Devices, methods, and kits for non-invasive glucose measurement
First Claim
1. A skin patch for use with a glucose measurement device comprising:
- an adhesive material;
a collection layer for collecting sweat;
a sweat-permeable membrane, whereby the sweat-permeable membrane is configured to act as a barrier to epidermal contaminants and glucose brought to the skin surface via diffusion;
a detector configured to detect nanogram quantities of glucose; and
an interface layer.
2 Assignments
0 Petitions

Accused Products

Abstract
Described are devices, methods, and kits for non-invasively measuring glucose. In general, the devices comprise skin patches for placement on a skin surface and measurement devices for measuring glucose collected in the patches. The patches may include an adhesive material, a collection layer, an interface layer, and a sweat-permeable membrane. The sweat-permeable membrane is configured to act as a barrier to epidermal contaminants and glucose brought to the skin surface via diffusion. In this way, non-correlatable skin surface glucose will not be measured. The patches may further include components to induce a local sweat response. The measurement device typically includes a display, a processor, and a measurement mechanism. The methods typically include the steps of wiping the skin surface with a wipe containing at least one solvent for removing glucose, placing a patch on a skin surface, and measuring glucose collected in the patch. Kits comprising the patch and measurement device are also described.
482 Citations
Analyte monitoring device and methods of use | ||
Patent #
US 7,885,699 B2
Filed 08/06/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge | ||
Patent #
US 7,909,775 B2
Filed 06/26/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,914,465 B2
Filed 02/08/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,909,774 B2
Filed 02/13/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for body fluid sampling and analyte sensing | ||
Patent #
US 7,892,183 B2
Filed 07/03/2003
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 7,884,729 B2
Filed 08/02/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Body fluid sampling module with a continuous compression tissue interface surface | ||
Patent #
US 7,862,520 B2
Filed 06/20/2008
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,901,362 B2
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and Apparatus for Providing Notification Function in Analyte Monitoring Systems | ||
Patent #
US 20110077494A1
Filed 09/29/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,874,994 B2
Filed 10/16/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
REAL TIME MANAGEMENT OF DATA RELATING TO PHYSIOLOGICAL CONTROL OF GLUCOSE LEVELS | ||
Patent #
US 20110021898A1
Filed 07/23/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,909,778 B2
Filed 04/20/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,909,777 B2
Filed 09/29/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Analyte monitoring device and methods of use | ||
Patent #
US 7,869,853 B1
Filed 08/06/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
PATIENT-ENACTED SAMPLING TECHNIQUE | ||
Patent #
US 20110125058A1
Filed 11/24/2010
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seven Sense Biosystems Inc.
|
Variable volume, shape memory actuated insulin dispensing pump | ||
Patent #
US 7,922,458 B2
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,938,787 B2
Filed 09/29/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Analyte monitoring system and method | ||
Patent #
US 7,920,907 B2
Filed 06/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 7,928,850 B2
Filed 05/08/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,959,582 B2
Filed 03/21/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
SYSTEMS AND METHODS FOR APPLICATION TO SKIN AND CONTROL OF ACTUATION, DELIVERY, AND/OR PERCEPTION THEREOF | ||
Patent #
US 20110105872A1
Filed 10/29/2010
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 8,007,446 B2
Filed 10/19/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Variable volume, shape memory actuated insulin dispensing pump | ||
Patent #
US 7,993,109 B2
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for a multi-use body fluid sampling device with sterility barrier release | ||
Patent #
US 7,988,644 B2
Filed 03/21/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
MONITORING OR FEEDBACK SYSTEMS AND METHODS | ||
Patent #
US 20110181410A1
Filed 01/28/2011
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Variable volume, shape memory actuated insulin dispensing pump | ||
Patent #
US 7,993,108 B2
Filed 04/13/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Blood glucose tracking apparatus | ||
Patent #
US 7,976,778 B2
Filed 06/22/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
SAMPLING DEVICE INTERFACES | ||
Patent #
US 20110172508A1
Filed 01/13/2011
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
RAPID DELIVERY AND/OR WITHDRAWAL OF FLUIDS | ||
Patent #
US 20110172510A1
Filed 01/13/2011
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Tissue penetration device | ||
Patent #
US 8,016,774 B2
Filed 12/22/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Methods and apparatus for lancet actuation | ||
Patent #
US 7,981,056 B2
Filed 06/18/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Device and method for variable speed lancet | ||
Patent #
US 7,976,476 B2
Filed 03/16/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Tissue penetration device | ||
Patent #
US 7,981,055 B2
Filed 12/22/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties | ||
Patent #
US 7,988,645 B2
Filed 05/03/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and system for providing integrated medication infusion and analyte monitoring system | ||
Patent #
US 8,029,460 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Variable volume, shape memory actuated insulin dispensing pump | ||
Patent #
US 8,029,245 B2
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Glucose measuring device for use in personal area network | ||
Patent #
US 8,066,639 B2
Filed 06/04/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 8,062,231 B2
Filed 10/11/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Variable volume, shape memory actuated insulin dispensing pump | ||
Patent #
US 8,047,812 B2
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing integrated medication infusion and analyte monitoring system | ||
Patent #
US 8,029,459 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Variable volume, shape memory actuated insulin dispensing pump | ||
Patent #
US 8,047,811 B2
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Variable volume, shape memory actuated insulin dispensing pump | ||
Patent #
US 8,029,250 B2
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 7,860,544 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
DEVICE AND METHOD FOR ACCURATELY MEASURING CONCENTRATION OF BLOOD COMPONENT | ||
Patent #
US 20100234711A1
Filed 05/07/2010
|
Current Assignee
Omron Healthcare Company Limited
|
Original Assignee
Omron Healthcare Company Limited
|
TECHNIQUES AND DEVICES ASSOCIATED WITH BLOOD SAMPLING | ||
Patent #
US 20100256524A1
Filed 03/02/2010
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Therapy Delivery Device Programming Tool | ||
Patent #
US 20100198196A1
Filed 01/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,833,171 B2
Filed 02/13/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and System for Providing Integrated Medication Infusion and Analyte Monitoring System | ||
Patent #
US 20100076412A1
Filed 11/24/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 7,811,231 B2
Filed 12/26/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,731,729 B2
Filed 02/13/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and System for Powering an Electronic Device | ||
Patent #
US 20100045231A1
Filed 11/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
ELECTROCHEMICAL BIOSENSOR | ||
Patent #
US 20100285514A1
Filed 01/27/2010
|
Current Assignee
Purdue Research Foundation
|
Original Assignee
Purdue Research Foundation
|
Method and apparatus for providing peak detection circuitry for data communication systems | ||
Patent #
US 7,679,407 B2
Filed 04/27/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Blood sampling apparatus and method | ||
Patent #
US 7,682,318 B2
Filed 06/12/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and system for providing basal profile modification in analyte monitoring and management systems | ||
Patent #
US 7,766,829 B2
Filed 11/04/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing | ||
Patent #
US 7,713,214 B2
Filed 12/18/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
COMPOSITIONS AND METHODS FOR RAPID ONE-STEP DIAGNOSIS | ||
Patent #
US 20100069726A1
Filed 06/04/2009
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
SWEAT COLLECTION DEVICES FOR GLUCOSE MEASUREMENT | ||
Patent #
US 20100063372A1
Filed 09/08/2009
|
Current Assignee
VivoMedical Inc.
|
Original Assignee
Russell O. Potts, Shuying Ye, Irina Finkelshtein, Hiroshi Yanazawa, James W. Moyer
|
Method and apparatus for providing rechargeable power in data monitoring and management systems | ||
Patent #
US 7,756,561 B2
Filed 09/30/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 7,768,408 B2
Filed 05/17/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for improving success rate of blood yield from a fingerstick | ||
Patent #
US 7,699,791 B2
Filed 06/12/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method And Device For Determining Elapsed Sensor Life | ||
Patent #
US 20100014626A1
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Tissue penetration device | ||
Patent #
US 7,841,992 B2
Filed 12/22/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
NON-INVASIVE PRESSURED PROBING DEVICE | ||
Patent #
US 20100305416A1
Filed 10/23/2007
|
Current Assignee
ONSENS INC.
|
Original Assignee
CYBIOCARE INC.
|
Method And Apparatus For Providing Rechargeable Power In Data Monitoring And Management Systems | ||
Patent #
US 20100019721A1
Filed 09/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,648,468 B2
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikon Technologies Inc.
|
Cassette of lancet cartridges for sampling blood | ||
Patent #
US 7,666,149 B2
Filed 10/28/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Peliken Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,674,232 B2
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,717,863 B2
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Fluid sampling device with improved analyte detecting member configuration | ||
Patent #
US 7,822,454 B1
Filed 01/03/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Closed Loop Blood Glucose Control Algorithm Analysis | ||
Patent #
US 20100274497A1
Filed 04/28/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
FIELD EFFECT TRANSISTOR FABRICATION FROM CARBON NANOTUBES | ||
Patent #
US 20100295023A1
Filed 04/06/2010
|
Current Assignee
Purdue Research Foundation
|
Original Assignee
Purdue Research Foundation
|
Method and System for Providing Data Management in Data Monitoring System | ||
Patent #
US 20100298686A1
Filed 08/02/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Fluid Delivery Device With Autocalibration | ||
Patent #
US 20100312177A1
Filed 05/28/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Medical Devices and Methods of Using the Same | ||
Patent #
US 20100317953A1
Filed 08/23/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Tissue penetration device | ||
Patent #
US 7,850,622 B2
Filed 12/22/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for body fluid sampling and analyte sensing | ||
Patent #
US 7,850,621 B2
Filed 06/07/2004
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,481,776 B2
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and System for Providing Data Transmission in a Data Management System | ||
Patent #
US 20090054749A1
Filed 05/31/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,491,178 B2
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for providing peak detection circuitry for data communication systems | ||
Patent #
US 20090083003A1
Filed 04/27/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and System for Providing Data Management in Data Monitoring System | ||
Patent #
US 20090076358A1
Filed 05/17/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
ACCESS DISCONNECT DETECTION USING GLUCOSE | ||
Patent #
US 20090082653A1
Filed 09/24/2007
|
Current Assignee
Baxter International Inc., Baxter Healthcare SA
|
Original Assignee
Baxter International Inc., Baxter Healthcare SA
|
Variable Volume, Shape Memory Actuated Insulin Dispensing Pump | ||
Patent #
US 20090105648A1
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Variable Volume, Shape Memory Actuated Insulin Dispensing Pump | ||
Patent #
US 20090105647A1
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Variable Volume, Shape Memory Actuated Insulin Dispensing Pump | ||
Patent #
US 20090112156A1
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Variable Volume, Shape Memory Actuated Insulin Dispensing Pump | ||
Patent #
US 20090112165A1
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,524,293 B2
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Variable Volume, Shape Memory Actuated Insulin Dispensing Pump | ||
Patent #
US 20090105649A1
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Integrated blood sampling analysis system with multi-use sampling module | ||
Patent #
US 7,537,571 B2
Filed 06/12/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
SYSTEM FOR MONITORING OF PATIENTS | ||
Patent #
US 20090137888A9
Filed 06/06/2006
|
Current Assignee
VIVOMEDICAL INC.
|
Original Assignee
VIVOMEDICAL INC.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,547,287 B2
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,563,232 B2
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20090216101A1
Filed 02/13/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for an improved sample capture device | ||
Patent #
US 20090204025A1
Filed 09/29/2004
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for an analyte detecting device | ||
Patent #
US 20090196580A1
Filed 10/06/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,582,099 B2
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means | ||
Patent #
US 7,582,063 B2
Filed 11/21/2001
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means | ||
Patent #
US 20090247906A1
Filed 04/27/2009
|
Current Assignee
Pelikan Technologies Inc.
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for a point of care device | ||
Patent #
US 7,604,592 B2
Filed 06/14/2004
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
MEDICAL DIAGNOSTIC INSTRUMENT HAVING PORTABLE ILLUMINATOR | ||
Patent #
US 20090287192A1
Filed 06/03/2009
|
Current Assignee
Welch Allyn Incorporated
|
Original Assignee
Welch Allyn Incorporated
|
Method and system for powering an electronic device | ||
Patent #
US 7,620,438 B2
Filed 03/31/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties | ||
Patent #
US 7,316,700 B2
Filed 06/12/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
ANALYTE MONITORING SYSTEM AND METHOD | ||
Patent #
US 20080064937A1
Filed 06/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for lancet actuation | ||
Patent #
US 7,344,507 B2
Filed 09/05/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Thermal regulation of fluidic samples within a diagnostic cartridge | ||
Patent #
US 7,344,894 B2
Filed 10/16/2001
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Agilent Technologies Incorporated
|
Analyte Monitoring Device And Methods Of Use | ||
Patent #
US 20080091094A1
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
MEDICAL DEVICES AND METHODS OF USING THE SAME | ||
Patent #
US 20080119710A1
Filed 10/31/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Infusion Devices and Methods | ||
Patent #
US 20080103447A1
Filed 10/31/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,374,544 B2
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Intelligent personal health management appliances for the measurement and monitoring of health factors and controlled delivery of drugs | ||
Patent #
US 20080139907A1
Filed 12/19/2004
|
Current Assignee
IP Holdings Incorporated
|
Original Assignee
IP Holdings Incorporated
|
VERTICAL CARBON NANOTUBE DEVICE IN NANOPOROUS TEMPLATES | ||
Patent #
US 20080176058A1
Filed 05/11/2007
|
Current Assignee
Purdue Research Foundation
|
Original Assignee
Purdue Research Foundation
|
Method and Apparatus For a Variable User Interface | ||
Patent #
US 20080194987A1
Filed 10/14/2004
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 7,410,468 B2
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Illumination Assembly For Use With Vaginal Speculum Apparatus | ||
Patent #
US 20080228038A1
Filed 04/03/2006
|
Current Assignee
Welch Allyn Incorporated
|
Original Assignee
Welch Allyn Incorporated
|
CONTACT METALLIZATION OF CARBON NANOTUBES | ||
Patent #
US 20080241755A1
Filed 02/01/2008
|
Current Assignee
Purdue Research Foundation
|
Original Assignee
Purdue Research Foundation
|
Vaginal Speculum Apparatus | ||
Patent #
US 20080269565A1
Filed 04/03/2006
|
Current Assignee
Welch Allyn Incorporated
|
Original Assignee
Welch Allyn Incorporated
|
ANALYTE MONITORING SYSTEM AND METHODS | ||
Patent #
US 20080281840A1
Filed 05/08/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
DEVICE AND SYSTEM FOR MONITORING CONTENTS OF PERSPIRATION | ||
Patent #
US 20080306362A1
Filed 06/05/2007
|
Current Assignee
Owen Davis
|
Original Assignee
Owen Davis
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20070038235A1
Filed 09/29/2006
|
Current Assignee
Pelikan Technologies Inc.
|
Original Assignee
Pelikan Technologies Inc.
|
Patches, systems, and methods for non-invasive glucose measurement | ||
Patent #
US 20070027383A1
Filed 06/12/2006
|
Current Assignee
VIVOMEDICAL INC.
|
Original Assignee
VIVOMEDICAL INC.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20070043305A1
Filed 10/19/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
SYSTEM FOR MONITORING OF PATIENTS | ||
Patent #
US 20070027382A1
Filed 06/06/2006
|
Current Assignee
VIVOMEDICAL INC.
|
Original Assignee
Robert Blair, Russell Potts, Herbert Berman, James Moyer
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20070055174A1
Filed 09/29/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for body fluid sampling and analyte sensing | ||
Patent #
US 20070100255A1
Filed 05/28/2004
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20070142747A1
Filed 10/11/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20070173743A1
Filed 02/13/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Don Alden, Dirk Boecker, Dominique Freeman
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20070167875A1
Filed 02/13/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Don Alden, Dirk Boecker, Dominique Freeman
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20070167874A1
Filed 02/08/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Don Alden, Dirk Boecker, Dominique Freeman
|
Patches, systems, and methods for non-invasive glucose measurement | ||
Patent #
US 20070179371A1
Filed 09/27/2006
|
Current Assignee
VIVOMEDICAL INC.
|
Original Assignee
VIVOMEDICAL INC.
|
Method and apparatus for a multi-use body fluid sampling device with analyte sensing | ||
Patent #
US 20070219574A1
Filed 03/26/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20070213756A1
Filed 04/23/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
METHOD AND APPARATUS FOR LANCET LAUNCHING DEVICE INTEGRATED ONTO A BLOOD-SAMPLING CARTRIDGE | ||
Patent #
US 20070239190A1
Filed 06/15/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Vaginal speculum assembly having portable illuminator | ||
Patent #
US 20070230164A1
Filed 03/30/2007
|
Current Assignee
Welch Allyn Incorporated
|
Original Assignee
Welch Allyn Incorporated
|
Method and apparatus for body fluid sampling with improved sensing | ||
Patent #
US 7,297,151 B2
Filed 05/02/2003
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
ELIKAN TECHNOLOGIES INC.
|
Device and method for variable speed lancet | ||
Patent #
US 20070260271A1
Filed 03/16/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for providing EMC Class-B compliant RF transmitter for data monitoring an detection systems | ||
Patent #
US 20060166629A1
Filed 01/24/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Therasense Incorporated
|
Tissue penetration device | ||
Patent #
US 20060195131A1
Filed 12/22/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Tissue penetration device | ||
Patent #
US 20060178687A1
Filed 12/22/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for loading penetrating members | ||
Patent #
US 20060195128A1
Filed 12/31/2003
|
Current Assignee
Pelikan Technologies Inc.
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for body fluid sampling and analyte sensing | ||
Patent #
US 20060241666A1
Filed 06/14/2004
|
Current Assignee
Pelikan Technologies Inc.
|
Original Assignee
Pelikan Technologies Inc.
|
Tissue penetration device | ||
Patent #
US 20060241667A1
Filed 03/24/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and apparatus for providing leak detection in data monitoring and management systems | ||
Patent #
US 20060247508A1
Filed 04/29/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Therasense Incorporated
|
Method and apparatus for improving success rate of blood yield from a fingerstick | ||
Patent #
US 20050101980A1
Filed 06/12/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Blood sampling apparatus and method | ||
Patent #
US 20050101979A1
Filed 06/12/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Variable volume, shape memory actuated insulin dispensing pump | ||
Patent #
US 20050238503A1
Filed 04/13/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Cassette of lancet cartridges for sampling blood | ||
Patent #
US 20040009100A1
Filed 10/28/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Agilent Technologies Incorporated
|
Method and system of monitoring a patient | ||
Patent #
US 20040097796A1
Filed 08/01/2003
|
Current Assignee
VIVOMEDICAL INC.
|
Original Assignee
MEDOPTIX
|
Method and apparatus for body fluid sampling with improved sensing | ||
Patent #
US 20040092995A1
Filed 05/02/2003
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 20040186365A1
Filed 12/26/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Therasense Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20030199895A1
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20030199902A1
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing | ||
Patent #
US 20030199894A1
Filed 12/18/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20030199789A1
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20030199791A1
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20030199910A1
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20030199790A1
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20030199897A1
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 20030199896A1
Filed 12/31/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge | ||
Patent #
US 8,123,700 B2
Filed 06/26/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for providing rolling data in communication systems | ||
Patent #
US 8,123,686 B2
Filed 03/01/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Access disconnect detection using glucose | ||
Patent #
US 8,083,677 B2
Filed 09/24/2007
|
Current Assignee
Baxter International Inc., Baxter Healthcare SA
|
Original Assignee
Baxter International Inc., Baxter Healthcare SA
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 8,089,363 B2
Filed 02/07/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Methods and apparatus for lancet actuation | ||
Patent #
US 8,079,960 B2
Filed 10/10/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and device for early signal attenuation detection using blood glucose measurements | ||
Patent #
US 8,103,456 B2
Filed 01/29/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing rechargeable power in data monitoring and management systems | ||
Patent #
US 8,112,138 B2
Filed 09/26/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing leak detection in data monitoring and management systems | ||
Patent #
US 8,112,240 B2
Filed 04/29/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 8,149,117 B2
Filed 08/29/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Vaginal speculum assembly having portable illuminator | ||
Patent #
US 8,142,352 B2
Filed 03/30/2007
|
Current Assignee
Welch Allyn Incorporated
|
Original Assignee
Welch Allyn Incorporated
|
Vaginal speculum | ||
Patent #
US 8,157,728 B2
Filed 04/03/2006
|
Current Assignee
Welch Allyn Incorporated
|
Original Assignee
Welch Allyn Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,162,829 B2
Filed 03/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Tissue penetration device | ||
Patent #
US 8,162,853 B2
Filed 12/22/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,175,673 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
METHOD AND DEVICE FOR DETECTION OF BIOAVAILABLE DRUG CONCENTRATION IN A FLUID SAMPLE | ||
Patent #
US 20120116195A1
Filed 10/15/2009
|
Current Assignee
US Department of The Army
|
Original Assignee
United States Of America As Represented By The Secretary Of The Army, University of Memphis Research Foundation, University of Tennessee Research Foundation
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,177,716 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 8,187,183 B2
Filed 10/11/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 8,197,421 B2
Filed 07/16/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 8,197,423 B2
Filed 12/14/2010
|
Current Assignee
Pelikan Technologies Inc.
|
Original Assignee
Pelikan Technologies Inc.
|
Tissue penetration device | ||
Patent #
US 8,206,317 B2
Filed 12/22/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Tissue penetration device | ||
Patent #
US 8,206,319 B2
Filed 08/26/2010
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Tissue penetration device | ||
Patent #
US 8,211,037 B2
Filed 12/22/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Tissue penetration device | ||
Patent #
US 8,216,154 B2
Filed 12/23/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and apparatus for penetrating tissue | ||
Patent #
US 8,221,334 B2
Filed 12/22/2010
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,224,413 B2
Filed 10/10/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,558 B2
Filed 09/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,557 B2
Filed 12/28/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,555 B2
Filed 03/18/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring devices and methods therefor | ||
Patent #
US 8,226,891 B2
Filed 03/31/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,231,532 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Blood glucose tracking apparatus and methods | ||
Patent #
US 8,236,242 B2
Filed 02/12/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,235,896 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for body fluid sampling and analyte sensing | ||
Patent #
US 8,251,921 B2
Filed 06/10/2010
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,255,031 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,260,392 B2
Filed 06/09/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,265,726 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for body fluid sampling with hybrid actuation | ||
Patent #
US 8,267,870 B2
Filed 05/30/2003
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Blood glucose tracking apparatus and methods | ||
Patent #
US 8,268,243 B2
Filed 12/28/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,273,022 B2
Filed 02/13/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,275,439 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for an improved sample capture device | ||
Patent #
US 8,282,576 B2
Filed 09/29/2004
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge | ||
Patent #
US 8,282,577 B2
Filed 06/15/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
BIOGENIC SUBSTANCE MEASURING METHOD | ||
Patent #
US 20120258543A1
Filed 04/10/2012
|
Current Assignee
Sysmex Corporation
|
Original Assignee
Sysmex Corporation
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,287,454 B2
Filed 09/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method of manufacturing a fluid sampling device with improved analyte detecting member configuration | ||
Patent #
US 8,296,918 B2
Filed 08/23/2010
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,306,598 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Tissue penetration device | ||
Patent #
US 8,333,710 B2
Filed 10/05/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Tissue penetration device | ||
Patent #
US 8,337,419 B2
Filed 10/04/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Tissue penetration device | ||
Patent #
US 8,337,420 B2
Filed 03/24/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Tissue penetration device | ||
Patent #
US 8,343,075 B2
Filed 12/23/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Fluid delivery device with autocalibration | ||
Patent #
US 8,343,093 B2
Filed 05/28/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing integrated medication infusion and analyte monitoring system | ||
Patent #
US 8,343,092 B2
Filed 11/24/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing a fault tolerant display unit in an electronic device | ||
Patent #
US 8,344,966 B2
Filed 01/31/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,346,336 B2
Filed 03/18/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,346,337 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
LIVING BODY COMPONENT ANALYZING METHOD AND LIVING BODY COMPONENT ANALYZING APPARATUS | ||
Patent #
US 20130006080A1
Filed 09/13/2012
|
Current Assignee
Sysmex Corporation
|
Original Assignee
Panasonic Corporation
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,353,829 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,357,091 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Tissue penetration device | ||
Patent #
US 8,360,991 B2
Filed 12/23/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte monitoring system and methods | ||
Patent #
US 8,362,904 B2
Filed 04/18/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,366,614 B2
Filed 03/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,372,005 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,380,273 B2
Filed 04/11/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 8,382,682 B2
Filed 02/06/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Tissue penetration device | ||
Patent #
US 8,382,683 B2
Filed 03/07/2012
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Medical diagnostic instrument having portable illuminator | ||
Patent #
US 8,388,523 B2
Filed 06/03/2009
|
Current Assignee
Welch Allyn Incorporated
|
Original Assignee
Welch Allyn Incorporated
|
Method and apparatus for multi-use body fluid sampling device with sterility barrier release | ||
Patent #
US 8,388,551 B2
Filed 05/27/2008
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,391,945 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Device and method for accurately measuring concentration of blood component | ||
Patent #
US 8,391,946 B2
Filed 05/07/2010
|
Current Assignee
Omron Healthcare Company Limited
|
Original Assignee
Omron Healthcare Company Limited
|
Method and apparatus for penetrating tissue | ||
Patent #
US 8,403,864 B2
Filed 05/01/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,409,131 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Methods and apparatus for lancet actuation | ||
Patent #
US 8,414,503 B2
Filed 03/16/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and apparatus for a multi-use body fluid sampling device with sterility barrier release | ||
Patent #
US 8,430,828 B2
Filed 01/26/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Vaginal speculum apparatus | ||
Patent #
US 8,435,175 B2
Filed 04/26/2012
|
Current Assignee
Welch Allyn Incorporated
|
Original Assignee
Welch Allyn Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 8,435,190 B2
Filed 01/19/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Apparatus and method for penetration with shaft having a sensor for sensing penetration depth | ||
Patent #
US 8,439,872 B2
Filed 04/26/2010
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte monitoring system and methods | ||
Patent #
US 8,456,301 B2
Filed 05/08/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 8,461,985 B2
Filed 05/08/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,465,425 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Closed loop blood glucose control algorithm analysis | ||
Patent #
US 8,467,972 B2
Filed 04/28/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 8,471,714 B2
Filed 12/30/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for early signal attenuation detection using blood glucose measurements | ||
Patent #
US 8,473,220 B2
Filed 01/23/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,473,021 B2
Filed 07/31/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,480,580 B2
Filed 04/19/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing peak detection circuitry for data communication systems | ||
Patent #
US 8,512,246 B2
Filed 03/15/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Glucose measuring device for use in personal area network | ||
Patent #
US 8,512,239 B2
Filed 04/20/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Computerized determination of insulin pump therapy parameters using real time and retrospective data processing | ||
Patent #
US 8,560,082 B2
Filed 01/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Low-pressure packaging for fluid devices | ||
Patent #
US 8,561,795 B2
Filed 11/15/2012
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 8,579,831 B2
Filed 10/06/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Infusion devices and methods | ||
Patent #
US 8,579,853 B2
Filed 10/31/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing basal profile modification in analyte monitoring and management systems | ||
Patent #
US 8,585,591 B2
Filed 07/10/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 8,593,287 B2
Filed 07/20/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for powering an electronic device | ||
Patent #
US 8,593,109 B2
Filed 11/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,597,189 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring devices and methods therefor | ||
Patent #
US 8,597,575 B2
Filed 07/23/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,612,159 B2
Filed 02/16/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,617,071 B2
Filed 06/21/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 8,622,903 B2
Filed 05/25/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Tissue penetration device | ||
Patent #
US 8,622,930 B2
Filed 07/18/2011
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,622,906 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 8,202,231 B2
Filed 04/23/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and apparatus for providing data communication in data monitoring and management systems | ||
Patent #
US 8,638,220 B2
Filed 05/23/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,641,619 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Sampling module device and method | ||
Patent #
US 8,641,643 B2
Filed 04/27/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Glucose measuring device for use in personal area network | ||
Patent #
US 8,647,269 B2
Filed 04/20/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,649,841 B2
Filed 04/03/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,652,043 B2
Filed 07/20/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 8,653,977 B2
Filed 06/21/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,660,627 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for determining elapsed sensor life | ||
Patent #
US 8,665,091 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,666,469 B2
Filed 11/16/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,668,645 B2
Filed 01/03/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for improving fluidic flow and sample capture | ||
Patent #
US 8,668,656 B2
Filed 12/31/2004
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,670,815 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,672,844 B2
Filed 02/27/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for early signal attenuation detection using blood glucose measurements | ||
Patent #
US 8,676,513 B2
Filed 06/21/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Tissue penetration device | ||
Patent #
US 8,679,033 B2
Filed 06/16/2011
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Vertical carbon nanotube device in nanoporous templates | ||
Patent #
US 8,679,630 B2
Filed 05/11/2007
|
Current Assignee
Purdue Research Foundation
|
Original Assignee
Purdue Research Foundation
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,688,188 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 8,690,796 B2
Filed 09/29/2006
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and apparatus for analyte measurement test time | ||
Patent #
US 8,652,831 B2
Filed 03/26/2008
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte measurement device with a single shot actuator | ||
Patent #
US 8,702,624 B2
Filed 01/29/2010
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Intelligent drug delivery appliance | ||
Patent #
US 8,715,177 B2
Filed 02/20/2007
|
Current Assignee
IP Holdings Incorporated
|
Original Assignee
IP Holdings Incorporated
|
Electrochemical biosensor | ||
Patent #
US 8,715,981 B2
Filed 01/27/2010
|
Current Assignee
Purdue Research Foundation
|
Original Assignee
Purdue Research Foundation
|
Electric lancet actuator | ||
Patent #
US 8,721,671 B2
Filed 07/06/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and system for providing contextual based medication dosage determination | ||
Patent #
US 8,732,188 B2
Filed 02/15/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,734,348 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Electronic skin patch for real time monitoring of cardiac activity and personal health management | ||
Patent #
US 8,734,339 B2
Filed 11/30/2004
|
Current Assignee
IP Holdings Incorporated
|
Original Assignee
IP Holdings Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,734,346 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,738,109 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,744,545 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Blood glucose tracking apparatus | ||
Patent #
US 8,765,059 B2
Filed 10/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data communication in continuous glucose monitoring and management system | ||
Patent #
US 8,771,183 B2
Filed 02/16/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,774,887 B2
Filed 03/24/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Real time management of data relating to physiological control of glucose levels | ||
Patent #
US 8,798,934 B2
Filed 07/23/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and interfaces for blood sampling | ||
Patent #
US 8,808,202 B2
Filed 11/09/2011
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Vaginal speculum apparatus | ||
Patent #
US 8,821,395 B2
Filed 04/03/2006
|
Current Assignee
Welch Allyn Incorporated
|
Original Assignee
Welch Allyn Incorporated
|
Delivering and/or receiving fluids | ||
Patent #
US 8,821,412 B2
Filed 11/19/2012
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Delivering and/or receiving fluids | ||
Patent #
US 8,827,971 B2
Filed 04/26/2012
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Printable hydrogels for biosensors | ||
Patent #
US 8,828,203 B2
Filed 05/20/2005
|
Current Assignee
Sanofi-Aventis SA
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,840,553 B2
Filed 02/26/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Tissue penetration device | ||
Patent #
US 8,845,550 B2
Filed 12/03/2012
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Field effect transistor fabrication from carbon nanotubes | ||
Patent #
US 8,872,154 B2
Filed 04/06/2010
|
Current Assignee
Purdue Research Foundation
|
Original Assignee
Purdue Research Foundation
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,880,137 B2
Filed 04/18/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 8,905,945 B2
Filed 03/29/2012
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Don Alden, Dirk Boecker, Dominique M. Freeman
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,915,850 B2
Filed 03/28/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,920,319 B2
Filed 12/28/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Multi-function analyte test device and methods therefor | ||
Patent #
US 8,930,203 B2
Filed 02/03/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for powering an electronic device | ||
Patent #
US 8,933,664 B2
Filed 11/25/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for an improved sample capture device | ||
Patent #
US 8,945,910 B2
Filed 06/19/2012
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Tissue penetration device | ||
Patent #
US 8,965,476 B2
Filed 04/18/2011
|
Current Assignee
Pelikan Technologies Inc.
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,974,386 B2
Filed 11/01/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods for managing power and noise | ||
Patent #
US 8,993,331 B2
Filed 08/31/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 9,000,929 B2
Filed 11/22/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,011,332 B2
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,011,331 B2
Filed 12/29/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,014,773 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Sampling devices and methods involving relatively little pain | ||
Patent #
US 9,033,898 B2
Filed 06/22/2011
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Method and apparatus using optical techniques to measure analyte levels | ||
Patent #
US 9,034,639 B2
Filed 06/26/2012
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte monitoring system and methods | ||
Patent #
US 9,035,767 B2
Filed 05/30/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring devices and methods therefor | ||
Patent #
US 9,039,975 B2
Filed 12/02/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,042,953 B2
Filed 03/02/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Monitoring or feedback systems and methods | ||
Patent #
US 9,041,541 B2
Filed 01/28/2011
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Infusion devices and methods | ||
Patent #
US 9,064,107 B2
Filed 09/30/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,695 B2
Filed 04/12/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,697 B2
Filed 10/27/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for early signal attenuation detection using blood glucose measurements | ||
Patent #
US 9,066,709 B2
Filed 03/17/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,694 B2
Filed 04/03/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,072,477 B2
Filed 06/21/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 9,072,842 B2
Filed 07/31/2013
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,078,607 B2
Filed 06/17/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte measurement device with a single shot actuator | ||
Patent #
US 9,089,294 B2
Filed 01/16/2014
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and apparatus for penetrating tissue | ||
Patent #
US 9,089,678 B2
Filed 05/21/2012
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and apparatus for providing rolling data in communication systems | ||
Patent #
US 9,095,290 B2
Filed 02/27/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Devices and techniques associated with diagnostics, therapies, and other applications, including skin-associated applications | ||
Patent #
US 9,113,836 B2
Filed 03/02/2010
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Plasma or serum production and removal of fluids under reduced pressure | ||
Patent #
US 9,119,578 B2
Filed 04/26/2012
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Low pain penetrating member | ||
Patent #
US 9,144,401 B2
Filed 12/12/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte monitoring system and methods | ||
Patent #
US 9,177,456 B2
Filed 06/10/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for penetrating tissue | ||
Patent #
US 9,186,468 B2
Filed 01/14/2014
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Body fluid sampling module with a continuous compression tissue interface surface | ||
Patent #
US 9,226,699 B2
Filed 11/09/2010
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Error detection in critical repeating data in a wireless sensor system | ||
Patent #
US 9,226,701 B2
Filed 04/28/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Tissue penetration device | ||
Patent #
US 9,248,267 B2
Filed 07/18/2013
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Printable hydrogel for biosensors | ||
Patent #
US 9,261,476 B2
Filed 04/01/2014
|
Current Assignee
Sanofi-Aventis SA
|
Original Assignee
Sanofi S.A.
|
Systems and methods for collecting fluid from a subject | ||
Patent #
US 9,295,417 B2
Filed 04/26/2012
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Tissue penetration device | ||
Patent #
US 9,314,194 B2
Filed 01/11/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Analyte monitoring system and methods | ||
Patent #
US 9,314,198 B2
Filed 04/03/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte signal processing device and methods | ||
Patent #
US 9,314,195 B2
Filed 08/31/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing notification function in analyte monitoring systems | ||
Patent #
US 9,320,461 B2
Filed 09/29/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing basal profile modification in analyte monitoring and management systems | ||
Patent #
US 9,323,898 B2
Filed 11/15/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,326,716 B2
Filed 12/05/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,326,714 B2
Filed 06/29/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Vaginal speculum apparatus | ||
Patent #
US 9,332,898 B2
Filed 01/31/2014
|
Current Assignee
Welch Allyn Incorporated
|
Original Assignee
Welch Allyn Incorporated
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 9,332,944 B2
Filed 01/31/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for a variable user interface | ||
Patent #
US 9,351,680 B2
Filed 10/14/2004
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Noninvasive Blood Glucose Measurement Method and Apparatus | ||
Patent #
US 20160174853A1
Filed 12/21/2015
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Cam drive for managing disposable penetrating member actions with a single motor and motor and control system | ||
Patent #
US 9,375,169 B2
Filed 01/29/2010
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and system for powering an electronic device | ||
Patent #
US 9,380,971 B2
Filed 12/05/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for analyte detecting device | ||
Patent #
US 9,386,944 B2
Filed 04/10/2009
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Tissue penetration device | ||
Patent #
US 9,427,532 B2
Filed 09/29/2014
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Blood glucose tracking apparatus and methods | ||
Patent #
US 9,477,811 B2
Filed 06/23/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Contact metallization of carbon nanotubes | ||
Patent #
US 9,487,877 B2
Filed 02/01/2008
|
Current Assignee
Purdue Research Foundation
|
Original Assignee
Purdue Research Foundation
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,498,159 B2
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method for penetrating tissue | ||
Patent #
US 9,498,160 B2
Filed 09/29/2014
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
SYSTEMS, DEVICES, MEDIA, AND METHODS FOR MEASURING ANALYTES IN BIOLOGICAL FLUIDS | ||
Patent #
US 20160363603A1
Filed 07/01/2016
|
Current Assignee
Sentec Pte Ltd
|
Original Assignee
Robert Allen Ray, Roobik Azarnia
|
Vaginal speculum with illuminator | ||
Patent #
US 9,532,706 B2
Filed 08/06/2015
|
Current Assignee
Welch Allyn Incorporated
|
Original Assignee
Welch Allyn Incorporated
|
Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means | ||
Patent #
US 9,560,993 B2
Filed 12/20/2013
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and apparatus for improving fluidic flow and sample capture | ||
Patent #
US 9,561,000 B2
Filed 12/10/2013
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and device for determining elapsed sensor life | ||
Patent #
US 9,574,914 B2
Filed 03/03/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,610,034 B2
Filed 11/09/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring devices and methods therefor | ||
Patent #
US 9,625,413 B2
Filed 05/19/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Sensor for determining concentration of gas | ||
Patent #
US 9,636,058 B2
Filed 02/19/2013
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Analyte monitoring system and methods | ||
Patent #
US 9,649,057 B2
Filed 05/11/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing basal profile modification in analyte monitoring and management systems | ||
Patent #
US 9,669,162 B2
Filed 03/16/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Sampling module device and method | ||
Patent #
US 9,694,144 B2
Filed 12/03/2013
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and device for detection of bioavailable drug concentration in a fluid sample | ||
Patent #
US 9,700,246 B2
Filed 10/15/2009
|
Current Assignee
US Department of The Army
|
Original Assignee
University of Memphis Research Foundation, University of Tennessee Research Foundation
|
Method and apparatus for penetrating tissue | ||
Patent #
US 9,724,021 B2
Filed 12/08/2014
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Glucose measuring device for use in personal area network | ||
Patent #
US 9,730,584 B2
Filed 02/10/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Delivering and/or receiving fluids | ||
Patent #
US 9,730,624 B2
Filed 07/11/2014
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Method and system for powering an electronic device | ||
Patent #
US 9,743,863 B2
Filed 06/01/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
SWEAT SENSING WITH ANALYTICAL ASSURANCE | ||
Patent #
US 20170245788A1
Filed 09/22/2015
|
Current Assignee
University of Cincinnati
|
Original Assignee
University of Cincinnati
|
Methods and Apparatuses Relating to Dermal Biochemical Sensors | ||
Patent #
US 20170248524A1
Filed 02/16/2017
|
Current Assignee
DermaTec LLC
|
Original Assignee
DermaTec LLC
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 9,750,440 B2
Filed 04/12/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing notification function in analyte monitoring systems | ||
Patent #
US 9,750,439 B2
Filed 04/08/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Devices and techniques associated with diagnostics, therapies, and other applications, including skin-associated applications | ||
Patent #
US 9,775,551 B2
Filed 07/13/2015
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Method and apparatus for penetrating tissue | ||
Patent #
US 9,795,334 B2
Filed 07/09/2007
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Methods and apparatus for lancet actuation | ||
Patent #
US 9,795,747 B2
Filed 06/02/2011
|
Current Assignee
Pelikan Technologies Inc.
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and apparatus for providing rolling data in communication systems | ||
Patent #
US 9,801,545 B2
Filed 07/30/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Methods and apparatus for lancet actuation | ||
Patent #
US 9,802,007 B2
Filed 11/18/2013
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and apparatus for a fluid sampling device | ||
Patent #
US 9,820,684 B2
Filed 06/03/2005
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Body fluid sampling device with capacitive sensor | ||
Patent #
US 9,839,386 B2
Filed 06/12/2014
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Vaginal speculum apparatus | ||
Patent #
US 9,883,792 B2
Filed 05/09/2016
|
Current Assignee
Welch Allyn Incorporated
|
Original Assignee
Welch Allyn Incorporated
|
Vaginal speculum apparatus | ||
Patent #
US 9,949,633 B2
Filed 03/08/2017
|
Current Assignee
Welch Allyn Incorporated
|
Original Assignee
Welch Allyn Incorporated
|
Method and device for determining elapsed sensor life | ||
Patent #
US 9,949,678 B2
Filed 02/16/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 9,962,091 B2
Filed 01/06/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte signal processing device and methods | ||
Patent #
US 9,968,302 B2
Filed 04/04/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems | ||
Patent #
US 9,968,306 B2
Filed 10/21/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods | ||
Patent #
US 9,980,669 B2
Filed 11/07/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Infusion devices and methods | ||
Patent #
US 10,007,759 B2
Filed 06/03/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Low pain penetrating member | ||
Patent #
US 10,034,628 B2
Filed 12/20/2012
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Sanofi-Aventis Deutschland GmbH
|
Method and system for providing data communication in continuous glucose monitoring and management system | ||
Patent #
US 10,039,881 B2
Filed 07/07/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
SYSTEMS AND METHODS FOR OPTOCHEMICAL IMAGING OF A CHEMICALLY ACTIVE SURFACE | ||
Patent #
US 20180292325A1
Filed 06/23/2016
|
Current Assignee
Case Western Reserve University
|
Original Assignee
Case Western Reserve University
|
Sweat sensing with chronological assurance | ||
Patent #
US 10,136,831 B2
Filed 10/17/2014
|
Current Assignee
University of Cincinnati
|
Original Assignee
University of Cincinnati
|
Analyte monitoring system and methods | ||
Patent #
US 10,178,954 B2
Filed 05/09/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Devices for integrated, repeated, prolonged, and/or reliable sweat stimulation and biosensing | ||
Patent #
US 10,182,795 B2
Filed 10/17/2014
|
Current Assignee
University of Cincinnati
|
Original Assignee
University of Cincinnati
|
Plasma or serum production and removal of fluids under reduced pressure | ||
Patent #
US 10,188,335 B2
Filed 07/22/2015
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,201,301 B2
Filed 04/18/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 10,206,611 B2
Filed 08/23/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,231,654 B2
Filed 06/23/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Passive device for vapor intrusion sampling | ||
Patent #
US 10,324,007 B2
Filed 10/04/2017
|
Current Assignee
CH2M Hill Incorporated
|
Original Assignee
CH2M Hill Incorporated
|
Method and apparatus for providing notification function in analyte monitoring systems | ||
Patent #
US 10,349,874 B2
Filed 08/31/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Devices for integrated, repeated, prolonged, and/or reliable sweat stimulation and biosensing | ||
Patent #
US 10,368,847 B2
Filed 03/29/2018
|
Current Assignee
University of Cincinnati
|
Original Assignee
University of Cincinnati
|
Sensor module and wearable body composition analyzer including same | ||
Patent #
US 10,398,529 B2
Filed 01/20/2016
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Analyte monitoring system and methods for managing power and noise | ||
Patent #
US 10,429,250 B2
Filed 03/26/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Enhanced analyte access through epithelial tissue | ||
Patent #
US 10,471,249 B2
Filed 06/08/2017
|
Current Assignee
University of Cincinnati
|
Original Assignee
University of Cincinnati
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,478,108 B2
Filed 02/05/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Devices for integrated indirect sweat stimulation and sensing | ||
Patent #
US 10,485,460 B2
Filed 02/12/2016
|
Current Assignee
University of Cincinnati
|
Original Assignee
University of Cincinnati
|
Glucose multi-vital-sign system in an electronic medical records system | ||
Patent #
US 10,485,431 B1
Filed 05/21/2018
|
Current Assignee
ARC Devices Ltd.
|
Original Assignee
Arc Devices Ni Limited
|
Multi-vital-sign smartphone system in an electronic medical records system | ||
Patent #
US 10,492,684 B2
Filed 02/21/2017
|
Current Assignee
ARC Devices Ltd.
|
Original Assignee
Arc Devices Ni Limited
|
Multi-vital sign detector in an electronic medical records system | ||
Patent #
US 10,506,926 B2
Filed 08/10/2017
|
Current Assignee
ARC Devices Ltd.
|
Original Assignee
Arc Devices Ni Limited
|
Delivering and/or receiving material with respect to a subject surface | ||
Patent #
US 10,543,310 B2
Filed 11/11/2016
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Multi-vital-sign smartphone system in an electronic medical records system | ||
Patent #
US 10,602,987 B2
Filed 09/10/2017
|
Current Assignee
ARC Devices Ltd.
|
Original Assignee
Arc Devices Ni Limited
|
Devices with reduced sweat volumes between sensors and sweat glands | ||
Patent #
US 10,639,015 B2
Filed 05/28/2015
|
Current Assignee
University of Cincinnati
|
Original Assignee
University of Cincinnati
|
Analyte monitoring system and methods | ||
Patent #
US 10,653,317 B2
Filed 01/10/2019
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Multi-vital sign detector of SpO2 blood oxygenation and heart rate from a photoplethysmogram sensor and respiration rate, heart rate variability and blood pressure from a micro dynamic light scattering sensor in an electronic medical records system | ||
Patent #
US 10,667,688 B2
Filed 06/30/2018
|
Current Assignee
ARC Devices Ltd.
|
Original Assignee
Arc Devices Ni Limited
|
Methods and apparatuses relating to dermal biochemical sensors | ||
Patent #
US 10,746,663 B2
Filed 02/16/2017
|
Current Assignee
DermaTec LLC
|
Original Assignee
DermaTec LLC
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 10,750,952 B2
Filed 03/26/2018
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Delivering and/or receiving fluids | ||
Patent #
US 10,799,166 B2
Filed 06/27/2017
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Systems and methods for collecting fluid from a subject | ||
Patent #
US 10,835,163 B2
Filed 01/05/2016
|
Current Assignee
Seventh Sense Biosystems Inc.
|
Original Assignee
Seventh Sense Biosystems Inc.
|
Noninvasive blood glucose measurement method and apparatus | ||
Patent #
US 10,835,130 B2
Filed 12/21/2015
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Real time management of data relating to physiological control of glucose levels | ||
Patent #
US 10,872,102 B2
Filed 08/01/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Sweat sensing with chronological assurance | ||
Patent #
US 10,888,244 B2
Filed 11/16/2018
|
Current Assignee
University of Cincinnati
|
Original Assignee
University of Cincinnati
|
Sensor inserter assembly | ||
Patent #
US 20080004512A1
Filed 09/06/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20080071156A1
Filed 10/26/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Sensor inserter methods of use | ||
Patent #
US 20080064941A1
Filed 09/06/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Microfluidic systems including three-dimensionally arrayed channel networks | ||
Patent #
US 20080124663A1
Filed 11/08/2007
|
Current Assignee
President and Fellows of Harvard College
|
Original Assignee
President and Fellows of Harvard College
|
Sensor inserter assembly | ||
Patent #
US 7,381,184 B2
Filed 11/05/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Inserter and methods of use | ||
Patent #
US 20070027381A1
Filed 07/29/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Therasense Incorporated
|
Patches, systems, and methods for non-invasive glucose measurement | ||
Patent #
US 20070027383A1
Filed 06/12/2006
|
Current Assignee
VIVOMEDICAL INC.
|
Original Assignee
VIVOMEDICAL INC.
|
Integrated introducer and transmitter assembly and methods of use | ||
Patent #
US 20070078322A1
Filed 09/30/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor retention mechanism and methods of use | ||
Patent #
US 20070078321A1
Filed 09/30/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20070191700A1
Filed 04/12/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Integrated patch and assay device with visual detection means | ||
Patent #
US 20070179373A1
Filed 12/22/2006
|
Current Assignee
Promdx Technology Incorporated
|
Original Assignee
Promdx Technology Incorporated
|
Patches, systems, and methods for non-invasive glucose measurement | ||
Patent #
US 20070179371A1
Filed 09/27/2006
|
Current Assignee
VIVOMEDICAL INC.
|
Original Assignee
VIVOMEDICAL INC.
|
Methods and systems for inserting a transcutaneous analyte sensor | ||
Patent #
US 7,310,544 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20060036145A1
Filed 06/21/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20060036139A1
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Microfluidic devices comprising biochannels | ||
Patent #
US 20050009101A1
Filed 07/07/2004
|
Current Assignee
Motorola Inc.
|
Original Assignee
Motorola Inc.
|
Optical detector system | ||
Patent #
US 20050023445A1
Filed 08/04/2003
|
Current Assignee
National Technology Engineering Solutions Of Sandia LLC
|
Original Assignee
Sandia National Laboratories
|
Systems and methods for monitoring health and delivering drugs transdermally | ||
Patent #
US 20050182307A1
Filed 03/28/2005
|
Current Assignee
Leidos Inc.
|
Original Assignee
Georgetown University, Science Applications International Corporation, Dermal Systems International Inc.
|
Composite thin-film glucose sensor | ||
Patent #
US 20050197554A1
Filed 02/28/2005
|
Current Assignee
Michael Polcha
|
Original Assignee
Michael Polcha
|
Sensor for measuring a bioanalyte such as lactate | ||
Patent #
US 20050238537A1
Filed 12/01/2004
|
Current Assignee
Pepex Biomedical LLC
|
Original Assignee
Pepex Biomedical LLC
|
Chemical sensor and use thereof | ||
Patent #
US 6,706,160 B2
Filed 03/12/2001
|
Current Assignee
CHEMEL AB
|
Original Assignee
CHEMEL AB
|
Method and apparatus for body fluid sampling and analyte sensing | ||
Patent #
US 20040098009A1
Filed 07/03/2003
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Method and apparatus for a multi-use body fluid sampling device | ||
Patent #
US 20040102803A1
Filed 12/18/2002
|
Current Assignee
Sanofi-Aventis Deutschland GmbH
|
Original Assignee
Pelikan Technologies Inc.
|
Detection of biological molecules using boronate-based chemical amplification and optical sensors | ||
Patent #
US 6,750,311 B1
Filed 12/14/1999
|
Current Assignee
Lawrence Livermore National Security LLC
|
Original Assignee
Minimed Inc., Regents of the University of California
|
Method and apparatus for enhancement of transdermal transport | ||
Patent #
US 20040171980A1
Filed 03/05/2004
|
Current Assignee
Sontra Medical Inc.
|
Original Assignee
Sontra Medical Inc.
|
Hybrid microporous membrane | ||
Patent #
US 20040214492A1
Filed 04/21/2004
|
Current Assignee
Joel D. Martz
|
Original Assignee
Joel D. Martz
|
Hand-held medical apparatus | ||
Patent #
US 20040236244A1
Filed 04/15/2004
|
Current Assignee
Invoy Holdings Inc.
|
Original Assignee
Kemeta LLC
|
Apparatus and method for measuring biologic parameters | ||
Patent #
US 20040242976A1
Filed 02/26/2004
|
Current Assignee
Brain Tunnelgenix
|
Original Assignee
Geelux Holdings Ltd.
|
Noninvasive transdermal systems for detecting an analyte obtained from or underneath skin and methods | ||
Patent #
US 6,503,198 B1
Filed 09/11/1997
|
Current Assignee
TECHNICAL CHEMICALS PRODUCTS INC.
|
Original Assignee
TECHNICAL CHEMICALS PRODUCTS INC.
|
Matrix-type device for the transdermal delivery of testosterone applied to the non-scrotal skin | ||
Patent #
US 20030215487A1
Filed 05/17/2002
|
Current Assignee
Il-Yang Pharm. Co. Ltd.
|
Original Assignee
IL YANG PHARM CO. LTD. REPUBLIC OF KOREA
|
Collection assemblies, laminates, and autosensor assemblies for use in transdermal sampling systems | ||
Patent #
US 20020004640A1
Filed 03/16/2001
|
Current Assignee
LifeScan IP Holdings LLC
|
Original Assignee
Cygnus Inc.
|
Clinically intelligent diagnostic devices and mehtods | ||
Patent #
US 20020095073A1
Filed 11/27/2001
|
Current Assignee
Intelligent Medical Devices Inc.
|
Original Assignee
Intelligent Medical Devices Inc.
|
Medical article having fluid control film | ||
Patent #
US 20020128578A1
Filed 01/14/2002
|
Current Assignee
3M Innovative Properties Company
|
Original Assignee
3M Innovative Properties Company
|
Sensor for measuring a bioanalyte such as lactate | ||
Patent #
US 6,464,849 B1
Filed 10/07/1999
|
Current Assignee
Pepex Biomedical Inc.
|
Original Assignee
Pepex Biomedical LLC
|
Apparatus for monitoring a level of a chemical species in a body fluid | ||
Patent #
US 6,479,015 B1
Filed 03/03/1998
|
Current Assignee
Pepex Biomedical Inc.
|
Original Assignee
Pepex Biomedical LLC
|
Integrated tissue poration, fluid harvesting and analysis device, and method therefor | ||
Patent #
US 20020169394A1
Filed 02/21/2002
|
Current Assignee
Altea Therapeutics Corp.
|
Original Assignee
Altea Therapeutics Corp.
|
Fluid transport webs exhibiting surface energy gradients | ||
Patent #
US 6,180,052 B1
Filed 04/11/1997
|
Current Assignee
Procter Gamble Company
|
Original Assignee
Procter Gamble Company
|
Use of a chemical sensor | ||
Patent #
US 6,214,206 B1
Filed 06/19/1997
|
Current Assignee
CHEMEL AB
|
Original Assignee
CHEMEL AB
|
Signal processing for measurement of physiological analytes | ||
Patent #
US 20010016682A1
Filed 02/27/2001
|
Current Assignee
LifeScan IP Holdings LLC
|
Original Assignee
Cygnus Inc.
|
System and method for measuring a bioanalyte such as lactate | ||
Patent #
US 6,117,290 A
Filed 07/24/1998
|
Current Assignee
RUBICON INVESTMENTS INC.
|
Original Assignee
Pepex Biomedical LLC
|
System and method for measuring a bioanalyte such as lactate | ||
Patent #
US 6,128,519 A
Filed 12/16/1998
|
Current Assignee
Pepex Biomedical Inc.
|
Original Assignee
Pepex Biomedical LLC
|
Electrochemical sensor with dual purpose electrode | ||
Patent #
US 5,954,685 A
Filed 05/24/1996
|
Current Assignee
Animas Technologies LLC
|
Original Assignee
Cygnus Inc.
|
Electrodes and their use in analysis | ||
Patent #
US 5,849,174 A
Filed 06/11/1997
|
Current Assignee
Medisense Incorporated
|
Original Assignee
Medisense Incorporated
|
Method and apparatus for determination of chemical species in perspiration | ||
Patent #
US 5,638,815 A
Filed 05/31/1995
|
Current Assignee
Sudormed Incorporated
|
Original Assignee
Sudor Partners
|
Integrated system for biological fluid constituent analysis | ||
Patent #
US 5,443,080 A
Filed 12/22/1993
|
Current Assignee
AMERICARE DIAGNOSTICS INC.
|
Original Assignee
AMERICATE TRANSTECH INC.
|
Energy-assisted transdermal collection patch for accelerated analyte collection and method of use | ||
Patent #
US 5,465,713 A
Filed 07/20/1993
|
Current Assignee
Sudormed Incorporated
|
Original Assignee
Sudor Partners
|
Temporary wall covering | ||
Patent #
US 5,306,861 A
Filed 07/31/1992
|
Current Assignee
Philip I. Amos, Diane L. Lickar
|
Original Assignee
Philip I. Amos, Diane L. Lickar
|
Noninvasive blood glucose measuring device | ||
Patent #
US 5,140,985 A
Filed 10/21/1991
|
Current Assignee
Jon M. Schroeder, Joseph F. Long
|
Original Assignee
Jon M. Schroeder, Joseph F. Long
|
Method and apparatus for non-invasively monitoring plasma glucose levels | ||
Patent #
US 5,036,861 A
Filed 01/11/1990
|
Current Assignee
William R. Kennedy, Carter R. Anderson, Walter L. Sembrowich
|
Original Assignee
William R. Kennedy, Carter R. Anderson, Walter L. Sembrowich
|
Transdermal detection system | ||
Patent #
US 4,821,733 A
Filed 08/18/1987
|
Current Assignee
Dermal Systems International Inc.
|
Original Assignee
DERMAL SYSTEMS INTERNATIONAL
|
Fluid absorbent quantitative test device | ||
Patent #
US 4,444,193 A
Filed 01/11/1982
|
Current Assignee
ALZA Corporation
|
Original Assignee
Medtronic Incorporated
|
ENHANCING TISSUE PENETRATION OF PHYSIOLOGICALLY ACTIVE AGENTS WITH DMSO | ||
Patent #
US 3,551,554 A
Filed 08/16/1968
|
Current Assignee
Gay Lord Container Corporation
|
Original Assignee
Herschler Robert John
|
48 Claims
-
1. A skin patch for use with a glucose measurement device comprising:
-
an adhesive material;
a collection layer for collecting sweat;
a sweat-permeable membrane, whereby the sweat-permeable membrane is configured to act as a barrier to epidermal contaminants and glucose brought to the skin surface via diffusion;
a detector configured to detect nanogram quantities of glucose; and
an interface layer. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 38, 40, 41, 42, 43)
-
-
25. A glucose measurement device for use with a skin patch comprising:
-
a display;
a processor;
computer executable code for executing a calibration algorithm; and
an ultra-sensitive measurement mechanism for measuring glucose collected in a corresponding patch, whereby the measurement mechanism is configured to measure nanogram quantities of glucose. - View Dependent Claims (26, 27, 28, 29, 30, 31, 32, 33, 34, 35)
-
-
36. A method of measuring glucose on the skin comprising the steps of:
-
wiping the skin surface with a wipe containing at least one solvent for removing glucose;
placing a patch on a skin surface, wherein the patch comprises a sweat-permeable membrane, and a collection layer, whereby the sweat-permeable membrane is configured to act as a barrier to epidermal contaminants and glucose brought to the skin surface via diffusion; and
measuring glucose collected in the patch. - View Dependent Claims (37, 39)
-
- 44. A patch comprising a sweat collection reservoir configured to collect glucose that has come to the skin surface via sweat, and a glucose detector capable of detecting nanogram quantities of glucose, wherein the patch is configured to operate with a measurement device for measuring the glucose.
1 Specification
This application claims priority to U.S. Ser. No. 60/585,414 filed on Jul. 1, 2004, which is hereby incorporated by reference in its entirety.
The devices, methods, and kits described here are in the field of non-invasive glucose measurement, and more specifically, non-invasive measurement of nanogram quantities of glucose, which have come to the skin surface via sweat.
The American Diabetes Association reports that approximately 6% of the population in the United States, a group of 16 million people, has diabetes, and that this number is growing at a rate of 12-15% per annum. The Association further reports that diabetes is the seventh leading cause of death in the United States, contributing to nearly 200,000 deaths per year. Diabetes is a life-threatening disease with broad complications, which include blindness, kidney disease, nerve disease, heart disease, amputation and stroke. Diabetes is believed to be the leading cause of new cases of blindness in individuals aging between 20 and 74; approximately 12,000-24,000 people per year lose their sight because of diabetes. Diabetes is also the leading cause of end-stage renal disease, accounting for nearly 40% of new cases. Nearly 60-70% of people with diabetes have mild to severe forms of diabetic nerve damage which, in severe forms, can lead to lower limb amputations. People with diabetes are 2-4 times more likely to have heart disease and to suffer strokes.
Diabetes results from the inability of the body to produce or properly use insulin, a hormone needed to convert sugar, starches, and the like into energy. Although the cause of diabetes is not completely understood, genetics, environmental factors, and viral causes have been partially identified.
There are two major types of diabetes: Type 1 and Type 2. Type 1 diabetes (also known as juvenile diabetes) is caused by an autoimmune process destroying the beta cells that secrete insulin in the pancreas. Type 1 diabetes most often occurs in young adults and children. People with Type 1 diabetes must take daily insulin injections to stay alive.
Type 2 diabetes is a metabolic disorder resulting from the body'"'"'s inability to make enough, or properly to use, insulin. Type 2 diabetes is more common, accounting for 90-95% of diabetes. In the United States, Type 2 diabetes is nearing epidemic proportions, principally due to an increased number of older Americans and a greater prevalence of obesity and sedentary lifestyles.
Insulin, in simple terms, is the hormone that allows glucose to enter cells and feed them. In diabetics, glucose cannot enter the cells, so glucose builds up in the blood to toxic levels.
Diabetics having Type 1 diabetes are typically required to self-administer insulin using, e.g., a syringe or a pen with needle and cartridge. Continuous subcutaneous insulin infusion via external or implanted pumps is also available. Diabetics having Type 2 diabetes are typically treated with changes in diet and exercise, as well as with oral medications. Many Type 2 diabetics become insulin-dependent at later stages of the disease. Diabetics using insulin to help regulate their blood sugar levels are at an increased risk for medically-dangerous episodes of low blood sugar due to errors in insulin administration, or unanticipated changes in insulin absorption.
It is highly recommended by the medical profession that insulin-using patients practice self-monitoring of blood glucose (“SMBG”). Based upon the level of glucose in the blood, individuals may make insulin dosage adjustments before injection. Adjustments are necessary since blood glucose levels vary day to day for a variety of reasons, e.g., exercise, stress, rates of food absorption, types of food, hormonal changes (pregnancy, puberty, etc.) and the like. Despite the importance of SMBG, several studies have found that the proportion of individuals who self-monitor at least once a day significantly declines with age. This decrease is likely due simply to the fact that the typical, most widely used, method of SMBG involves obtaining blood from a capillary finger stick. Many patients consider obtaining blood to be significantly more painful than the self-administration of insulin.
Non- or minimally-invasive techniques are being investigated, some of which are beginning to focus on the measurement of glucose on the skin surface or in interstitial fluid. For example, U.S. Pat. No. 4,821,733 to Peck describes a process to detect an analyte that has come to the skin surface via diffusion. Specifically, Peck teaches a transdermal detection system for the detection of an analyte that migrates to the skin surface of a subject by diffusion in the absence of a liquid transport medium, such as sweat. As will be described in more detail below, because the process of passive diffusion of an analyte to the skin surface takes an unreasonably long period of time (e.g., a few hours to several days), Peck does not provide a practical non-invasive glucose monitoring solution.
Similarly, U.S. Pat. No. 6,503,198 to Aronowitz et al. (“Aronowitz”) describes a transdermal system for analyte extraction from interstitial fluid. Specifically, Aronowitz teaches patches containing wet and dry chemistry components. The wet component is used to form a gel layer for the extraction and liquid bridge transfer of the analyte from the biological fluid to the dry chemistry component. The dry chemistry component is used to quantitatively or qualitatively measure the analyte. One disadvantage of the system described in Aronowitz is the effect of a wet chemistry interface in providing a liquid phase environment on the skin in which different sources of glucose could be irreversibly mixed with one another. A liquid phase contact with the skin surface could make it impossible to distinguish between glucose on the skin surface originating from many day old epidermal debris, glucose on the skin surface originating from many hours old transdermal diffusion, and finally, glucose on the skin from the more timely output of the eccrine sweat gland.
Others have investigated glucose measurement in sweat; however, they have failed to demonstrate a correlation between blood glucose levels and sweat glucose levels, and have similarly failed to establish or demonstrate that only glucose coming from sweat is being measured. For example, U.S. Pat. No. 5,140,985 to Schroeder et al. (“Schroeder”) describes a non-invasive glucose monitoring unit, which uses a wick to absorb the sweat and electrochemistry to make glucose measurements. Schroeder relies on an article by T. C. Boysen, Shigeree Yanagaun, Fusaho Sato and Uingo Sato published in 1984 in the Journal of Applied Psychology to establish the correlation between blood glucose and sweat glucose levels, but quantitative analysis of the data provided therein demonstrates that the blood glucose and sweat glucose levels of the two subjects described there cannot be correlated (yielding correlation coefficients of approximately 0.666 and 0.217 respectively). Additional methods must be used, beyond those cited in the paper by Boysen et al., to isolate the glucose in sweat from other sources of glucose on the skin.
Similarly, U.S. Pat. No. 5,036,861 to Sembrowich et al. (“Sembrowich”) describes glucose monitoring technology based on analyzing glucose on the skin surface from a localized, modified sweat response. In a like manner, U.S. Pat. No. 5,638,815 to Schoendorfer (“Schoendorfer”) describes a dermal patch to be worn on the skin for increasing the concentration of an analyte expressed through the skin in perspiration, to a conveniently measurable level. However, similar to Schroeder, Sembrowich and Schoendorfer each fail to teach or describe methods or steps for isolating or distinguishing the glucose in sweat from other confounding sources of glucose found on the skin surface.
Described here are devices, methods, and kits for non-invasive glucose measurement. In general, the devices comprise skin patches configured to collect sweat and which allow for the measurement of glucose, and a corresponding measurement device. In one variation, the skin patch comprises an adhesive material, a sweat-permeable membrane, a collection layer, a detector configured to detect glucose, and an interface layer. In another variation, the skin patch comprises a sweat collection reservoir configured to collect glucose that has come to the skin surface via sweat, and a glucose detector capable of detecting nanogram quantities of glucose, wherein the patch is configured to operate with a measurement device for measuring the glucose.
In some variations, the detector is an electrochemical-based detector, in other variations the detector is a fluorescent-based detector. The sweat-permeable membrane is configured to act as a barrier to epidermal contaminants and glucose brought to the skin surface via diffusion. In some variations, the sweat-permeable membrane comprises a material that is generally occlusive, but allows sweat to pass therethrough. In other variations, the sweat-permeable membrane comprises a liquid polymer that cures when exposed to oxygen, leaving openings only over the sweat gland pores. The sweat-permeable membrane may also comprise a solid polymer, or inorganic material with micropores. The sweat-permeable membrane and the adhesive material may be in a single layer, or may be in separate distinct layers.
The patch may further comprise a backing layer, or a release liner. In some variations, the backing layer comprises a water vapor-impermeable, occlusive material. The collection layer may comprise a fixed volume reservoir to help minimize the confounding effect of a variable sweat rate. In some variations, the patch comprises an electrical circuit, at least one conductor, or an optical transmission pathway to determine that the fixed volume reservoir is filled.
Depending on the nature of the glucose detector, the interface layer of the patch may comprise materials required for the operation of an electrochemical detector or it may be optically transmissive. For example, when the glucose detector is fluorescent-based, the interface layer is typically transparent to the excitation and emission wavelength of the fluorescent-based detector. Similarly, when the glucose detector is electrochemical-based, the interface layer typically comprises at least two electrodes.
The patch may further comprise a physical, chemical, or mechanical mechanism of inducing a local sweat response. For example, the patch may comprise pilocarpine, alone, with a permeation enhancer, or configured for iontophoretic delivery. Similarly, the patch may comprise a chemical capable of inducing a local temperature increase, thereby initiating a local sweat response. In a like manner, the patch may also comprise a heater for sufficient localized heating of the skin surface to induce an enhanced local sweat response.
Glucose measurement devices for use with a skin patch are also described. Typically, the glucose measurement device comprises a display, a processor, computer executable code for executing a calibration algorithm, and an ultra-sensitive measurement mechanism for measuring glucose collected in a corresponding patch. The measurement mechanism is configured to measure nanogram quantities of glucose. The glucose measurement device may also comprise a power supply, memory, a link to download data to a computer, and combinations thereof. The measurement device may also comprise a pressure-inducer to express sweat fluid from the sweat gland lumen and help provide a more suitable amount of sweat on the skin surface. The measurement device may also comprise an iontophoretic source for use in driving pilocarpine, or other suitable molecules, into the skin resulting in a pharmacologically-enhanced local sweat rate.
In variations where the glucose detector is fluorescent-based, the measurement mechanism typically comprises a suitably optimized optical source and a detector. The optical source may be an appropriately-tuned, narrow bandpass optical source such as a light-emitting diode (LED) centered at the excitation wavelength of the fluorescent molecule, or may be a broader optical source having a bandpass filter at the excitation wavelength of the fluorescent molecule. The optical detector typically comprises a photodetector having a bandpass filter at the emission wavelength of the fluorescent molecule. In variations where the glucose detector is electrochemical-based, the measurement device typically provides a contact mechanism for establishment of an electrical contact with the patch.
The measurement device may also be configured to detect a marker left on the skin surface. For example, an optical source and detector may be included to detect the presence of a separate non-interfering fluorescent molecule associated with the proper use of a skin cleaning wipe, which is typically required to enable the measurement. The measurement device may thereby determine that no marker has been detected on the skin surface and therefore that any attempt to correlate the skin surface glucose with blood glucose could be contaminated by food residues or other non-correlatable sources of glucose. The measurement device may also be configured to provide an indication of a condition to a user. The condition may be, for example, the user'"'"'s glucose concentration being either dangerously low, or dangerously high. The measurement device may provide such an indication using sounds, lights, word prompts, or combinations thereof.
Methods of measuring glucose on the skin are also described herein. These methods may comprise the steps of wiping a skin surface with a wipe containing at least one solvent for removing glucose, placing a patch on the skin surface, wherein the patch comprises a sweat-permeable membrane configured to act as a barrier to epidermal contaminants and glucose brought to the skin surface via diffusion, and measuring glucose collected in the patch.
The patch may be placed on any suitable skin surface, e.g., an anatomical site that is convenient to the user for purposes of glucose monitoring and which produces a satisfactory sweat response with or without stimulation. In some variations, the patch is placed on the volar fingertip. In some variations, the step of placing a patch on the skin surface occurs from about 10 seconds to about 2 minutes after the step of wiping the skin surface.
Glucose measurement kits are also provided. In some variations the kits comprise at least one patch, either alone, or in combination with instructions on using the patch. The kits may also comprise a patch and a measurement device, or combinations of different patches. Typically, the patches are individually wrapped or packaged and are disposable and configured for a single use.
Described herein are methods and devices for non-invasive glucose measurement. In general, the methods of measuring glucose involve the use of a patch that is placed on the skin surface and secured thereon with an adhesive. A separate measurement device is placed adjacent to, or directly upon, the patch and is configured to interrogate the patch and measure the glucose collected therein. The measurement device is typically a small, hand-held device that is equipped with technology corresponding to that necessary to interrogate the patch. For example, the measurement device may take optical measurements or electrical measurements, depending upon how the detector in the patch is configured (e.g., when the detector is a fluorescent molecule, the measurement device will typically be configured to take optical measurements, when the detector is an electrochemical sensor, the measurement device is typically configured to make electrochemical measurements, and the like). The patch is configured so that only glucose correlatable to blood glucose (e.g., that glucose which has recently arrived on the skin surface via sweat) will be detected, while the remaining sources of glucose on the skin will not be detected.
For example, as shown in
Glucose derived from the interstitial fluid (104) is also transported by diffusion (106) through the stratum corneum to the skin surface. However, the relative impermeability of the stratum corneum, or alternatively, the high quality of the barrier function of intact stratum corneum tissue, results in significant time delays for the passage across the stratum corneum by transdermal diffusion. The glucose delivered to the skin surface by transdermal diffusion lags behind blood glucose by many hours making it unsuitable for medical diagnostic uses.
Glucose may also arrive on the skin surface via the process of stratum corneum desquamation resulting in epidermal contaminants (110), and the like. For example, epidermal glucose results from the specific enzymatic cleavage of certain lipids. This produces free glucose, a source of energy for the upper layers of the epidermis which are otherwise poorly perfused with blood. This free glucose is not representative of the corresponding blood glucose, or of the interstitial glucose values.
The sweat gland (108) may be considered a shunt that traverses the stratum corneum and allows rapid mass transport of material through an otherwise relatively impermeable barrier. Glucose from the interstitial fluid is the primary source of energy for the work-or-pump function of the eccrine sweat glands (108). The sweat secreted by the eccrine sweat gland contains a fraction of glucose from the blood (102), which erupts from the skin through tiny pores or orifices on the skin surface. We have discovered that a fraction of the secreted sweat may be re-absorbed by the stratum corneum. The amount of sweat, and consequently, the amount of glucose, back-absorbed into the stratum corneum depends on the hydration state of the skin and varies throughout the day. Thus, without blocking the back transfer of glucose from sweat into the stratum corneum, it may be difficult to develop an instrument that could correlate the glucose on the skin with that in the blood.
Cunningham and Young measured the glucose content in the stratum corneum using a variety of methods including serial tape stripping and aqueous extraction, and found approximately 10 nanograms per square centimeter per micron of depth of stratum corneum. See Cunningham, D. D. and Young, D. F., “Measurements of Glucose on the Skin Surface, in Stratum Corneum and in Transcutaneous Extracts: Implications for Physiological Sampling”, Clin. Chem. Lab Med, 41, 1224-1228, 2003. In their experiments in collecting and harvesting glucose from the skin surface, Cunningham and Young found that the stratum corneum was the source of epidermal contaminants on the skin surface, and that these contaminants were not correlatable to blood glucose.
The glucose from epidermal contaminants typically reflects glucose abundance in the tissue anywhere from days to weeks prior to its appearance during desquamation (because epidermal turnover occurs approximately every 28 days). See, e.g, Rao, G., Guy, R. H., Glikfeld, P., LaCourse, W. R., Leung, L. Tamada, J., Potts, R. O., Azimi, N. “Reverse iontophoresis: noninvasive glucose monitoring in vivo in humans,” Pharm Res, 12, 1869-1873 (1995). In a like manner, it is unlikely that the glucose brought to the skin surface via diffusion (106) can be correlated to blood glucose. In addition, because the glucose has to traverse the tortuous path of the skin layers to reach the surface, the glucose brought to the skin surface via diffusion often results in a lag time (e.g., in the range of a few hours to days), which is undesirable for purposes of glucose monitoring.
The methods and devices described herein provide a way to measure only that glucose brought to the skin via sweat. It should be understood that when reference is made to the term “skin” herein throughout, that term it is meant to include, not only the outermost skin surface, but also, the entire stratum corneum.
Methods of Use
As described briefly above, the methods provided here involve the use of a patch and a measurement device. Prior to application of the patch, the skin is wiped clean to remove any “old” or residual glucose remaining on the skin. The wipe is typically made of a material suitable for wiping the skin and comprises a solvent for removing glucose. For ease of description only, the term “wipe” will be used herein to include any type of fabric, woven, non-woven, cloth, pad, polymeric or fibrous mixture, and similar such supports capable of absorbing a solvent or having an solvent impregnated therein.
In some variations, the wipe contains a marker that is deposited on the skin. In these variations, the measurement device looks for the presence of the marker, and if the marker is detected, then the measurement proceeds. If the marker is not detected, the measurement does not proceed. In some variations, as will be described in more detail below, the measurement device provides an indication to the user that the skin has not been wiped. In this way, the possibility that a user obtains and relies upon a clinically dangerous measurement (e.g., based on an erroneous reading resulting from food residues or other glucose sources on the skin that are not correlated with the user'"'"'s actual blood glucose) are minimized, and accurate measurements are facilitated. The marker may comprise a chemical having a short half-life, so that it will decay after a short period of time. In this way, a marker will only be valid for a single wipe, or a single use and erroneous detection of a marker on the skin surface will be minimized. In a like manner, the marker may also be bound to a volatile compound, and made to evaporate in a short period of time.
It should be noted however, that the wipe should not contain solvents, markers, or other chemicals that would interfere with the measurement of glucose. That is, a suitable glucose solvent would have the capacity to solubilize glucose without interfering with either the electrical or optical measurement of glucose. Polar solvents, and in particular, a mixture of distilled water and alcohol, have provided very good results in removing residual glucose from the skin surface. The ratio of distilled water to alcohol may be chosen such that there is sufficient water to dissolve the glucose, but not so much water as to make the removal of the excess water take an inconveniently long period of time relative to the measurement of glucose (e.g., more than 25 minutes). As noted above, it is desirable that the alcohol/water mixture, or other polar solvent, be selected such that it removes the residual glucose, but does not interfere with the glucose measurement.
After the skin has been wiped, a patch is placed on the skin. The patch may be placed on any suitable skin surface. For example, the patch may be placed on a finger, on the palm, on the wrist, etc. Typically, the patch is placed on the tip of the finger, because the fingertips have the greatest density of sweat glands. In addition, placement of the patch on the fingertip provides a convenient, discrete, and readily accessible site for testing. As will be described in more detail below, the patch comprises a collection layer, a detector, and an adhesive layer. The detector may be, for example, a dry, polymer-based electrochemical sensor, a wet electroenzymatic sensor in a microfluidic package, a glucose-sensitive fluorescent molecule or polymer, or the like.
A short period of time after applying the patch (e.g., from about 1 to about 25 minutes), the measurement device is placed adjacent to, or directly on, the patch. As shown in
After a measurement has been made, the user removes the patch and disposes of it. When it is desirable to once again measure glucose, the user wipes the skin, obtains a new patch, places the patch on a suitable and desirable location, and uses the measurement device to interrogate the patch. Alternatively, the user can interrogate the patch more than once, which may be useful for continuous measurements. For example, the patch could be interrogated several times within a time interval sufficient to allow the patch to refill with fresh sweat (while the old sweat is absorbed in the absorption layer). When an electrochemical-based detector is used, glucose can be measured as the difference between the second and first integrated electrical charges, for example. Similarly, when a fluorescent-based detector is used, the chemical equilibrium time constant should be small enough so that the fluorescent intensity can be used to measure the glucose in sweat.
Patches
The patches may be of any suitable configuration. For example, they may have a rectangular geometry, as shown in
In some variations, and as generally shown throughout
Making reference now to
While not shown in the figures, the patch may also include at least one release liner. For example, a release liner on the bottom adhesive surface would protect the adhesive layer from losing its adhesive properties during storage and prior to use. Similarly, a release liner may be placed on top of the upper interface layer to protect the optical or electrical components contained therein. In some variations, no release liner is used and the interface layer is topped with a backing layer. In some variations, the backing layer is made from a woven or non-woven flexible sheet, such as those known in the art of transdermal patches. In other variations, the backing layer is made from a flexible plastic or rubber.
Typically the patch also comprises a sweat-permeable barrier as depicted by (403) and (415) in
In general, the sweat-permeable membrane may comprise any material that allows sweat to pass therethrough, is non-toxic, and prevents reabsorption of the sweat into the skin. For example, the sweat-permeable membrane may be made of a hydrophobic coating or a porous hydrophobic film. The film should be thick enough to coat the skin, but thin enough to allow sweat to pass therethrough. Suitable examples of hydrophobic materials include petrolatum, paraffin, mineral oils, silicone oils, vegetable oils, waxes, and the like. While the sweat-permeable membranes depicted in
It should be understood that although sweat-permeable membranes (403) and (415) are depicted in
The adhesive material may comprise an annular overlay layer as depicted by (208) in
The patch may also comprise a component to induce sweat by physical, chemical, or mechanical methods. For example, in one variation, the patch comprises pilocarpine and a penetration or permeation enhancer to induce sweat chemically or pharmacologically. The use of a penetration enhancer can help increase the rate at which the pilocarpine enters the body and thereby, increase the onset of the enhanced sweat response. Examples of suitable permeation enhancers include, but are not limited to ethanol and other higher alcohols, N-decylmethylsulfoxide (nDMS), polyethylene glycol monolaurate, propylene glycol monolaurate, dilaurate and related esters, glycerol mono-oleate and related mono, di and trifunctional glycerides, diethyl toluamide, alkyl or aryl carboxylic acid esters of polyethyleneglycol monoalkyl ether, and polyethyleneglycol alkyl carboxymethyl ethers. Pilocarpine may also be driven into the skin using iontophoresis. The present inventors have shown that the infusion of pilocarpine into the skin using iontophoresis increases the amount of sweat by about 20 fold per unit area. Similarly, other chemicals may be introduced into the skin to increase the sweat response.
The patch may also comprise a component that increases the sweat response by initiating a local temperature increase. For example, a heater (e.g., an electrical resistance heater) may be used to increase the skin surface temperature and thus increase sweating. Thermal induction of a sweat response may also be achieved by the application of energy (e.g., in the visible or near infrared regions). For example, a lamp may be used to generate heat and induce sweating. Experiments were run to measure the sweat rate (in μL/cm2×min) as a function of lamp power (W) versus time (sec). As shown by
Direct electrical stimulation (i.e., Faradic stimulation) may also be used to induce a sweat response. Similarly, a chemical compound, or combination of compounds may be used to initiate a local temperature increase and therefore induce or increase the sweat response. For example, two chemical compounds may be used, separated by a thin membrane. The membrane may be removed by a pull-tab when the patch is adhered to the skin, thereby bringing the compounds into contact with each other, and causing an exothermic reaction. In this way, a source of heat is provided.
Physical mechanisms of inducing or increasing sweat may also be used. For example, in one variation, the measurement device is brought into contact with the patch and force is applied to the patch in a manner sufficient to cause an increase in the transport of sweat to the skin. The applied pressure over the collection patch results in fluid from the sweat gland lumen being expressed and delivered to the skin surface. In addition, the measurement device could include a suction or vacuum mechanism, which in combination with the applied pressure would result in a larger amount of sweat being delivered to the collection layer of the patch. Vibration may also be used to induce sweat.
Sweat may also be induced by the use of an occlusive layer within the patch, which inhibits evaporative loss from the skin surface and thereby permits a more efficient sweat accumulation into the patch collection layer. This occlusive layer may comprise an element within the patch, or may be a removable overlay which is separated from the patch prior to use of the measurement device. This occlusive layer may be, e.g., a thin polyvinyl film or some other suitable water vapor-impermeable material.
In some variations, it may be necessary to provide a method to minimize the effect of variable sweat rates on the amount of glucose accumulation in the collection layer. There are several ways in which the effect of variable sweat rates may be normalized by the method of collection or the use of various analytes. One method of minimizing the effect of a variable sweat rate is to normalize the flux of the measured glucose. For example, when glucose is transported to the skin surface by sweat, the total amount of glucose deposited on the unit of skin surface per minute can be calculated as follows:
GF=SR×SG
- where GF is glucose flux (ng/cm2×min), SR is the sweat rate (μL/cm2×min), and SG is the glucose concentration in sweat (ng/μL).
Often the sweat rate fluctuates over time as the result of physical or emotional stimulation, and this fluctuation can result in a variation in the amount of glucose collected from the skin surface, and hence the accuracy of the glucose concentration measurement. This variation can be significantly reduced if sweat rate is measured as a function of time and used to normalized the glucose flux, as follows:
GF/SR=(SRXSG)/SR=SG
Another method, for example, may comprise configuring the collection layer of the patch to collect a constant volume of fluid so that a variable sweat rate affects only the time to fill the collection volume, but not the amount of fluid collected. For example, the collection layer may comprise an absorbent polymer that becomes saturated at a given volume of fluid. Similarly, the collection layer may comprise a capillary reservoir having a fixed volume. Suitable capillary reservoirs include those filters manufactured by Whatman described above. Shown in
A number of different techniques may be used to determine when the fixed volume reservoir, and hence the collection layer is filled. For example, electrical capacitance, electrical conductance, or optical measurements may be used as shown in
Similarly, electrical conductance may be used to determine when the reservoir is filled. Shown in
Optical transmission may also be used to determine when the reservoir is filled. Shown in
Optical reflection may also be used to determine when the reservoir is filled. For example, as shown in
The determination of glucose level in the patch may be normalized for variable sweat rates by the use of a non-glucose analyte specific to sweat that is constant in concentration (e.g., lactate, urea, sodium chloride, other electrolytes, etc.). In this way, the glucose concentration may be normalized to that value. For example, a separate chemical detector may be incorporated into the patch to independently determine the amount of the sweat analyte. The amount of this sweat analyte accumulated in the collection layer depends only on the volume of sweat in the layer. Once this is determined, the amount of glucose measured in sweat may be normalized to the total volume of sweat collected, thereby avoiding errors associated with measuring an increased accumulation of glucose in the collection layer of the patch (i.e., due to increased sweating rather than increased physiological glucose concentrations). Alternatively, there may be physiological markers in sweat that increase with increased sweat rate. Determination of the concentration of these markers may also serve as a method for normalization of the glucose accumulated in the collection layer.
As described above, the patch comprises a detector. The detector may be in its own layer, adjacent to the collection layer, or, depending on the nature of the detector, it may be combined in the collection layer itself. In the absence of thermal, emotional, physical, or pharmacological stimulation, typical values of sweat output on the volar forearm and fingertip are relatively small. Sweat output varies from one individual to the next and from one anatomical site on the body to another. The maximum sweat rate per gland has been reported to range from about 2 nL/min to about 20 nL/min. See Sato, K. and Dobson, R. L. “Regional and individual variations in the function of the human eccrine sweat gland,” J. Invest. Dermat., 54, 443, 1970. Assuming insensible perspiration rates per gland of 1 nL/min and using measured sweat gland densities at different parts of the body, a total sweat output can be estimated. Typical sweat gland densities on the forearm are approximately 100 glands per square centimeter, which give 0.1 μL sweat per square centimeter per minute. Typical sweat gland densities on the volar fingertip are approximately 500 glands per square centimeter, which give 0.5 μL sweat per square centimeter per minute. In the absence of stimulation, the number of active sweat glands per unit area is often reduced by one-half the total available. Boysen et al., described above, found that the glucose concentration in sweat was approximately one one-hundredth normal blood glucose values (e.g., 1 mg/dl). Hence the flux of glucose to the surface of the volar fingertip may be estimated to be in the range of from about 2.5 nanograms to about 5 nanograms per square centimeter per minute. Accordingly, the detector described here must be capable of detecting nanogram quantities of glucose (less than 100 nanograms) and the measurement device described herein must be capable of performing ultra-sensitive glucose measurements.
Indeed, we have demonstrated that the flux of glucose brought to the skin via sweat was on the order of 1-20 nanograms per square centimeter per minute in the absence of thermal, pharmacological or other forms of stimulation. These measurements were made using the Wescor MACRODUCT® (459 South Main Street Logan, Utah 84321) system and in specially adapted sweat collection chambers. Sweat collected in the Wescor MACRODUCT® and in the sweat collection chambers was then analyzed using a Dionex (Sunnyvale, Calif.) High Performance Anion Exchange with a Pulsed-Amperometric Detector (HPAE-PAD). The sensitivity and specificity of the HPAE-PAD system was tested using analytical samples. We detected glucose in amounts as low as 1 nanogram using HPAE-PAD.
Several types of suitably sensitive detectors may be used. For example, the detectors may be electrochemical-based, or may be fluorescent-based. Suitable electrochemical sensors may be those comprising an immobilized glucose-oxidase or other enzyme(s) in or on a polymer or other support, and those comprising glucose-oxidase or other enzyme(s) in a microfluidic configuration. Similarly, the detector may be fluorescent-based, for example, based on enhanced or suppressed fluorescence of a glucose-sensitive fluorescent molecule.
As noted above, any suitable electrochemical detector may be used. For example, the electrochemical detector may be polymer based, based on microfluidics, and the like. When the electrochemical detector is polymer based, the polymer is typically permeable to glucose, and a glucose-reactive enzyme is immobilized on or within the polymer. The interface layer comprises at least two electrodes, which are typically activated by the measurement device when it is brought into electrical contact with the patch. In one variation, the enzyme glucose oxidase is used, which produces hydrogen peroxide that reacts at the at least one electrode to produce a measurable electrical current proportional to the glucose concentration. That is, using an enzymatic process known in the art, the glucose oxidase catalyzes the reaction of glucose and oxygen to produce gluconic acid and hydrogen peroxide. The hydrogen peroxide is then electrochemically reduced at the at least one electrode, producing two electrons for detection. As noted above, electrical contact between the measurement device and the patch may also serve to provide power to the patch (although, as noted above, the patch may comprise a battery therein as well). The measurement device interrogates the patch (i.e., the detector) and provides a single discrete reading.
When microfluidics based electrochemical detectors are used, the patch typically comprises a fluid reservoir, a flow channel, a gating valve, and sensor electrodes. In this variation, the electrochemical enzyme is typically in solution. The interface layer comprises at least one electrode, which is activated by the measurement device when placed into electrical contact with the patch. As with the case above, electrical contact between the measurement device and patch, may serve to power the patch. A microfluidic sensor may also comprise a reservoir with a reference analyte to provide in situ calibration of the detector. As with the cases above, electrical contact between the measurement device and patch, may serve to provide power to the patch, or the patch may comprise a battery therein.
Sensitivity to these electrochemical detectors may be increased by increasing the temperature during the detection cycles, by increasing the length of the detection cycle, by increasing the area of the detector, by appropriately selecting the operating potential, and by the use of selective membranes to screen interfering substances such as ascorbic acid, uric acid, acetaminophen, etc. In addition, differential methods may be used where the glucose sample is measured in the presence and absence of a glucose-specific enzyme and the glucose concentration is determined from the difference between these two signals.
For example, sensitivity may be increased by heating the sensor solution from 25° C. to 40° C., and such temperature increase is unlikely to affect the enzyme activity of the glucose detector. See, e.g., Kriz, D, Berggre, C., Johansson, A. and Ansell, R. J., “SIRE-technology. Part I. Amperometric biosensor based on flow injection of the recognition element and differential measurements,” Instrumentation Science & Technology, 26, 45-57 (1998). Similarly, sensitivity may be increased by increasing the area of the detector, since the detector current increases linearly with the area of the detector electrode. Extending the length of time over which the measurement may be made may also be used to increase the measured charge and hence, the overall sensitivity of the detector. Lastly, covering the electrode with size- and, or, charge-selective membranes can allow passage of hydrogen peroxide, for example, while excluding ascorbate, urate and other material, which can react directly with the sensor to produce a spurious signal. Suitable size-selective membranes, for example, include those made of polyurethane, polyethylene and other materials as well as charge-selective membranes made of polyethylsulfide, NAFION®, cellulose acetate, and other materials that can be used as interference-screening membranes for electrochemical detectors.
The detector may also be a fluorescent detector. In this variation, the interface layer of the patch is made of a material that is optically transparent at the relevant excitation and emission wavelengths for the particular fluorescent-based detector used by the patch. In this variation, the measurement device need not be brought into direct physical contact, because interrogation of the patch is achieved by optically coupling the device and patch, as illustratively depicted in
The fluorescent detector typically comprises a glucose-sensitive fluorescent molecule immobilized in a polymer or suitable solvent, and as described above, may be in a separate layer, or dispersed throughout the collection layer. Because the measurement device will be measuring the glucose at a specific wavelength, it is desirable that the materials used in the patch do not have fluorescence at, or substantially near, the wavelength of the fluorescent emission of the glucose transducer molecule. Similarly, it is often desirable that the sweat-permeable membrane in these variations be opaque so as to prevent autofluorescence from the skin.
Suitable fluorescent detectors for example may be those described in U.S. Pat. No. 6,750,311 to Van Antwerp et al, which section on fluorescent detectors is hereby incorporated by reference in its entirety. As described there, fluorescent detectors may be based on the attenuation in the fluorescence intensity of labeled lectins or boronate (germinate or arsenate) aromatic compounds. Suitable lectins include concanavalin A (Jack Bean), Vicia faba (Fava Bean), Vicia sativa, and the like. Such lectins bind glucose with equilibrium constants of approximately 100. See, Falasca, et al., Biochim. Biophys. Acta., 577:71 (1979). The lectin may be labeled with a fluorescent moiety such as fluorescein isothiocyanate or rhodamine using commercially available kits. The fluorescence of the labeled lectin decreases with increasing glucose concentration.
Boronate based sugar binding compounds may also be used as the basis for the fluorescent detector. Glucose reversibly binds to the boronate group in these compounds. Boronate complexes have been described which transduce a glucose signal through a variety of means. See, Nakashima, et al., Chem. Lett. 1267 (1994); James, et al., J. Chem. Soc. Chem. Commun, 477 (1994); and James, et al., Nature, 374:345 (1995). These include geometrical changes in porphyrin or indole type molecules, changes in optical rotation power in porphyrins, and photoinduced electron transfer in anthracene type moieties. Similarly, the fluorescence of 1-anthrylboronic acid has been shown to be quenched by the addition of glucose. See, Yoon, et al., J. Am. Chem. Soc., 114:5874 (1992).
The dye used in the above fluorescent-based detector may be, for example an anthracene, fluorescein, xanthene (e.g., sulforhodamine, rhodamine), cyanine, coumarin (e.g., coumarin 153), oxazine (e.g., Nile blue), a metal complex or other polyaromatic hydrocarbon which produces a fluorescent signal. Unlike previously described applications of these sensors, where the sensors are specially-designed for equilibrium-binding with a target analyte and for reversibility, the binding constant of the fluorescent-based detectors described here may be increased so as to further lower the limit of detection.
Measurement Device
The measurement device interrogates the patch to measure glucose. The device measures the total quantity of glucose present in a fixed volume, and then converts the glucose measurement into a concentration. In general, the measurement device typically comprises a display, to display data. The device may also include warning indicators (e.g., a word prompt, flashing lights, sounds, etc.) to indicate that a user'"'"'s glucose levels are dangerously high or dangerously low. In addition, as described briefly above, the measurement device may also be configured to verify that a skin-cleaning procedure has been performed. For example, when wipes with a marker have been used, the marker remains on the skin surface. If the measurement device detects the marker, then the measurement proceeds. If the measurement device does not detect the marker, the measurement does not proceed. In one variation, the measurement device provides an indication to the user, that the skin surface must be cleaned prior to use (e.g., using a word prompt, colored or flashing lights, or various sounds). The measurement device may also comprise an iontopheric source, for example, to be used to help drive pilocarpine, or other molecules of interest into the skin.
The configuration of the measurement device is dependent on the configuration of the detector in the patch. For example, when the measurement device is to be used with an electrochemical detector, the measurement device provides an electrical contact with the interface layer, and is either powered by the electrical contact, or is powered by an independent power source (e.g., a battery within the patch itself, etc.). The measurement device also typically comprises a computer processor to analyze data. Conversely, when the measurement device is configured for fluorescence detection, the measurement device is configured to provide optical contact or interaction with the interface layer. In this variation, the measurement device also typically comprises a light source to stimulate fluorescence. In some variations, the measurement device comprises both the necessary electrical contacts and the necessary optics so that a single measurement device may be used with a patch having various configurations of patch layers (e.g., one layer comprising a fluorescent-based molecule, and another layer comprising an electrochemical detector).
The measurement device further comprises computer executable code containing a calibration algorithm, which relates measured values of detected glucose to blood glucose values. For example, the algorithm may be a multi-point algorithm, which is typically valid for about 30 days or longer. For example, the algorithm may necessitate the performance of multiple capillary blood glucose measurements (e.g., blood sticks) with simultaneous patch measurements over about a 1 day to about a 3 day period. This could be accomplished using a separate dedicated blood glucose meter provided with the measurement device described herein, which comprises a wireless (or other suitable) link to the measurement device. In this way, an automated data transfer procedure is established, and user errors in data input are minimized.
Once a statistically significant number of paired data points have been acquired having a sufficient range of values (e.g., covering changes in blood glucose of about 200 mg/dl), a calibration curve will be generated, which relates the measured sweat glucose to blood glucose. Patients can perform periodic calibrations checks with single blood glucose measurements, or total recalibrations as desirable or necessary.
The measurement device may also comprise memory, for saving readings and the like. In addition, the measurement device may include a link (wireless, cable, and the like) to a computer. In this way, stored data may be transferred from the measurement device to the computer, for later analysis, etc. The measurement device may further comprise various buttons, to control the various functions of the device and to power the device on and off when necessary.
Kits
Also described here are kits. The kits may include one or more packaged patches, either alone, or in combination with other patches, a measurement device, or instructions. In one variation, the kits comprise at least one patch having a fluorescent-based detector and at least one patch having an electrochemical-based detector. Typically the patches are individually packaged in sterile containers or wrappings and are configured for a single use. The kits may also include multiple patches containing a single type of detector.
In another variation, the kits comprise at least one patch, and at least one measurement device. The at least one patch may have a detector corresponding to the measurement capacity of the measurement device (e.g., a patch having an electrochemical-based detector with a measurement device configured to provide electrical contact) or the patch may have a detector that does not correspond to the measurement capacity of the measurement device. In some variations, the kits comprise patches having multiple types of detectors, and the measurement device is configured with both electrical and optical capabilities.
A standard pilocarpine iontophoresis was performed simultaneously on the clean dry skin of both arms of a 40 year old male type 1 diabetic. The skin was wiped after stimulation and a MedOptix Macrovial surface was applied within 1 min following the iontophoresis (the MedOptix Macrovial allows serial samples of sweat to be collected from the same site on the skin. It is made from a plate having a hole therethrough for contact with the skin surface. On the non-skin contacting side of the plate, a capillary tube connects the hole to a collection chamber or vial). A Vaseline-paraffin barrier material (acting as a sweat-permeable membrane) was applied to the site on the right arm before the MedOptix Macrovial was applied. Samples were collected every 10 minutes from the appearance of the first drop of sweat on the end of the MedOptix Macrovial. The subject came in with an initial blood glucose level of about 220 mg/dl, which then stabilized at about 175 mg/dl during the first 40 minutes of sample collection. The subject then drank 10 oz of COKE® producing a rise in blood glucose to about 300 mg/dL.
The first two samples from the left arm (having no sweat-permeable membrane), contained approximately 2.0 mg/dl glucose. The glucose concentration of the sweat increased monotonically throughout the rest of the experiment to a maximum of approximately 5.0 mg/dl. This increase in concentration was not correlated to the increase in blood glucose, which began to rise 40 min after the initial rise in glucose in the left arm. In contrast, the glucose samples from the right arm, having the sweat-permeable membrane, remained flat at approximately 1.7 mg/dl and began to rise to a maximum of about 2.5 mg/dl about 10 min after the blood glucose started to rise. These results are shown in
Both forearms of the subjects used were wiped with a standard 70% isopropyl alcohol swab. Cotton pads soaked in a buffered saline and 1% pilocarpine solution were applied respectively to the negative and positive electrodes of a standard iontophoresis device. A charge (dose) of 10 mA-min at a current of 1 mA was applied to the electrodes as they were held tightly against the skin of the subjects with elastic straps. The skin was wiped after 10 min of iontophoresis and a MedOptix Macrovial was applied to the site of the positive electrode within 1 min following the iontophoresis. Sample vials were replaced every 10 or 15 min until sweat flow became less than about 10 μl over the collection interval.
Blood glucose levels were determined from capillary finger pricks every 10 minutes using a commercial personal blood glucose meter (ACCU-CHECK ADVANTAGE®, Roche). In some experiments macro-vials were placed simultaneously on the right and left arms, while in others macro-vials were placed first on one arm and then after an hour on the opposite arm. Samples were filtered, diluted and analyzed on a DIONEX® HPAE-PAD system. The protocol varied with the initial state of the subject. For example, if the subject'"'"'s blood glucose (BG) was high (>200 mg/dL) the subject was asked to follow his normal insulin program to lower BG. Otherwise, the subjects were given a drink containing 35-70 g of glucose at the start of the experiment to produce a rise in BG over the collection period.
Subject BCG1701, whose results are shown in