Controlling wireless power transfer systems
First Claim
1. A method of operating a wireless energy transfer system comprising:
- tuning, by a wireless energy transmitter, a transmitter impedance matching network (IMN) of the wireless energy transmitter to achieve a target transmitter power characteristic;
sending, by the wireless energy transmitter to a wireless energy receiver, power data that indicates a value of a power level of the wireless energy transmitter;
tuning, by the wireless energy receiver and based on the power data, a receiver-IMN to improve an efficiency of the wireless energy transfer system.
1 Assignment
0 Petitions

Accused Products

Abstract
Methods, systems, and devices for operating wireless power transfer systems. One aspect features a wireless energy transfer system that includes a transmitter, and a receiver. The transmitter has a transmitter-IMN and is configured to perform operations including performing a first comparison between a characteristic of a power of the transmitter and a target power. Adjusting, based on the first comparison, a reactance of the transmitter-IMN to adjust the power of the transmitter. The receiver has a receiver-IMN and is configured to perform operations including determining an efficiency of the wireless energy transfer system at a second time based on power data from the transmitter. Performing a second comparison between the efficiency at the second time and an efficiency of the wireless energy transfer system at a first time, the first time being prior to the second time. Adjusting, based on the second comparison, a reactance of the receiver-IMN.
713 Citations
No References
TUNING AND GAIN CONTROL IN ELECTRO-MAGNETIC POWER SYSTEMS | ||
Patent #
US 20110018361A1
Filed 10/01/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q CAPACITIVELY LOADED CONDUCTING LOOPS | ||
Patent #
US 20110043046A1
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Tunable embedded inductor devices | ||
Patent #
US 7,884,697 B2
Filed 02/26/2008
|
Current Assignee
Industrial Technology Research Institute
|
Original Assignee
Industrial Technology Research Institute
|
High power wireless resonant energy transfer system | ||
Patent #
US 7,880,337 B2
Filed 10/25/2007
|
Current Assignee
Leslie Farkas
|
Original Assignee
Laszlo Farkas
|
WIRELESS DELIVERY OF POWER TO A FIXED-GEOMETRY POWER PART | ||
Patent #
US 20110049998A1
Filed 11/04/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device | ||
Patent #
US 7,885,050 B2
Filed 07/29/2005
|
Current Assignee
Andong National University Industry Academic Cooperation Foundation, JC Protek Company Limited
|
Original Assignee
JC Protek Company Limited
|
RESONATORS FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20110012431A1
Filed 09/10/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110074347A1
Filed 11/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS DESKTOP IT ENVIRONMENT | ||
Patent #
US 20110049996A1
Filed 08/25/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
VEHICLE CHARGER SAFETY SYSTEM AND METHOD | ||
Patent #
US 20110074346A1
Filed 10/06/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
NONCONTACT ELECTRIC POWER FEEDING APPARATUS, NONCONTACT ELECTRIC POWER RECEIVING APPARATUS, NONCONTACT ELECTRIC POWER FEEDING METHOD, NONCONTACT ELECTRIC POWER RECEIVING METHOD, AND NONCONTACT ELECTRIC POWER FEEDING SYSTEM | ||
Patent #
US 20110049995A1
Filed 07/30/2010
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110074218A1
Filed 11/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Soldier system wireless power and data transmission | ||
Patent #
US 20110031928A1
Filed 10/13/2010
|
Current Assignee
Cynetic Designs Ltd.
|
Original Assignee
Cynetic Designs Ltd.
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q RESONATORS USING FIELD SHAPING TO IMPROVE K | ||
Patent #
US 20110043049A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING OBJECT POSITIONING FOR LOW LOSS | ||
Patent #
US 20110043048A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
PACKAGING AND DETAILS OF A WIRELESS POWER DEVICE | ||
Patent #
US 20110025131A1
Filed 10/01/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
IMPLANTABLE PULSE GENERATOR FOR PROVIDING FUNCTIONAL AND/OR THERAPEUTIC STIMULATION OF MUSCLES AND/OR NERVES AND/OR CENTRAL NERVOUS SYSTEM TISSUE | ||
Patent #
US 20110004269A1
Filed 06/28/2010
|
Current Assignee
Medtronic Urinary Solutions Inc.
|
Original Assignee
Medtronic Urinary Solutions Inc.
|
WIRELESS ENERGY TRANSFER USING FIELD SHAPING TO REDUCE LOSS | ||
Patent #
US 20110043047A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Contactless battery charging apparel | ||
Patent #
US 7,863,859 B2
Filed 06/28/2006
|
Current Assignee
Cynetic Designs Ltd.
|
Original Assignee
Cynetic Designs Ltd.
|
WIRELESS ENERGY TRANSFER RESONATOR THERMAL MANAGEMENT | ||
Patent #
US 20110121920A1
Filed 02/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER SYSTEM WITH SELECTABLE CONTROL CHANNEL PROTOCOLS | ||
Patent #
US 20110127843A1
Filed 05/01/2010
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Broadcom Corporation
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110089895A1
Filed 11/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
SELECTIVE WIRELESS POWER TRANSFER | ||
Patent #
US 20110115431A1
Filed 08/04/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER USING REPEATER RESONATORS | ||
Patent #
US 20110095618A1
Filed 04/13/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTIPLE USE WIRELESS POWER SYSTEMS | ||
Patent #
US 20110115303A1
Filed 11/18/2010
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Noncontact power transmission system and power transmitting device | ||
Patent #
US 7,923,870 B2
Filed 03/13/2008
|
Current Assignee
Seiko Epson Corporation
|
Original Assignee
Seiko Epson Corporation
|
Wireless charger system for battery pack solution and controlling method thereof | ||
Patent #
US 7,948,209 B2
Filed 09/13/2007
|
Current Assignee
Intel Corporation
|
Original Assignee
Hanrim Postech Co. Ltd.
|
Inductive power source and charging system | ||
Patent #
US 7,952,322 B2
Filed 01/30/2007
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
System, an inductive power device, an energizable load and a method for enabling a wireless power transfer | ||
Patent #
US 7,932,798 B2
Filed 03/09/2006
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Foreign Object Detection in Inductive Coupled Devices | ||
Patent #
US 20110128015A1
Filed 10/29/2010
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Installation | ||
Patent #
US 7,969,045 B2
Filed 05/10/2007
|
Current Assignee
Sew-Eurodrive GmbH Company KG
|
Original Assignee
Sew-Eurodrive GmbH Company KG
|
Intra-abdominal medical method and associated device | ||
Patent #
US 7,963,941 B2
Filed 03/22/2006
|
Current Assignee
WILK Patent LLC
|
Original Assignee
Peter J. Wilk
|
ADAPTIVE WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20110140544A1
Filed 02/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
SHORT RANGE EFFICIENT WIRELESS POWER TRANSFER | ||
Patent #
US 20110148219A1
Filed 02/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Power receiving device and power transfer system | ||
Patent #
US 7,919,886 B2
Filed 08/29/2008
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
POWER SUPPLY SYSTEM AND METHOD OF CONTROLLING POWER SUPPLY SYSTEM | ||
Patent #
US 20110221278A1
Filed 05/20/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
METHOD AND APPARATUS OF LOAD DETECTION FOR A PLANAR WIRELESS POWER SYSTEM | ||
Patent #
US 20110169339A1
Filed 03/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
FLAT, ASYMMETRIC, AND E-FIELD CONFINED WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20110198939A1
Filed 03/04/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110193419A1
Filed 02/28/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESSLY POWERED SPEAKER | ||
Patent #
US 20110181122A1
Filed 04/01/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wirelessly-chargeable stretch-resistant light-emitting or heat-emitting structure | ||
Patent #
US 20110215086A1
Filed 02/23/2011
|
Current Assignee
WindStream Technology Co. Ltd.
|
Original Assignee
Winharbor Technology Co. Ltd.
|
System to automatically recharge vehicles with batteries | ||
Patent #
US 7,999,506 B1
Filed 04/09/2008
|
Current Assignee
SeventhDigit Corporation
|
Original Assignee
SeventhDigit Corporation
|
ADAPTIVE MATCHING, TUNING, AND POWER TRANSFER OF WIRELESS POWER | ||
Patent #
US 20110227528A1
Filed 05/13/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Energy transferring system and method thereof | ||
Patent #
US 7,994,880 B2
Filed 06/19/2008
|
Current Assignee
Darfon Electronics Corporation
|
Original Assignee
Darfon Electronics Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20110193416A1
Filed 01/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSMISSION FOR PORTABLE WIRELESS POWER CHARGING | ||
Patent #
US 20110227530A1
Filed 05/26/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,022,576 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
NONCONTACT ELECTRIC POWER RECEIVING DEVICE, NONCONTACT ELECTRIC POWER TRANSMITTING DEVICE, NONCONTACT ELECTRIC POWER FEEDING SYSTEM, AND ELECTRICALLY POWERED VEHICLE | ||
Patent #
US 20110162895A1
Filed 03/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Transmitters and receivers for wireless energy transfer | ||
Patent #
US 20110266878A9
Filed 09/16/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
WIRELESS POWER TRANSMISSION SYSTEM | ||
Patent #
US 20110248573A1
Filed 04/06/2011
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Panasonic Corporation
|
WIRELESS POWER TRANSMISSION IN ELECTRIC VEHICLES | ||
Patent #
US 20110254377A1
Filed 04/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
METHODS AND SYSTEMS FOR WIRELESS POWER TRANSMISSION | ||
Patent #
US 20110241618A1
Filed 06/17/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
System including wearable power receiver and wearable power-output device | ||
Patent #
US 20110278943A1
Filed 05/11/2010
|
Current Assignee
Searete LLC
|
Original Assignee
Searete LLC
|
WIRELESS POWER ANTENNA ALIGNMENT ADJUSTMENT SYSTEM FOR VEHICLES | ||
Patent #
US 20110254503A1
Filed 04/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
Wireless energy transfer using planar capacitively loaded conducting loop resonators | ||
Patent #
US 8,035,255 B2
Filed 11/06/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
OPTIMIZATION OF WIRELESS POWER DEVICES | ||
Patent #
US 20100244576A1
Filed 02/25/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
PHASED ARRAY WIRELESS RESONANT POWER DELIVERY SYSTEM | ||
Patent #
US 20100033021A1
Filed 09/30/2008
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20100164296A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH FEEDBACK CONTROL FOR LIGHTING APPLICATIONS | ||
Patent #
US 20100201203A1
Filed 02/02/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR REFRIGERATOR APPLICATION | ||
Patent #
US 20100181843A1
Filed 03/11/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER FOR CHARGEABLE AND CHARGING DEVICES | ||
Patent #
US 20100225272A1
Filed 01/28/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
REDUCED JAMMING BETWEEN RECEIVERS AND WIRELESS POWER TRANSMITTERS | ||
Patent #
US 20100151808A1
Filed 11/05/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS HIGH POWER TRANSFER UNDER REGULATORY CONSTRAINTS | ||
Patent #
US 20100117596A1
Filed 07/06/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
Self-Charging Electric Vehicles and Aircraft, and Wireless Energy Distribution System | ||
Patent #
US 20100231163A1
Filed 09/26/2008
|
Current Assignee
Paradigm Shift Solutions
|
Original Assignee
Governing Dynamics LLC
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100289449A1
Filed 12/18/2008
|
Current Assignee
Nokia Corporation
|
Original Assignee
Nokia Technologies Oy
|
WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20100187913A1
Filed 04/06/2010
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
EFFICIENCY INDICATOR FOR INCREASING EFFICIENCY OF WIRELESS POWER TRANSFER | ||
Patent #
US 20100201513A1
Filed 10/16/2009
|
Current Assignee
Avago Technologies International Sales Pte Limited
|
Original Assignee
Broadcom Corporation
|
WIRELESS TRANSFER OF INFORMATION USING MAGNETO-ELECTRIC DEVICES | ||
Patent #
US 20100015918A1
Filed 07/17/2009
|
Current Assignee
Ferro Solutions Inc.
|
Original Assignee
Ferro Solutions Inc.
|
METHOD AND APPARATUS FOR SUPPLYING ENERGY TO A MEDICAL DEVICE | ||
Patent #
US 20100234922A1
Filed 10/10/2008
|
Current Assignee
Kirk Promotion Ltd.
|
Original Assignee
Teslux Holding SA
|
WIRELESS POWER TRANSFER SYSTEM AND A LOAD APPARATUS IN THE SAME WIRELESS POWER TRANSFER SYSTEM | ||
Patent #
US 20100164295A1
Filed 11/16/2009
|
Current Assignee
Maxell Ltd.
|
Original Assignee
Hitachi Consumer Electronics Company Limited
|
Security for wireless transfer of electrical power | ||
Patent #
US 20100276995A1
Filed 04/29/2009
|
Current Assignee
Alcatel-Lucent USA Inc.
|
Original Assignee
Alcatel-Lucent USA Inc.
|
WIRELESS POWER TRANSFER FOR FURNISHINGS AND BUILDING ELEMENTS | ||
Patent #
US 20100201202A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESSLY POWERED SPEAKER | ||
Patent #
US 20100081379A1
Filed 09/25/2009
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
ELECTRICAL POWERED VEHICLE AND POWER FEEDING DEVICE FOR VEHICLE | ||
Patent #
US 20100225271A1
Filed 09/25/2008
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
APPLICATIONS OF WIRELESS ENERGY TRANSFER USING COUPLED ANTENNAS | ||
Patent #
US 20100117456A1
Filed 01/15/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER AND DATA TRANSFER FOR ELECTRONIC DEVICES | ||
Patent #
US 20100194335A1
Filed 11/06/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
EFFICIENT NEAR-FIELD WIRELESS ENERGY TRANSFER USING ADIABATIC SYSTEM VARIATIONS | ||
Patent #
US 20100148589A1
Filed 10/01/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
INDUCTIVELY RECHARGEABLE EXTERNAL ENERGY SOURCE, CHARGER, SYSTEM AND METHOD FOR A TRANSCUTANEOUS INDUCTIVE CHARGER FOR AN IMPLANTABLE MEDICAL DEVICE | ||
Patent #
US 20100076524A1
Filed 10/28/2009
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
SYSTEM FOR ELECTRICAL POWER SUPPLY AND FOR TRANSMITTING DATA WITHOUT ELECTRICAL CONTACT | ||
Patent #
US 20100104031A1
Filed 03/10/2008
|
Current Assignee
Delachaux SA
|
Original Assignee
Delachaux SA
|
RESONANCE-TYPE NON-CONTACT CHARGING APPARATUS | ||
Patent #
US 20100156346A1
Filed 12/23/2009
|
Current Assignee
Toyota Jidoshi Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Jidoshokki
|
INCREASING EFFICIENCY OF WIRELESS POWER TRANSFER | ||
Patent #
US 20100201313A1
Filed 10/16/2009
|
Current Assignee
Avago Technologies International Sales Pte Limited
|
Original Assignee
Broadcom Corporation
|
BIDIRECTIONAL WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100148723A1
Filed 09/01/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Narrow spectrum light source | ||
Patent #
US 7,835,417 B2
Filed 07/15/2008
|
Current Assignee
OctroliX B.V.
|
Original Assignee
OctroliX B.V.
|
WIRELESS POWER TRANSFER IN PUBLIC PLACES | ||
Patent #
US 20100201201A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
NONCONTACT ELECTRIC POWER RECEIVING DEVICE, NONCONTACT ELECTRIC POWER TRANSMITTING DEVICE, NONCONTACT ELECTRIC POWER FEEDING SYSTEM, AND ELECTRICALLY POWERED VEHICLE | ||
Patent #
US 20100065352A1
Filed 08/27/2009
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
WIRELESS POWER TRANSFER FOR CHARGEABLE DEVICES | ||
Patent #
US 20100225270A1
Filed 10/22/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
PACKAGING AND DETAILS OF A WIRELESS POWER DEVICE | ||
Patent #
US 20100327661A1
Filed 09/10/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER USING COUPLED RESONATORS | ||
Patent #
US 20100117455A1
Filed 01/15/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RETROFITTING WIRELESS POWER AND NEAR-FIELD COMMUNICATION IN ELECTRONIC DEVICES | ||
Patent #
US 20100194334A1
Filed 11/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20100141042A1
Filed 09/25/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER OVER DISTANCES TO A MOVING DEVICE | ||
Patent #
US 20100187911A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSFER WITH LIGHTING | ||
Patent #
US 20100194207A1
Filed 02/04/2010
|
Current Assignee
David S. Graham
|
Original Assignee
David S. Graham
|
WIRELESS POWER TRANSFER FOR PORTABLE ENCLOSURES | ||
Patent #
US 20100201312A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Coupling system | ||
Patent #
US 7,825,544 B2
Filed 11/29/2006
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
RESONATORS AND THEIR COUPLING CHARACTERISTICS FOR WIRELESS POWER TRANSFER VIA MAGNETIC COUPLING | ||
Patent #
US 20100327660A1
Filed 08/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ADAPTIVE MATCHING AND TUNING OF HF WIRELESS POWER TRANSMIT ANTENNA | ||
Patent #
US 20100117454A1
Filed 07/17/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER DISTRIBUTION SYSTEM AND METHOD FOR POWER TOOLS | ||
Patent #
US 20100181964A1
Filed 01/22/2010
|
Current Assignee
Techtronic Power Tools Technology Limited
|
Original Assignee
Techtronic Power Tools Technology Limited
|
SYSTEMS AND METHODS FOR ELECTRIC VEHICLE CHARGING AND POWER MANAGEMENT | ||
Patent #
US 20100017249A1
Filed 07/13/2009
|
Current Assignee
Charge Fusion Technologies LLC
|
Original Assignee
Charge Fusion Technologies LLC
|
Resonator for wireless power transmission | ||
Patent #
US 20100156570A1
Filed 12/17/2009
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
WIRELESS ENERGY TRANSFER OVER A DISTANCE WITH DEVICES AT VARIABLE DISTANCES | ||
Patent #
US 20100207458A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Method and Apparatus of Load Detection for a Planar Wireless Power System | ||
Patent #
US 20100066349A1
Filed 09/12/2008
|
Current Assignee
University of Florida Research Foundation Incorporated
|
Original Assignee
University of Florida Research Foundation Incorporated
|
Multilayer structures for magnetic shielding | ||
Patent #
US 7,795,708 B2
Filed 06/02/2006
|
Current Assignee
Honeywell International Inc.
|
Original Assignee
Honeywell International Inc.
|
CONCURRENT WIRELESS POWER TRANSMISSION AND NEAR-FIELD COMMUNICATION | ||
Patent #
US 20100190436A1
Filed 08/25/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20100109445A1
Filed 11/06/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Short Range Efficient Wireless Power Transfer | ||
Patent #
US 20100038970A1
Filed 04/21/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
Wireless energy transfer | ||
Patent #
US 7,825,543 B2
Filed 03/26/2008
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
APPARATUS FOR DRIVING ARTIFICIAL RETINA USING MEDIUM-RANGE WIRELESS POWER TRANSMISSION TECHNIQUE | ||
Patent #
US 20100094381A1
Filed 06/04/2009
|
Current Assignee
Electronics and Telecommunications Research Institute
|
Original Assignee
Electronics and Telecommunications Research Institute
|
RECEIVE ANTENNA ARRANGEMENT FOR WIRELESS POWER | ||
Patent #
US 20100210233A1
Filed 09/04/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
RESONATOR ARRAYS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100237709A1
Filed 05/28/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wirelessly Powered Medical Devices And Instruments | ||
Patent #
US 20100179384A1
Filed 08/21/2009
|
Current Assignee
KARL Storz Development Corp.
|
Original Assignee
KARL Storz Development Corp.
|
MULTI POWER SOURCED ELECTRIC VEHICLE | ||
Patent #
US 20100109604A1
Filed 05/09/2008
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
WIRELESS ENERGY TRANSFER WITH FREQUENCY HOPPING | ||
Patent #
US 20100171368A1
Filed 12/31/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER INFRASTRUCTURE | ||
Patent #
US 20100256831A1
Filed 04/03/2009
|
Current Assignee
International Business Machines Corporation
|
Original Assignee
International Business Machines Corporation
|
Apparatus and system for transmitting power wirelessly | ||
Patent #
US 7,843,288 B2
Filed 04/30/2008
|
Current Assignee
Samsung Electronics Co. Ltd., Postech Academy-Industry Foundation
|
Original Assignee
Samsung Electronics Co. Ltd., Postech Academy-Industry Foundation
|
WIRELESS ENERGY TRANSFER BETWEEN A SOURCE AND A VEHICLE | ||
Patent #
US 20100277121A1
Filed 04/29/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q TO MORE THAN ONE DEVICE | ||
Patent #
US 20100127575A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ADAPTIVE WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20100045114A1
Filed 08/20/2009
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
WIRELESS POWER TRANSFER SYSTEM | ||
Patent #
US 20100201310A1
Filed 04/10/2009
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
Apparatus for wireless power transmission using high Q low frequency near magnetic field resonator | ||
Patent #
US 20100123530A1
Filed 11/17/2009
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
ANTENNA SHARING FOR WIRELESSLY POWERED DEVICES | ||
Patent #
US 20100222010A1
Filed 01/28/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
MAGNETIC INDUCTIVE CHARGING WITH LOW FAR FIELDS | ||
Patent #
US 20100244767A1
Filed 03/27/2009
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
MAXIMIZING POWER YIELD FROM WIRELESS POWER MAGNETIC RESONATORS | ||
Patent #
US 20100171370A1
Filed 03/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER APPARATUS AND WIRELESS POWER-RECEIVING METHOD | ||
Patent #
US 20100244583A1
Filed 03/31/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
SYSTEM AND METHOD FOR CHARGING A PLUG-IN ELECTRIC VEHICLE | ||
Patent #
US 20100156355A1
Filed 12/19/2008
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
GM Global Technology Operations Incorporated
|
POWER TRANSMITTING APPARATUS | ||
Patent #
US 20100244839A1
Filed 03/15/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
PASSIVE RECEIVERS FOR WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100190435A1
Filed 08/24/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
SPREAD SPECTRUM WIRELESS RESONANT POWER DELIVERY | ||
Patent #
US 20100034238A1
Filed 09/30/2008
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
NON-CONTACT POWER TRANSMISSION DEVICE | ||
Patent #
US 20100052431A1
Filed 09/01/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
NON-CONTACT POWER TRANSMISSION APPARATUS AND METHOD FOR DESIGNING NON-CONTACT POWER TRANSMISSION APPARATUS | ||
Patent #
US 20100115474A1
Filed 11/03/2009
|
Current Assignee
Toyota Industries Corporation
|
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
|
TRANSMITTERS AND RECEIVERS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100237708A1
Filed 03/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Noncontact Electric Power Transmission System | ||
Patent #
US 20100219696A1
Filed 02/19/2010
|
Current Assignee
Murata Manufacturing Co Limited
|
Original Assignee
TOKO Incorporated
|
PARASITIC DEVICES FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20100277120A1
Filed 04/08/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q SUB-WAVELENGTH RESONATORS | ||
Patent #
US 20100123355A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q AT HIGH EFFICIENCY | ||
Patent #
US 20100127574A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSMISSION SCHEDULING | ||
Patent #
US 20100253281A1
Filed 03/02/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Power Transfer Apparatus | ||
Patent #
US 20100244582A1
Filed 03/30/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS POWERING AND CHARGING STATION | ||
Patent #
US 20100277005A1
Filed 07/16/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
NONCONTACT POWER RECEIVING APPARATUS AND VEHICLE INCLUDING THE SAME | ||
Patent #
US 20100295506A1
Filed 09/19/2008
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
TRANSMITTERS FOR WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100184371A1
Filed 09/16/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
TRACKING RECEIVER DEVICES WITH WIRELESS POWER SYSTEMS, APPARATUSES, AND METHODS | ||
Patent #
US 20100248622A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
GLAZING | ||
Patent #
US 20100060077A1
Filed 11/07/2007
|
Current Assignee
Pilkington Automotive Deutschland GmbH
|
Original Assignee
Pilkington Automotive Deutschland GmbH
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q DEVICES AT VARIABLE DISTANCES | ||
Patent #
US 20100123354A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
IMPEDANCE CHANGE DETECTION IN WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100217553A1
Filed 12/17/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
INTEGRATED WIRELESS RESONANT POWER CHARGING AND COMMUNICATION CHANNEL | ||
Patent #
US 20100036773A1
Filed 09/30/2008
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
FLAT, ASYMMETRIC, AND E-FIELD CONFINED WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20100052811A1
Filed 08/20/2009
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20100102639A1
Filed 09/03/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES | ||
Patent #
US 20100102641A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q SIMILAR RESONANT FREQUENCY RESONATORS | ||
Patent #
US 20100096934A1
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER TO A MOVING DEVICE BETWEEN HIGH-Q RESONATORS | ||
Patent #
US 20100102640A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSMISSION FOR ELECTRONIC DEVICES | ||
Patent #
US 20100109443A1
Filed 07/27/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER OVER A DISTANCE AT HIGH EFFICIENCY | ||
Patent #
US 20100127573A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSMISSION FOR PORTABLE WIRELESS POWER CHARGING | ||
Patent #
US 20100127660A1
Filed 08/18/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q FROM MORE THAN ONE SOURCE | ||
Patent #
US 20100123353A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Power supply system and method of controlling power supply system | ||
Patent #
US 20100123452A1
Filed 10/13/2009
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES WITH HIGH-Q CAPACITIVELY-LOADED CONDUCTING-WIRE LOOPS | ||
Patent #
US 20100133919A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Magnetic Induction Devices And Methods For Producing Them | ||
Patent #
US 20100188183A1
Filed 06/12/2008
|
Current Assignee
Advanced Magnetic Solutions Limited
|
Original Assignee
Advanced Magnetic Solutions Limited
|
Wireless non-radiative energy transfer | ||
Patent #
US 7,741,734 B2
Filed 07/05/2006
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER OVER VARIABLE DISTANCES BETWEEN RESONATORS OF SUBSTANTIALLY SIMILAR RESONANT FREQUENCIES | ||
Patent #
US 20100133918A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ADAPTIVE POWER CONTROL FOR WIRELESS CHARGING | ||
Patent #
US 20100181961A1
Filed 11/10/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER ACROSS A DISTANCE TO A MOVING DEVICE | ||
Patent #
US 20100133920A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER USING MAGNETIC MATERIALS TO SHAPE FIELD AND REDUCE LOSS | ||
Patent #
US 20100164298A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TEMPERATURE COMPENSATION IN A WIRELESS TRANSFER SYSTEM | ||
Patent #
US 20100181845A1
Filed 03/30/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING CONDUCTING SURFACES TO SHAPE FIELDS AND REDUCE LOSS | ||
Patent #
US 20100164297A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
HIGH EFFICIENCY AND POWER TRANSFER IN WIRELESS POWER MAGNETIC RESONATORS | ||
Patent #
US 20100181844A1
Filed 03/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSFER FOR VEHICLES | ||
Patent #
US 20100201189A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER FOR CHARGING DEVICES | ||
Patent #
US 20100194206A1
Filed 11/13/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER CHARGING TIMING AND CHARGING CONTROL | ||
Patent #
US 20100213895A1
Filed 10/30/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
BIOLOGICAL EFFECTS OF MAGNETIC POWER TRANSFER | ||
Patent #
US 20100201205A1
Filed 04/23/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
INDUCED POWER TRANSMISSION CIRCUIT | ||
Patent #
US 20100213770A1
Filed 09/15/2008
|
Current Assignee
Hideo Kikuchi
|
Original Assignee
Hideo Kikuchi
|
NON-CONTACT POWER TRANSMISSION APPARATUS | ||
Patent #
US 20100201316A1
Filed 02/08/2010
|
Current Assignee
Toyota Industries Corporation
|
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
|
NON-CONTACT POWER TRANSMISSION APPARATUS | ||
Patent #
US 20100201204A1
Filed 02/08/2010
|
Current Assignee
Toyota Industries Corporation
|
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
|
INCREASING THE Q FACTOR OF A RESONATOR | ||
Patent #
US 20100237707A1
Filed 02/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ELECTRIC POWER SUPPLYING APPARATUS AND ELECTRIC POWER TRANSMITTING SYSTEM USING THE SAME | ||
Patent #
US 20100219695A1
Filed 02/18/2010
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
COIL UNIT, AND POWER TRANSMISSION DEVICE AND POWER RECEPTION DEVICE USING THE COIL UNIT | ||
Patent #
US 20100244579A1
Filed 03/19/2010
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Seiko Epson Corporation
|
WIRELESS ELECTRIC POWER SUPPLY METHOD AND WIRELESS ELECTRIC POWER SUPPLY APPARATUS | ||
Patent #
US 20100244581A1
Filed 03/29/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS ENERGY TRANSFER RESONATOR ENCLOSURES | ||
Patent #
US 20100231340A1
Filed 03/10/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER SYSTEM AND PROXIMITY EFFECTS | ||
Patent #
US 20100237706A1
Filed 02/19/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER IN LOSSY ENVIRONMENTS | ||
Patent #
US 20100219694A1
Filed 02/13/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
POWER TRANSMMISSION APPARATUS, POWER TRANSMISSION/RECEPTION APPARATUS, AND METHOD OF TRANSMITTING POWER | ||
Patent #
US 20100244578A1
Filed 03/16/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS POWER BRIDGE | ||
Patent #
US 20100225175A1
Filed 05/21/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER SUPPLY APPARATUS | ||
Patent #
US 20100244580A1
Filed 03/24/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS POWER RANGE INCREASE USING PARASITIC RESONATORS | ||
Patent #
US 20100231053A1
Filed 05/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER SUPPLY SYSTEM AND WIRELESS POWER SUPPLY METHOD | ||
Patent #
US 20100244577A1
Filed 03/11/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
Method and Apparatus for Automatic Charging of an Electrically Powered Vehicle | ||
Patent #
US 20100235006A1
Filed 04/22/2009
|
Current Assignee
Wendell Brown
|
Original Assignee
Wendell Brown
|
WIRELESS ENERGY TRANSFER CONVERTERS | ||
Patent #
US 20100264747A1
Filed 04/26/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
POWER TRANSMISSION DEVICE, POWER TRANSMISSION METHOD, POWER RECEPTION DEVICE, POWER RECEPTION METHOD, AND POWER TRANSMISSION SYSTEM | ||
Patent #
US 20100259109A1
Filed 04/06/2010
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
WIRELESS POWER TRANSMITTING SYSTEM, POWER RECEIVING STATION, POWER TRANSMITTING STATION, AND RECORDING MEDIUM | ||
Patent #
US 20100264746A1
Filed 03/30/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
LONG RANGE LOW FREQUENCY RESONATOR | ||
Patent #
US 20100253152A1
Filed 03/04/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER USING REPEATER RESONATORS | ||
Patent #
US 20100259108A1
Filed 03/10/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Method and Apparatus for Providing a Wireless Multiple-Frequency MR Coil | ||
Patent #
US 20100256481A1
Filed 09/29/2008
|
Current Assignee
University of Florida Research Foundation Incorporated
|
Original Assignee
University of Florida Research Foundation Incorporated
|
RESONATORS FOR WIRELESS POWER APPLICATIONS | ||
Patent #
US 20100264745A1
Filed 03/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RESONATOR OPTIMIZATIONS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100259110A1
Filed 04/09/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
PLANAR COIL AND CONTACTLESS ELECTRIC POWER TRANSMISSION DEVICE USING THE SAME | ||
Patent #
US 20100277004A1
Filed 12/24/2008
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Panasonic Corporation
|
MOBILE TERMINALS AND BATTERY PACKS FOR MOBILE TERMINALS | ||
Patent #
US 20100295505A1
Filed 05/24/2010
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Hanrim Postech Co. Ltd.
|
Power transmission network | ||
Patent #
US 7,844,306 B2
Filed 05/22/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Corporation
|
ADAPTIVE IMPEDANCE TUNING IN WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100277003A1
Filed 02/25/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
SYSTEMS AND METHODS RELATING TO MULTI-DIMENSIONAL WIRELESS CHARGING | ||
Patent #
US 20100289341A1
Filed 09/25/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
FLOOR COVERING AND INDUCTIVE POWER SYSTEM | ||
Patent #
US 20100314946A1
Filed 10/23/2007
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
INDUCTIVE POWER SYSTEM AND METHOD OF OPERATION | ||
Patent #
US 20100328044A1
Filed 10/16/2007
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
INTEGRATED RESONATOR-SHIELD STRUCTURES | ||
Patent #
US 20100308939A1
Filed 08/20/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Inductively powered secondary assembly | ||
Patent #
US 7,474,058 B2
Filed 11/10/2006
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
INDUCTIVE POWER SUPPLY, REMOTE DEVICE POWERED BY INDUCTIVE POWER SUPPLY AND METHOD FOR OPERATING SAME | ||
Patent #
US 20090010028A1
Filed 09/25/2008
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Wireless Energy Transfer Using Coupled Antennas | ||
Patent #
US 20090015075A1
Filed 07/09/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Wireless Power System and Proximity Effects | ||
Patent #
US 20090045772A1
Filed 06/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Transmitter head and system for contactless energy transmission | ||
Patent #
US 7,492,247 B2
Filed 02/20/2004
|
Current Assignee
Sew-Eurodrive GmbH Company KG
|
Original Assignee
Sew-Eurodrive GmbH Company KG
|
INCREASING THE Q FACTOR OF A RESONATOR | ||
Patent #
US 20090051224A1
Filed 08/11/2008
|
Current Assignee
Nigel Power LLC
|
Original Assignee
Nigel Power LLC
|
INDUCTIVE POWER TRANSFER SYSTEM FOR PALATAL IMPLANT | ||
Patent #
US 20090038623A1
Filed 08/15/2008
|
Current Assignee
Pavad Medical Inc.
|
Original Assignee
Pavad Medical Inc.
|
Deployable Antennas for Wireless Power | ||
Patent #
US 20090033564A1
Filed 08/02/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
CONTACT-LESS POWER SUPPLY, CONTACT-LESS CHARGER SYSTEMS AND METHOD FOR CHARGING RECHARGEABLE BATTERY CELL | ||
Patent #
US 20090033280A1
Filed 01/23/2007
|
Current Assignee
LS Cable And System Limited
|
Original Assignee
LS Cable Limited
|
POWER TRANSMISSION CONTROL DEVICE, POWER TRANSMITTING DEVICE, POWER-TRANSMITTING-SIDE DEVICE, AND NON-CONTACT POWER TRANSMISSION SYSTEM | ||
Patent #
US 20090079387A1
Filed 09/25/2008
|
Current Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
LONG RANGE LOW FREQUENCY RESONATOR AND MATERIALS | ||
Patent #
US 20090058189A1
Filed 08/11/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
CONTACTLESS POWER SUPPLY | ||
Patent #
US 20090067198A1
Filed 08/28/2008
|
Current Assignee
Powercast Corporation
|
Original Assignee
Michael Thomas Mcelhinny, David Jeffrey Graham, Jesse Frederick Goellner, Alexander Brailovsky
|
High Efficiency and Power Transfer in Wireless Power Magnetic Resonators | ||
Patent #
US 20090072629A1
Filed 09/16/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
VERSATILE APPARATUS AND METHOD FOR ELECTRONIC DEVICES | ||
Patent #
US 20090072782A1
Filed 03/05/2007
|
Current Assignee
Pure Energy Solutions Inc.
|
Original Assignee
Pure Energy Solutions Inc.
|
Antennas for Wireless Power applications | ||
Patent #
US 20090072628A1
Filed 09/14/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Systems and Methods for Wireless Power | ||
Patent #
US 20090058361A1
Filed 06/02/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Maximizing Power Yield from Wireless Power Magnetic Resonators | ||
Patent #
US 20090072627A1
Filed 09/14/2008
|
Current Assignee
Nigel Power LLC
|
Original Assignee
Nigel Power LLC
|
Transmitters and receivers for wireless energy transfer | ||
Patent #
US 20090079268A1
Filed 09/16/2008
|
Current Assignee
Nigel Power LLC
|
Original Assignee
Nigel Power LLC
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20090108679A1
Filed 10/30/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
ATI Technologies ULC
|
Power supply system | ||
Patent #
US 7,514,818 B2
Filed 10/24/2006
|
Current Assignee
Panasonic Electric Works Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
System and method for selective transfer of radio frequency power | ||
Patent #
US 7,521,890 B2
Filed 12/27/2005
|
Current Assignee
Power Science Inc.
|
Original Assignee
Power Science Inc.
|
SYSTEM AND METHOD FOR INDUCTIVE CHARGING OF PORTABLE DEVICES | ||
Patent #
US 20090096413A1
Filed 05/07/2008
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
Power adapter for a remote device | ||
Patent #
US 7,518,267 B2
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
SYSTEM, DEVICES, AND METHOD FOR ENERGIZING PASSIVE WIRELESS DATA COMMUNICATION DEVICES | ||
Patent #
US 20090108997A1
Filed 10/31/2007
|
Current Assignee
Intermec IP Corporation
|
Original Assignee
Intermec IP Corporation
|
APPARATUS AND METHOD FOR WIRELESS ENERGY AND/OR DATA TRANSMISSION BETWEEN A SOURCE DEVICE AND AT LEAST ONE TARGET DEVICE | ||
Patent #
US 20090085408A1
Filed 08/29/2008
|
Current Assignee
Maquet GmbH Company KG
|
Original Assignee
Maquet GmbH Company KG
|
PRINTED CIRCUIT BOARD COIL | ||
Patent #
US 20090085706A1
Filed 09/24/2008
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Biological Effects of Magnetic Power Transfer | ||
Patent #
US 20090102292A1
Filed 09/18/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
Contact-less power transfer | ||
Patent #
US 7,525,283 B2
Filed 02/28/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless Power Range Increase Using Parasitic Antennas | ||
Patent #
US 20090134712A1
Filed 11/26/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
SYSTEMS AND METHODS FOR WIRELESS PROCESSING AND ADAPTER-BASED COMMUNICATION WITH A MEDICAL DEVICE | ||
Patent #
US 20090115628A1
Filed 10/23/2007
|
Current Assignee
Medapps Incorporated
|
Original Assignee
Medapps Incorporated
|
Wireless Power Bridge | ||
Patent #
US 20090127937A1
Filed 02/29/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
NON-CONTACT WIRELESS COMMUNICATION APPARATUS, METHOD OF ADJUSTING RESONANCE FREQUENCY OF NON-CONTACT WIRELESS COMMUNICATION ANTENNA, AND MOBILE TERMINAL APPARATUS | ||
Patent #
US 20090146892A1
Filed 11/14/2008
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated
|
ENERGY TRANSFERRING SYSTEM AND METHOD THEREOF | ||
Patent #
US 20090153273A1
Filed 06/19/2008
|
Current Assignee
Darfon Electronics Corporation
|
Original Assignee
Darfon Electronics Corporation
|
Projector, and mobile device and computer device having the same | ||
Patent #
US 20090161078A1
Filed 12/21/2007
|
Current Assignee
OCULON OPTOELECTRONICS INC.
|
Original Assignee
OCULON OPTOELECTRONICS INC.
|
Antenna arrangement for inductive power transmission and use of the antenna arrangement | ||
Patent #
US 7,545,337 B2
Filed 11/13/2006
|
Current Assignee
Vacuumschmelze GmbH Company KG
|
Original Assignee
Vacuumschmelze GmbH Company KG
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20090160261A1
Filed 12/19/2007
|
Current Assignee
Nokia Corporation
|
Original Assignee
Nokia Corporation
|
Controlling inductive power transfer systems | ||
Patent #
US 7,554,316 B2
Filed 05/11/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless powering and charging station | ||
Patent #
US 20090179502A1
Filed 01/14/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Wireless Power Transfer using Magneto Mechanical Systems | ||
Patent #
US 20090167449A1
Filed 10/13/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
VEHICLE POWER SUPPLY APPARATUS AND VEHICLE WINDOW MEMBER | ||
Patent #
US 20090189458A1
Filed 01/21/2009
|
Current Assignee
Nippon Soken Inc., Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
OVEN WITH WIRELESS TEMPERATURE SENSOR FOR USE IN MONITORING FOOD TEMPERATURE | ||
Patent #
US 20090188396A1
Filed 08/05/2008
|
Current Assignee
Premark FEG LLC
|
Original Assignee
Premark FEG LLC
|
INDUCTIVE POWER SUPPLY WITH DUTY CYCLE CONTROL | ||
Patent #
US 20090174263A1
Filed 01/07/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090195333A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090195332A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless desktop IT environment | ||
Patent #
US 20090212636A1
Filed 01/11/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Antennas and Their Coupling Characteristics for Wireless Power Transfer via Magnetic Coupling | ||
Patent #
US 20090213028A1
Filed 02/26/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
APPARATUS, A SYSTEM AND A METHOD FOR ENABLING ELECTROMAGNETIC ENERGY TRANSFER | ||
Patent #
US 20090237194A1
Filed 09/11/2007
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20090224856A1
Filed 05/08/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Packaging and Details of a Wireless Power device | ||
Patent #
US 20090224609A1
Filed 03/09/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Contactless Battery Charging Apparel | ||
Patent #
US 20090218884A1
Filed 06/28/2006
|
Current Assignee
Cynetic Designs Ltd.
|
Original Assignee
Cynetic Designs Ltd.
|
CHARGING APPARATUS | ||
Patent #
US 20090224723A1
Filed 03/06/2009
|
Current Assignee
Canon Kabushiki Kaisha
|
Original Assignee
Canon Kabushiki Kaisha
|
Ferrite Antennas for Wireless Power Transfer | ||
Patent #
US 20090224608A1
Filed 02/23/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
INDUCTIVE POWER SUPPLY SYSTEM WITH MULTIPLE COIL PRIMARY | ||
Patent #
US 20090230777A1
Filed 03/12/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power Transmitting Apparatus, Power Transmission Method, Program, and Power Transmission System | ||
Patent #
US 20090271048A1
Filed 04/27/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
POWER TRANSMITTING APPARATUS, POWER RECEIVING APPARATUS, POWER TRANSMISSION METHOD, PROGRAM, AND POWER TRANSMISSION SYSTEM | ||
Patent #
US 20090271047A1
Filed 04/23/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Tuning and Gain Control in Electro-Magnetic power systems | ||
Patent #
US 20090243394A1
Filed 03/28/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Power Exchange Device, Power Exchange Method, Program, and Power Exchange System | ||
Patent #
US 20090251008A1
Filed 04/01/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Non-Contact Charger Available Of Wireless Data and Power Transmission, Charging Battery-Pack and Mobile Device Using Non-Contact Charger | ||
Patent #
US 20090261778A1
Filed 10/25/2006
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Hanrim Postech Co. Ltd.
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090267709A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090267710A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Low frequency transcutaneous energy transfer to implanted medical device | ||
Patent #
US 7,599,743 B2
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Packaging and Details of a Wireless Power device | ||
Patent #
US 20090243397A1
Filed 03/04/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Wireless Power Charging System | ||
Patent #
US 20090267558A1
Filed 06/26/2008
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Spacon Co. Ltd.
|
WIRELESS CHARGING MODULE AND ELECTRONIC APPARATUS | ||
Patent #
US 20090289595A1
Filed 10/09/2008
|
Current Assignee
Darfon Electronics Corporation
|
Original Assignee
Darfon Electronics Corporation
|
Inductively powered apparatus | ||
Patent #
US 7,615,936 B2
Filed 04/27/2007
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power Transmission Device, Power Transmission Method, Program, Power Receiving Device and Power Transfer System | ||
Patent #
US 20090281678A1
Filed 05/06/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
REVERSE LINK SIGNALING VIA RECEIVE ANTENNA IMPEDANCE MODULATION | ||
Patent #
US 20090286476A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
SIGNALING CHARGING IN WIRELESS POWER ENVIRONMENT | ||
Patent #
US 20090286475A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
TIME REMAINING TO CHARGE AN IMPLANTABLE MEDICAL DEVICE, CHARGER INDICATOR, SYSTEM AND METHOD THEREFORE | ||
Patent #
US 20090273318A1
Filed 04/30/2008
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
METHOD AND APPARATUS FOR AN ENLARGED WIRELESS CHARGING AREA | ||
Patent #
US 20090284218A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER TRANSFER FOR APPLIANCES AND EQUIPMENTS | ||
Patent #
US 20090284245A1
Filed 11/07/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
TRANSMIT POWER CONTROL FOR A WIRELESS CHARGING SYSTEM | ||
Patent #
US 20090284369A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
METHOD AND APPARATUS FOR ADAPTIVE TUNING OF WIRELESS POWER TRANSFER | ||
Patent #
US 20090284220A1
Filed 11/06/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER, INCLUDING INTERFERENCE ENHANCEMENT | ||
Patent #
US 20090284083A1
Filed 05/14/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RECEIVE ANTENNA FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20090284227A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless Delivery of power to a Fixed-Geometry power part | ||
Patent #
US 20090273242A1
Filed 05/05/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
REPEATERS FOR ENHANCEMENT OF WIRELESS POWER TRANSFER | ||
Patent #
US 20090286470A1
Filed 11/06/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
METHOD AND APPARATUS WITH NEGATIVE RESISTANCE IN WIRELESS POWER TRANSFERS | ||
Patent #
US 20090284082A1
Filed 11/06/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless power receiving device | ||
Patent #
US 20090308933A1
Filed 11/13/2007
|
Current Assignee
Semiconductor Energy Laboratory Co. Ltd.
|
Original Assignee
Semiconductor Energy Laboratory Co. Ltd.
|
Adaptive inductive power supply | ||
Patent #
US 7,639,514 B2
Filed 03/12/2007
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
CONTROLLING INDUCTIVE POWER TRANSFER SYSTEMS | ||
Patent #
US 20090322158A1
Filed 09/09/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless delivery of power to a mobile powered device | ||
Patent #
US 20090299918A1
Filed 05/28/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
POWER TRANSMISSION CONTROL DEVICE, POWER TRANSMISSION DEVICE, POWER RECEIVING CONTROL DEVICE, POWER RECEIVING DEVICE, AND ELECTRONIC APPARATUS | ||
Patent #
US 20090322280A1
Filed 06/23/2009
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Seiko Epson Corporation
|
Downhole Coils | ||
Patent #
US 20080012569A1
Filed 09/25/2007
|
Current Assignee
Schlumberger Technology Corporation
|
Original Assignee
Schlumberger Technology Corporation
|
Method and apparatus for delivering energy to an electrical or electronic device via a wireless link | ||
Patent #
US 20080014897A1
Filed 01/17/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ELECTROMAGNETIC PARASITIC POWER TRANSFER | ||
Patent #
US 20080036588A1
Filed 06/25/2007
|
Current Assignee
Securaplane Technologies Inc.
|
Original Assignee
Securaplane Technologies Inc.
|
MRI COMPATIBLE IMPLANTED ELECTRONIC MEDICAL DEVICE WITH POWER AND DATA COMMUNICATION CAPABILITY | ||
Patent #
US 20080051854A1
Filed 08/24/2007
|
Current Assignee
Kenergy Inc.
|
Original Assignee
Kenergy Inc.
|
ELECTRICAL WIRE AND METHOD OF FABRICATING THE ELECTRICAL WIRE | ||
Patent #
US 20080047727A1
Filed 10/31/2007
|
Current Assignee
Newire Incorporated
|
Original Assignee
Newire Incorporated
|
Flexible Circuit for Downhole Antenna | ||
Patent #
US 20080030415A1
Filed 08/02/2006
|
Current Assignee
Schlumberger Technology Corporation
|
Original Assignee
Schlumberger Technology Corporation
|
Method and apparatus for wireless power transmission | ||
Patent #
US 20080067874A1
Filed 09/14/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Biothermal power source for implantable devices | ||
Patent #
US 7,340,304 B2
Filed 09/13/2004
|
Current Assignee
Biomed Solutions LLC
|
Original Assignee
Biomed Solutions LLC
|
Inductive power adapter | ||
Patent #
US 7,378,817 B2
Filed 12/12/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Inductive battery charger | ||
Patent #
US 7,375,493 B2
Filed 12/12/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Inductively charged battery pack | ||
Patent #
US 7,375,492 B2
Filed 12/12/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Device for multicentric brain modulation, repair and interface | ||
Patent #
US 20080154331A1
Filed 12/21/2006
|
Current Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Original Assignee
E-Soc, University of Pittsburgh of The Commonwealth System of Higher Education
|
Portable electromagnetic navigation system | ||
Patent #
US 20080132909A1
Filed 12/01/2006
|
Current Assignee
Medtronic Navigation Incorporated
|
Original Assignee
Medtronic Navigation Incorporated
|
Inductively coupled ballast circuit | ||
Patent #
US 7,385,357 B2
Filed 11/28/2006
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
System and method for powering a load | ||
Patent #
US 7,382,636 B2
Filed 10/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
METHOD AND SYSTEM FOR POWER SAVING IN WIRELESS COMMUNICATIONS | ||
Patent #
US 20080176521A1
Filed 01/15/2008
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic instrument | ||
Patent #
US 20080197802A1
Filed 02/15/2008
|
Current Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
INDUCTIVELY COUPLED BALLAST CIRCUIT | ||
Patent #
US 20080191638A1
Filed 02/25/2008
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Transmission Of Power Supply For Robot Applications Between A First Member And A Second Member Arranged Rotatable Relative To One Another | ||
Patent #
US 20080197710A1
Filed 11/30/2005
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
WIRELESS POWER APPARATUS AND METHODS | ||
Patent #
US 20080211320A1
Filed 01/22/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
SYSTEM FOR INDUCTIVE POWER TRANSFER | ||
Patent #
US 20080238364A1
Filed 04/02/2007
|
Current Assignee
Visteon Global Technologies Incorporated
|
Original Assignee
Visteon Global Technologies Incorporated
|
Amplification Relay Device of Electromagnetic Wave and a Radio Electric Power Conversion Apparatus Using the Above Device | ||
Patent #
US 20080266748A1
Filed 07/29/2005
|
Current Assignee
Andong National University Industry Academic Cooperation Foundation, JC Protek Company Limited
|
Original Assignee
Andong National University Industry Academic Cooperation Foundation, JC Protek Company Limited
|
No point of contact charging system | ||
Patent #
US 7,443,135 B2
Filed 04/11/2005
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Hanrim Postech Co. Ltd.
|
High power wireless resonant energy transfer system | ||
Patent #
US 20080265684A1
Filed 10/25/2007
|
Current Assignee
Leslie Farkas
|
Original Assignee
Laszlo Farkas
|
Kiosk systems and methods | ||
Patent #
US 20080255901A1
Filed 03/26/2008
|
Current Assignee
Ryko Manufacturing Co.
|
Original Assignee
Ryko Manufacturing Co.
|
Monocular display device | ||
Patent #
US 20080291277A1
Filed 01/08/2008
|
Current Assignee
Kopin Corporation
|
Original Assignee
Kopin Corporation
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20080278264A1
Filed 03/26/2008
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Directional Display Apparatus | ||
Patent #
US 20080273242A1
Filed 05/28/2008
|
Current Assignee
AU Optronics Corporation
|
Original Assignee
Jonathan Harrold, Graham J. Woodgate
|
Tunable Dielectric Resonator Circuit | ||
Patent #
US 20080272860A1
Filed 05/01/2007
|
Current Assignee
Cobham Defense Electronic Systems Corporation
|
Original Assignee
MA Com
|
THERAPY SYSTEM | ||
Patent #
US 20080300657A1
Filed 11/20/2007
|
Current Assignee
ReShape LifeSciences Inc.
|
Original Assignee
ReShape LifeSciences Inc.
|
Resonator structure and method of producing it | ||
Patent #
US 7,466,213 B2
Filed 09/27/2004
|
Current Assignee
Qorvo Inc.
|
Original Assignee
NXP B.V.
|
Wireless battery charging | ||
Patent #
US 7,471,062 B2
Filed 06/12/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Portable inductive power station | ||
Patent #
US 7,462,951 B1
Filed 08/11/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power generation for implantable devices | ||
Patent #
US 20080300660A1
Filed 06/02/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Power transmission system, apparatus and method with communication | ||
Patent #
US 20070010295A1
Filed 07/06/2006
|
Current Assignee
Powercast Llc
|
Original Assignee
Firefly Power Technologies LLC
|
Passive dynamic antenna tuning circuit for a radio frequency identification reader | ||
Patent #
US 20070013483A1
Filed 06/29/2006
|
Current Assignee
Allflex USA Incorporated
|
Original Assignee
Allflex USA Incorporated
|
Implantable device for vital signs monitoring | ||
Patent #
US 20070016089A1
Filed 07/15/2005
|
Current Assignee
Angel Medical Systems Inc., Hi-Tronics Designs Inc.
|
Original Assignee
Angel Medical Systems Inc., Hi-Tronics Designs Inc.
|
Wireless power transmission systems and methods | ||
Patent #
US 20070021140A1
Filed 07/22/2005
|
Current Assignee
Emerson Process Management Power Water Solutions Incorporated
|
Original Assignee
Emerson Process Management Power Water Solutions Incorporated
|
Battery Chargers and Methods for Extended Battery Life | ||
Patent #
US 20070024246A1
Filed 07/27/2006
|
Current Assignee
David Flaugher
|
Original Assignee
David Flaugher
|
Inductively coupled ballast circuit | ||
Patent #
US 7,180,248 B2
Filed 10/22/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductive power transfer units having flux shields | ||
Patent #
US 20070064406A1
Filed 09/08/2004
|
Current Assignee
Amway Corporation
|
Original Assignee
Amway Corporation
|
Spatially decoupled twin secondary coils for optimizing transcutaneous energy transfer (TET) power transfer characteristics | ||
Patent #
US 7,191,007 B2
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Resonator system | ||
Patent #
US 7,193,418 B2
Filed 06/13/2005
|
Current Assignee
Bruker Switzerland AG
|
Original Assignee
Bruker Biospin AG
|
CHARGING APPARATUS AND CHARGING SYSTEM | ||
Patent #
US 20070069687A1
Filed 08/09/2006
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated
|
HIGH PERFORMANCE INTERCONNECT DEVICES & STRUCTURES | ||
Patent #
US 20070105429A1
Filed 11/06/2006
|
Current Assignee
Georgia Tech Research Corporation
|
Original Assignee
Georgia Tech Research Corporation
|
Radio-frequency (RF) power portal | ||
Patent #
US 20070117596A1
Filed 11/17/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Llc
|
Adaptive inductive power supply | ||
Patent #
US 7,212,414 B2
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
RADIO TAG AND SYSTEM | ||
Patent #
US 20070096875A1
Filed 05/22/2006
|
Current Assignee
Visible Assets Incorporated
|
Original Assignee
Visible Assets Incorporated
|
System and method for contact free transfer of power | ||
Patent #
US 20070145830A1
Filed 12/27/2005
|
Current Assignee
Power Science Inc.
|
Original Assignee
MOBILEWISE INC.
|
Antenna Arrangement For Inductive Power Transmission And Use Of The Antenna Arrangement | ||
Patent #
US 20070126650A1
Filed 11/13/2006
|
Current Assignee
Vacuumschmelze GmbH Company KG
|
Original Assignee
Vacuumschmelze GmbH Company KG
|
Power supply system | ||
Patent #
US 7,233,137 B2
Filed 09/23/2004
|
Current Assignee
Sharp Electronics Corporation
|
Original Assignee
Sharp Electronics Corporation
|
ADAPTIVE INDUCTIVE POWER SUPPLY | ||
Patent #
US 20070171681A1
Filed 03/12/2007
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method for monitoring end of life for battery | ||
Patent #
US 7,251,527 B2
Filed 07/31/2003
|
Current Assignee
Cardiac Pacemakers Incorporated
|
Original Assignee
Cardiac Pacemakers Incorporated
|
Primary units, methods and systems for contact-less power transfer | ||
Patent #
US 7,239,110 B2
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Portable contact-less power transfer devices and rechargeable batteries | ||
Patent #
US 7,248,017 B2
Filed 11/22/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
SPASHPOWER LIMITED
|
Electric machine signal selecting element | ||
Patent #
US 20070164839A1
Filed 06/13/2005
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Multi-receiver communication system with distributed aperture antenna | ||
Patent #
US 20070176840A1
Filed 02/06/2003
|
Current Assignee
Hamilton Sundstrand Corporation
|
Original Assignee
Hamilton Sundstrand Corporation
|
INDUCTIVE POWER SOURCE AND CHARGING SYSTEM | ||
Patent #
US 20070182367A1
Filed 01/30/2007
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
Method and system for powering an electronic device via a wireless link | ||
Patent #
US 20070178945A1
Filed 04/21/2006
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Systems and methods of medical monitoring according to patient state | ||
Patent #
US 20070208263A1
Filed 02/27/2007
|
Current Assignee
Angel Medical Systems Inc.
|
Original Assignee
Angel Medical Systems Inc.
|
Wireless non-radiative energy transfer | ||
Patent #
US 20070222542A1
Filed 07/05/2006
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless battery charger via carrier frequency signal | ||
Patent #
US 7,288,918 B2
Filed 03/02/2004
|
Current Assignee
Michael Vincent Distefano
|
Original Assignee
Michael Vincent Distefano
|
Device and Method of Non-Contact Energy Transmission | ||
Patent #
US 20070267918A1
Filed 04/29/2005
|
Current Assignee
Geir Gyland
|
Original Assignee
Geir Gyland
|
HOLSTER FOR CHARGING PECTORALLY IMPLANTED MEDICAL DEVICES | ||
Patent #
US 20070257636A1
Filed 04/27/2007
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Tool for an Industrial Robot | ||
Patent #
US 20070276538A1
Filed 04/06/2004
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Adaptive pulse width modulated resonant Class-D converter | ||
Patent #
US 5,986,895 A
Filed 06/05/1998
|
Current Assignee
Astec International Limited
|
Original Assignee
Astec International Limited
|
Coaxial cable | ||
Patent #
US 5,959,245 A
Filed 05/29/1997
|
Current Assignee
CommScope Inc.
|
Original Assignee
CommScope Inc.
|
Structure of signal transmission line | ||
Patent #
US 6,683,256 B2
Filed 03/27/2002
|
Current Assignee
Ta-San Kao
|
Original Assignee
Ta-San Kao
|
Tunable ferroelectric resonator arrangement | ||
Patent #
US 7,069,064 B2
Filed 02/20/2004
|
Current Assignee
Telefonaktiebolaget LM Ericsson
|
Original Assignee
Telefonaktiebolaget LM Ericsson
|
Planar resonator for wireless power transfer | ||
Patent #
US 6,960,968 B2
Filed 06/26/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Transponders, Interrogators, systems and methods for elimination of interrogator synchronization requirement | ||
Patent #
US 5,541,604 A
Filed 09/03/1993
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Operation in very close coupling of an electromagnetic transponder system | ||
Patent #
US 6,703,921 B1
Filed 04/05/2000
|
Current Assignee
Stmicroelectronics SA
|
Original Assignee
Stmicroelectronics SA
|
Systems and methods for automated resonant circuit tuning | ||
Patent #
US 20060001509A1
Filed 06/29/2005
|
Current Assignee
Stheno Corp.
|
Original Assignee
Phillip R. Gibbs
|
Thermal therapeutic method | ||
Patent #
US 20060010902A1
Filed 09/19/2005
|
Current Assignee
Dennis Sam Trinh, Albert Long Trinh, David Lam Trinh
|
Original Assignee
Dennis Sam Trinh, Albert Long Trinh, David Lam Trinh
|
Wireless and powerless sensor and interrogator | ||
Patent #
US 6,988,026 B2
Filed 11/04/2003
|
Current Assignee
American Vehicular Sciences LLC
|
Original Assignee
Automotive Technologies International Incorporated
|
Pulse frequency modulation for induction charge device | ||
Patent #
US 20060022636A1
Filed 07/30/2004
|
Current Assignee
KYE Systems Corporation
|
Original Assignee
KYE Systems Corporation
|
Method for authenticating a user to a service of a service provider | ||
Patent #
US 20060053296A1
Filed 05/23/2003
|
Current Assignee
Telefonaktiebolaget LM Ericsson
|
Original Assignee
Telefonaktiebolaget LM Ericsson
|
Contact-less power transfer | ||
Patent #
US 20060061323A1
Filed 10/28/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Self-adjusting RF assembly | ||
Patent #
US 20060066443A1
Filed 09/13/2005
|
Current Assignee
Tagsys SA
|
Original Assignee
Tagsys SA
|
Method and apparatus for a wireless power supply | ||
Patent #
US 7,027,311 B2
Filed 10/15/2004
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
Feedthrough filter capacitor assembly with internally grounded hermetic insulator | ||
Patent #
US 7,035,076 B1
Filed 08/15/2005
|
Current Assignee
Greatbatch Limited
|
Original Assignee
Greatbatch-Sierra Inc.
|
Ultrasonic rod waveguide-radiator | ||
Patent #
US 20060090956A1
Filed 11/04/2004
|
Current Assignee
Sergei L. Peshkovsky
|
Original Assignee
Advanced Ultrasound Solutions Inc.
|
Contact-less power transfer | ||
Patent #
US 7,042,196 B2
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Heating system and heater | ||
Patent #
US 20060132045A1
Filed 12/17/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Philips IP Ventures B.V.
|
Method and apparatus for a wireless power supply | ||
Patent #
US 20060164866A1
Filed 02/17/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Corporation
|
Device for brain stimulation using RF energy harvesting | ||
Patent #
US 20060184209A1
Filed 09/02/2005
|
Current Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Original Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Explantation of implantable medical device | ||
Patent #
US 20060184210A1
Filed 04/13/2006
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Sensor apparatus management methods and apparatus | ||
Patent #
US 20060181242A1
Filed 03/01/2006
|
Current Assignee
KLA-Tencor Corporation
|
Original Assignee
KLA-Tencor Corporation
|
Energy harvesting circuit | ||
Patent #
US 7,084,605 B2
Filed 10/18/2004
|
Current Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Original Assignee
University Of Pittsburgh
|
Actuator system for use in control of a sheet or web forming process | ||
Patent #
US 20060185809A1
Filed 02/23/2005
|
Current Assignee
ABB Limited
|
Original Assignee
ABB
|
Battery charging assembly for use on a locomotive | ||
Patent #
US 20060214626A1
Filed 03/25/2005
|
Current Assignee
KIM HOTSTART MANUFACTURING COMPANY
|
Original Assignee
KIM HOTSTART MANUFACTURING COMPANY
|
Adapting portable electrical devices to receive power wirelessly | ||
Patent #
US 20060205381A1
Filed 12/16/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method, apparatus and system for power transmission | ||
Patent #
US 20060199620A1
Filed 02/16/2006
|
Current Assignee
Powercast Llc
|
Original Assignee
Firefly Power Technologies LLC
|
Inductive powering surface for powering portable devices | ||
Patent #
US 20060202665A1
Filed 05/13/2005
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Inductively powered apparatus | ||
Patent #
US 7,126,450 B2
Filed 02/04/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Electric vehicle having multiple-use APU system | ||
Patent #
US 20060219448A1
Filed 03/08/2006
|
Current Assignee
Aptiv Technologies Limited
|
Original Assignee
Delphi Technologies Inc.
|
Inductive coil assembly | ||
Patent #
US 7,116,200 B2
Filed 04/27/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductively powered apparatus | ||
Patent #
US 7,118,240 B2
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Short-range wireless power transmission and reception | ||
Patent #
US 20060238365A1
Filed 09/12/2005
|
Current Assignee
Elio Vecchione, Conor Keegan
|
Original Assignee
Elio Vecchione, Conor Keegan
|
Biothermal power source for implantable devices | ||
Patent #
US 7,127,293 B2
Filed 03/28/2005
|
Current Assignee
Biomed Solutions LLC
|
Original Assignee
Biomed Solutions LLC
|
Inductive coil assembly | ||
Patent #
US 7,132,918 B2
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power transmission network | ||
Patent #
US 20060270440A1
Filed 05/22/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
High Q factor sensor | ||
Patent #
US 7,147,604 B1
Filed 08/07/2002
|
Current Assignee
St. Jude Medical Luxembourg Holdings Ii S.A.R.L.
|
Original Assignee
CardioMEMS Incorporated
|
Powering devices using RF energy harvesting | ||
Patent #
US 20060281435A1
Filed 06/06/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
System, method and apparatus for contact-less battery charging with dynamic control | ||
Patent #
US 6,844,702 B2
Filed 05/16/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Method of rendering a mechanical heart valve non-thrombogenic with an electrical device | ||
Patent #
US 20050021134A1
Filed 06/30/2004
|
Current Assignee
JS Vascular Inc.
|
Original Assignee
JS Vascular Inc.
|
Magnetically coupled antenna range extender | ||
Patent #
US 6,839,035 B1
Filed 10/07/2003
|
Current Assignee
CTT Corporation Systems
|
Original Assignee
CTT Corporation Systems
|
Vehicle interface | ||
Patent #
US 20050007067A1
Filed 06/18/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Multi-frequency piezoelectric energy harvester | ||
Patent #
US 6,858,970 B2
Filed 10/21/2002
|
Current Assignee
The Boeing Co.
|
Original Assignee
The Boeing Co.
|
Temperature regulated implant | ||
Patent #
US 20050033382A1
Filed 08/04/2004
|
Current Assignee
Cochlear Limited
|
Original Assignee
Peter Single
|
Energy transfer amplification for intrabody devices | ||
Patent #
US 20050027192A1
Filed 07/29/2003
|
Current Assignee
Biosense Webster Incorporated
|
Original Assignee
Biosense Webster Incorporated
|
Energy harvesting circuits and associated methods | ||
Patent #
US 6,856,291 B2
Filed 07/21/2003
|
Current Assignee
University Of Pittsburgh
|
Original Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Method and apparatus for efficient power/data transmission | ||
Patent #
US 20050085873A1
Filed 10/14/2004
|
Current Assignee
Alfred E. Mann Foundation For Scientific Research
|
Original Assignee
Alfred E. Mann Foundation For Scientific Research
|
Semiconductor photodetector | ||
Patent #
US 20050104064A1
Filed 03/03/2003
|
Current Assignee
The Provost Fellows and Scholars of the College of the Holy and Undivided Trinity of Queen Elizabeth near Dublin
|
Original Assignee
The Provost Fellows and Scholars of the College of the Holy and Undivided Trinity of Queen Elizabeth near Dublin
|
Inductively coupled ballast circuit | ||
Patent #
US 20050093475A1
Filed 10/22/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method and apparatus for a wireless power supply | ||
Patent #
US 20050104453A1
Filed 10/15/2004
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
Method of manufacturing a lamp assembly | ||
Patent #
US 20050116650A1
Filed 10/29/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Contact-less power transfer | ||
Patent #
US 20050140482A1
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Lily Ka-Lai Cheng, James Westwood Hay, Pilgrim Giles William Beart
|
Contact-less power transfer | ||
Patent #
US 20050116683A1
Filed 05/13/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Contact-less power transfer | ||
Patent #
US 6,906,495 B2
Filed 12/20/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Opportunistic power supply charge system for portable unit | ||
Patent #
US 20050127866A1
Filed 12/11/2003
|
Current Assignee
Symbol Technologies LLC
|
Original Assignee
Symbol Technologies Inc.
|
Inductively powered apparatus | ||
Patent #
US 20050127849A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Relaying apparatus and communication system | ||
Patent #
US 20050125093A1
Filed 09/21/2004
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Inductively powered apparatus | ||
Patent #
US 20050122059A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Inductively powered apparatus | ||
Patent #
US 20050122058A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Inductively powered apparatus | ||
Patent #
US 20050127850A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Contact-less power transfer | ||
Patent #
US 20050135122A1
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Lily Ka-Lai Cheng, James Westwood Hay, Pilgrim Giles William Beart
|
Inductively powered lamp assembly | ||
Patent #
US 6,917,163 B2
Filed 02/18/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Mach-Zehnder interferometer using photonic band gap crystals | ||
Patent #
US 6,917,431 B2
Filed 05/15/2002
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Charging apparatus by non-contact dielectric feeding | ||
Patent #
US 20050156560A1
Filed 04/04/2003
|
Current Assignee
ALPS Electric Company Limited
|
Original Assignee
ALPS Electric Company Limited
|
Transferring power between devices in a personal area network | ||
Patent #
US 20050151511A1
Filed 01/14/2004
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
Magnetic field production system, and configuration for wire-free supply of a large number of sensors and/or actuators using a magnetic field production system | ||
Patent #
US 6,937,130 B2
Filed 09/16/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Method and apparatus of using magnetic material with residual magnetization in transient electromagnetic measurement | ||
Patent #
US 20050189945A1
Filed 01/18/2005
|
Current Assignee
Baker Hughes Incorporated
|
Original Assignee
Baker Hughes Incorporated
|
Wireless battery charger via carrier frequency signal | ||
Patent #
US 20050194926A1
Filed 03/02/2004
|
Current Assignee
Michael Vincent Di Stefano
|
Original Assignee
Michael Vincent Di Stefano
|
Non-contact pumping of light emitters via non-radiative energy transfer | ||
Patent #
US 20050253152A1
Filed 05/11/2004
|
Current Assignee
Los Alamos National Security LLC
|
Original Assignee
Los Alamos National Security LLC
|
Subcutaneously implantable power supply | ||
Patent #
US 6,961,619 B2
Filed 07/08/2002
|
Current Assignee
Don E. Casey
|
Original Assignee
Don E. Casey
|
Charging of devices by microwave power beaming | ||
Patent #
US 6,967,462 B1
Filed 06/05/2003
|
Current Assignee
NasaGlenn Research Center
|
Original Assignee
NasaGlenn Research Center
|
Transcutaneous energy transfer primary coil with a high aspect ferrite core | ||
Patent #
US 20050288742A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Medical implant having closed loop transcutaneous energy transfer (TET) power transfer regulation circuitry | ||
Patent #
US 20050288739A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Incorporated
|
Low frequency transcutaneous energy transfer to implanted medical device | ||
Patent #
US 20050288741A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Inductive coil assembly | ||
Patent #
US 6,975,198 B2
Filed 04/27/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Low frequency transcutaneous telemetry to implanted medical device | ||
Patent #
US 20050288740A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Planar resonator for wireless power transfer | ||
Patent #
US 20040000974A1
Filed 06/26/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Radio frequency identification system for a fluid treatment system | ||
Patent #
US 6,673,250 B2
Filed 06/18/2002
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Low voltage electrified furniture unit | ||
Patent #
US 20040026998A1
Filed 06/12/2003
|
Current Assignee
Kimball International Incorporated
|
Original Assignee
Kimball International Incorporated
|
Coaxial cable and coaxial multicore cable | ||
Patent #
US 6,696,647 B2
Filed 05/23/2002
|
Current Assignee
Hitachi Cable Limited
|
Original Assignee
Hitachi Cable Limited
|
Oscillator module incorporating looped-stub resonator | ||
Patent #
US 20040100338A1
Filed 11/13/2003
|
Current Assignee
Microsemi Corporation
|
Original Assignee
Phasor Technologies Corporation
|
Inductively powered lamp assembly | ||
Patent #
US 6,731,071 B2
Filed 04/26/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Antenna with near-field radiation control | ||
Patent #
US 20040113847A1
Filed 12/12/2002
|
Current Assignee
Blackberry Limited
|
Original Assignee
Blackberry Limited
|
System for a machine having a large number of proximity sensors, as well as a proximity sensor, and a primary winding for this purpose | ||
Patent #
US 6,749,119 B2
Filed 12/11/2001
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Adaptive inductive power supply with communication | ||
Patent #
US 20040130915A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Enhanced RF wireless adaptive power provisioning system for small devices | ||
Patent #
US 20040130425A1
Filed 08/12/2003
|
Current Assignee
MOBILEWISE INC.
|
Original Assignee
MOBILEWISE INC.
|
Adaptive inductive power supply | ||
Patent #
US 20040130916A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Remote power recharge for electronic equipment | ||
Patent #
US 20040142733A1
Filed 12/29/2003
|
Current Assignee
Ronald J. Parise
|
Original Assignee
Ronald J. Parise
|
Adapter | ||
Patent #
US 20040150934A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Transmission of information from an implanted medical device | ||
Patent #
US 6,772,011 B2
Filed 08/20/2002
|
Current Assignee
TC1 LLC
|
Original Assignee
Thoratec LLC
|
System and method for wireless electrical power transmission | ||
Patent #
US 6,798,716 B1
Filed 06/19/2003
|
Current Assignee
BC SYSTEMS INC.
|
Original Assignee
BC SYSTEMS INC.
|
System and method for inductive charging a wireless mouse | ||
Patent #
US 20040189246A1
Filed 12/16/2003
|
Current Assignee
SelfCHARGE Inc.
|
Original Assignee
SelfCHARGE Inc.
|
Starter assembly for a gas discharge lamp | ||
Patent #
US 6,806,649 B2
Filed 02/18/2003
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Charging system for robot | ||
Patent #
US 20040201361A1
Filed 11/14/2003
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Alignment independent and self aligning inductive power transfer system | ||
Patent #
US 6,803,744 B1
Filed 10/31/2000
|
Current Assignee
Anthony Sabo
|
Original Assignee
Anthony Sabo
|
Inductively powered lamp assembly | ||
Patent #
US 6,812,645 B2
Filed 06/05/2003
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Communication system | ||
Patent #
US 20040233043A1
Filed 11/13/2003
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
Starter assembly for a gas discharge lamp | ||
Patent #
US 20040222751A1
Filed 05/20/2004
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Scott A. Mollema, Roy W. Kuennen, David W. Baarman
|
Inductive coil assembly | ||
Patent #
US 20040232845A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductively coupled ballast circuit | ||
Patent #
US 6,825,620 B2
Filed 09/18/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless power transmission | ||
Patent #
US 20040227057A1
Filed 04/07/2004
|
Current Assignee
AILOCOM OY
|
Original Assignee
AILOCOM OY
|
Sensor apparatus management methods and apparatus | ||
Patent #
US 20040267501A1
Filed 07/10/2004
|
Current Assignee
KLA-Tencor Corporation
|
Original Assignee
KLA-Tencor Corporation
|
Method of manufacturing a lamp assembly | ||
Patent #
US 6,831,417 B2
Filed 06/05/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method and apparatus for supplying contactless power | ||
Patent #
US 6,515,878 B1
Filed 08/07/1998
|
Current Assignee
MEINS-SINSLEY PARTNERSHIP
|
Original Assignee
MEINS-SINSLEY PARTNERSHIP
|
Proximity sensor | ||
Patent #
US 20030038641A1
Filed 09/03/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Vehicle slide door power supply apparatus and method of supplying power to vehicle slide door | ||
Patent #
US 6,535,133 B2
Filed 11/15/2001
|
Current Assignee
Yazaki Corporation
|
Original Assignee
Yazaki Corporation
|
Resonant frequency tracking system and method for use in a radio frequency (RF) power supply | ||
Patent #
US 20030071034A1
Filed 11/25/2002
|
Current Assignee
Ambrell Corporation
|
Original Assignee
Daniel J. Lincoln, Gary A. Schwenck, Leslie L. Thompson
|
Magnetic field production system, and configuration for wire-free supply of a large number of sensors and/or actuators using a magnetic field production system | ||
Patent #
US 20030062794A1
Filed 09/16/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Configuration for producing electrical power from a magnetic field | ||
Patent #
US 20030062980A1
Filed 09/09/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
RFID passive repeater system and apparatus | ||
Patent #
US 6,563,425 B2
Filed 08/08/2001
|
Current Assignee
Datalogic IP Tech S.r.l.
|
Original Assignee
Escort Memory Systems
|
Method and apparatus for communicating with medical device systems | ||
Patent #
US 6,561,975 B1
Filed 10/25/2000
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
High purity fine metal powders and methods to produce such powders | ||
Patent #
US 20030126948A1
Filed 12/10/2002
|
Current Assignee
PPG Industries Ohio Incorporated
|
Original Assignee
NanoProducts Corporation
|
Post-processed nanoscale powders and method for such post-processing | ||
Patent #
US 20030124050A1
Filed 03/29/2002
|
Current Assignee
PPG Industries Ohio Incorporated
|
Original Assignee
NANOPRODUCT CORPORATION
|
System for wirelessly supplying a large number of actuators of a machine with electrical power | ||
Patent #
US 6,597,076 B2
Filed 12/11/2001
|
Current Assignee
ABB Patent GmbH
|
Original Assignee
ABB Patent GmbH
|
System for the detection of cardiac events | ||
Patent #
US 6,609,023 B1
Filed 09/20/2002
|
Current Assignee
Angel Medical Systems Inc.
|
Original Assignee
Angel Medical Systems Inc.
|
Method and apparatus for charging sterilizable rechargeable batteries | ||
Patent #
US 20030160590A1
Filed 02/25/2003
|
Current Assignee
LIVATEC CORPORATION
|
Original Assignee
LIVATEC CORPORATION
|
Apparatus for energizing a remote station and related method | ||
Patent #
US 20030199778A1
Filed 06/11/2003
|
Current Assignee
University Of Pittsburgh
|
Original Assignee
Leonid Mats, Carl Taylor, Minhong Mi, Dmitry Gorodetsky, Lorenz Neureuter, Marlin Mickle, Chad Emahizer
|
Charge storage device | ||
Patent #
US 6,631,072 B1
Filed 08/24/2001
|
Current Assignee
Cap-Xx Ltd.
|
Original Assignee
Energy Storage Systems Inc.
|
Inductively powered apparatus | ||
Patent #
US 20030214255A1
Filed 02/04/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Reader for a radio frequency identification system having automatic tuning capability | ||
Patent #
US 6,650,227 B1
Filed 12/08/1999
|
Current Assignee
Assa Abloy AB
|
Original Assignee
HID Corporation
|
Wireless power transmission system with increased output voltage | ||
Patent #
US 6,664,770 B1
Filed 10/10/2001
|
Current Assignee
IQ-MOBIL ELECTRONICS GMBH.
|
Original Assignee
IQ- MOBIL GMBH
|
Low-power, high-modulation-index amplifier for use in battery-powered device | ||
Patent #
US 20020032471A1
Filed 08/31/2001
|
Current Assignee
Boston Scientific Neuromodulation Corporation
|
Original Assignee
Advanced Bionics Corporation
|
System for wirelessly supplying a large number of actuators of a machine with electrical power | ||
Patent #
US 20020118004A1
Filed 12/11/2001
|
Current Assignee
ABB Patent GmbH
|
Original Assignee
ABB Patent GmbH
|
Water treatment system with an inductively coupled ballast | ||
Patent #
US 6,436,299 B1
Filed 06/12/2000
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Amway Corporation
|
System for a machine having a large number of proximity sensors, as well as a proximity sensor, and a primary winding for this purpose | ||
Patent #
US 20020105343A1
Filed 12/11/2001
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Food intake restriction with wireless energy transfer | ||
Patent #
US 6,450,946 B1
Filed 02/11/2000
|
Current Assignee
Obtech Medical AG
|
Original Assignee
Obtech Medical AG
|
High quality-factor tunable resonator | ||
Patent #
US 6,452,465 B1
Filed 06/27/2000
|
Current Assignee
M-SQUARED FILTERS L.L.C.
|
Original Assignee
M-SQUARED FILTERS LLC
|
Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings | ||
Patent #
US 20020130642A1
Filed 02/27/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Detection of the distance between an electromagnetic transponder and a terminal | ||
Patent #
US 6,473,028 B1
Filed 04/05/2000
|
Current Assignee
Stmicroelectronics SA
|
Original Assignee
Stmicroelectronics SA
|
Inductively powered lamp unit | ||
Patent #
US 6,459,218 B2
Filed 02/12/2001
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
Control of inductive power transfer pickups | ||
Patent #
US 6,483,202 B1
Filed 07/24/2000
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
Rechargeable power supply system and method of protection against abnormal charging | ||
Patent #
US 20020167294A1
Filed 03/20/2002
|
Current Assignee
Acer Inc.
|
Original Assignee
International Business Machines Corporation
|
Reader/writer having coil arrangements to restrain electromagnetic field intensity at a distance | ||
Patent #
US 6,176,433 B1
Filed 05/15/1998
|
Current Assignee
Hitachi Ltd.
|
Original Assignee
Hitachi America Limited
|
Contactless battery charger with wireless control link | ||
Patent #
US 6,184,651 B1
Filed 03/20/2000
|
Current Assignee
Google Technology Holdings LLC
|
Original Assignee
Motorola Inc.
|
Miniature milliwatt electric power generator | ||
Patent #
US 6,207,887 B1
Filed 07/07/1999
|
Current Assignee
HI-Z Technology Inc.
|
Original Assignee
HI-Z Technology Inc.
|
Electrosurgical generator | ||
Patent #
US 6,238,387 B1
Filed 11/16/1998
|
Current Assignee
Microline Surgical Inc.
|
Original Assignee
Team Medical LLC
|
Integrated tunable high efficiency power amplifier | ||
Patent #
US 6,232,841 B1
Filed 07/01/1999
|
Current Assignee
OL Security LLC
|
Original Assignee
Rockwell Science Center LLC
|
Rechargeable hybrid battery/supercapacitor system | ||
Patent #
US 6,252,762 B1
Filed 04/21/1999
|
Current Assignee
Rutgers University
|
Original Assignee
Telcordia Technologies Incorporated
|
Method for discriminating between used and unused gas generators for air bags during car scrapping process | ||
Patent #
US 6,012,659 A
Filed 09/12/1997
|
Current Assignee
Daicel Chemical Industries Limited, Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Daicel Chemical Industries Limited, Toyota Jidosha Kabushiki Kaisha
|
System and method for powering, controlling, and communicating with multiple inductively-powered devices | ||
Patent #
US 6,047,214 A
Filed 06/09/1998
|
Current Assignee
North Carolina State University
|
Original Assignee
North Carolina State University
|
Adaptive brain stimulation method and system | ||
Patent #
US 6,066,163 A
Filed 02/02/1996
|
Current Assignee
Michael Sasha John
|
Original Assignee
Michael Sasha John
|
Implantable medical device using audible sound communication to provide warnings | ||
Patent #
US 6,067,473 A
Filed 03/31/1999
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Battery monitoring apparatus and method for programmers of cardiac stimulating devices | ||
Patent #
US 6,108,579 A
Filed 04/11/1997
|
Current Assignee
Pacesetter Incorporated
|
Original Assignee
Pacesetter Incorporated
|
Method and apparatus for wireless powering and recharging | ||
Patent #
US 6,127,799 A
Filed 05/14/1999
|
Current Assignee
Raytheon BBN Technlogies Corp.
|
Original Assignee
GTE Internetworking Incorporated
|
Ring antennas for resonant circuits | ||
Patent #
US 5,864,323 A
Filed 12/19/1996
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Inc.
|
Non-contact power distribution system | ||
Patent #
US 5,898,579 A
Filed 11/24/1997
|
Current Assignee
Auckland UniServices Limited, Daifuku Company Limited
|
Original Assignee
Auckland UniServices Limited, Daifuku Company Limited
|
Inductive battery charger | ||
Patent #
US 5,903,134 A
Filed 05/19/1998
|
Current Assignee
Tdk-Lambda Corporation
|
Original Assignee
Nippon Electric Industry Company Limited
|
Noncontact power transmitting apparatus | ||
Patent #
US 5,923,544 A
Filed 07/21/1997
|
Current Assignee
TDK Corporation
|
Original Assignee
TDK Corporation
|
Method and apparatus for controlling country specific frequency allocation | ||
Patent #
US 5,940,509 A
Filed 11/18/1997
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Intermec IP Corporation
|
Implantable cardioverter defibrillator having a smaller mass | ||
Patent #
US 5,957,956 A
Filed 11/03/1997
|
Current Assignee
Ela Medical S.A.
|
Original Assignee
Angeion Corporation
|
Carbon supercapacitor electrode materials | ||
Patent #
US 5,993,996 A
Filed 09/16/1997
|
Current Assignee
INORGANIC SPECIALISTS INC.
|
Original Assignee
INORGANIC SPECIALISTS INC.
|
Methods and systems for introducing electromagnetic radiation into photonic crystals | ||
Patent #
US 5,999,308 A
Filed 04/01/1998
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
H-field electromagnetic heating system for fusion bonding | ||
Patent #
US 5,710,413 A
Filed 03/29/1995
|
Current Assignee
3M Company
|
Original Assignee
3M Company
|
Nanostructure multilayer dielectric materials for capacitors and insulators | ||
Patent #
US 5,742,471 A
Filed 11/25/1996
|
Current Assignee
Lawrence Livermore National Security LLC
|
Original Assignee
Regents of the University of California
|
Connection system and connection method for an electric automotive vehicle | ||
Patent #
US 5,821,731 A
Filed 01/30/1997
|
Current Assignee
Sumitomo Wiring Systems Limited
|
Original Assignee
Sumitomo Wiring Systems Limited
|
Armature induction charging of moving electric vehicle batteries | ||
Patent #
US 5,821,728 A
Filed 07/22/1996
|
Current Assignee
Stanley A. Tollison
|
Original Assignee
Stanley A. Tollison
|
Method and apparatus for the suppression of far-field interference signals for implantable device data transmission systems | ||
Patent #
US 5,630,835 A
Filed 07/24/1995
|
Current Assignee
SIRROM CAPITAL CORPORATION
|
Original Assignee
CARDIAC CONTROL SYSTEMS INC.
|
Implantable stimulation device having means for optimizing current drain | ||
Patent #
US 5,697,956 A
Filed 06/02/1995
|
Current Assignee
Pacesetter Incorporated
|
Original Assignee
Pacesetter Incorporated
|
Transmitter-receiver for non-contact IC card system | ||
Patent #
US 5,703,573 A
Filed 01/11/1996
|
Current Assignee
Sony Chemicals Company Limited
|
Original Assignee
Sony Chemicals Company Limited
|
Inductive coupler for electric vehicle charger | ||
Patent #
US 5,703,461 A
Filed 06/27/1996
|
Current Assignee
KABUSHIKI KAIHSA TOYODA JIDOSHOKKI SEISAKUSHO
|
Original Assignee
Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
|
Oscillator-shuttle-circuit (OSC) networks for conditioning energy in higher-order symmetry algebraic topological forms and RF phase conjugation | ||
Patent #
US 5,493,691 A
Filed 12/23/1993
|
Current Assignee
BARRETT HOLDING LLC
|
Original Assignee
Terence W. Barrett
|
Inductive power pick-up coils | ||
Patent #
US 5,528,113 A
Filed 10/21/1994
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
Pacemaker with improved shelf storage capacity | ||
Patent #
US 5,522,856 A
Filed 09/20/1994
|
Current Assignee
VITATRON MEDICAL B.V.
|
Original Assignee
VITATRON MEDICAL B.V.
|
Induction charging apparatus | ||
Patent #
US 5,550,452 A
Filed 07/22/1994
|
Current Assignee
Kyushu Hitachi Maxell Ltd., Nintendo Company Limited
|
Original Assignee
Kyushu Hitachi Maxell Ltd., Nintendo Company Limited
|
Thermoelectric method and apparatus for charging superconducting magnets | ||
Patent #
US 5,565,763 A
Filed 11/19/1993
|
Current Assignee
General Atomics Inc.
|
Original Assignee
Lockheed Martin Corporation
|
Cooled secondary coils of electric automobile charging transformer | ||
Patent #
US 5,408,209 A
Filed 11/02/1993
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
Hughes Aircraft Company
|
Wireless communications using near field coupling | ||
Patent #
US 5,437,057 A
Filed 12/03/1992
|
Current Assignee
Xerox Corporation
|
Original Assignee
Xerox Corporation
|
Power connection scheme | ||
Patent #
US 5,455,467 A
Filed 03/02/1994
|
Current Assignee
Apple Computer Incorporated
|
Original Assignee
Apple Computer Incorporated
|
High speed read/write AVI system | ||
Patent #
US 5,287,112 A
Filed 04/14/1993
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Inc.
|
Contactless battery charging system | ||
Patent #
US 5,341,083 A
Filed 10/20/1992
|
Current Assignee
Electric Power Research Institute
|
Original Assignee
Electric Power Research Institute Incorporated
|
System for charging a rechargeable battery of a portable unit in a rack | ||
Patent #
US 5,367,242 A
Filed 09/18/1992
|
Current Assignee
Ascom Tateco AB
|
Original Assignee
Ericsson Messaging Systems Incorporated
|
High speed read/write AVI system | ||
Patent #
US 5,374,930 A
Filed 11/12/1993
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Separable inductive coupler | ||
Patent #
US 5,216,402 A
Filed 01/22/1992
|
Current Assignee
General Motors Corporation
|
Original Assignee
Hughes Aircraft Company
|
Non-contact data and power connector for computer based modules | ||
Patent #
US 5,229,652 A
Filed 04/20/1992
|
Current Assignee
Wayne E. Hough
|
Original Assignee
Wayne E. Hough
|
Dual feedback control for a high-efficiency class-d power amplifier circuit | ||
Patent #
US 5,118,997 A
Filed 08/16/1991
|
Current Assignee
General Electric Company
|
Original Assignee
General Electric Company
|
Christmas-tree, decorative, artistic and ornamental object illumination apparatus | ||
Patent #
US 5,034,658 A
Filed 01/12/1990
|
Current Assignee
Roland Hierig, Vladimir Ilberg
|
Original Assignee
Roland Hierig, Vladimir Ilberg
|
Magnetic induction mine arming, disarming and simulation system | ||
Patent #
US 5,027,709 A
Filed 11/13/1990
|
Current Assignee
Glenn B. Slagle
|
Original Assignee
Glenn B. Slagle
|
Device for transmission and evaluation of measurement signals for the tire pressure of motor vehicles | ||
Patent #
US 5,033,295 A
Filed 02/04/1989
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Transponder arrangement | ||
Patent #
US 5,053,774 A
Filed 02/13/1991
|
Current Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Original Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Electric power transmitting device with inductive coupling | ||
Patent #
US 5,070,293 A
Filed 03/02/1990
|
Current Assignee
Nippon Soken Inc., Nippondenso Co. Ltd.
|
Original Assignee
Nippon Soken Inc., Nippondenso Co. Ltd.
|
Remote switch-sensing system | ||
Patent #
US 4,588,978 A
Filed 06/21/1984
|
Current Assignee
CONCHA CORPORATION A CA CORPORATION
|
Original Assignee
TRANSENSORY DEVICES INC.
|
Condition monitoring system (tire pressure) | ||
Patent #
US 4,450,431 A
Filed 05/26/1981
|
Current Assignee
Aisin Seiki Co. Ltd.
|
Original Assignee
Peter A Hochstein
|
Variable mutual transductance tuned antenna | ||
Patent #
US 4,280,129 A
Filed 09/10/1979
|
Current Assignee
WELLS FAMILY CORPORATION THE
|
Original Assignee
Donald H. Wells
|
Alarm device for informing reduction of pneumatic pressure of tire | ||
Patent #
US 4,180,795 A
Filed 12/12/1977
|
Current Assignee
Bridgestone Tire Company Limited, Mitaka Instrument Company Limited
|
Original Assignee
Bridgestone Tire Company Limited, Mitaka Instrument Company Limited
|
RF beam center location method and apparatus for power transmission system | ||
Patent #
US 4,088,999 A
Filed 05/21/1976
|
Current Assignee
Fletcher James C Administrator of The National Aeronautics and Space Administration With Respect To An Invention of, Richard M. Dickinson
|
Original Assignee
Fletcher James C Administrator of The National Aeronautics and Space Administration With Respect To An Invention of, Richard M. Dickinson
|
Thermoelectric voltage generator | ||
Patent #
US 4,095,998 A
Filed 09/30/1976
|
Current Assignee
The United States Of America As Represented By The Secretary Of The Army
|
Original Assignee
The United States Of America As Represented By The Secretary Of The Army
|
Wireless energy transfer, including interference enhancement | ||
Patent #
US 8,076,801 B2
Filed 05/14/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless Power Harvesting and Transmission with Heterogeneous Signals. | ||
Patent #
US 20120007441A1
Filed 08/29/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,076,800 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Inductive power transfer apparatus | ||
Patent #
US 20120025602A1
Filed 02/05/2010
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
APPARATUS FOR POWER WIRELESS TRANSFER BETWEEN TWO DEVICES AND SIMULTANEOUS DATA TRANSFER | ||
Patent #
US 20120001593A1
Filed 06/30/2011
|
Current Assignee
STMicroelectronics SRL
|
Original Assignee
STMicroelectronics SRL
|
Wireless energy transfer | ||
Patent #
US 8,097,983 B2
Filed 05/08/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
POWER GENERATOR AND POWER GENERATION SYSTEM | ||
Patent #
US 20120007435A1
Filed 06/28/2011
|
Current Assignee
Panasonic Intellectual Property Management Co. Ltd.
|
Original Assignee
Panasonic Corporation
|
INCREASING THE Q FACTOR OF A RESONATOR | ||
Patent #
US 20120001492A9
Filed 08/11/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Systems and methods for wireless power | ||
Patent #
US 8,115,448 B2
Filed 06/02/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,084,889 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER FOR IMPLANTABLE DEVICES | ||
Patent #
US 20120032522A1
Filed 06/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer for refrigerator application | ||
Patent #
US 8,106,539 B2
Filed 03/11/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
FLUSH-MOUNTED LOW-PROFILE RESONANT HOLE ANTENNA | ||
Patent #
US 20120038525A1
Filed 09/10/2009
|
Current Assignee
Advanced Automotive Antennas S.L.
|
Original Assignee
Advanced Automotive Antennas S.L.
|
Inductive repeater coil for an implantable device | ||
Patent #
US 8,131,378 B2
Filed 10/28/2007
|
Current Assignee
Second Sight Enterprises Incorporated
|
Original Assignee
Second Sight Enterprises Incorporated
|
LOW RESISTANCE ELECTRICAL CONDUCTOR | ||
Patent #
US 20120062345A1
Filed 08/31/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER, INCLUDING INTERFERENCE ENHANCEMENT | ||
Patent #
US 20120068549A1
Filed 11/03/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS TRANSMISSION OF SOLAR GENERATED POWER | ||
Patent #
US 20120086284A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MODULAR UPGRADES FOR WIRELESSLY POWERED TELEVISIONS | ||
Patent #
US 20120086867A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWERED TELEVISION | ||
Patent #
US 20120091795A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWERED PROJECTOR | ||
Patent #
US 20120091796A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSFER WITHIN A CIRCUIT BREAKER | ||
Patent #
US 20120091820A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESSLY POWERED LAPTOP AND DESKTOP ENVIRONMENT | ||
Patent #
US 20120091794A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
ENERGIZED TABLETOP | ||
Patent #
US 20120091797A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
POSITION INSENSITIVE WIRELESS CHARGING | ||
Patent #
US 20120091950A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR ENERGIZING POWER TOOLS | ||
Patent #
US 20120091949A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
COMPUTER THAT WIRELESSLY POWERS ACCESSORIES | ||
Patent #
US 20120091819A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR PHOTOVOLTAIC PANELS | ||
Patent #
US 20120098350A1
Filed 10/19/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH MULTI RESONATOR ARRAYS FOR VEHICLE APPLICATIONS | ||
Patent #
US 20120112534A1
Filed 10/17/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLE APPLICATIONS | ||
Patent #
US 20120112538A1
Filed 11/03/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SECURE WIRELESS ENERGY TRANSFER FOR VEHICLE APPLICATIONS | ||
Patent #
US 20120112531A1
Filed 11/03/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120112535A1
Filed 10/19/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120112536A1
Filed 10/19/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR IN-VEHICLE APPLICATIONS | ||
Patent #
US 20120112532A1
Filed 11/03/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120112691A1
Filed 10/18/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Power supply system and method of controlling power supply system | ||
Patent #
US 8,178,995 B2
Filed 10/13/2009
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER INSIDE VEHICLES | ||
Patent #
US 20120119569A1
Filed 10/17/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120119575A1
Filed 10/18/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SAFETY SYSTEMS FOR WIRELESS ENERGY TRANSFER IN VEHICLE APPLICATIONS | ||
Patent #
US 20120119576A1
Filed 10/18/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120119698A1
Filed 10/17/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Inductively chargeable audio devices | ||
Patent #
US 8,193,769 B2
Filed 01/25/2010
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Technologies Ltd.
|
WIRELESS ENERGY TRANSFER FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120139355A1
Filed 04/20/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q RESONATORS USING FIELD SHAPING TO IMPROVE K | ||
Patent #
US 20120153735A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING CONDUCTING SURFACES TO SHAPE FIELD AND IMPROVE K | ||
Patent #
US 20120153734A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING OBJECT POSITIONING FOR IMPROVED K | ||
Patent #
US 20120153736A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR COMPUTER PERIPHERAL APPLICATIONS | ||
Patent #
US 20120153732A1
Filed 11/05/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20120153733A1
Filed 12/14/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER OVER DISTANCE USING FIELD SHAPING TO IMPROVE THE COUPLING FACTOR | ||
Patent #
US 20120153737A1
Filed 12/30/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES USING FIELD SHAPING WITH MAGNETIC MATERIALS TO IMPROVE THE COUPLING FACTOR | ||
Patent #
US 20120153738A1
Filed 12/30/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR SUPPLYING POWER AND HEAT TO A DEVICE | ||
Patent #
US 20120153893A1
Filed 12/31/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
IMPLANTABLE WIRELESS POWER SYSTEM | ||
Patent #
US 20120146575A1
Filed 03/02/2011
|
Current Assignee
Corvion Incorporated
|
Original Assignee
Everheart Systems LLC
|
Resonant, contactless radio frequency power coupling | ||
Patent #
US 8,212,414 B2
Filed 05/29/2009
|
Current Assignee
Lockheed Martin Corporation
|
Original Assignee
Lockheed Martin Corporation
|
INTEGRATED REPEATERS FOR CELL PHONE APPLICATIONS | ||
Patent #
US 20120184338A1
Filed 03/23/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SYSTEMS AND METHODS FOR WIRELESS POWER | ||
Patent #
US 20120206096A1
Filed 01/20/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Non-contact wireless communication apparatus, method of adjusting resonance frequency of non-contact wireless communication antenna, and mobile terminal apparatus | ||
Patent #
US 8,260,200 B2
Filed 11/14/2008
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications AB
|
FLEXIBLE RESONATOR ATTACHMENT | ||
Patent #
US 20120223573A1
Filed 01/30/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SIMULTANEOUS TX-RX FOR MRI SYSTEMS AND OTHER ANTENNA DEVICES | ||
Patent #
US 20120223709A1
Filed 02/28/2012
|
Current Assignee
Life Services LLC
|
Original Assignee
Life Services LLC
|
TUNABLE WIRELESS ENERGY TRANSFER FOR APPLIANCES | ||
Patent #
US 20120228952A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR FURNITURE APPLICATIONS | ||
Patent #
US 20120228953A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR CLOTHING APPLICATIONS | ||
Patent #
US 20120228954A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY DISTRIBUTION SYSTEM | ||
Patent #
US 20120235500A1
Filed 09/14/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING REPEATER RESONATORS | ||
Patent #
US 20120235505A1
Filed 02/08/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR OUTDOOR LIGHTING APPLICATIONS | ||
Patent #
US 20120235567A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR LIGHTING APPLICATIONS | ||
Patent #
US 20120235566A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH VARIABLE SIZE RESONATORS FOR IMPLANTED MEDICAL DEVICES | ||
Patent #
US 20120235633A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR IMPLANTED MEDICAL DEVICES | ||
Patent #
US 20120235502A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120235501A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR SENSORS | ||
Patent #
US 20120235504A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SECURE WIRELESS ENERGY TRANSFER IN MEDICAL APPLICATIONS | ||
Patent #
US 20120235503A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH VARIABLE SIZE RESONATORS FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120235634A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH RESONATOR ARRAYS FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120239117A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR APPLIANCES | ||
Patent #
US 20120242159A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR EXTERIOR LIGHTING | ||
Patent #
US 20120242225A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
PORTABLE DEVICE AND WIRELESS POWER CHARGING SYSTEM FOR PORTABLE DEVICE | ||
Patent #
US 20120242283A1
Filed 03/13/2012
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
TUNABLE WIRELESS ENERGY TRANSFER FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120256494A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSMITTER TUNING | ||
Patent #
US 20120267960A1
Filed 02/17/2012
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless energy transfer using field shaping to reduce loss | ||
Patent #
US 8,304,935 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Low AC resistance conductor designs | ||
Patent #
US 20120280765A1
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SENDER COMMUNICATIONS FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20120299540A1
Filed 05/22/2012
|
Current Assignee
uBeam Inc.
|
Original Assignee
uBeam Inc.
|
Wireless energy transfer using magnetic materials to shape field and reduce loss | ||
Patent #
US 8,324,759 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
RESONATOR OPTIMIZATIONS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20120313449A1
Filed 06/22/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Compact resonators for wireless energy transfer in vehicle applications | ||
Patent #
US 20120313742A1
Filed 06/28/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Load impedance decision device, wireless power transmission device, and wireless power transmission method | ||
Patent #
US 8,334,620 B2
Filed 11/04/2010
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Wireless Power Transmission | ||
Patent #
US 20120326660A1
Filed 06/27/2012
|
Current Assignee
Board of Regents of the University of Texas System
|
Original Assignee
Board of Regents of the University of Texas System
|
WIRELESS ENERGY TRANSFER FOR PERSON WORN PERIPHERALS | ||
Patent #
US 20130007949A1
Filed 07/09/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER COMPONENT SELECTION | ||
Patent #
US 20130020878A1
Filed 07/23/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Efficient near-field wireless energy transfer using adiabatic system variations | ||
Patent #
US 8,362,651 B2
Filed 10/01/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
TUNABLE WIRELESS POWER ARCHITECTURES | ||
Patent #
US 20130033118A1
Filed 08/06/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER COMPONENT SELECTION | ||
Patent #
US 20130038402A1
Filed 08/20/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SYSTEMS, METHODS, AND DEVICES FOR MULTI-LEVEL SIGNALING VIA A WIRELESS POWER TRANSFER FIELD | ||
Patent #
US 20130043735A1
Filed 05/04/2012
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
RESONATOR ENCLOSURE | ||
Patent #
US 20130057364A1
Filed 09/04/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer over a distance at high efficiency | ||
Patent #
US 8,395,283 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,395,282 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RECONFIGURABLE CONTROL ARCHITECTURES AND ALGORITHMS FOR ELECTRIC VEHICLE WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130062966A1
Filed 09/12/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSMISSION APPARATUS | ||
Patent #
US 20120248884A1
Filed 05/06/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer for computer peripheral applications | ||
Patent #
US 8,400,017 B2
Filed 11/05/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer with high-Q similar resonant frequency resonators | ||
Patent #
US 8,400,022 B2
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q sub-wavelength resonators | ||
Patent #
US 8,400,021 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q devices at variable distances | ||
Patent #
US 8,400,020 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q at high efficiency | ||
Patent #
US 8,400,018 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q from more than one source | ||
Patent #
US 8,400,019 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q capacitively loaded conducting loops | ||
Patent #
US 8,400,023 B2
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer across variable distances | ||
Patent #
US 8,400,024 B2
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
FOREIGN OBJECT DETECTION IN WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130069441A1
Filed 09/10/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
HIGH FREQUENCY PCB COILS | ||
Patent #
US 20130069753A1
Filed 09/17/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Low AC resistance conductor designs | ||
Patent #
US 8,410,636 B2
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR PACKAGING | ||
Patent #
US 20130099587A1
Filed 10/18/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR SENSORS | ||
Patent #
US 20120248887A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR LIGHTING | ||
Patent #
US 20120248981A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH RESONATOR ARRAYS FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120248888A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER TO MOBILE DEVICES | ||
Patent #
US 20120248886A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Multi-resonator wireless energy transfer for exterior lighting | ||
Patent #
US 8,441,154 B2
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Magnetic induction signal repeater | ||
Patent #
US 8,457,547 B2
Filed 04/28/2009
|
Current Assignee
Cochlear Limited
|
Original Assignee
Cochlear Limited
|
Wireless tracking system and method utilizing multiple location algorithms | ||
Patent #
US 8,457,656 B2
Filed 09/23/2011
|
Current Assignee
Clinical Patents LLC
|
Original Assignee
Awarepoint Corporation
|
Wireless energy transfer using conducting surfaces to shape field and improve K | ||
Patent #
US 8,461,722 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer systems | ||
Patent #
US 8,461,719 B2
Filed 09/25/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using conducting surfaces to shape fields and reduce loss | ||
Patent #
US 8,461,720 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Method and apparatus for providing wireless power to a load device | ||
Patent #
US 8,461,817 B2
Filed 09/10/2008
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Corporation
|
Wireless energy transfer using object positioning for low loss | ||
Patent #
US 8,461,721 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Tunable wireless energy transfer for outdoor lighting applications | ||
Patent #
US 8,466,583 B2
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SYSTEM AND METHOD FOR LOW LOSS WIRELESS POWER TRANSMISSION | ||
Patent #
US 20130154383A1
Filed 09/12/2012
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130154389A1
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER MODELING TOOL | ||
Patent #
US 20130159956A1
Filed 11/05/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer over distance using field shaping to improve the coupling factor | ||
Patent #
US 8,471,410 B2
Filed 12/30/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer with high-Q resonators using field shaping to improve K | ||
Patent #
US 8,476,788 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Increasing the Q factor of a resonator | ||
Patent #
US 8,482,157 B2
Filed 08/11/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless energy transfer using variable size resonators and system monitoring | ||
Patent #
US 8,482,158 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130175875A1
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR PROMOTIONAL ITEMS | ||
Patent #
US 20130175874A1
Filed 01/09/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer resonator kit | ||
Patent #
US 8,487,480 B1
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer converters | ||
Patent #
US 8,497,601 B2
Filed 04/26/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER RESONATOR KIT | ||
Patent #
US 20130200716A1
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qiang Li, David A. Schatz, Katherine Hall, Konrad J. Kulikowski, Marin Soljacic, Eric R. Giler, Morris P. Kesler, Andre B. Kurs, Andrew J. Campanella, Aristeidis Karalis, Ron Fiorello
|
WIRELESS ENERGY TRANSFER WITH REDUCED FIELDS | ||
Patent #
US 20130200721A1
Filed 01/28/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MECHANICALLY REMOVABLE WIRELESS POWER VEHICLE SEAT ASSEMBLY | ||
Patent #
US 20130221744A1
Filed 03/15/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer with feedback control for lighting applications | ||
Patent #
US 8,552,592 B2
Filed 02/02/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20130278074A1
Filed 06/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20130278075A1
Filed 06/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20130278073A1
Filed 06/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using object positioning for improved k | ||
Patent #
US 8,569,914 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
LOW AC RESISTANCE CONDUCTOR DESIGNS | ||
Patent #
US 20130300353A1
Filed 03/29/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using high Q resonators for lighting applications | ||
Patent #
US 8,587,153 B2
Filed 12/14/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using repeater resonators | ||
Patent #
US 8,587,155 B2
Filed 03/10/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER CONVERTERS | ||
Patent #
US 20130307349A1
Filed 07/19/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Resonator arrays for wireless energy transfer | ||
Patent #
US 8,598,743 B2
Filed 05/28/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR IMPLANTABLE DEVICES | ||
Patent #
US 20130320773A1
Filed 08/07/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
CONTROL OF TRANSMIT POWER AND ADJUSTMENT OF ANTENNA TUNING NETWORK OF A WIRELESS DEVICE | ||
Patent #
US 20130331042A1
Filed 11/02/2012
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER CONVERTERS | ||
Patent #
US 20130334892A1
Filed 07/19/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR RECHARGEABLE BATTERIES | ||
Patent #
US 20140002012A1
Filed 06/27/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer systems | ||
Patent #
US 8,629,578 B2
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Tunable wireless energy transfer systems | ||
Patent #
US 8,643,326 B2
Filed 01/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
METHOD AND APPARATUS FOR WIRELESS CHARGING AN ELECTRONIC DEVICE | ||
Patent #
US 20140055098A1
Filed 08/23/2013
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
METHOD AND SYSTEMS FOR HIGH-PRECISION PULSE-WIDTH MODULATION | ||
Patent #
US 20140062551A1
Filed 08/31/2012
|
Current Assignee
Analog Devices Inc.
|
Original Assignee
Senthil Kumar Devandaya Gopalrao, Wreeju Bhaumik
|
WIRELESS POWER TRANSFER SYSTEM COIL ARRANGEMENTS AND METHOD OF OPERATION | ||
Patent #
US 20140070764A1
Filed 03/08/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER TRANSMISSION APPARATUS AND METHOD AND WIRELESS POWER RECEPTION APPARATUS | ||
Patent #
US 20140084858A1
Filed 09/12/2013
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Wireless energy transfer systems | ||
Patent #
US 8,618,696 B2
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
POWER SEMICONDUCTOR DEVICE AND METHODS FOR FABRICATING THE SAME | ||
Patent #
US 20140141584A1
Filed 01/27/2014
|
Current Assignee
Semiconductor Components Industries LLC
|
Original Assignee
Fairchild Korea Semiconductor Limited
|
THERMOELECTRIC UNITS | ||
Patent #
US 3,780,425 A
Filed 01/25/1971
|
Current Assignee
United Kingdom Atomic Energy Authority
|
Original Assignee
United Kingdom Atomic Energy Authority
|
LARGE SODIUM VALVE ACTUATOR | ||
Patent #
US 3,871,176 A
Filed 03/08/1973
|
Current Assignee
Glen Elwin Schukei
|
Original Assignee
Combustion Engineering Incorporated
|
ENERGY TRANSLATING DEVICE | ||
Patent #
US 3,517,350 A
Filed 07/07/1969
|
Current Assignee
William D. Beaver
|
Original Assignee
William D. Beaver
|
MICROWAVE POWER RECEIVING ANTENNA | ||
Patent #
US 3,535,543 A
Filed 05/01/1969
|
Current Assignee
Carroll C. Dailey
|
Original Assignee
Carroll C. Dailey
|
IMPLEMENTING WIRELESS POWER TRANSFER WITH 60 GHZ MMWAVE COMMUNICATION | ||
Patent #
US 20140292090A1
Filed 12/09/2011
|
Current Assignee
Intel Corporation
|
Original Assignee
Guoqing Li, Bahareh Sadeghi, Ali S. Sadri, Carlos Cordeiro
|
METHOD AND APPARATUS FOR CONTROLLING WIRELESS POWER TRANSMISSION | ||
Patent #
US 20140265615A1
Filed 01/16/2014
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Korea Advanced Institute of Science and Technology, Samsung Electronics Co. Ltd.
|
CONTACTLESS POWER TRANSMISSION DEVICE | ||
Patent #
US 20140333258A1
Filed 11/27/2012
|
Current Assignee
Toyota Industries Corporation
|
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
|
POWER SUPPLY DEVICE | ||
Patent #
US 20140372780A1
Filed 06/10/2014
|
Current Assignee
Fuji Electric Company Limited
|
Original Assignee
Fuji Electric Company Limited, Central Japan Railway Company
|
IMPEDANCE TUNING | ||
Patent #
US 20150051750A1
Filed 08/14/2014
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless power transmission with selective range | ||
Patent #
US 9,124,125 B2
Filed 06/25/2013
|
Current Assignee
Energous Corporation
|
Original Assignee
Energous Corporation
|
MOTION PREDICTION FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20150333800A1
Filed 07/22/2015
|
Current Assignee
uBeam Inc.
|
Original Assignee
uBeam Inc.
|
BEAM INTERACTION CONTROL FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20150333799A1
Filed 07/22/2015
|
Current Assignee
uBeam Inc.
|
Original Assignee
uBeam Inc.
|
ACTIVE RECTIFIER FOR EFFICIENT WIRELESS POWER TRANSFER | ||
Patent #
US 20150349538A1
Filed 05/30/2014
|
Current Assignee
Infineon Technologies Austria Ag
|
Original Assignee
Infineon Technologies Austria Ag
|
WIRELESS POWER SYSTEM FOR PORTABLE DEVICES UNDER ROTATIONAL MISALIGNMENT | ||
Patent #
US 20150372493A1
Filed 06/16/2015
|
Current Assignee
WiPQTUS Inc.
|
Original Assignee
WiPQTUS Inc.
|
WIRELESS POWER TRANSMISSION APPARATUS AND METHOD THEREFOR | ||
Patent #
US 20160065005A1
Filed 04/17/2014
|
Current Assignee
Intellectual Discovery Co. Ltd.
|
Original Assignee
Intellectual Discovery Co. Ltd.
|
SUB-APERTURES WITH INTERLEAVED TRANSMIT ELEMENTS FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20160268813A1
Filed 06/10/2015
|
Current Assignee
uBeam Inc.
|
Original Assignee
uBeam Inc.
|
WIRELESS POWER TRANSMITTER AND WIRELESS POWER TRANSMISSION METHOD | ||
Patent #
US 20170047786A1
Filed 04/10/2015
|
Current Assignee
LG Electronics Inc.
|
Original Assignee
LG Electronics Inc.
|
Wireless Power Supply System and Power Transmission Device | ||
Patent #
US 20170066336A1
Filed 02/25/2014
|
Current Assignee
Nissan Motor Co. Ltd.
|
Original Assignee
Nissan Motor Co. Ltd.
|
WIRELESS POWER TRANSMISSION SYSTEM | ||
Patent #
US 20170098991A1
Filed 09/08/2016
|
Current Assignee
Panasonic Intellectual Property Management Co. Ltd.
|
Original Assignee
Panasonic Intellectual Property Management Co. Ltd.
|
SYSTEM, APPARATUS AND METHOD FOR ADAPTIVE TUNING FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20170126049A1
Filed 10/31/2016
|
Current Assignee
Sichuan Yichong Technology Co. Ltd.
|
Original Assignee
Shenzhen Yichong Wireless Power Technology Co. Ltd.
|
Delivering and Negotiating Wireless Power Delivery in a Multi-Receiver System | ||
Patent #
US 20170141584A1
Filed 11/13/2015
|
Current Assignee
Google LLC
|
Original Assignee
X Development LLC
|
ELECTROMAGNETIC WAVE RADIATION-BASED WIRELESS POWER TRANSMITTER AND WIRELESS POWER TRANSFER SYSTEM USING HIGH GAIN ANTENNA AND BEAM FORMING AND STEERING TECHNOLOGY | ||
Patent #
US 20170187250A1
Filed 12/20/2016
|
Current Assignee
Korea Electronics Technology Institute
|
Original Assignee
Korea Electronics Technology Institute
|
WIRELESS POWER SYSTEM | ||
Patent #
US 20170222466A1
Filed 09/12/2016
|
Current Assignee
WiPQTUS Inc.
|
Original Assignee
Ganapathy Sankar
|
20 Claims
-
1. A method of operating a wireless energy transfer system comprising:
-
tuning, by a wireless energy transmitter, a transmitter impedance matching network (IMN) of the wireless energy transmitter to achieve a target transmitter power characteristic; sending, by the wireless energy transmitter to a wireless energy receiver, power data that indicates a value of a power level of the wireless energy transmitter; tuning, by the wireless energy receiver and based on the power data, a receiver-IMN to improve an efficiency of the wireless energy transfer system. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)
-
-
19. A wireless power transmitter for a wireless energy transfer system, the wireless power transmitter comprising:
-
a source resonator; and transmitter power and control circuitry coupled with the source resonator to drive the source resonator with alternating current, the transmitter power and control circuitry comprising a transmitter impedance matching network (IMN), and the transmitter power and control circuitry being configured to tune the transmitter-IMN to achieve a target transmitter power characteristic, and send, to a wireless energy receiver, power data that indicates a value of a power level of the wireless power transmitter, thereby causing the wireless power receiver to tune, based on the power data, a receiver-IMN to improve an efficiency of the wireless energy transfer system. - View Dependent Claims (20)
-
1 Specification
This application is a continuation of and claims priority to U.S. patent application Ser. No. 15/422,554, filed on Feb. 2, 2017, which claims priority to U.S. Provisional Patent Application Nos. 62/290,325, filed on Feb. 2, 2016, and 62/379,618 filed on Aug. 25, 2016, the entire contents of which are incorporated herein by reference.
Wireless power transfer systems operate over a wide range of coupling factors k, load conditions, and environmental conditions. Variations in these parameters affect the efficiencies of wireless power transfer systems. Wireless power transfer systems can include impedance matching networks to improve power transfer capability and efficiency. Obtaining good performance in a wireless power transfer system over such a wide range of conditions is challenging for traditional impedance matching networks.
In general, the disclosure features wireless power transmission control systems that synchronously tune a wireless power transmitter and receiver to adapt to changing system, parameters, environmental parameters, or both. The wireless power transmission control systems described herein can be used in a variety of contexts, including implantable devices, cell phone and other mobile computing device chargers, and chargers for electric vehicles.
In a first aspect, the disclosure features a wireless energy transmitter that has a transmitter-impedance matching network (IMN). The transmitter is configured to perform operations including performing a first comparison between a characteristic of a power of the transmitter and a target power. Adjusting, based on the first comparison, a reactance of the transmitter-IMN to adjust the power of the transmitter. Transmitting power data that indicates the power of the transmitter to a wireless energy receiver.
In a second aspect, the disclosure features a wireless energy receiver that has a receiver-IMN. The receiver is configured to perform operations including determining an efficiency of a wireless energy transfer system at a second time based on power data from a wireless energy transmitter. Performing a second comparison between the efficiency at the second time and an efficiency of the wireless energy transfer system at a first time, the first time being prior to the second time. Adjusting, based on the second comparison, a reactance of the receiver-IMN.
In a third aspect, the disclosure features a wireless energy transfer system that includes an energy transmitter, and an energy receiver. The transmitter has a transmitter-IMN. The transmitter is configured to perform operations including performing a first comparison between a characteristic of a power of the transmitter and a target power. Adjusting, based on the first comparison, a reactance of the transmitter-IMN to adjust the power of the transmitter. The receiver has a receiver-IMN. The receiver is configured to perform operations including determining an efficiency of the wireless energy transfer system at a second time based on power data from the transmitter. Performing a second comparison between the efficiency at the second time and an efficiency of the wireless energy transfer system at a first time, the first time being prior to the second time. Adjusting, based on the second comparison, a reactance of the receiver-IMN.
The first aspect and the second aspect can operate together in a system such as the system of the third aspect. Furthermore, these and the fourth through sevenths aspects can each optionally include one or more of the following features.
In some implementations, adjusting the reactance of the receiver-IMN includes adjusting the reactance of the receiver-IMN by a variable reactance adjustment value.
In some implementations, the first comparison and adjustment to the reactance of the transmitter-IMN occur iteratively until the characteristic of the power is within a threshold value of the target power.
In some implementations, adjusting the reactance of the receiver-IMN includes, in response to the efficiency at the second time being less than the efficiency at the first time, negating a reactance adjustment value. Adjusting the reactance of the receiver-IMN includes adjusting the reactance of the receiver-IMN by the negated reactance adjustment value.
In some implementations, adjusting the reactance of the transmitter-IMN includes, in response to the power being less than the target power, adjusting the reactance of the transmitter-IMN by a first reactance adjustment value. In response to the power being greater than the target power, adjusting the reactance of the transmitter-IMN by a second, different reactance adjustment value.
In some implementations, the first reactance adjustment value is equal in magnitude and opposite in sign to the second reactance adjustment value
In some implementations, the first comparison is between a power factor of the power of the transmitter and a target power factor. The operations of the transmitter can include a third comparison between a magnitude of the power and a target power magnitude, wherein the third comparison follows the first comparison, and adjusting, based on the third comparison, a bus voltage of the transmitter to adjust the power of the transmitter.
In some implementations, the power factor is represented by a phase relationship between a transmitter voltage and a transmitter current.
In some implementations, the first comparison and adjustment of the reactance of the transmitter-IMN based on the first comparison occur iteratively until the power factor of the power is within a threshold value of the target power factor.
In some implementations, the steps of performing the first comparison and adjusting the reactance of the transmitter-IMN are iterated at a faster rate than the steps of performing the third comparison and adjusting the bus voltage.
In some implementations, the transmitter is an electric vehicle charger and wherein the receiver is a coupled to a power system of an electric vehicle.
In some implementations, the operations of the transmitter include shutting down the wireless energy transfer system by reducing the target power to zero.
In some implementations, the operations of the transmitter include shutting down a power inverter in the transmitter.
In some implementations, the operations of the transmitter include starting up the transmitter by adjusting the reactance of the transmitter-IMN to a maximum value.
In some implementations, the operations of the transmitter include starting up the transmitter by adjusting a frequency of an inverter to a target frequency.
In some implementations, the operations of the receiver include starting up the receiver by adjusting the reactance of the receiver-IMN to a minimum value.
In some implementations, the operations of the receiver include starting up the receiver by adjusting the reactance of the receiver-IMN from a maximum value to a minimum value.
In some implementations, the transmitter-IMN includes a tunable reactive element electrically connected between an inverter and at least one fixed reactive element, and adjusting the reactance of the transmitter-IMN includes adjusting the tunable reactive element.
In some implementations, the receiver-IMN includes a tunable reactive element electrically connected between a rectifier and at least one fixed reactive element, and adjusting the reactance of the receiver-IMN includes adjusting the tunable reactive element.
In some implementations, the steps of performing the first comparison and adjusting the reactance of the transmitter-IMN are iterated at a faster rate than the steps of performing the second comparison and adjusting the reactance of the receiver-IMN.
In some implementations, determining the efficiency of the wireless energy transfer system includes receiving power data from the transmitter, determining an output power of the receiver, and calculating the efficiency of the wireless energy transfer system based on the power data from the transmitter and the output power of the receiver.
In some implementations, the operations of the transmitter include performing a plurality of checks that can include a check of a magnitude of the power, a check of a power factor of the power, and a check of a frequency of an inverter in the transmitter, and in response to the plurality checks, selectively adjusting the frequency of the inverter to adjust the power of the transmitter.
In some implementations, the operations of the transmitter include performing a plurality of checks that can include a check of a magnitude of the power and a check of a phase shift of an inverter of the transmitter, in response to the plurality checks, selectively adjusting the phase shift of the inverter to adjust the power of the transmitter.
In some implementations, the operations of the transmitter include, before adjusting the bus voltage, verifying that the bus voltage is greater than a minimum bus voltage.
In some implementations, the first comparison is between a power factor of the power of the transmitter and a target power factor. The operations of the transmitter can include performing a third comparison between a magnitude of the power and a target power magnitude, adjusting, based on the third comparison, the reactance of the transmitter-IMN to reduce the power of the transmitter.
In some implementations, the first comparison is between a power factor of the power of the transmitter and a target power factor. The operations of the transmitter can include performing a third comparison between a magnitude of the power and a target power magnitude, and adjusting, based on the third comparison, a frequency of an inverter of the transmitter to reduce the power of the transmitter.
In some implementations, the first comparison is between a power factor of the power of the transmitter and a target power factor. The operations of the can include performing a third comparison between a magnitude of the power and a target power magnitude, and adjusting, based on the third comparison, a phase shift of an inverter of the transmitter to reduce the power of the transmitter.
In some implementations, the transmitter includes an inductive coil coupled to at least portion of the transmitter-impedance matching network to form a transmitter resonator.
In some implementations, the receiver includes an inductive coil coupled to at least portion of the receiver-impedance matching network to form a receiver resonator.
In a fourth aspect, the disclosure features the subject matter described in this specification can be embodied in methods that include the actions of tuning, by a wireless energy transmitter, a transmitter-IMN of the wireless energy transmitter to achieve a target transmitter power characteristic. Sending, by the wireless energy transmitter, power data that indicates the power of the transmitter to a wireless energy receiver. Tuning, by the wireless energy receiver and based on the power data, the receiver-IMN to improve an efficiency of the wireless energy transfer system.
In a fifth aspect, the disclosure features a wireless energy transmitter that has a transmitter-IMN. The transmitter is configured to perform operations including tuning the transmitter-IMN to achieve a target transmitter power characteristic and sending power data that indicates the power of the transmitter to a wireless energy receiver.
In a sixth aspect, the disclosure features a features a wireless energy receiver that has a receiver-IMN. The receiver is configured to perform operations including tuning the receiver-IMN to improve an efficiency of the wireless energy transfer system based on power data received from a wireless energy transmitter.
In a seventh aspect, the disclosure features a wireless energy transfer system that includes an energy transmitter, and an energy receiver. The transmitter is configured to perform operations including tuning the transmitter-IMN to achieve a target transmitter power characteristic and sending power data that indicates the power of the transmitter to the wireless energy receiver. The receiver has a receiver-IMN. The receiver is configured to perform operations including tuning the receiver-IMN to improve an efficiency of the wireless energy transfer system based on power data received from the wireless energy transmitter.
The fifth aspect and the sixth aspect can operate together in a system such as the system of the seventh aspect. Furthermore, these and the first through third aspects can each optionally include one or more of the following features.
In some implementations, the target transmitter power characteristic is a target power factor and the target transmitter power characteristic is a target power factor.
In some implementations, the power factor is represented by a phase difference between a transmitter voltage and a transmitter current, and the target power factor is a target phase difference.
In some implementations, the operations include adjusting, by the transmitter, an inverter bus voltage to achieve a target power magnitude.
In some implementations, the operations include adjusting, by the transmitter, an inverter bus voltage to achieve a target power magnitude.
In some implementations, the operations include performing a safety check prior to adjusting the transmitter-IMN. In some implementations, the safety check is an over-voltage check or an over-current check.
In some implementations, the operations include performing, by the transmitter, a plurality of checks that can include a check of a magnitude of a transmitter power, a check of a transmitter power factor, and a check of a frequency of an inverter in the transmitter; and in response to the plurality checks, selectively adjusting the frequency of the inverter to adjust the power of the transmitter.
In some implementations, the operations include performing a plurality of checks that can include a check of a magnitude of a transmitter power and a check of a phase shift of an inverter of the transmitter; and in response to the plurality checks, selectively adjusting the phase shift of the inverter to adjust the power of the transmitter.
In some implementations, the transmitter is an electric vehicle charger and the receiver is a coupled to a power system of an electric vehicle.
In some implementations, the operations include adjusting, while starting up the transmitter, the reactance of the transmitter-IMN to a maximum value.
In some implementations, the operations include adjusting, while starting up the receiver, the reactance of the receiver-IMN to a minimum value.
In some implementations, the transmitter includes an inductive coil coupled to at least portion of the transmitter-impedance matching network to form a transmitter resonator.
In some implementations, the receiver includes an inductive coil coupled to at least portion of the receiver-impedance matching network to form a receiver resonator.
In an eighth aspect, the disclosure features a wireless power transmission system without bus voltage control configured to implement a control loop for tuning power transmission, where the control loop includes: a first sub-loop to control output power of a transmitter of the wireless power transmission system, and a second sub-loop to tune a combined reactance of an inductor and a capacitor that couple a tank circuit to a rectifier in a receiver of the wireless power transmission system, where the second sub-loop tunes the combined reactance by monitoring efficiency of wireless power transmission. Furthermore, this and other implementations can each optionally include one or more of the following features.
In some implementations, the second sub-loop employs a perturb-and-observe strategy to improve efficiency based on a previous point by tuning the combined reactance of an inductor and a capacitor that couple a tank circuit to a rectifier in a receiver of the wireless power transmission system.
In some implementations, the second sub-loop is dependent on a power comparison where output power is compared to target power at a start of the control loop.
In some implementations, the second sub-loop operates at the rate of communication, for example, 40 Hz.
In some implementations, the control loop is characterized by:
where Pinv is power out of an inverter of the transmitter of the wireless power transmission system, Vbus is bus voltage, Rinv is resistance seen by the inverter, and Xinv is reactance seen by the inverter, and where the tuning occurs at Xinv=the combined reactance of the inductor and the capacitor.
In some implementations, the first sub-loop is a local loop that does not communicate with another part of the wireless power transmission system.
In some implementations, the first sub-loop is faster than the second sub-loop where the first sub-loop is on order of 1 to 10 kHz.
In some implementations, the control loop includes preparing inputs, including: setting transmitter reactance to a maximum value, setting receiver reactance to a minimum value, and where the efficiency of wireless power transmission at time zero=0 and receiver reactance is to be changed by a constant or variable value.
In some implementations, the control loop starts by comparing output power to target power. In some implementations, if the output power equals the target power within a tolerance, then: efficiency is measured at a time n, the efficiency at time n is compared to efficiency at a previous time n−1, if the efficiency at time n is greater than the efficiency at the previous time n−1, then a change in receiver reactance is added to the receiver reactance and the output power is compared to the target power; whereas if efficiency at time n is equal to or less than the efficiency at the previous time n−1, then a change in receiver reactance is negated, the negated change is added to the receiver reactance, and the output power is compared to the target power.
In some implementations, if the output power does not equal the target power within a tolerance, then: it is determined whether the output power is less than the target power, if the output power is less than the target power, then a change in transmitter reactance is set to −δ, the change in transmitter reactance is added to the transmitter reactance, and the output power is compared to the target power; if the output power is greater than the target power, then the change in transmitter reactance is set to δ, the change in transmitter reactance is added to the transmitter reactance, and the output power is compared to the target power.
In a ninth aspect, the disclosure features a wireless power transmission system with bus voltage control configured to implement a control loop for tuning power transmission, where the control loop includes: a first sub-loop to control phase as defined: φ=arctan(Xinverter/Rinverter), a second sub-loop to control output power, and a third sub-loop to tune a combined reactance of an inductor and a capacitor that couple a tank circuit to a rectifier in a receiver of the wireless power transmission system by monitoring efficiency. Furthermore, this and other implementations can each optionally include one or more of the following features.
In some implementations, the third sub-loop employs a perturb-and-observe strategy to improve efficiency based on a previous point by tuning the combined reactance of an inductor and a capacitor.
In some implementations, the third sub-loop is dependent on a power comparison and thus on the second sub-loop.
In some implementations, the third sub-loop operates at a rate of communication, for example, 40 Hz (speed of WiFi).
In some implementations, the control loop can be characterized by:
where Pinv is power output from an inverter of the transmitter of the wireless power transmission system, Vbus is bus voltage, Rinv is resistance seen by the inverter, and Xinv is the reactance seen by the inverter, and where tuning occurs at both Vbus and X3=Xinv.
In some implementations, the first sub-loop is adjusted first, the second sub-loop is then adjusted, and the third sub-loop is then adjusted.
In some implementations, the first sub-loop runs on the order of 1 to 10 kHz.
In some implementations, the first sub-loop is a local loop and does not communicate with another part of the wireless power transmission system.
In some implementations, the second sub-loop is a local loop and does not communicate with another part of the wireless power transmission system.
In some implementations, the second sub-loop runs on the order of 1 to 10 kHz.
In some implementations, the control loop includes preparing inputs, including: setting transmitter reactance to a maximum value, setting receiver reactance to a minimum value, where the efficiency of wireless power transmission at time zero=0, the receiver reactance is to be increased, the transmitter reactance is to be increased, the bus voltage is to be increased, and phase is to be increased.
In some implementations, the control loop includes: comparing a phase measured at the inverter to a target phase, and if the phase measured at the inverter equals the target phase, then output power is compared to target power.
In some implementations, the third sub-loop occurs if the output power equals the target power and includes: measuring efficiency at a time n, comparing efficiency at the time n to efficiency at a previous time n−1, if the efficiency at the time n is greater than the efficiency at the previous time n−1 then receiver reactance is incremented; whereas if the efficiency at the time n is less than or equal to the efficiency at the previous time n−1, then change in the receiver reactance is negated and the negated value is added to the receiver reactance.
In some implementations, the second sub-loop occurs if the output power does not equal the target power and includes: if the output power is less than the target power, increasing the bus voltage, and if the output power is greater than the target power, reducing the bus voltage.
In some implementations, the first sub-loop occurs if a phase measured at inverter is not equal to a target phase and includes: if the phase measured at inverter is greater than a target phase, comparing receiver reactance to a minimum receiver reactance and if the receiver reactance equals the minimum receiver reactance, then comparing the output power to the target power; whereas if the receiver reactance does not equal the minimum receiver reactance, decreasing the transmitter reactance; and if the phase measured at the inverter is less than the target phase, then comparing the receiver reactance to a maximum receiver reactance and if the receiver reactance equals maximum receiver reactance then comparing the output power to the target power whereas if the receiver reactance does not equal the maximum receiver reactance then increasing the transmitter reactance.
Particular implementations of the subject matter described in this specification can be implemented so as to realize one or more of the following advantages. Implementations may improve the efficiency of operating wireless power transfer systems. Implementations may improve the dependability of wireless power transfer systems. Implementations may improve robustness of wireless power transfer systems to operate over many conditions. Implementations may improve ability to achieve higher levels of power transfer over many conditions.
Embodiments of the devices, circuits, and systems disclosed can also include any of the other features disclosed herein, including features disclosed in combination with different embodiments, and in any combination as appropriate.
The details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will be apparent from the description, the drawings, and the claims.
Like reference numbers and designations in the various drawings indicate like elements.
Wireless energy transfer systems described herein can be implemented using a wide variety of resonators and resonant objects. As those skilled in the art will recognize, important considerations for resonator-based power transfer include resonator quality factor and resonator coupling. Extensive discussion of such issues, e.g., coupled mode theory (CMT), coupling coefficients and factors, quality factors (also referred to as Q-factors), and impedance matching is provided, for example, in U.S. patent application Ser. No. 13/428,142, published on Jul. 19, 2012 as US 2012/0184338, in U.S. patent application Ser. No. 13/567,893, published on Feb. 7, 2013 as US 2013/0033118, and in U.S. patent application Ser. No. 14/059,094, published on Apr. 24, 2014 as US 2014/0111019. The entire contents of each of these applications are incorporated by reference herein.
In some applications such as wireless power transfer, impedances seen by the wireless power supply source and device may vary dynamically. In such applications, impedance matching between a device resonator coil and a load, and a source resonator coil and the power supply, may be required to prevent unnecessary energy losses and excess heat. The impedance experienced by a resonator coil may be dynamic, in which case, a dynamic impedance matching network can be provided to match the varying impedance to improve the performance of the system. In the case of the power supply in a wireless power system, the impedances seen by the power supply may be highly variable because of changes in the load receiving power (e.g., battery or battery charging circuitry) and changes in the coupling between the source and device (caused, for example, by changes in the relative position of the source and device resonators). Similarly, the impedance experienced by the device resonator may also change dynamically because of changes in the load receiving power. In addition, the desired impedance matching for the device resonator may be different for different coupling conditions and/or power supply conditions. Accordingly, power transfer systems transferring and/or receiving power via highly resonant wireless power transfer, for example, may be required to configure or modify impedance matching networks to maintain efficient power transfer. Implementations of the present disclosure provide startup, shutdown, and steady state operation processes that allow for efficient operation over the entire range of conditions encountered in highly-resonant wireless power transfer systems (HRWPT) system such as high-power vehicle charging systems, for example.
For purposes of illustration, wireless power transfer system 100 will be discussed in the context of a wireless charging system for an electric vehicle. For example, system 100 can be a HRWPT system which is required to operate over a wide range of coupling factors k, load conditions (such as a battery voltage), and environmental conditions that detune the inductances of the resonators (e.g., due to spatial variations and interfering objects). Furthermore, in order to perform wireless charging of electric vehicles, system 100 may be required to operate with high voltages (e.g., between 360V and 800V) and high currents (e.g., between 26 A and 40 A) to achieve a suitable range of power (e.g., 0 to 3.7 kW, 0 to 7.7 kW, 0 to 11 kW, or 0 to 22 kW).
Wireless power transmitter 102 converts power from an external power source (e.g., power grid or generator) to electromagnetic energy which is transmitted between resonators 108T and 108R to wireless power receiver 104. Receiver 104 converts the oscillating energy received by resonator 108R to an appropriate form for use by device 112 (e.g., charging an electric vehicle battery). More specifically, the receiver power and control circuitry 110 can convert AC voltage and current from resonator 108R to DC power within appropriate voltage and current parameters for device 112.
The transmitter power and control circuitry 106 can include circuits and components to isolate the source electronics from the power supply, so that any reflected power or signals are not coupled out through the source input terminals. The source power and control circuitry 106 can drive the source resonator 108S with alternating current, such as with a frequency greater than 10 kHz and less than 100 MHz (e.g., 85 kHz). The source power and control circuitry 106 can include, for example, power factor correction (PFC) circuitry, a transmitter controller, impedance matching circuitry, a power inverter, a DC-to-DC converter, an AC-to-DC converter, a power amplifier, or any combination thereof.
The receiver power and control circuitry 110 can be designed to transform alternating current power from the receiver resonator 108R to stable direct current power suitable for powering or charging one or more devices 112. For example, the receiver power and control circuitry 110 can be designed to transform an alternating current power at one frequency (e.g., 85 kHz) from resonator 108R to alternating current power at a different frequency suitable for powering or charging one or more devices 112. The receiver power and control circuitry 110 can include, for example, a receiver controller, impedance matching circuitry, rectification circuitry, voltage limiting circuitry, current limiting circuitry, AC-to-DC converter circuitry, DC-to-DC converter circuitry, DC-to-AC circuitry, AC-to-AC converter circuitry, and battery charge control circuitry.
Transmitter 102 and receiver 104 can have tuning capabilities, for example, dynamic impedance matching circuits, that allow adjustment of operating points to compensate for changing environmental conditions, perturbations, and loading conditions that can affect the operation of the source and device resonators and the efficiency of the energy transfer. The tuning capability can be controlled automatically, and may be performed continuously, periodically, intermittently or at scheduled times or intervals. In some implementations, tuning is performed synchronously between the transmitter 102 and the receiver 104 as described in more detail below.
Transmitter controller 125 and receiver controller 129 can be implemented as processors or microcontrollers. In some implementations, transmitter controller 125 and receiver controller 129 can be implemented as ASIC or FPGA controllers. Transmitter controller 125 and receiver controller 129 need not be implemented in the same form. For example, transmitter controller 125 can be implemented as a microcontroller and receiver controller 129 can be implemented as an ASIC controller.
Transmitter 102 also includes a plurality of sensors such as voltage, current, and power sensors to measure transmitter operating parameters. Transmitter controller 125 can use measurements from the sensors to control the operation of the transmitter 102 and to tune the transmitter IMN 124. Transmitter operating parameters measured by the sensors can include, but is not limited to, inverter bus voltage (Vbus), transmitter input power, inverter AC voltage (VAC), inverter AC current (IAC), transmitter power factor (pf), and other voltages and currents as needed for safety checks. In some implementations, the transmitter input power is measured at an AC input to a transmitter PFC circuit. In some implementations, the transmitter input power is measured as an inverter power (Pin), as shown in
φ=arctan(Xinverter/Rinverter).
Receiver 104 also includes a plurality of sensors such as voltage, current, and power sensors to measure receiver operating parameters. Receiver controller 129 can use measurements from the sensors to control the operation of the receiver 104 and to tune the receiver IMN 126. Receiver operating parameters measured by the sensors can include, but is not limited to, receiver output power (Pout), rectifier AC voltage, rectifier AC current, rectifier DC voltage, rectifier DC current, and other voltages and currents as needed for safety checks.
Transmitter IMN 124 and receiver IMN 126 can each include a plurality of fixed and variable impedance matching components such as resistors, capacitors, inductors, or combinations thereof. Variable impedance components can be tunable reactive impedance components including, but not limited to, PWM-switched capacitors, radio frequency (RF) controlled capacitors whose effective capacitance at RF is controlled by a DC bias field, temperature-controlled capacitors, PWM-switched inductors, DC controlled inductors whose effective inductance is controlled by a bias DC field (e.g., a saturable core), temperature-controlled inductors, arrays of reactive elements switched in and out of the circuit by switches, or a combination thereof.
In the illustrated example, transmitter IMN 124 includes series capacitor 132, parallel capacitor 134, and the combination of capacitor 136 and inductor 138 at the output of inverter 122. Capacitor 136 is a variable capacitor and can include one or more variable capacitors. A resistive component of the transistor resonator coil 108T is represented by resistor 140.
Receiver IMN 126 includes series capacitor 144, parallel capacitor 146, and the combination of capacitor 148 and inductor 150 at the input to rectifier 128. Capacitor 148 is a variable capacitor and can include one or more variable capacitors. A resistive component of the receiver resonator coil 108R is represented by resistor 152.
IMNs 124 and 126 can have a wide range of circuit implementations with various components having impedances to meet the needs of a particular application. For example, U.S. Pat. No. 8,461,719 to Kesler et al., which is incorporated herein by reference in its entirety, discloses a variety of tunable impedance network configurations, such as in
Each of the IMNs 124 and 126 include three reactances: series reactance X1 (e.g., capacitor 132 or 144), parallel reactance X2 (e.g., capacitor 134 or 146), and inverter output/rectifier input reactance X3 (combined reactance of inductor 138 or 150 with capacitor 136 or 148, respectively). The reactances X1-X3 of receiver IMN 126 mirror the corresponding reactances X1-X3 of transmitter IMN 124. Although reactance X3 is the only reactance illustrated as including a tunable reactance component, namely, capacitors 136 and 148, in other implementations, reactances X1 and X2 can include tunable reactance components in addition to or in place of the tunable reactance component in reactance X3. In other words, IMNs 124 and 126 can be tuned by tuning any one or more of reactances X1-X3. In some implementations, components that make up reactances X1 and X3 can be balanced.
While any of reactances X1, X2, X3, or combinations thereof can be tuned, in some implementations, it can be advantageous to tune reactance X3. For example, by tuning reactance X3, it may be possible to reduce system complexity and cost if tuning a single component in IMN is sufficient. By tuning reactance X3, the current through the X3 elements can be significantly lower than that through the tank circuit formed by X1, X2, and the resonator coil. This lower current may make implementation of tunable components more cost-effective by, for example, reducing current ratings that may be required for such components. Additionally, lower currents may reduce losses by tuning elements at X3.
In some implementations, tunable reactive elements (e.g., PWM controlled capacitors) can inject harmonic noise into a HRWPT system. To help with EMI compliance, may be preferable to keep this harmonic noise away from the main HRWPT resonator coils (e.g., 108T and 108R). Higher-harmonics injected by a tunable element at X3 may be more suppressed than those that can be generated by the inverter and rectifier and may be significantly suppressed by the rest of the HRWPT circuit before reaching the resonator coil 108T or 108R.
In some implementations with tunable elements at X3 (e.g., PWM controlled capacitors), the tunable element dissipates the least amount of power (theoretically zero) when the overall efficiency of the rest of the system is lowest, and the highest amount of power when the overall efficiency of the rest of system is highest. This has the desirable effect of optimizing the minimum and average efficiencies of the system while only slightly affecting the maximum efficiency. However, tuning elements at X1 or X2 can have the opposite, less desirable, effect.
Fixed reactances of X1 and X2, and the base reactance value of X3 can be selected to achieve the results shown in
where RL,eq is the loaded equivalent series resistance (ESR) (due to device electronics, such as the rectifier, and battery) of the device resonator and Rd is the unloaded ESR of the device resonator. When Ud is set to equal figure of merit U of the system, then the coil-to-coil efficiency can be maximized.
where ΔXL is the residual reactance of the loaded device resonator at the operating frequency. A phase ψ=0 means the loaded device resonator is at resonance.
The trapezoidal dotted outline 202 in
Referring again to
For example, as described in more detail below in reference to
In some implementations, transmitter controller 125 operates at a faster rate than receiver controller 129. That is, transmitter controller 125 can tune the transmitter IMN 124 at a faster rate than receiver controller 129 can tune the receiver IMN 126. For example, receiver controller 129 may only be permitted to tune receiver IMN 126 as fast as it receives new input power data from transmitter controller 125.
Portions of process 300 are be performed by a wireless power transmitter 102 (e.g., transmitter controller 125) and portions of process 300 are performed by a wireless power receiver 104 (e.g., receiver controller 129). Process 300 includes two control loops 303 and 305. Loop 303 is performed by a transmitter 102 to tune a transmitter IMN 124 by adjusting reactance X3 to control the transmitter power. In some implementations, loop 303 is a local loop that does not require communication with other devices (e.g., receiver 104) to be performed. In some implementations, loop 303 is executed by a transmitter at between 1-10 kHz. Loop 303 can be characterized by:
where Pin is the power of the inverter, Vbus is the DC bus voltage of the inverter 122, Rinv is the effective resistance as seen by the inverter, and Xinv is the effective reactance as seen by the inverter.
Loop 305 is performed by a receiver 104 to tune a receiver IMN 126 based on system efficiency. For example, loop 305 can employ a “perturb-and-observe” strategy to improve efficiency by adjusting reactance X3 of a receiver IMN 126 to continually improve efficiency over consecutive iterations. Loop 305 depends on input power data from transmitter 102 to calculate system efficiency at each iteration. In some implementations, loop 305 operates at the rate of communication between transmitter 102 and receiver 104, for example, 40 Hz.
Block 302 lists the inputs and initial conditions for process 300 which include a variable transmitter reactance Xtx (e.g., X3 of transmitter IMN 124), set to a maximum reactance value Xtx,max; a variable receiver reactance Xrx (e.g., X3 of receiver IMN 126), set to a minimum reactance value Xrx,min; a system efficiency η, initially set to zero; a transmitter reactance step size ΔXtx, set to an adjustment value of 6; and a receiver reactance step size ΔXrx, set to an adjustment value of ε. In some implementations, the reactance step sizes ΔXtx and ΔXrx are constant values. In some implementations, the reactance step sizes ΔXtx and ΔXrx can be variable. For example, controller 125 or controller 129 can increase or decrease the magnitude of the respective step sizes dynamically during process 300.
Process 300 starts at step 304. At step 306 the power of the transmitter 102 is measured. Transmitter controller 125 measures the input power Pin, and, at step 306, compares the input power Pin to a target power level Ptarget. If Pin equals Ptarget the process 300 proceeds to step 308 of loop 305. If Pin does not equal Ptarget, process 300 proceeds to step 316 of loop 303. In some implementations or some operation modes, the target power level is set by the transmitter 102. In some implementations or some operation modes, the target power level is set by the receiver 104. For example, when in steady-state operations (e.g., normal operations apart from startup or shutdown sequences), system 100 can operate as a demand based system. For example, receiver 104 can request power levels from the transmitter 102. Transmitter controller 125 can calculate a target input power level based on the demanded power level from the receiver 104. For example, transmitter controller 125 can convert the demanded power to a target input power level that would be required to transmit the demanded power level by accounting for expected losses in the transmitter (e.g., IMN losses and inverter losses).
Referring first to the transmitter-side loop, loop 303, if the input power of the transmitter (e.g., the inverter power) is not equal to the target power, at step 316 transmitter controller 125 compares the input power to the target power level to determine whether the input power is less than the target power level. If Pin is less than Ptarget, then, at step 318, transmitter controller 125 sets the transmitter reactance step size ΔXtx, to a negative adjustment value to decrease the variable transmitter reactance Xtx in step 320. If Pin is not less than Ptarget, then, at step 322, transmitter controller 125 sets the transmitter reactance step size ΔXtx, to a positive adjustment value to increase the variable transmitter reactance Xtx in step 320. In some implementations, the magnitude of the reactance adjustment value δ can be varied. For example, if the difference between Pin and Ptarget is large, for example, greater than a coarse adjustment threshold value, then the transmitter controller 125 can increase the magnitude of the reactance adjustment value δ. Correspondingly, if the difference between Pin and Ptarget is small, for example, less than a fine adjustment threshold value, then the transmitter controller 125 can decrease the magnitude of the reactance adjustment value δ. After the variable transmitter reactance Xtx is adjusted in step 320, loop 303 returns to step 306, where the input power is again compared to the target power level.
Referring to the receiver-side loop, loop 305, if the input power of the transmitter is equal to the target power, at step 308, the receiver controller 129 measures the efficiency of the system 100. For example, when Pin is equal to Ptarget, the transmitter can send data indicating the measured value of Pin to the receiver 104. (It should be noted that measured transmitter power can be represented by a floating point number and, thus, may not exactly equal the target power, but may be equivalent within a predetermined tolerance.) Receiver controller 129 measures the output power of the receiver, and calculates the system efficiency η(n) at time n based on the received transmitter power data and the measured receiver output power value.
At step 310, receiver controller 129 compares the system efficiency calculated at time n, to the system efficiency calculated at a previous time n−1. If the efficiency at time n is greater than the efficiency at time n−1, then, at step 312, the variable receiver reactance Xrx is adjusted by the receiver reactance step size ΔXrx. For example, the change in receiver reactance ΔXrx is added to the variable receiver reactance Xrx. If the efficiency at time n is not greater than the efficiency at time n−1, then, at step 314, receiver controller 129 changes the sign of the receiver reactance step size ΔXrx before adjusting the variable receiver reactance Xrx at step 312. For example, the value of the change in receiver reactance ε can be negated. For example, the direction of adjustments for the variable receiver reactance Xrx is swapped when the efficiency is no longer increasing between subsequent iterations of loop 305. As illustrated in by loop 305, direction of adjustments for the variable receiver reactance Xrx will then be retained in subsequent iterations of loop 305 until efficiency decreases again, thereby, maintaining a near-maximum system efficiency.
In some implementations, the magnitude of the reactance adjustment value ε can be varied. For example, if the efficiency at time n is less than a coarse adjustment threshold value (e.g., soon after system startup), then the receiver controller 129 can increase the magnitude of the reactance adjustment value E. Correspondingly, if the efficiency at time n is near an estimated maximum value for example, within a fine adjustment threshold of the estimated maximum value, then the receiver controller 129 can decrease the magnitude of the reactance adjustment value ε.
Process 400 is similar to process 300, but includes control of inverter bus voltage Vbus to adjust transmitter power Pin, and measurements of and the use of inverter power factor (e.g., inverter AC voltage VAC and inverter AC current IAC phase difference φ) to tune the transmitter IMN 124.
Portions of process 400 are be performed by a wireless power transmitter 102 (e.g., transmitter controller 125) and portions of process 400 are performed by a wireless power receiver 104 (e.g., receiver controller 129). Process 400 includes three control loops 401, 403, and 405. Loops 401 and 403 are performed by a transmitter 102 to tune a transmitter IMN 124 and to control the transmitter power. Loop 401 is a phase loop that tunes the transmitter IMN 124 by adjusting reactance X3 to achieve a target phase φ relationship between the inverter AC output voltage and inverter AC output current (e.g., inverter power factor), hereinafter referred to as “inverter output phase φinv” and “target inverter output phase φtarget.” Loop 403 is a power control loop that controls and maintains the transmitter power magnitude Pin at or near the target power Ptarget by adjusting the inverter bus voltage Vbus. In some implementations, loops 401 and 403 are local loops that do not require communication with other devices (e.g., receiver 104) to be performed. In some implementations, loops 401 and 403 are executed by a transmitter at between 1-10 kHz. Loops 401 and 403 can be characterized by:
where Pin is the power of the inverter, Vbus is the DC bus voltage of the inverter 122, Rinv is the effective resistance as seen by the inverter, and Xinv is the effective reactance as seen by the inverter.
Loop 405 is performed by a receiver 104 to tune a receiver IMN 126 based on system efficiency. Loop 405 is similar to loop 305 of process 300. For example, loop 405 can employ a “perturb-and-observe” strategy to improve efficiency by adjusting reactance X3 of a receiver IMN 126 to continually improve efficiency over consecutive iterations. Loop 405 depends on input power data from transmitter 102 to calculate system efficiency at each iteration. In some implementations, loop 405 operates at the rate of communication between transmitter 102 and receiver 104, for example, 40 Hz.
Block 402 lists the inputs and initial conditions for process 400 which include a variable transmitter reactance Xtx (e.g., X3 of transmitter IMN 124), set to a maximum reactance value Xtx,max; a variable receiver reactance Xrx (e.g., X3 of receiver IMN 126), set to a minimum reactance value Xrx,min; a system efficiency η, initially set to zero; a transmitter reactance step size ΔXtx, set to an adjustment value greater than zero; a receiver reactance step size ΔXrx, set to an adjustment value greater than zero; and a bus voltage step size ΔVbus set to an adjustment value greater than zero. In some implementations, the reactance step sizes ΔXtx and ΔXrx and bus voltage step size ΔVbus are constant values. In some implementations, the reactance step sizes ΔXtx and ΔXrx and bus voltage step size ΔVbus can be variable. For example, controller 125 or controller 129 can increase or decrease the magnitude of the respective step sizes dynamically during process 400.
Process 400 starts at step 404. At step 406, transmitter controller 125 measures the inverter output phase φinv, and compares the measured inverter output phase φinv to a target inverter output phase φtarget. If φinv equals φtarget the process 400 proceeds to step 408 of loop 403. If φinv does not equal φtarget the process 400 proceeds to step 424 of loop 401. In some implementations, φtarget is slightly greater than 0 so the inverter still sees a slightly inductive load.
Referring first to phase loop, loop 401, if the inverter output phase is not equal to the target inverter output phase, at step 406 transmitter controller 125 compares the inverter output phase to the target inverter output phase, at step 424, to determine whether the inverter output phase is greater than the target inverter output phase. If φinv is greater than φtarget, then, at step 426, transmitter controller 125 checks whether the variable transmitter reactance Xtx is already at a minimum value Xtx,min. If the variable transmitter reactance Xtx is already at a minimum value Xtx,min, then loop 401 proceeds to step 408 with no adjustment to the variable transmitter reactance Xtx. If the variable transmitter reactance Xtx is not at a minimum value Xtx,min, then, at step 332, transmitter controller 125 decrements the variable transmitter reactance Xtx by the transmitter reactance step size ΔXtx, and loop 401 reverts back to step 406 to reevaluate the inverter output phase.
If, at step 424, φinv is not greater than φtarget, then, at step 430, transmitter controller 125 checks whether the variable transmitter reactance Xtx is already at a maximum value Xtx,max. If the variable transmitter reactance Xtx is already at a maximum value Xtx,max, then loop 401 proceeds to step 408 with no adjustment to the variable transmitter reactance Xtx. If the variable transmitter reactance Xtx is not at a maximum value Xtx,max, then, at step 420, transmitter controller 125 increments the variable transmitter reactance Xtx by the transmitter reactance step size ΔXtx, and loop 401 reverts back to step 406 to reevaluate the inverter output phase.
Referring to the power loop, loop 403, at step 408 transmitter controller 125 measures the input power Pin, and compares the measured input power Pin to a target power level Ptarget. If Pin equals Ptarget the process 400 reverts to step 406 of loop 401. In addition, transmitter controller 125 can send data indicating the measured value of Pin to the receiver 104. If Pin does not equal Ptarget, process 400 proceeds to step 418. In some implementations or some operation modes, the target power level is set by the transmitter 102. In some implementations or some operation modes, the target power level is set by the receiver 104. For example, when in steady-state operations (e.g., normal operations apart from startup or shutdown sequences), system 100 can operate as a demand based system. For example, receiver 104 can request power levels from the transmitter 102. Transmitter controller 125 can calculate a target input power level based on the demanded power level from the receiver 104. For example, transmitter controller 125 can convert the demanded power to a target input power level that would be required to transmit the demanded power level by accounting for expected losses in the transmitter (e.g., IMN losses and inverter losses).
If the power of the transmitter is not equal to the target power, at step 418 transmitter controller 125 compares the input power to the target power level to determine whether the input power is less than the target power level. If Pin is less than Ptarget, then, at step 420, transmitter controller 125 increments the inverter bus voltage Vbus by the bus voltage step size ΔVbus, and loop 403 reverts back to step 408 to reevaluate the power of the transmitter. If Pin is not less than Ptarget, then, at step 422, transmitter controller 125 decrements the inverter bus voltage Vbus by the bus voltage step size ΔVbus, and loop 403 reverts back to step 408 to reevaluate the power of the transmitter.
In some implementations, the magnitude of the transmitter reactance step size ΔXtx can be varied. For example, if the difference between φinv and φtarget is large, for example, greater than a coarse adjustment threshold value, then the transmitter controller 125 can increase the transmitter reactance step size ΔXtx. Correspondingly, if the difference between φinv and φtarget is small, for example, less than a fine adjustment threshold value, then the transmitter controller 125 can decrease the magnitude of the transmitter reactance step size ΔXtx.
In some implementations, the magnitude of the bus voltage step size ΔVbus can be varied. For example, if the difference between Pin and Ptarget is large, for example, greater than a coarse adjustment threshold value, then the transmitter controller 125 can increase the bus voltage step size ΔVbus. Correspondingly, if the difference between Pin and Ptarget is small, for example, less than a fine adjustment threshold value, then the transmitter controller 125 can decrease the magnitude of the bus voltage step size ΔVbus.
Referring to the receiver-side loop, loop 405, at step 409 receiver 104 receives transmitter power data. For example, when Pin is equal to Ptarget at step 408, the transmitter 102 can send data indicating the measured value of Pin to the receiver 104. At step 410, the receiver controller 129 measures the efficiency of the system 100. Receiver controller 129 measures the output power of the receiver 104, and calculates the system efficiency η(n) at time n based on the received transmitter power data and the measured receiver output power value.
At step 412, receiver controller 129 compares the system efficiency calculated at time n, to the system efficiency calculated at a previous time n−1. If the efficiency at time n is greater than the efficiency at time n−1, then, at step 414, the variable receiver reactance Xrx is adjusted by the receiver reactance step size ΔXrx. For example, the change in receiver reactance ΔXrx is added to the variable receiver reactance Xrx. If the efficiency at time n is not greater than the efficiency at time n−1, then, at step 416, receiver controller 129 changes the sign of the receiver reactance step size ΔXrx before adjusting the variable receiver reactance Xrx at step 414. For example, the value of the receiver reactance step size ΔXrx can be negated. For example, the direction of adjustments for the variable receiver reactance Xrx is swapped when the efficiency is no longer increasing between subsequent iterations of loop 405. As illustrated in by loop 405, direction of adjustments for the variable receiver reactance Xrx will then be retained in subsequent iterations of loop 405 until efficiency decreases again, thereby, maintaining a near-maximum system efficiency.
In some implementations, the magnitude of the receiver reactance step size ΔXrx can be varied. For example, if the efficiency at time n is less than a coarse adjustment threshold value (e.g., soon after system startup), then the receiver controller 129 can increase the magnitude of the receiver reactance step size ΔXrx. Correspondingly, if the efficiency at time n is near an estimated maximum value for example, within a fine adjustment threshold of the estimated maximum value, then the receiver controller 129 can decrease the magnitude of the receiver reactance step size ΔXrx.