo Technologies Inc.
|
Original Assignee
Nucleus Scientific Incorporated
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20140265617A1
Filed 03/06/2014
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
APPARATUS AND METHOD FOR DETECTING FOREIGN OBJECT IN WIRELESS POWER TRANSMITTING SYSTEM | ||
Patent #
US 20140266036A1
Filed 03/14/2014
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Hanrim Postech Co. Ltd.
|
WIRELESS POWER TRANSFER THROUGH CONDUCTIVE MATERIALS | ||
Patent #
US 20150048752A1
Filed 01/07/2013
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
OBJECT DETECTION FOR WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20150233988A1
Filed 02/13/2015
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
FOREIGN OBJECT DETECTION | ||
Patent #
US 20150288214A1
Filed 10/25/2012
|
Current Assignee
Nokia Technologies Oy
|
Original Assignee
Nokia Technologies Oy
|
FOREIGN OBJECT DETECTION IN WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20150323694A1
Filed 05/07/2015
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SYSTEMS, METHODS, AND APPARATUS FOR FOREIGN OBJECT DETECTION LOOP BASED ON INDUCTIVE THERMAL SENSING | ||
Patent #
US 20150331135A1
Filed 05/15/2014
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
POWERING AND/OR CHARGING WITH A PLURALITY OF PROTOCOLS | ||
Patent #
US 20160056664A1
Filed 10/31/2015
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
METHODS AND SYSTEMS FOR MEASURING POWER IN WIRELESS POWER SYSTEMS | ||
Patent #
US 20160084894A1
Filed 09/24/2014
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Communication in a wireless power transmission system | ||
Patent #
US 20160087687A1
Filed 08/10/2015
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS CHARGING SYSTEM FOR DEVICES IN A VEHICLE | ||
Patent #
US 20160096435A1
Filed 10/06/2015
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
WIRELESS POWER MULTI-COIL MUTUAL INDUCTION CANCELLATION METHODS AND APPARATUS | ||
Patent #
US 20160118806A1
Filed 10/27/2014
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
PROCESSING DEVICE, PROCESSING METHOD, AND PROGRAM | ||
Patent #
US 20160218567A1
Filed 03/31/2016
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
SENSE COIL GEOMETRIES WITH IMPROVED SENSITIVITY FOR METALLIC OBJECT DETECTION IN A PREDETERMINED SPACE | ||
Patent #
US 20160238731A1
Filed 08/04/2015
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
SYSTEM AND METHOD FOR SAFE WIRELESS CHARGING STATION | ||
Patent #
US 20160322853A1
Filed 09/25/2015
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
NOTIFICATION TECHNIQUES FOR WIRELESS POWER TRANSFER SYSTEMS | ||
Patent #
US 20160380439A1
Filed 06/26/2015
|
Current Assignee
Intel Corporation
|
Original Assignee
Lei Shao, Xintian E. Lin
|
Apparatus and method for detecting foreign object in wireless power transmitting system | ||
Patent #
US 9,588,163 B2
Filed 02/12/2014
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Hanrim Postech Co. Ltd.
|
Wireless charging system and foreign metal object detection method for the system | ||
Patent #
US 9,614,395 B2
Filed 12/30/2014
|
Current Assignee
Automotive Research Testing Center
|
Original Assignee
Automotive Research Testing Center
|
ROBUST FOREIGN OBJECTS DETECTION | ||
Patent #
US 20170117755A1
Filed 08/23/2016
|
Current Assignee
MediaTek Inc.
|
Original Assignee
MediaTek Inc.
|
IN SITU COIL PARAMETER MEASUREMENTS AND FOREIGN OBJECTS DETECTION | ||
Patent #
US 20170117756A1
Filed 10/19/2016
|
Current Assignee
MediaTek Inc.
|
Original Assignee
MediaTek Inc.
|
Foreign Object Detection In Wireless Energy Transfer Systems | ||
Patent #
US 20170141622A1
Filed 10/19/2016
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSMITTER | ||
Patent #
US 20170163091A1
Filed 12/02/2016
|
Current Assignee
LG Innotek Company Limited
|
Original Assignee
LG Innotek Company Limited
|
Radiative Wireless Power Transmission | ||
Patent #
US 20170179764A1
Filed 12/12/2016
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Methods and systems for object detection and sensing for wireless charging systems | ||
Patent #
US 9,735,605 B2
Filed 06/17/2014
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER TRANSFERS WITH FREQUENCY RANGE SCANNING | ||
Patent #
US 20170237290A1
Filed 02/17/2016
|
Current Assignee
Integrated Device Technology Incorporated
|
Original Assignee
Integrated Device Technology Incorporated
|
APPARATUS AND METHODS FOR SHIELDING A WIRELESS POWER TRANSMITTER | ||
Patent #
US 20170085134A1
Filed 05/16/2016
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
19 Claims
-
1. A wireless power transfer system comprising:
-
a wireless power transfer source configured to generate a source magnetic field at a first frequency to transfer power to a wireless power receiver; an auxiliary magnetic field source configured to generate an auxiliary magnetic field at a second frequency; at least one detector configured to generate an electrical signal in response to perturbations in the auxiliary magnetic field generated by the auxiliary magnetic field source; and a controller configured to determine whether foreign object debris is present around the wireless power transfer system based on the electrical signal. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19)
-
1 Specification
This application claims priority to U.S. Provisional Patent Application No. 61/989,799, filed on May 7, 2014, and to U.S. Provisional Patent Application No. 62/072,992, filed on Oct. 30, 2014, the entire contents of each of which are incorporated herein by reference.
This disclosure relates to wireless energy transfer and methods for detecting foreign object debris (FOD) near wireless power transmission systems.
Energy or power may be transferred wirelessly using a variety of known radiative, or far-field, and non-radiative, or near-field, techniques as detailed, for example, in commonly owned U.S. patent application Ser. No. 12/613,686 published on May 6, 2010 as US 2010/010909445 and entitled “Wireless Energy Transfer Systems,” U.S. patent application Ser. No. 12/860,375 published on Dec. 9, 2010 as 2010/0308939 and entitled “Integrated Resonator-Shield Structures,” U.S. patent application Ser. No. 13/222,915 published on Mar. 15, 2012 as 2012/0062345 and entitled “Low Resistance Electrical Conductor,” U.S. patent application Ser. No. 13/283,811 published on Oct. 4, 2012 as 2012/0248981 and entitled “Multi-Resonator Wireless Energy Transfer for Lighting,” the contents of which are incorporated by reference.
The entire contents of U.S. Provisional Patent Application Nos. 61/716,432, filed on Oct. 19, 2012, 61/866,703, filed on Aug. 16, 2013, and 61/877,482, filed on Sep. 13, 2013, and of U.S. patent application Ser. No. 14/059,094, filed on Oct. 21, 2013, now published as U.S. Patent Application Publication No. 2014/0111019, are incorporated by reference herein.
In general, in a first aspect, the disclosure features wireless power transfer systems that include a power source featuring at least one resonator, a power receiver featuring at least one resonator, where the power receiver is configured to receive electrical power transmitted wirelessly by the power source, a first detector featuring one or more loops of conductive material, where the first detector is configured to generate an electrical signal based on a magnetic field between the power source and the power receiver, a second detector featuring conductive material, and control electronics coupled to the first and second detectors, where during operation of the system, the control electronics are configured to: measure the electrical signal of the first detector, compare the measured electrical signal of the first detector to baseline electrical information for the first detector to determine information about whether debris is positioned between the power source and the power receiver; measure an electrical signal of the second detector, where the electrical signal of the second detector is related to a capacitance of the second detector; and compare the measured electrical signal of the second detector to baseline electrical information for the second detector to determine information about whether a living object is positioned between the power source and the power receiver.
Embodiments of the systems can include any one or more of the following features.
The power source can be a component of a vehicle charging station. The power receiver can be a component of a vehicle.
The electrical signal generated by the first detector can include at least one of a voltage and a current. The electrical signal of the second detector can include at least one of a voltage and a capacitance.
The baseline electrical information for the first detector can correspond to an electrical signal of the first detector when no debris is positioned between the power source and the power receiver. The baseline electrical information for the second detector can correspond to an electrical signal of the second detector when no living objects are positioned between the power source and the power receiver.
Determining information about whether debris is positioned between the power source and the power receiver can include comparing a likelihood value that debris is positioned between the power source and the power receiver to a threshold value. The control electronics can be configured to determine the likelihood value by calculating mean and covariance matrices for the baseline electrical information for the first detector, and determining the likelihood value based on the mean and covariance matrices. Determining information about whether a living object is positioned between the power source and the power receiver can include comparing the measured electrical signal of the second detector to a threshold value.
The first detector can include multiple loops of conductive material positioned in at least a first plane between the power source and the power receiver. The second detector can include a length of conductive material positioned in at least a second plane between the power source and the power receiver. The first and second planes can be parallel. The first and second planes can be the same plane.
A magnetic field generated by the power source in the second plane can have a full width at half maximum cross-sectional distribution, and a circular perimeter of minimum size that encircles the second detector in the second plane has an enclosed area that is 100% or more (e.g., 110% or more, 120% or more, 130% or more, 140% or more, 150% or more, 175% or more, 200% or more) of the full width at half maximum cross-sectional distribution.
The length of conductive material can form a serpentine pathway in the second plane. The length of conductive material can include a plurality of segments extending substantially in a common direction, and a spacing between at least some of the segments can vary in a direction perpendicular to the common direction. A magnetic flux density generated by the power source in a first region of the second plane can be larger than a magnetic flux density in a second region of the second plane, and a spacing between successive segments in the first region can be smaller than in the second region.
The first detector can include a plurality of loops spaced from one another in the first plane, and a spacing between adjacent loops can vary. A magnetic flux density generated by the power source in a first region of the first plane can be larger than a magnetic flux density in a second region of the first plane, and the spacing between adjacent loops can be smaller in the first region than in the second region. The first and second planes can be positioned closer to the power receiver than to the power source.
A total cross-sectional area of the at least one resonator of the power receiver can be 80% or more (e.g., 90% or more, 100% or more, 120% or more, 140% or more, 150% or more, 175% or more) of a full-width at half maximum cross-sectional area of a magnetic field generated by the power source at a position of the power receiver.
The power source can be configured to transfer 1 kW or more (e.g., 2 kW or more, 3 kW or more, 4 kW or more, 6 kW or more, 8 kW or more, 10 kW or more, 15 kW or more, 20 kW or more) of power to the power receiver.
The power source can be configured to transfer power at multiple different energy transfer rates to the power receiver. The control electronics can be configured to: adjust the power source to transfer power at a selected one of the multiple different energy transfer rates; and obtain baseline electrical information that corresponds to the selected energy transfer rate.
Obtaining the baseline electrical information can include retrieving the information from an electronic storage unit. The control electronics can be configured to measure the baseline electrical information by: activating the power source with no debris in the vicinity of the power source to generate a magnetic flux through the first detector; and measuring the electrical signal of the first detector in response to the magnetic flux. The control electronics can be configured to activate the power source and to measure the electrical signal of the first detector with the power source and the power receiver at least partially aligned. The control electronics can be configured to activate the power source and to measure the electrical signal of the first detector without power transfer occurring between the power source and the power receiver.
The power source can be configured to generate a magnetic flux of at least 6.25 μT (e.g., at least 7 μT, at least 8 μT, at least 10 μT, at least 15 μT, at least 20 μT, at least 30 μT, at least 50 μT) at a position between the power source and the power receiver.
The first detector can include multiple loops, and the control electronics can be configured to measure electrical signals generated by at least some of the multiple loops to determine information about misalignment between the power source and the power receiver based on the measured electrical signal. The at least some of the multiple loops can be positioned adjacent to an edge of the power source. The control electronics can be configured to determine the information about misalignment by comparing electrical signals generated by the at least some of the multiple loops.
The control electronics can be configured so that if the likelihood value corresponding to whether debris is positioned between the power source and the power receiver exceeds the threshold value, the control electronics interrupt wireless power transfer between the power source and the power receiver. The control electronics can be configured so that if the likelihood value corresponding to whether debris is positioned between the power source and the power receiver exceeds the threshold value, the control electronics reduce an energy transfer rate between the power source and the power receiver. The control electronics can be configured so that if the likelihood value corresponding to whether debris is positioned between the power source and the power receiver exceeds the threshold value, the control electronics provide a warning indicator to a user of the wireless power transfer system.
The control electronics can be configured so that if the measured electrical signal of the second detector exceeds the threshold value, the control electronics interrupt wireless power transfer power the power source and the power receiver. The control electronics can be configured so that if the measured electrical signal of the second detector exceeds the threshold value, the control electronics reduce a magnitude of a magnetic field generated by the power source. The control electronics can be configured so that if the measured electrical signal of the second detector exceeds the threshold value, the control electronics provide a warning indicator to a user of the wireless power transfer system.
Each resonator in the power source can be an electromagnetic resonator having a resonant frequency f=ω/2π, an intrinsic loss rate Γ, and a Q-factor Q=ω/(2Γ), and the Q-factor for at least one of the resonators in the power source can be greater than 100. Each resonator in the power source can have a capacitance and an inductance that define the resonant frequency f. The Q-factor for at least one of the resonators in the power source can be greater than 300.
Each resonator in the power receiver can be an electromagnetic resonator having a resonant frequency f=ω/2π, an intrinsic loss rate Γ, and a Q-factor Q=ω/(2Γ), and the Q-factor for at least one of the resonators in the power receiver can be greater than 100. Each resonator in the power receiver can have a capacitance and an inductance that define the resonant frequency f. The Q-factor for at least one of the resonators in the power receiver can be greater than 300.
Embodiments of the systems can also include any of the other features disclosed herein, in any combination, as appropriate.
In another aspect, the disclosure features methods that include measuring an electrical signal generated by a first detector featuring one or more loops of conductive material positioned between a power source and a power receiver in a wireless power transfer system, comparing the measured electrical signal generated by the first detector to baseline electrical information for the first detector to determine information about whether debris is positioned between the power source and the power receiver, measuring an electrical signal generated by a second detector featuring conductive material, where the electrical signal of the second detector is related to a capacitance of the second detector, and comparing the measured electrical signal generated by the second detector to baseline electrical information for the second detector to determine information about whether a living object is positioned between the power source and the power receiver.
Embodiments of the methods can include any one or more of the following features.
The power receiver can be a component of a vehicle, and the methods can include using the power source to transfer electrical power to the vehicle. The baseline electrical information for the first detector can correspond to an electrical signal of the first detector when no debris is positioned between the power source and the power receiver. The baseline electrical information for the second detector can correspond to an electrical signal of the second detector when no living objects are positioned between the power source and the power receiver.
Determining information about whether debris is positioned between the power source and the power receiver can include comparing a likelihood value that debris is positioned between the power source and the power receiver to a threshold value. The methods can include determining the likelihood value by calculating mean and covariance matrices for the baseline electrical information for the first detector, and determining the likelihood value based on the mean and covariance matrices. Determining information about whether a living object is positioned between the power source and the power receiver can include comparing the measured electrical signal of the second detector to a threshold value.
The methods can include using the power source to transfer 1 kW or more (e.g., 2 kW or more, 3 kW or more, 4 kW or more, 6 kW or more, 8 kW or more, 10 kW or more, 15 kW or more, 20 kW or more) of power to the power receiver.
The power source can be configured to transfer power at multiple different energy transfer rates to the power receiver, and the methods can include adjusting the power source to transfer power at a selected one of the multiple different energy transfer rates, and obtaining baseline electrical information that corresponds to the selected energy transfer rate. Obtaining the baseline electrical information can include retrieving the information from an electronic storage unit.
The methods can include activating the power source with no debris in the vicinity of the power source to generate a magnetic flux through the first detector, and measuring the electrical signal of the first detector in response to the magnetic flux to obtain the baseline electrical information for the first detector. The methods can include activating the power source and measuring the electrical signal of the first detector with the power source and the power receiver at least partially aligned. The methods can include activating the power source and measuring the electrical signal of the first detector without power transfer occurring between the power source and the power receiver.
The methods can include generating a magnetic flux of 6.25 μT or more (e.g., 7 μT or more, 8 μT or more, 10 μT or more, 15 μT or more, 20 μT or more, 30 μT or more, 50 μT or more) between the power source and the power receiver.
The methods can include measuring electrical signals generated by multiple loops of the first detector, and determining information about misalignment between the power source and the power receiver based on the measured electrical signals. The methods can include determining the information about misalignment by comparing electrical signals generated by the multiple loops.
The methods can include interrupting wireless power transfer between the power source and the power receiver if the likelihood value corresponding to whether debris is positioned between the power source and the power receiver exceeds the threshold value. The methods can include reducing an energy transfer rate between the power source and the power receiver if the likelihood value corresponding to whether debris is positioned between the power source and the power receiver exceeds the threshold value. The methods can include providing a warning indicator if the likelihood value corresponding to whether debris is positioned between the power source and the power receiver exceeds the threshold value.
The methods can include interrupting wireless power transfer between the power source and the power receiver if the measured electrical signal of the second detector exceeds the threshold value. The methods can include reducing an energy transfer rate between the power source and the power receiver if the measured electrical signal of the second detector exceeds the threshold value. The methods can include providing a warning indicator if the measured electrical signal of the second detector exceeds the threshold value.
The methods can also include any of the other steps and/or features disclosed herein, in any combination, as appropriate.
In a further aspect, the disclosure features an apparatus for detecting debris and living objects, the apparatus including a first detector featuring one or more loops of conductive material, where the first detector is configured to generate an electrical signal based on a magnetic field between a power source and a power receiver of a wireless power transfer system, a second detector featuring conductive material, and control electronics coupled to the first and second detectors, where during operation of the wireless power transfer system, the control electronics are configured to: measure the electrical signal of the first detector; compare the measured electrical signal of the first detector to baseline electrical information for the first detector to determine information about whether debris is positioned between the power source and the power receiver of the wireless power transfer system; measure an electrical signal of the second detector, where the electrical signal of the second detector is related to a capacitance of the second detector; and compare the measured electrical signal of the second detector to baseline electrical information for the second detector to determine information about whether a living object is positioned between the power source and the power receiver of the wireless power transfer system.
Embodiments of the apparatus can include any of the features disclosed herein, including any of the features disclosed herein in connection with any of the systems, in any combination, as appropriate.
In another aspect, the disclosure features a wireless power transfer system, including a power source featuring at least one resonator, a power receiver featuring at least one resonator, where the power receiver is configured to receive electrical power transmitted wirelessly by the power source, a detector positioned between the power source and the power receiver, where the detector is configured to generate an electrical signal based on a magnetic field between the power source and the power receiver, and control electronics coupled to the power source and detector, where the control electronics are configured to: activate the power source to generate a magnetic field between the power source and the power receiver; measure the electrical signal of the detector; and determine whether debris is positioned between the power source and the power receiver by comparing baseline information to the measured electrical signal, where the baseline information includes information about an electrical signal generated by the detector when no debris is positioned between the power source and the power receiver, and where the control electronics are configured to compare the baseline information to the measured signal by determining mean and covariance matrices for the baseline information and determining whether debris is positioned between the power source and the power receiver based on the mean and covariance matrices.
Embodiments of the systems can include any one or more of the following features.
The control electronics can be configured to calculate a likelihood value that debris is positioned between the power source and the power receiver based on the mean and covariance matrices. The control electronics can be configured to calculate a probability value between 0 and 1 that debris is positioned between the power source and the power receiver, based on the likelihood value. The control electronics can be configured to determine whether debris is positioned between the power source and the power receiver by comparing the likelihood value to a threshold likelihood value.
The control electronics can be configured to obtain the baseline information. The control electronics can be configured to obtain the baseline information by retrieving the information from an electronic storage unit. The control electronics can be configured to obtain the baseline information by activating the power source with no debris in the vicinity of the power source to generate a magnetic flux through the detector, and measuring the electrical signal of the detector in response to the magnetic flux. The control electronics can be configured to activate the power source and to measure the electrical signal of the detector with the power source and the power receiver at least partially aligned. The control electronics can be configured to activate the power source and to measure the electrical signal of the detector without power transfer occurring between the power source and the power receiver.
The baseline information can include information about electrical signals generated by the detector that correspond to different operating states of the system. The different operating states can correspond to different energy transfer rates between the power source and the power receiver. The different operating states correspond to different alignments between the power source and the power receiver. The different operating states can correspond to different spacings between the power source and the power receiver measured along a direction orthogonal to a plane defined by the at least one resonator of the power source.
The control electronics can be configured to obtain the baseline information by measuring the electrical signal of the detector multiple times in response to the magnetic flux, and the mean and covariance matrices can include contributions from the multiple measurements of the electrical signal. The control electronics can be configured to generate mean and covariance matrices that correspond to each of the different operating states. The control electronics can be configured to determine the operating state of the system by comparing the measured electrical signal of the detector to the mean and covariance matrices corresponding to each of the different operating states.
The power source can be a component of a vehicle charging station. The power receiver can be a component of a vehicle.
The electrical signal generated by the detector can include at least one of a voltage and a current. The detector can include multiple loops of conductive material positioned between the power source and the power receiver. The multiple loops can be spaced from one another in the plane, and a spacing between adjacent loops can vary.
A magnetic flux density generated by the power source in a first region of the plane can be larger than a magnetic flux density in a second region of the plane, and the spacing between adjacent loops can be smaller in the first region than in the second region.
The detector can be positioned closer to the power receiver than to the power source. A total cross-sectional area of the at least one resonator of the power receiver can be 80% or more (e.g., 90% or more, 100% or more, 120% or more, 140% or more, 150% or more, 175% or more) of a full-width at half maximum cross-sectional area of a magnetic field generated by the power source at a position of the power receiver.
The power source is configured to transfer 1 kW or more (e.g., 2 kW or more, 3 kW or more, 4 kW or more, 6 kW or more, 8 kW or more, 10 kW or more, 15 kW or more, 20 kW or more) of power to the power receiver.
The control electronics can be configured to compare the measured signal to a portion of the baseline information that corresponds to the operating state of the system.
The power source can be configured to generate a magnetic flux of 6.25 μT or more (e.g., 7 μT or more, 8 μT or more, 10 μT or more, 15 μT or more, 20 μT or more, 30 μT or more, 50 μT or more) between the power source and the power receiver.
The detector can include multiple loops of conductive material each configured to generate an electrical signal when the power source generates a magnetic field, and the control electronics can be configured to measure the electrical signals generated by at least some of the multiple loops and to determine information about misalignment between the power source and the power receiver based on the measured electrical signals. The at least some of the multiple loops can be positioned adjacent to an edge of the power source. The control electronics can be configured to determine the information about misalignment by comparing electrical signals generated by the at least some of the multiple loops. The control electronics can be configured so that if debris is positioned between the power source and the power receiver, the control electronics interrupt wireless power transfer between the power source and the power receiver.
The control electronics can be configured so that if debris is positioned between the power source and the power receiver, the control electronics reduce an energy transfer rate between the power source and the power receiver. The control electronics can be configured so that if debris is positioned between the power source and the power receiver, the control electronics provide a warning indicator to a user of the wireless power transfer system.
Each resonator in the power source can be an electromagnetic resonator having a resonant frequency f=ω/2π, an intrinsic loss rate Γ, and a Q-factor Q=ω/(2Γ), and the Q-factor for at least one of the resonators in the power source can be greater than 100. Each resonator in the power source can have a capacitance and an inductance that define the resonant frequency f.
The Q-factor for at least one of the resonators in the power source can be greater than 300.
Embodiments of the systems can also include any of the other features disclosed herein, in any combination, as appropriate.
In a further aspect, the disclosure features methods that include activating a power source to generate a magnetic field between the power source and a power receiver of a wireless power transfer system, measuring an electrical signal generated by a detector positioned between the power source and the power receiver, and determining whether debris is positioned between the power source and the power receiver by comparing baseline information to the measured electrical signal, where the baseline information includes information about an electrical signal generated by the detector when no debris is positioned between the power source and the power receiver, and where comparing the baseline information to the measured signal includes determining mean and covariance matrices for the baseline information and determining whether debris is positioned between the power source and the power receiver based on the mean and covariance matrices.
Embodiments of the methods can include any one or more of the following features.
The methods can include determining a likelihood value that debris is positioned between the power source and the power receiver based on the mean and covariance matrices. The methods can include determining a probability value between 0 and 1 that debris is positioned between the power source and the power receiver, based on the likelihood value. The methods can include determining whether debris is positioned between the power source and the power receiver by comparing the likelihood value to a threshold likelihood value.
The methods can include obtaining the baseline information by retrieving the information from an electronic storage unit. The methods can include obtaining the baseline information by activating the power source with no debris in the vicinity of the power source to generate a magnetic flux through the detector, and measuring the electrical signal of the detector in response to the magnetic flux. The methods can include activating the power source and measuring the electrical signal of the detector with the power source and the power receiver at least partially aligned. The methods can include activating the power source and measuring the electrical signal of the detector without power transfer occurring between the power source and the power receiver.
The baseline information can include information about electrical signals generated by the detector that correspond to different operating states of the system. The different operating states can correspond to at least one of different energy transfer rates between the power source and the power receiver, different alignments between the power source and the power receiver, and different spacings between the power source and the power receiver measured along a direction orthogonal to a plane defined by the at least one resonator of the power source. The methods can include obtaining the baseline information by measuring the electrical signal of the detector multiple times in response to the magnetic flux, where the mean and covariance matrices include contributions from the multiple measurements of the electrical signal.
The methods can include generating mean and covariance matrices that correspond to each of the different operating states. The methods can include determining the operating state of the system by comparing the measured electrical signal of the detector to the mean and covariance matrices corresponding to each of the different operating states.
The methods can include using the power source to transfer electrical power to a power receiver in a vehicle. The methods can include using the power source to transfer 1 kW or more (e.g., 2 kW or more, 3 kW or more, 4 kW or more, 6 kW or more, 8 kW or more, 10 kW or more, 15 kW or more, 20 kW or more) of power to the power receiver.
The methods can include comparing the measured signal to a portion of the baseline information that corresponds to the operating state of the system.
The methods can include using the power source to generate a magnetic flux of 6.25 μT or more (e.g., 7 μT or more, 8 μT or more, 10 μT or more, 15 μT or more, 20 μT or more, 30 μT or more, 50 μT or more) between the power source and the power receiver.
The methods can include interrupting wireless power transfer between the power source and the power receiver if debris is positioned between the power source and the power receiver. The methods can include reducing an energy transfer rate between the power source and the power receiver if debris is positioned between the power source and the power receiver. The methods can include providing a warning indicator if debris is positioned between the power source and the power receiver.
Embodiments of the methods can also include any of the other steps or features disclosed herein, in any combination, as appropriate.
In another aspect, the disclosure features apparatus for detecting debris, the apparatus including a detector, where the detector is configured so that when the detector is positioned between a power source and a power receiver of a wireless power transfer system, the detector generates an electrical signal based on a magnetic field between the power source and the power receiver, and control electronics coupled to the detector, where the control electronics are configured to: measure the electrical signal of the detector in response to a magnetic field between the power source and the power receiver; and determine whether debris is positioned between the power source and the power receiver by comparing baseline information to the measured electrical signal, where the baseline information includes information about an electrical signal generated by the detector when no debris is positioned between the power source and the power receiver, and where the control electronics are configured to compare the baseline information to the measured signal by determining mean and covariance matrices for the baseline information and determining whether debris is positioned between the power source and the power receiver based on the mean and covariance matrices.
Embodiments of the apparatus can include any of the features disclosed herein, including any of the features disclosed herein in connection with any of the systems, in any combination, as appropriate.
In a further aspect, the disclosure features apparatus for detecting foreign object debris around a wireless power transfer system, the apparatus including a plurality of detectors, each detector featuring one or more loops of conducting material, and a controller configured to measure at least one of a voltage and a current in each detector and to determine, based on the measurements, whether foreign object debris is present around the wireless power transfer system, where at least some of the plurality of detectors include a first number of loops of the conducting material, and at least some of the plurality of detectors include a second number of loops of the conducting material larger than the first number.
Embodiments of the apparatus can include any one or more of the following features.
At least some of the plurality of detectors can include one loop and at least some of the plurality of detectors can include two or more loops. At least some of the plurality of detectors can include three or more loops.
During operation, the apparatus can be positioned so that magnetic flux generated by a wireless power transfer source passes through the plurality of detectors, and detectors featuring the first number of loops can be positioned in regions where the magnetic flux is larger than in regions in which detectors featuring the second number of loops are positioned.
The plurality of detectors can form an array. Spacings between at least some adjacent detectors in the array can be different. Cross-sectional areas of at least some detectors in the array can be different from cross-sectional areas of at least some other detectors in the array.
Embodiments of the apparatus can also include any of the other features and aspects disclosed herein, including features and aspects disclosed in connection with different embodiments, in any combination as appropriate.
In another aspect, the disclosure features methods for detecting foreign object debris around a wireless power transfer system, the methods including measuring at least one of a voltage and a current in each one of a plurality of detectors, and determining, based on the measurements, whether foreign object debris is present around the wireless power transfer system, where each of the detectors includes one or more loops of conducting material, and where at least some of the plurality of detectors include a first number of loops of the conducting material, and at least some of the plurality of detectors include a second number of loops of the conducting material larger than the first number.
Embodiments of the methods can include any one or more of the steps and features disclosed herein, including steps and features disclosed in connection with different embodiments, in any combination as appropriate.
In a further aspect, the disclosure features wireless power transfer systems that include a wireless power transfer source configured to generate a source magnetic field at a first frequency to transfer power to a wireless power receiver, an auxiliary magnetic field source configured to generate an auxiliary magnetic field at a second frequency, at least one detector configured to generate an electrical signal in response to perturbations in the magnetic field generated by the auxiliary magnetic field source, and a controller configured to determine whether foreign object debris is present around the wireless power transfer system based on the electrical signal.
Embodiments of the systems can include any one or more of the following features.
The systems can include at least one auxiliary coil and at least one amplifier. The first frequency can be equal to the second frequency, or different from the second frequency. The systems can include a power supply coupled to the wireless power transfer source and configured to provide power to drive the wireless power source, where the power supply can be turned off when the auxiliary magnetic field source is generating an auxiliary magnetic field.
The systems can include up to four auxiliary coils and up to four amplifiers. The systems can include a source resonator coil wound over a first area and the at least one auxiliary coil can be configured to be wound over the first area. The at least one auxiliary coil can include two sets of conductor windings connected in series, each of the two sets of conductor windings being wound over one of a second area and third area, respectively. A sum of the second and third areas can be substantially equal to the first area. The at least one auxiliary coil can include four sets of conductor windings connected in series, each of the four sets of conductor windings being wound over one of a second, third, fourth, and fifth area, respectively. A sum of the second, third, fourth, and fifth areas can be substantially equal to the first area. The auxiliary magnetic field can induce a current in the source resonator coil, and the current in the source resonator coil can generate a magnetic field having a strength greater than the auxiliary magnetic field. The systems can include at least one auxiliary coil that can have a first portion of a conductor winding on a first circuit board and a second portion of a conductor winding on a second circuit board, where a connector between the first and second circuit boards can provide an electrical connection between the first and second portions of the conductor winding.
Embodiments of the systems can also include any of the other features and aspects disclosed herein, including features and aspects disclosed in connection with different embodiments, in any combination as appropriate.
In another aspect, the disclosure features wireless power transfer systems that include a source resonator, a power amplifier coupled to the source resonator and configured to drive the source resonator to generate a magnetic field at a first frequency to transfer power to a wireless power, an auxiliary amplifier that can be selectively connected to and disconnected from the source resonator and configured to drive the source resonator to generate a magnetic field at a second frequency different from the first frequency and non-resonant with the wireless power receiver, and a controller configured to operate the system in one of two modes of operation, where in a first mode of operation, the power amplifier drives the source resonator and electrical power is transferred to the wireless power receiver, and where in a second mode of operation, the auxiliary amplifier drives the source resonator and the controller is configured to determine whether foreign object debris is present around the wireless power transfer system.
Embodiments of the systems can include any one or more of the following features.
The systems can include a tank circuit that isolates the power amplifier from the auxiliary amplifier when the auxiliary amplifier is connected to the source resonator. The systems can include one or more detectors each configured to generate an electrical signal based on the magnetic field generated when the auxiliary amplifier drives the source resonator, where the controller is configured to determine whether foreign object debris is present around the wireless power transfer system based on each of the electrical signals.
Embodiments of the systems can also include any of the other features and aspects disclosed herein, including features and aspects disclosed in connection with different embodiments, in any combination as appropriate.
In a further aspect, the disclosure features wireless power transfer systems that include a wireless power transfer source configured to generate a magnetic field to transfer power to a wireless power receiver, one or more detectors each featuring a coil positioned in proximity to the wireless power transfer source, and a controller configured to detect changes in inductance of each of the one or more coils, and to determine based on the changes whether foreign object debris is present around the wireless power transfer system.
Embodiments of the systems can include any one or more of the features and aspects disclosed herein, including features and aspects disclosed in connection with different embodiments, in any combination as appropriate.
In accordance with exemplary and non-limiting embodiments, a foreign object debris detection system may measure perturbations in the electromagnetic field around the resonators of a wireless energy transfer system using magnetic field sensors and/or gradiometers. The sensors and/or gradiometers may be positioned in the electromagnetic field of a wireless energy transfer system. The sensors and/or gradiometers may be positioned to substantially cover an area over which FOD should be detected. In an embodiment for a wireless power transfer system of a vehicle, an area over which FOD should be detected may include a region of the underside of a vehicle, or the entire underside of a vehicle, or a region larger than the underside of a vehicle, or a region that may not be under the underside of a vehicle. The sensors and/or gradiometers may include loops of wire and/or printed conductor traces forming loops, figure-8 loops, and/or structures including one loop or multiple loops that generate an electrical signal proportional to the amount of magnetic flux crossing the surface area enclosed by the loop and/or loops. The loop and/or loops may be connected to high-input-impedance readout circuitry. The readout circuitry may measure the voltage and/or the current and/or the relative phase of the voltages and/or currents in the loops. In embodiments, a system may include multiple layers of loops to increase the detection probability of FOD. In embodiments, the loops may be designed to operate without significantly affecting characteristics of a wireless power transfer system such as the perturbed quality factors of the resonators, the efficiency of the energy transfer, the amount of power transferred, the amount of heat generated by the system, and the like.
In this disclosure, it is understood that a gradiometer is a type of sensor. A gradiometer may include one or more detectors. For example, the one or more detectors can be used to detect a magnetic field flux around the detector.
In accordance with exemplary and non-limiting embodiments, a foreign object debris detection system may measure perturbations in the electric field around the resonators of a wireless energy transfer system using electric field sensors and/or gradiometers. The sensors and/or gradiometers may be positioned in the electromagnetic field of a wireless energy transfer system. The sensors and/or gradiometers may include lengths of wire and/or printed conductor traces and/or any type of conducting path and they may include a single or multiple conducting paths. The conducting path or paths may be constructed to substantially cover the area where FOD may need to be detected. In an embodiment, an electric field sensor may be a single conducting path that travels back and form across the FOD surface and in another embodiment there may be multiple substantially straight conducting paths that traverse the FOD surface and are sensed individually or after a parallel electrical connection and/or in a multiplexed manner. The electric field sensors and/or gradiometers may be connected to high-input-impedance readout circuitry. The readout circuitry may measure the voltage and/or the current and/or the relative phase of the voltages and/or currents in the sensors. In embodiments, a system may include multiple layers of sensors to increase the detection probability of FOD. In embodiments, sensors may be designed to operate without significantly affecting characteristics of a wireless power transfer system such as the perturbed quality factors of the resonators, the efficiency of the energy transfer, the amount of power transferred, the amount of heat generated by the system, and the like.
In accordance with exemplary and non-limiting embodiments, there is provided a wireless energy transfer system that may include at least one foreign object debris detection system. The system may include at least one wireless energy transfer source configured to generate an oscillating magnetic field. The foreign object debris may be detected by a field sensor positioned in the oscillating electromagnetic field. The voltages and/or currents of the field sensors may be measured using readout circuitry and a feedback loop based on the readings from the sensors may be used to control the parameters of the wireless energy source.
In this disclosure, “FOD” is used to refer to foreign object debris. It is understood that detecting FOD may be referred as foreign object detection and/or living object detection (LOD). In the industry, it is becoming more common to refer to detecting living objects as LOD, rather than FOD, but it is also generally recognized that FOD include a wide variety of materials and objects. In this disclosure, it is understood that foreign objects may include living objects. Accordingly, although the terms “FOD” and “LOD” are both used, it is understood that LOD may be considered as detecting FOD. Techniques disclosed in relation to detecting FOD are applicable to LOD, and vice versa. For example, an FOD sensor may be used as an LOD sensor, and methods for using an FOD sensor are applicable to an LOD sensor. Further, in this disclosure, a “living object” is an object that is composed, at least partially, of living organic tissue, e.g., cells. A living object can be an entire organism (e.g., a human, an animal, a plant). A living object can also be a portion of an organism (e.g., one or more limbs or body parts of a human, animal, or plant). A living object can also include an object (or a portion thereof) composed, at least partially, of organic tissue that was once living, but is now dead (e.g., a limb of a tree, a body of an animal).
Like reference symbols in the various drawings indicate like elements. It is understood that the figures show exemplary embodiments even if it is not so stated.
Wireless power transfer systems that rely on an oscillating magnetic field between two coupled resonators can be efficient, non-radiative, and safe. Non-magnetic and/or non-metallic objects that are inserted between the resonators may not substantially interact with the magnetic field used for wireless energy transfer. In some embodiments, users of wireless power transfer systems may wish to detect the presence of these “foreign objects” and may wish to control, turn down, turn off, alarm, and the like, the wireless power transfer system. Metallic objects and/or other objects inserted between the resonators may interact with the magnetic field of the wireless power transfer system in a way that causes the metallic and/or other objects to perturb the wireless energy transfer and/or to heat up substantially. In some embodiments, users of wireless power transfer systems may wish to detect the presence of these “foreign objects” and may wish to control, turn down, turn off, alarm, and the like, the wireless power transfer system. In certain embodiments, a user may detect heating of a wireless power transfer system and control, turn down, turn off, set an alarm of the system for safe operation. Techniques for wireless power transfer, detecting the presence of foreign objects or detecting heating of a wireless power transfer system are described, for example, in commonly owned U.S. patent application Ser. No. 13/608,956 filed on Sep. 10, 2012 and entitled “Foreign Object Detection in Wireless Energy Transfer Systems,” U.S. provisional application 61/532,785 filed on Sep. 9, 2011 and entitled “Foreign Object Detection in Wireless Energy Transfer Systems,” U.S. patent application Ser. No. 12/899,281 filed on Oct. 6, 2010 and entitled “Vehicle Charger Safety System and Method,” and U.S. patent application Ser. No. 12/567,716 field on Sep. 25, 2009 and entitled “Wireless Energy Transfer Systems,” the contents of each of which are incorporated by reference.
Foreign Object Debris (FOD) positioned in the vicinity of wireless power transfer systems can be benign and/or may interact with the fields used for energy transfer in a benign way. Examples of benign FOD may include dirt, sand, leaves, twigs, snow, grease, oil, water, and other substances that may not interact significantly with a low-frequency magnetic field. In embodiments, FOD may include objects that may interact with the fields used for wireless power transfer in a benign way, but that may be restricted from the region very close to the resonators of the wireless transfer systems because of perceived danger, or out of a preponderance of caution. A common example of this type of FOD is a cat that may wish to sleep between the resonators and/or the resonator coils of a wireless vehicle charging system. Although unlikely, some may perceive a possibility of a human, especially a child, positioning themselves between the resonators in a high-power system where the human exposure effects may exceed certain exposure guidelines and regulations. In some cases, humans, animals, organic material, and the like may be a type of FOD in a wireless power transfer system. In some embodiments, the detection of living objects such as cats and people may be referred to as living object detection (LOD). In embodiments, some FOD may interact with the magnetic field in a way that may perturb the characteristics of the resonators used for energy transfer, may block or reduce the magnetic fields used for energy transfer, or may create a fire and or burning hazard. In some applications, special precautions may be necessary to avoid combustible metallic objects becoming hot enough to ignite during high-power charging. Some metallic objects can heat up and have enough heat capacity to cause a burn or discomfort to a person who might pick them up while they are still hot. Examples include tools, coils, metal pieces, soda cans, steel wool, food (chewing gum, burgers, etc.) wrappers, cigarette packs with metal foil, and the like.
Thus what are needed are methods and designs for detecting or mitigating the effects of FOD in the vicinity of a wireless power transfer system.
Methods for mitigating FOD risks can be categorized as passive mitigation techniques and active mitigation techniques. Passive mitigation techniques may be used to prevent FOD from entering or remaining in the regions of high electromagnetic fields (e.g., magnetic, electric fields). Passive mitigation techniques may lower the likelihood of FOD interacting hazardously with electromagnetic fields. Active mitigation techniques may be used detect and react to the presence of FOD.
In this disclosure, “wireless energy transfer” from one coil (e.g., resonator coil) to another coil (e.g., another resonator coil) refers to transferring energy to do useful work (e.g., mechanical work) such as powering electronic devices, vehicles, lighting a light bulb or charging batteries. Similarly, “wireless power transfer” from one coil (e.g., resonator coil) to another resonator (e.g., another resonator coil) refers to transferring power to do useful work (e.g., mechanical work) such as powering electronic devices, vehicles, lighting a light bulb or charging batteries. Both wireless energy transfer and wireless power transfer refer to the transfer (or equivalently, the transmission) of energy to provide operating power that would otherwise be provided through a connection to a power source, such as a connection to a main voltage source. Accordingly, with the above understanding, the expressions “wireless energy transfer” and “wireless power transfer” are used interchangeably in this disclosure. It is also understood that, “wireless power transfer” and “wireless energy transfer” can be accompanied by the transfer of information; that is, information can be transferred via an electromagnetic signal along with the energy or power to do useful work.
In some embodiments, a wireless power transfer system may utilize a source resonator to wirelessly transmit power to a receiver resonator. In certain embodiments, the wireless power transfer may be extended by multiple source resonators and/or multiple device resonators and/or multiple intermediate (also referred as “repeater” resonators.) The resonators can be electromagnetic resonator which are capable of storing energy in electromagnetic fields (e.g., electric, magnetic fields). Any one of the resonators can have a resonant frequency f=ω/2π, an intrinsic loss rate Γ, and a Q-factor Q=ω/(2Γ) (also referred as “intrinsic” Q-factor in this disclosure), where ω is the angular resonant frequency. A resonant frequency f of a resonator, for example, in a power source or power receiver of the system, can have a capacitance and inductance that defines its resonant frequency f.
In some embodiments, any one of a source, receiver, repeater resonator can have a Q-factor that is a high Q-factor where Q>100 (e.g., Q>100, Q>200, Q>300, Q>500, Q>1000). For example, the wireless power transfer system can include a power source having one or more source resonators, and at least one of the source resonators having a Q-factor of Q1>100 (e.g., Q1>100, Q1>200, Q1>300, Q1>500, Q1>1000). The wireless power transfer system can include a power receiver having one or more receiver resonators, and at least one of the receiver resonators having a Q-factor of Q2>100 (e.g., Q2>100, Q2>200, Q2>300, Q2>500, Q2>1000). The system can include at least one receiver resonator having a Q-factor of Q3>100 (e.g., Q3>100, Q3>200, Q3>300, Q3>500, Q3>1000). Utilizing high Q-factor resonators can lead to large energy coupling between at least some or all of the resonators in the wireless power transfer system. The high Q factors can lead to strong coupling between resonators such that the “coupling time” between the resonators is shorter than the “loss time” of the resonators. In this approach, energy can be transferred efficiently between resonators at a faster rate than the energy loss rate due to losses (e.g., heating loss, radiative loss) of the resonators. In certain embodiments, a geometric mean √{square root over (QiQj)} can be larger than 100 (e.g., √{square root over (QiQj)}>200, √{square root over (QiQj)}>300, √{square root over (QiQj)}>500, √{square root over (QiQj)}>1000) where i and j refer to a pair of source-receiver resonator, source-repeater resonator or repeater-receiver resonators (e.g., i=1, j=2, or i=1, j=3, or i=2, j=3.) Any one of the resonators can include coils described in the following sections. Techniques for utilizing high-Q resonators are described, for example, in commonly owned U.S. patent application Ser. No. 12/567,716 field on Sep. 25, 2009 and entitled “Wireless Energy Transfer Systems,” the contents of which are incorporated by reference.
Passive Mitigation Techniques
Passive mitigation techniques may be used to keep FOD from entering the regions between resonators or specific regions of high electromagnetic field, thereby preventing the interaction of the FOD with the electromagnetic fields.
By way of additional exemplary embodiments, the design of a resonator cover in a wireless power transfer system may provide a passive FOD mitigation technique. In embodiments the enclosure of a source and/or device and/or repeater resonator may be shaped to prevent FOD from coming close to the areas of the resonators and/or the resonator coils where the electromagnetic field may be large. In embodiments, a resonator enclosure may be thick enough to keep external objects from getting closer than a specified distance from the resonator or resonator coil. For example, the enclosure may include extra enclosure material and/or an air gap and/or potting materials and/or other objects and/or materials between the resonator coil and the outside surface of the resonator. In embodiments, the distance from the resonator coil surface to the enclosure surface may be 0.5 mm, 1 mm, 5 mm and the like. In embodiments, the distance between the top resonator coil surface and the top enclosure surface and the bottom resonator coil surface and the bottom enclosure surface may be different. In embodiments, the resonator coil may be positioned substantially in the middle of the thinnest dimension of the resonator enclosure. In other embodiments, the resonator coil may be positioned substantially offset from the middle of the thinnest dimension of the resonator enclosure. In embodiments, a resonator coil may be positioned substantially away from a surface that may be exposed to FOD. In embodiments, the resonator enclosure may include a keep-out zone providing for a minimum distance between FOD and the resonator components. The keep-out zone may be sufficiently large to ensure that the fields at the outside of the keep-out zone are sufficiently small to not cause safety or performance concerns.
A resonator enclosure may be designed to be curved, angled, or shaped to force any FOD on the enclosure to roll off the surface of the enclosure or cover and away from the resonator and/or high electromagnetic fields. The resonator enclosure may be shaped or positioned to allow gravity to pull objects away from the resonators. In some embodiments, the enclosures and position of the resonators may be designed to use other natural or omnipresent forces to move FOD away. For example, the force of water currents, wind, vibration, and the like may be used to prevent FOD from accumulating or staying in unwanted regions around resonators. In embodiments, the resonator surfaces where FOD may accumulate may be arranged to be substantially perpendicular to the ground so that objects may not naturally rest and accumulate on the resonators.
An example resonator cover providing a degree of passive FOD protection is shown in