COMMUNICATION SYSTEM
First Claim
1. A communication system comprising:
- a server having a service element for providing the service and a data store for storing the identities of users of the communication system that are registered to the service;
a user terminal that is capable of initiating verification of the registration of one or more users of the communication system to the service by transmitting to the server one or more messages indicating the identities of the said one or more users;
wherein;
the user terminal has a data store arranged for storing a plurality of user identities forming a first set of users, andthe user terminal has a user interface arranged to present to a user of the terminal a single command option in response to selection of which the user terminal automatically transmits to the server one or more messages indicating the user identities of the first set of users for verification of which users of the first set are registered to the service.
1 Assignment
0 Petitions

Accused Products

Abstract
A communication system for providing instant messaging and presence services among users of a communications network. The system comprising a user subscribed to the service and arranged to send a plurality of requests, each request comprising a user identity corresponding to at least one user of a first set of users of the network. The system also comprising a server having an access point arranged to receive the requests from the user, and having a service element for providing the service and wherein a second set of users are subscribed to the service element. The system also having circuitry for checking which of the users in the second set match with the users in the first set.
175 Citations
SECURE END-TO-END TRANSPORT THROUGH INTERMEDIARY NODES | ||
Patent #
US 20110099363A1
Filed 09/23/2010
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
SYSTEM AND METHOD OF A RELAY SERVER FOR MANAGING COMMUNICATIONS AND NOTIFICATION BETWEEN A MOBILE DEVICE AND APPLICATION SERVER | ||
Patent #
US 20110191474A1
Filed 04/13/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
METHOD OF PROVIDING COMMUNICATION FUNCTION FOR COMMUNICATION GROUP, AND MOBILE COMMUNICATION TERMINAL AND PRESENCE SERVER FOR THE SAME | ||
Patent #
US 20110171934A1
Filed 07/06/2009
|
Current Assignee
SK Telecom Co. Ltd.
|
Original Assignee
SK Telecom Co. Ltd.
|
SYSTEM AND METHOD FOR TRACKING BILLING EVENTS IN A MOBILE WIRELESS NETWORK FOR A NETWORK OPERATOR | ||
Patent #
US 20110201304A1
Filed 04/28/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
METHODS AND SYSTEMS FOR AUTHORIZING AN EFFECTOR COMMAND IN AN INTEGRATED MODULAR ENVIRONMENT | ||
Patent #
US 20110225596A1
Filed 03/11/2010
|
Current Assignee
Honeywell International Inc.
|
Original Assignee
Honeywell International Inc.
|
SYSTEM AND METHOD FOR FACILITATING MOBILE TRAFFIC IN A MOBILE NETWORK | ||
Patent #
US 20110238772A1
Filed 06/13/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
INTEGRATED MESSAGING | ||
Patent #
US 20110190014A1
Filed 04/08/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Predictive Content Delivery | ||
Patent #
US 20100174735A1
Filed 01/02/2009
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Presence-Based Power Management | ||
Patent #
US 20100082175A1
Filed 09/30/2008
|
Current Assignee
Avaya Incorporated
|
Original Assignee
Avaya Incorporated
|
Maintaining Mobile Terminal Information for Secure E-Mail Communications | ||
Patent #
US 20090054034A1
Filed 09/05/2008
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Messaging centre for forwarding e-mail | ||
Patent #
US 20090063647A1
Filed 08/11/2008
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks International Oy
|
Content delivery to a mobile device from a content service | ||
Patent #
US 20090157792A1
Filed 12/13/2007
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Policy based content service | ||
Patent #
US 20090164560A1
Filed 01/25/2008
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Electronic-mail filtering for mobile devices | ||
Patent #
US 20090149203A1
Filed 12/10/2007
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Web-Based Access to Data Objects | ||
Patent #
US 20090193130A1
Filed 01/28/2009
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Integrated Messaging | ||
Patent #
US 20090191903A1
Filed 01/28/2009
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Application Discovery on Mobile Devices | ||
Patent #
US 20090318171A1
Filed 06/18/2008
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Extending user relationships | ||
Patent #
US 20080134292A1
Filed 10/28/2007
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
METHOD FOR AUTOMATICALLY INITIATING AN INSTANT MESSAGING CHAT SESSION BASED ON A CALENDAR ENTRY | ||
Patent #
US 20080270916A1
Filed 05/29/2008
|
Current Assignee
International Business Machines Corporation
|
Original Assignee
International Business Machines Corporation
|
METHOD, SYSTEM AND DEVICE FOR SENDING IMS INSTANT MESSAGES | ||
Patent #
US 20080307062A1
Filed 06/13/2008
|
Current Assignee
Huawei Technologies Co. Ltd.
|
Original Assignee
Huawei Technologies Co. Ltd.
|
Context aware data presentation | ||
Patent #
US 20070027920A1
Filed 02/24/2006
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Method of scheduling calendar entries via an instant messaging interface | ||
Patent #
US 20070168447A1
Filed 01/19/2006
|
Current Assignee
Snap Inc.
|
Original Assignee
International Business Machines Corporation
|
PROMOTING INTEROPERABILITY OF PRESENCE-BASED SYSTEMS THROUGH THE USE OF UBIQUITOUS ONLINE IDENTITIES | ||
Patent #
US 20070162555A1
Filed 11/20/2006
|
Current Assignee
Verizon Media Inc.
|
Original Assignee
AOL LLC
|
Automatic verification of messenger contact data | ||
Patent #
US 20070233796A1
Filed 04/04/2007
|
Current Assignee
Muller Marken GmbH Company Betriebs-KG
|
Original Assignee
MULLER MARKEN GMBH CO. BETRIEBS-KG
|
Secure end-to-end transport through intermediary nodes | ||
Patent #
US 8,127,342 B2
Filed 09/23/2010
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Provisioning of e-mail settings for a mobile terminal | ||
Patent #
US 8,116,214 B2
Filed 11/30/2005
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile virtual network operator | ||
Patent #
US 8,107,921 B2
Filed 01/11/2008
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Application and network-based long poll request detection and cacheability assessment therefor | ||
Patent #
US 8,166,164 B1
Filed 10/14/2011
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Cache defeat detection and caching of content addressed by identifiers intended to defeat cache | ||
Patent #
US 8,190,701 B2
Filed 11/01/2011
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Application and network-based long poll request detection and cacheability assessment therefor | ||
Patent #
US 8,291,076 B2
Filed 03/05/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Social caching for device resource sharing and management | ||
Patent #
US 8,316,098 B2
Filed 04/19/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Distributed management of keep-alive message signaling for mobile network resource conservation and optimization | ||
Patent #
US 8,326,985 B2
Filed 11/01/2011
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
System and method for a mobile device to use physical storage of another device for caching | ||
Patent #
US 8,356,080 B2
Filed 07/20/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Electronic-mail filtering for mobile devices | ||
Patent #
US 8,364,181 B2
Filed 12/10/2007
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Methods and apparatuses for geospatial-based sharing of information by multiple devices | ||
Patent #
US 8,385,964 B2
Filed 06/07/2011
|
Current Assignee
XONE Incorporated
|
Original Assignee
XONE Incorporated
|
Context aware data presentation | ||
Patent #
US 8,412,675 B2
Filed 02/24/2006
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Aligning data transfer to optimize connections established for transmission over a wireless network | ||
Patent #
US 8,417,823 B2
Filed 11/18/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Flexible real-time inbox access | ||
Patent #
US 8,438,633 B1
Filed 12/18/2006
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Methods and systems for authorizing an effector command in an integrated modular environment | ||
Patent #
US 8,453,160 B2
Filed 03/11/2010
|
Current Assignee
Honeywell International Inc.
|
Original Assignee
Honeywell International Inc.
|
Publishing data in an information community | ||
Patent #
US 8,468,126 B2
Filed 12/14/2005
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Distributed caching in a wireless network of content delivered for a mobile application over a long-held request | ||
Patent #
US 8,484,314 B2
Filed 10/14/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Provisioning applications for a mobile device | ||
Patent #
US 8,494,510 B2
Filed 12/06/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Methods and Systems for an Action-Based Interface for Files and Other Assets | ||
Patent #
US 20130198156A1
Filed 12/22/2009
|
Current Assignee
Adobe Inc.
|
Original Assignee
Adobe Systems Incorporated
|
Location sharing and tracking using mobile phones or other wireless devices | ||
Patent #
US 8,538,458 B2
Filed 03/11/2008
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Mobile network background traffic data management with optimized polling intervals | ||
Patent #
US 8,539,040 B2
Filed 02/28/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Secure end-to-end transport through intermediary nodes | ||
Patent #
US 8,549,587 B2
Filed 02/14/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
System and method for executing commands that are non-native to the native environment of a mobile device | ||
Patent #
US 8,561,086 B2
Filed 05/17/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Detecting and preserving state for satisfying application requests in a distributed proxy and cache system | ||
Patent #
US 8,621,075 B2
Filed 04/27/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Cache state management on a mobile device to preserve user experience | ||
Patent #
US 8,635,339 B2
Filed 08/22/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
SYSTEM AND METHOD FOR PROCESSING PRE-AUTHORIZED CONTACT DATA | ||
Patent #
US 20140025676A1
Filed 07/23/2012
|
Current Assignee
Vizibility Incorporated
|
Original Assignee
Vizibility Incorporated
|
Polling | ||
Patent #
US 8,693,494 B2
Filed 03/31/2008
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Cache defeat detection and caching of content addressed by identifiers intended to defeat cache | ||
Patent #
US 8,700,728 B2
Filed 05/17/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Methods and systems for an action-based interface for files and other assets | ||
Patent #
US 8,706,778 B2
Filed 12/22/2009
|
Current Assignee
Adobe Inc.
|
Original Assignee
Adobe Systems Incorporated
|
Cross-platform event engine | ||
Patent #
US 8,209,709 B2
Filed 07/05/2010
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Distributed system for cache defeat detection and caching of content addressed by identifiers intended to defeat cache | ||
Patent #
US 8,204,953 B2
Filed 11/01/2011
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Methods and systems for temporarily sharing position data between mobile-device users | ||
Patent #
US 8,712,441 B2
Filed 04/11/2013
|
Current Assignee
X One Inc.
|
Original Assignee
XONE Incorporated
|
Electronic-mail filtering for mobile devices | ||
Patent #
US 8,738,050 B2
Filed 01/07/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile device equipped with mobile network congestion recognition to make intelligent decisions regarding connecting to an operator network | ||
Patent #
US 8,750,123 B1
Filed 07/31/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Methods and systems for annotating target locations | ||
Patent #
US 8,750,898 B2
Filed 01/18/2013
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Maintaining an IP connection in a mobile network | ||
Patent #
US 8,761,756 B2
Filed 09/13/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks International Oy
|
Integrated messaging | ||
Patent #
US 8,774,844 B2
Filed 04/08/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Dynamic bandwidth adjustment for browsing or streaming activity in a wireless network based on prediction of user behavior when interacting with mobile applications | ||
Patent #
US 8,775,631 B2
Filed 02/25/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Timing of keep-alive messages used in a system for mobile network resource conservation and optimization | ||
Patent #
US 8,782,222 B2
Filed 09/05/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Application discovery on mobile devices | ||
Patent #
US 8,787,947 B2
Filed 06/18/2008
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Content delivery to a mobile device from a content service | ||
Patent #
US 8,793,305 B2
Filed 12/13/2007
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Methods and systems for sharing position data and tracing paths between mobile-device users | ||
Patent #
US 8,798,645 B2
Filed 01/30/2013
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Tracking proximity of services provider to services consumer | ||
Patent #
US 8,798,647 B1
Filed 10/15/2013
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Location sharing and tracking using mobile phones or other wireless devices | ||
Patent #
US 8,798,593 B2
Filed 05/07/2013
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
System and method of a relay server for managing communications and notification between a mobile device and a web access server | ||
Patent #
US 8,799,410 B2
Filed 04/13/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Maintaining mobile terminal information for secure communications | ||
Patent #
US 8,805,334 B2
Filed 09/05/2008
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Integrated messaging | ||
Patent #
US 8,805,425 B2
Filed 01/28/2009
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile device power management in data synchronization over a mobile network with or without a trigger notification | ||
Patent #
US 8,811,952 B2
Filed 05/05/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Method and system for management of a virtual network connection without heartbeat messages | ||
Patent #
US 8,812,695 B2
Filed 04/03/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
System and method for tracking billing events in a mobile wireless network for a network operator | ||
Patent #
US 8,831,561 B2
Filed 04/28/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Methods and apparatuses for transmission of an alert to multiple devices | ||
Patent #
US 8,831,635 B2
Filed 07/21/2011
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
System and method for making requests on behalf of a mobile device based on atomic processes for mobile network traffic relief | ||
Patent #
US 8,832,228 B2
Filed 04/26/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Distributed caching for resource and mobile network traffic management | ||
Patent #
US 8,838,783 B2
Filed 07/05/2011
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Flexible real-time inbox access | ||
Patent #
US 8,839,412 B1
Filed 09/13/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Web-based access to data objects | ||
Patent #
US 8,838,744 B2
Filed 01/28/2009
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile traffic categorization and policy for network use optimization while preserving user experience | ||
Patent #
US 8,843,153 B2
Filed 11/01/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
System for providing policy based content service in a mobile network | ||
Patent #
US 8,849,902 B2
Filed 06/24/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Hierarchies and categories for management and deployment of policies for distributed wireless traffic optimization | ||
Patent #
US 8,861,354 B2
Filed 12/14/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Policy based content service | ||
Patent #
US 8,862,657 B2
Filed 01/25/2008
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
System of redundantly clustered machines to provide failover mechanisms for mobile traffic management and network resource conservation | ||
Patent #
US 8,868,753 B2
Filed 12/06/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Provisioning of e-mail settings for a mobile terminal | ||
Patent #
US 8,873,411 B2
Filed 01/12/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Signaling optimization in a wireless network for traffic utilizing proprietary and non-proprietary protocols | ||
Patent #
US 8,874,761 B2
Filed 03/15/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile application traffic optimization | ||
Patent #
US 8,886,176 B2
Filed 07/22/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Optimization of resource polling intervals to satisfy mobile device requests | ||
Patent #
US 8,903,954 B2
Filed 11/22/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile virtual network operator | ||
Patent #
US 8,909,192 B2
Filed 08/11/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Bandwidth measurement | ||
Patent #
US 8,909,759 B2
Filed 10/12/2009
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Detection and management of user interactions with foreground applications on a mobile device in distributed caching | ||
Patent #
US 8,909,202 B2
Filed 01/07/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
System and method for providing a network service in a distributed fashion to a mobile device | ||
Patent #
US 8,914,002 B2
Filed 08/11/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Optimization of mobile traffic directed to private networks and operator configurability thereof | ||
Patent #
US 8,918,503 B2
Filed 08/28/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Method and apparatus for intercepting events in a communication system | ||
Patent #
US RE45,348 E1
Filed 03/16/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Application and network-based long poll request detection and cacheability assessment therefor | ||
Patent #
US 8,966,066 B2
Filed 10/12/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Scheduling calendar entries via an instant messaging interface | ||
Patent #
US 8,972,494 B2
Filed 01/19/2006
|
Current Assignee
Snap Inc.
|
Original Assignee
International Business Machines Corporation
|
Mobile device and method to utilize the failover mechanism for fault tolerance provided for mobile traffic management and network/device resource conservation | ||
Patent #
US 8,977,755 B2
Filed 12/06/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Monitoring mobile application activities for malicious traffic on a mobile device | ||
Patent #
US 8,984,581 B2
Filed 07/11/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Connection architecture for a mobile network | ||
Patent #
US 8,989,728 B2
Filed 09/07/2006
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Promoting interoperability of presence-based systems through the use of ubiquitous online identities | ||
Patent #
US 8,996,620 B2
Filed 11/20/2006
|
Current Assignee
Verizon Media Inc.
|
Original Assignee
AOL Inc.
|
Predictive content delivery | ||
Patent #
US 9,002,828 B2
Filed 01/02/2009
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Flexible and dynamic integration schemas of a traffic management system with various network operators for network traffic alleviation | ||
Patent #
US 9,009,250 B2
Filed 12/07/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Mobile network reporting and usage analytics system and method aggregated using a distributed traffic optimization system | ||
Patent #
US 9,021,021 B2
Filed 12/10/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Apparatus and method for obtaining content on a cellular wireless device based on proximity to other wireless devices | ||
Patent #
US 9,031,581 B1
Filed 11/07/2014
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
3D mobile user interface with configurable workspace management | ||
Patent #
US 9,043,731 B2
Filed 03/30/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile network traffic coordination across multiple applications | ||
Patent #
US 9,043,433 B2
Filed 05/25/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Intelligent rendering of information in a limited display environment | ||
Patent #
US 9,047,142 B2
Filed 12/16/2010
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile network traffic coordination across multiple applications | ||
Patent #
US 9,049,179 B2
Filed 01/20/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Location-based operations and messaging | ||
Patent #
US 9,055,102 B2
Filed 08/02/2010
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Selective data compression by a distributed traffic management system to reduce mobile data traffic and signaling traffic | ||
Patent #
US 9,060,032 B2
Filed 05/09/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Proxy server associated with a mobile carrier for enhancing mobile traffic management in a mobile network | ||
Patent #
US 9,065,765 B2
Filed 10/08/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Distributed implementation of dynamic wireless traffic policy | ||
Patent #
US 9,077,630 B2
Filed 07/08/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Device resources sharing for network resource conservation | ||
Patent #
US 9,084,105 B2
Filed 04/19/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile network background traffic data management | ||
Patent #
US 9,100,873 B2
Filed 09/14/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Managing cache to prevent overloading of a wireless network due to user activity | ||
Patent #
US 9,131,397 B2
Filed 06/06/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Optimized and selective management of policy deployment to mobile clients in a congested network to prevent further aggravation of network congestion | ||
Patent #
US 9,161,258 B2
Filed 03/15/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Methods and systems for sharing position data between subscribers involving multiple wireless providers | ||
Patent #
US 9,167,558 B2
Filed 06/12/2014
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol | ||
Patent #
US 9,173,128 B2
Filed 03/06/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Apparatus and method to transmit content to a cellular wireless device based on proximity to other wireless devices | ||
Patent #
US 9,185,522 B1
Filed 11/07/2014
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Dynamic categorization of applications for network access in a mobile network | ||
Patent #
US 9,203,864 B2
Filed 02/04/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Mobile device having content caching mechanisms integrated with a network operator for traffic alleviation in a wireless network and methods therefor | ||
Patent #
US 9,208,123 B2
Filed 12/07/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Mobile device with application or context aware fast dormancy | ||
Patent #
US 9,241,314 B2
Filed 03/15/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Automatic generation and distribution of policy information regarding malicious mobile traffic in a wireless network | ||
Patent #
US 9,239,800 B2
Filed 07/11/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Extending user relationships | ||
Patent #
US 9,251,193 B2
Filed 10/28/2007
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Apparatus and method for obtaining content on a cellular wireless device based on proximity | ||
Patent #
US 9,253,616 B1
Filed 03/24/2015
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Application or context aware fast dormancy | ||
Patent #
US 9,271,238 B2
Filed 03/15/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Request and response characteristics based adaptation of distributed caching in a mobile network | ||
Patent #
US 9,275,163 B2
Filed 10/17/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol | ||
Patent #
US 9,277,443 B2
Filed 12/07/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
System and method for a mobile device to use physical storage of another device for caching | ||
Patent #
US 9,300,719 B2
Filed 01/14/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Systems and methods for application management of mobile device radio state promotion and demotion | ||
Patent #
US 9,307,493 B2
Filed 03/15/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
System and method for reduction of mobile network traffic used for domain name system (DNS) queries | ||
Patent #
US 9,325,662 B2
Filed 01/09/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
User as an end point for profiling and optimizing the delivery of content and data in a wireless network | ||
Patent #
US 9,326,189 B2
Filed 02/04/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Wireless traffic management system cache optimization using http headers | ||
Patent #
US 9,330,196 B2
Filed 06/14/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Mobile application traffic optimization | ||
Patent #
US 9,407,713 B2
Filed 01/16/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Methods and systems for temporarily sharing position data between mobile-device users | ||
Patent #
US 9,467,832 B2
Filed 09/05/2014
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Presence-based power management | ||
Patent #
US 9,547,352 B2
Filed 09/30/2008
|
Current Assignee
Avaya Incorporated
|
Original Assignee
Avaya Incorporated
|
Rendez vous management using mobile phones or other mobile devices | ||
Patent #
US 9,584,960 B1
Filed 12/23/2013
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Techniques for communication within closed groups of mobile devices | ||
Patent #
US 9,615,204 B1
Filed 07/22/2015
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Techniques for sharing position data between first and second devices | ||
Patent #
US 9,654,921 B1
Filed 09/20/2016
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Mobile device configured for communicating with another mobile device associated with an associated user | ||
Patent #
US 9,712,986 B2
Filed 03/22/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Techniques for sharing relative position between mobile devices | ||
Patent #
US 9,736,618 B1
Filed 07/16/2015
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Rendez vous management using mobile phones or other mobile devices | ||
Patent #
US 9,749,790 B1
Filed 01/12/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Operation modes for mobile traffic optimization and concurrent management of optimized and non-optimized traffic | ||
Patent #
US 9,832,095 B2
Filed 12/14/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Formation of wireless device location sharing group | ||
Patent #
US 9,854,402 B1
Filed 01/27/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Ad hoc location sharing group between first and second cellular wireless devices | ||
Patent #
US 9,854,394 B1
Filed 02/09/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Rendez vous management using mobile phones or other mobile devices | ||
Patent #
US 9,883,360 B1
Filed 01/05/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Location sharing group for services provision | ||
Patent #
US 9,942,705 B1
Filed 02/09/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Methods, systems and apparatuses for the formation and tracking of location sharing groups | ||
Patent #
US 9,955,298 B1
Filed 08/28/2014
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Location sharing group map management | ||
Patent #
US 9,967,704 B1
Filed 01/27/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Mobile device status and notification | ||
Patent #
US 9,998,593 B1
Filed 10/28/2015
|
Current Assignee
Whatsapp Incorporated
|
Original Assignee
Whatsapp Incorporated
|
Synthetic communication network method and system | ||
Patent #
US 10,136,272 B2
Filed 04/10/2017
|
Current Assignee
Whatsapp Incorporated
|
Original Assignee
Whatsapp Incorporated
|
Location sharing service between GPS-enabled wireless devices, with shared target location exchange | ||
Patent #
US 10,149,092 B1
Filed 02/09/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Methods, systems and apparatuses for the formation and tracking of location sharing groups | ||
Patent #
US 10,165,059 B2
Filed 10/24/2014
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
SYSTEMS AND METHODS FOR FREQUENCY COMPENSATION OF REAL-TIME-CLOCK SYSTEMS | ||
Patent #
US 20190013778A1
Filed 07/31/2017
|
Current Assignee
Guangzhou On-Bright Electronics Co. Ltd
|
Original Assignee
Guangzhou On-Bright Electronics Co. Ltd
|
Map presentation on cellular device showing positions of multiple other wireless device users | ||
Patent #
US 10,200,811 B1
Filed 02/09/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Mobile device status and notification | ||
Patent #
US 10,225,399 B2
Filed 04/28/2017
|
Current Assignee
Whatsapp Incorporated
|
Original Assignee
Whatsapp Incorporated
|
Enhanced customer service for mobile carriers using real-time and historical mobile application and traffic or optimization data associated with mobile devices in a mobile network | ||
Patent #
US 10,263,899 B2
Filed 04/10/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Server-implemented methods and systems for sharing location amongst web-enabled cell phones | ||
Patent #
US 10,299,071 B2
Filed 11/24/2018
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Location sharing and map support in connection with services request | ||
Patent #
US 10,313,826 B2
Filed 12/21/2018
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Location sharing with facilitated meeting point definition | ||
Patent #
US 10,341,809 B2
Filed 12/13/2018
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Location sharing for commercial and proprietary content applications | ||
Patent #
US 10,341,808 B2
Filed 11/27/2018
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Synthetic communication network method and system | ||
Patent #
US 10,375,538 B1
Filed 11/19/2018
|
Current Assignee
Whatsapp Incorporated
|
Original Assignee
Whatsapp Incorporated
|
Synthetic communication network method and system | ||
Patent #
US 10,542,396 B1
Filed 08/05/2019
|
Current Assignee
Whatsapp Incorporated
|
Original Assignee
Whatsapp Incorporated
|
Temporary location sharing group with event based termination | ||
Patent #
US 10,750,310 B2
Filed 11/27/2019
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Application-based tracking and mapping function in connection with vehicle-based services provision | ||
Patent #
US 10,750,311 B2
Filed 02/04/2020
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Ad hoc location sharing group establishment for wireless devices with designated meeting point | ||
Patent #
US 10,750,309 B2
Filed 11/27/2019
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Location sharing for commercial and proprietary content applications | ||
Patent #
US 10,791,414 B2
Filed 04/23/2019
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Application-based two-way tracking and mapping function with selected individuals | ||
Patent #
US 10,856,099 B2
Filed 02/04/2020
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Remote notification of communications | ||
Patent #
US 7,315,614 B2
Filed 06/18/2002
|
Current Assignee
Bellsouth Intellectual Property Corporation
|
Original Assignee
ATT Intellectual Property I LP
|
Mobile instant messaging and presence service | ||
Patent #
US 20030065788A1
Filed 05/10/2002
|
Current Assignee
Nokia Technologies Oy
|
Original Assignee
Nokia Corporation
|
Passive personalization of buddy lists | ||
Patent #
US 20030065721A1
Filed 04/30/2002
|
Current Assignee
Facebook Inc.
|
Original Assignee
AOL Inc.
|
Multicast distribution of presence information for an instant messaging system | ||
Patent #
US 20030083046A1
Filed 10/29/2001
|
Current Assignee
Google Technology Holdings LLC
|
Original Assignee
Motorola Inc.
|
Facilitating instant messaging outside of user-defined buddy group in a wireless and non-wireless environment | ||
Patent #
US 20020155826A1
Filed 04/01/2002
|
Current Assignee
Facebook Inc.
|
Original Assignee
AOL Inc.
|
Game server, recording medium for storing game action control program, network game action control method and network action control program | ||
Patent #
US 20020160824A1
Filed 04/25/2002
|
Current Assignee
Konami Digital Entertainment Company Limited
|
Original Assignee
Konami Computer Entertainment Tokyo Inc.
|
Method and apparatus for providing instant messaging in a wireless communication system | ||
Patent #
US 20020198008A1
Filed 06/21/2001
|
Current Assignee
Google Technology Holdings LLC
|
Original Assignee
Motorola Inc.
|
39 Claims
-
1. A communication system comprising:
-
a server having a service element for providing the service and a data store for storing the identities of users of the communication system that are registered to the service; a user terminal that is capable of initiating verification of the registration of one or more users of the communication system to the service by transmitting to the server one or more messages indicating the identities of the said one or more users; wherein; the user terminal has a data store arranged for storing a plurality of user identities forming a first set of users, and the user terminal has a user interface arranged to present to a user of the terminal a single command option in response to selection of which the user terminal automatically transmits to the server one or more messages indicating the user identities of the first set of users for verification of which users of the first set are registered to the service. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
-
-
17. A method for checking which users of a communications network are registered to a service of the network, the method comprising:
-
storing the identities of the users of the communication network that are registered to the service in a server; storing a plurality of user identities of the communications network in a user terminal as a first set of users; presenting a single command option via a user interface to a user of the user terminal; in response to the selection of the command option, automatically transmitting one or more messages indicating the user identities of the first set of users to the server; and verifying by means of the server which users of the first set are registered to the service. - View Dependent Claims (18)
-
-
19. A user terminal capable of operation by a user for registering to a server of a communication network, the user terminal comprising:
-
a data store for storing a plurality of identities of other users of the network; a user interface arranged to present to the user of the user terminal a single command option, and a translation element for cooperating with the user interface such that upon selection of the single command by the user, the translation element generates one or more messages which are automatically transmitted from the user terminal to the server for verifying which of the other users are registered to the server. - View Dependent Claims (20, 21, 22, 23)
-
-
24. A method for checking registration status of users, the method comprising:
-
storing a plurality of user identities in a user terminal as a first set of users; presenting a single command option via a user interface to a user of the user terminal; in response to selection of the command option, automatically transmitting one or more messages indicating the user identities of the first set of users to a server where identities of users that are registered to the service are stored for verification of the registration status of the users. - View Dependent Claims (25, 26, 27)
-
-
28. A method for providing users with information of service registration status of other users of a communications network, the method comprising:
-
storing identities of users of the communication network that are registered to a service in a server; receiving from a user terminal one or more messages indicating user identities of a first set of users, wherein the one or more messages are generated based on user identities of the first set of users as stored in the user terminal and automatically sent in response to selection of a single command option; and verifying which users of the first set are registered to the service. - View Dependent Claims (29, 30, 31, 32, 33)
-
-
34. A server for providing users with a service via a communications network, comprising:
-
a service element for providing the service; a data store for storing identities of users of the communication system that are registered to the service; and a controller configured to process one or more messages received from a user terminal and indicative of user identities of a first set of users, wherein the one or more messages are generated based on user identities of the first set of users as stored in the user terminal and automatically sent in response to selection of a single command option, and to verify which users of the first set are registered to the service.
-
-
35. A program product, comprising machine readable program code for causing performing of the following steps:
-
storing a plurality of user identities in a user terminal as a first set of users; presenting a single command option via a user interface to a user of the user terminal; and in response to selection of the command option, automatically transmitting one or more messages indicating the user identities of the first set of users to a server where identities of users that are registered to the service are stored for verification of the registration status of the users. - View Dependent Claims (36)
-
-
37. A program product, comprising machine readable program code for causing performing of the following steps:
-
storing identities of users of the communication network that are registered to a service in a server; receiving from a user terminal one or more messages indicating user identities of a first set of users, wherein the one or more messages are generated based on user identities of the first set of users as stored in the user terminal and automatically sent in response to selection of a single command option; and verifying which users of the first set are registered to the service. - View Dependent Claims (38, 39)
-
1 Specification
The present invention is concerned with instant messaging and presence services (IMPS) and in particular, but not exclusively, with the so-called Wireless Village system architecture to be used in wireless communication networks.
The terminology “instant messaging” has been broadly used to describe a number of communication services, wherein users of a communication network are able to communicate in a substantially real time manner over a communication network. Broadly speaking, instant messaging has been approached from two different perspectives.
Firstly, instant messaging services are well established over fixed line networks, for example the Internet, wherein instant messaging software enables PC desktop users to communicate with one another online in a substantially real time environment. The instant messaging service is hosted by a server (or a network of servers) operating on the fixed line network with the desktop PCs acting as clients. An instant message sent from a desktop client is received by the instant message server and is distributed to the intended recipient desktop client or clients.
Instant messaging software has been developed to allow online users to monitor the relevant status of other users, i.e. whether they have logged on or have logged out of the service. Programs such as Internet Relay Chat (IRC) are extensively used and have been around for some time. These chat programs enable online users to group together into particular chat rooms which are hosted by IRC servers. Typically, users log into these chat rooms on an ad-hoc basis using on-line aliases to chat with other users on subjects of common interest.
Other computer programs, for example AOL Instant Messenger™ have been developed, which allow desktop users to communicate directly with one another. These programs are also hosted by instant message servers but these servers differ from IRC servers in that they provide more advanced access controls. Typically, users will subscribe to a list of other users (friends, family etc.) which is maintained by the instant message server (known as a “buddy list”). In this way, on-line status information and the ability to receive instant messages can be limited to those users on the subscribed list.
A drawback with these services is that a general lack of interoperability prevents users of one instant message service from interacting with users on a competing instant message service. Furthermore, each instant message service comes with its own client software which usually has to be downloaded.
Secondly, instant messaging is also being approached from the wireless communication network perspective. For example, Ericsson™, Motorola™ and Nokia™ have developed Wireless Village (WV), which is a mobile Instant Messaging and Presence Service (IMPS) initiative formed in April 2001 to define and promote a set of universal specifications for mobile instant messaging and presence services. A white paper has been published by Wireless Village and is discussed in more detail later.
The Wireless Village initiative was set up as a result of a number of drivers. In particular, the three above-mentioned industry leaders recognised a number of growing trends. These included: the growing popularity of instant messaging applications in fixed networks such as the Internet, the explosive growth of SMS (Short Message Service) text messages between mobile stations in a wireless communication network, and the need for an open industry specification to ensure open interfaces and interoperability between applications and web technologies.
The Wireless Village IMPS includes four primary features; i) presence, ii) instant messaging, iii) groups, and iv) shared content. As explained in the White Paper, the first feature, i.e. presence, is the key enabling technology for the Wireless Village initiative. In the existing desktop-based instant messaging services, the presence values are usually very simple, such as user is active, absent, not willing to communicate, off-line etc. These values generally reflect the user'"'"'s ability or willingness to communicate via instant messaging. However in the Wireless Village model, presence takes on a richer meaning. For example, a user'"'"'s presence can be defined in terms of independent attributes such as: device availability (phone is on, off, or in a call), the status of the user (available, unavailable, or in a meeting), location information, user device capabilities (voice, text, GPRS [General Packet Radio Services], multimedia, etc) and searchable personal statuses such as mood (happy, angry, etc) and hobbies (football, fishing, computing, dancing, etc).
Currently, the most common presence attributes specified are “Availability status”, “Message”, and “Icon”. Examples of these attributes are as follows:
i) Availability status: this is similar to the traditional presence values available on desktop clients, and is indicated by a graphic representing the user'"'"'s willingness or ability to communicate (note: not available is indicated when the user is logged off the WV server).
ii) Message: a text string that a user enters as a personal message available to other subscribed users, e.g “At home”.
iii) Icon: an image or logo that can be selected by the user to, for example, indicate his personal interests or to reinforce the presence message. For example the icon shown in
It is useful at this point to distinguish between different terminologies used in relation to the Wireless Village (WV). That is, a user wishing to use the WV service for the first time will need to register to the WV service. Registration may incur charges based on, for example, initial registration, on-going usage on a monthly basis, time connected to the server, or the amount of data transmitted/received. However, the exact service charging method is flexible and beyond the scope of the present invention.
A user registered to the WV service is able to “connect” to a WV server using a client device such as a mobile phone. Once connected, the registered user can then choose to “subscribe” with another registered user to obtain, for example, presence information of the other registered user. Users who are not registered with the WV service cannot connect to the WV server, whereas registered users can connect and disconnect as they please. Registered users who are “connected” to a WV server can decide whether to subscribe or unsubscribe to other registered users.
If a registered user (User A) decides to disconnect from the WV server, this simply means User A cannot see the presence of other registered users, but has no effect on other registered users being able to see the presence of User A or being able to subscribe to User A.
Early users of the WV (Wireless Village) system might wish to communicate initially with their close friends or family using mobile IMPS, only to discover that these friends and family do not have handsets enabled with IMPS capability. The next logical step might be to check which of their extended group of friends or family are available on the WV server. However, there is no solution for checking which friends or family members are on the WV server. Instead, a user can only attempt subscribing to another user by single requests, i.e. one request at a time.
For example, a User A who wants to subscribe to and see another User B'"'"'s presence, needs to send User B'"'"'s Wireless Village Identity (WV-ID) or some other form of identification to a WV server, which in response checks to see if User B is registered to the WV service. If User B is indeed registered then User A is subscribed to User B which allows User A to see User B'"'"'s presence. However, if User B is not registered to the WV server, then the request to subscribe and see User B'"'"'s presence fails. Thus, if a user wishes to see the presence of a large group of friends, the user will need to request a subscription for each friend one at a time.
An alternative solution might be to allow users to browse on the relevant WV server, which would allow the user to see everybody registered to the WV service. However, there are two main drawbacks with this approach. On one hand, access to lists of names may present privacy concerns, but more importantly the size of the lists may present a heavy load on the wireless communication system which in turn will result in slow service.
It is an object of an embodiment of the present application to allow a user to check which of a plurality of contacts are registered to a service of an IMPS server and which overcomes the aforementioned disadvantages.
According to one aspect of the present invention there is provided a communication system comprising: a server having a service element for providing the service and a data store for storing the identities of users of the communication system that are registered to the service; a user terminal that is capable of initiating verification of the registration of one or more users of the communication system to the service by transmitting to the server one or more messages indicating the identities of the said one or more users; wherein: the user terminal has a data store arranged for storing a plurality of user identities forming a first set of users, and the user terminal has a user interface arranged to present to a user of the terminal a single command option in response to selection of which the user terminal automatically transmits to the server one or more messages indicating the user identities of the first set of users for verification of which users of the first set are registered to the service.
According to another aspect of the present invention there is provided a method for checking which users of a communications network are registered to a service of the network, the method comprising: storing the identities of the users of the communication network that are registered to the service in a server; storing a plurality of user identities of the communications network in a user terminal as a first set of users; presenting a single command option via a user interface to a user of the user terminal; in response to the selection of the command option, automatically transmitting one or more messages indicating the user identities of the first set of users to the server; and verifying by means of the server which users of the first set are registered to the service.
According to a further aspect of the present invention there is provided a user terminal capable of operation by a user for registering to a server of a communication network, the user terminal comprising: a data store for storing a plurality of identities of other users of the network; a user interface arranged to present to the user of the user terminal a single command option, and a translation element for cooperating with the user interface such that upon selection of the single command by the user, the translation element generates one or more messages which are automatically transmitted from the user terminal to the server for verifying which of the other users are registered to the server.
For a better understanding of the present invention and to show how the same may be carried into effect, reference will now be made by way of example to the accompanying drawings.
The WV system architecture can be described predominantly as a client-server based architecture, but also offers server-server capabilities for interoperability with legacy systems or proprietary technologies. However, the main mode of operation is in a client-server mode, wherein the server is the WV server 4 (often referred to as an IMPS-server) and the client can be either a mobile station, or other services/applications, or fixed desktop clients. The Wireless Village system is designed to offer seamless operation for both mobile and fixed line networks, and includes support for traditional SMS texting (performed in the mobile sense) and instant messaging (for example as performed in fixed line networks).
The WV service typically operates over a network of WV servers, which communicate with each other by means of a server-to-server protocol (SSP). A special type of WV server known as a proprietary gateway server 20 provides a gateway to non-WV services hosted by a proprietary server 22.
It can be seen from
It should also be understood that the Wireless Village protocol uses XML (Extensible Markup Language) to represent the protocol data being exchanged during an IMPS session. There are also other techniques which have been adopted for the Wireless Village, for example MIME-type (Multipurpose Internet Mail Extensions) messages have been adopted for registering the format of the IMPS protocol messages. The use of existing standards is demonstrated in
Referring back to
As explained above, the presence service element has more meaning in the WV than in the desktop world, wherein for the latter, users merely announce their status to other authorised users. Instead, the presence service for IMPS can be defined in terms of a variety of different attributes. It should be appreciated that the presence service as provided by a presence service element 8 within the WV server 4, can be specified in terms of presence attributes. Presence information is typically of a personal nature and it is therefore only made available to whoever the user wishes. Therefore, access to presence information is controlled by the user himself.
The instant messaging service has already been described and is a familiar concept in both the mobile and desktop applications.
The group service element provides the ability for users to invite friends, family or people with a similar interest to chat in group discussions. Network operators can therefore build common interest groups where users can meet each other online.
The content service element allows users to share information, for example multimedia content such as pictures and music, which can be downloaded by other users that are authorised to use the service. The service can also be used to share files within groups in an instant messaging or chat session.
Each WV server 4 comprises a Service Access Point (SAP) 6, which serves as an interface between the WV server and its environment. The SAP 6 has interfaces to the WV clients 10, 12, other WV servers, the mobile core network 2, and proprietary gateways 20 to other non-WV servers. The functionality of the SAP includes authentication and authorisation, service discovery and service agreement, user profile management, and service relay.
The Wireless Village client of the architecture shown in
The CLI client uses text messages to communicate with the WV server. The functionality provided could be a subset of the functionality provided by an embedded client. An example of the CLI client is a mobile phone that uses SMS to communicate with a WV server.
The mobile phone of
At step 40, the user interface shows a list of possible options available to the user of the mobile station. The user selects the entry labelled “Subscribed names” which as the name suggests would be a group of users, which the user has subscribed to. At step 42, the first entry in the group of subscribed users is displayed together with the respective presence attributes. In this example, the subscribed user “Adam” is displayed and his presence message explains that he is “Bored at the office”. Additionally, the presence attributes Availability Status 1 and Icon 2 are also displayed. Other subscribed users can be displayed with their presence attributes by, for example, selecting up and down scroll keys (not shown).
If the user selects the “Options” command then an options menu is presented on the display as shown at stage 44. At stage 44, the user can select from a variety of options including a “chat” option, which will allow the user to chat with “Adam” or alternatively an “unsubscribe” option, which will unsubscribe the user from “Adam”, i.e. the user will no longer be able to see that Adam is “bored at the office”. However, in the embodiments shown the user will select the “Subscribe new” option, indicating that he wants to add a new user to the subscribed names group.
At step 46, the user is given two options. Either to select the contacts stored in the phone book of the mobile station (i.e. by selecting the “From phonebook” option) or alternatively the user can select the “Search all names” option. The “Search all names” command is translated by the user interface into a search and match operation, wherein comparison circuitry (not shown) will search the WV server 4 for all WV-IDs of registered Wireless Village users that match all contacts stored on the mobile phone. The results may then be reported as a list of matching WV-IDs.
- “name” 504: which could contain either the full name, first name, surname or even a nickname of the contact.
- “IMSI” 506: is the International Mobile Subscriber Identity, which is a unique identifier of a particular mobile phone that may belong to the contact.
- “WV-ID” 508: is the Wireless Village identifier that may have been assigned to the contact. Normally, the mobile phone will not know what the WV-ID of a contact is since a WV-ID is only assigned by the WV server once a contact has been registered to the service. However, the user of the mobile phone may have received at some earlier time a message from a contact that includes that contact'"'"'s WV-ID. In this case, the WV-ID will be stored in the database of the mobile phone. In such a situation it is necessary to perform a check at the WV server to confirm that the WV-ID for a particular contact is in fact correct (i.e. still relevant).
- “Tel No” 510: is a fixed line telephone number, e.g. a PSTN (Public Switched Telephone Network) number, that may belong to the contact.
- “Mobile No” 512: is a phone number of a particular mobile phone that may belong to the contact.
- “Email” 514: is an email address of the contact.
- “IP addr” 516: is the Internet Protocol address of a particular workstation connected to the Internet that may belong to the contact.
The searching and matching function may require a certain processing time indicated by the screen of the user interface shown at stage 48, after which, the matched names, i.e. those names corresponding to the contacts that are registered on the WV server, are found and are output to the user on the display shown at stage 50.
The comparison circuitry is responsible for comparing the list of contacts stored in the mobile station with the list of users registered with the presence service element 8 of the WV server 4.
According to one embodiment, the comparison circuitry resides within the WV server 4. When the user selects the “Search all names” command, the user interface informs the control processor 312 which responds by automatically searching for and keeping a record of suitable identification information in each of the contact records stored on the mobile phone. The control processor 312 then operates to send via the radio network the identification information to the WV server 4. The identification information used to distinguish between contact records and for performing the comparison process is flexible.
It should be appreciated that there are in practice many different ways of implementing the present invention. For example, in relation to step 602, the contact information can be sent over the radio interface in different ways. That is, the information for the contacts stored on the mobile phone could all be sent in one message or alternatively could be sent in a plurality of successive messages. Moreover, the information that is sent at step 602 could be limited to contain only some of the fields for each of the records corresponding to each contact stored in the contact database, thereby reducing the required bandwidth. For example, only the user'"'"'s mobile phone numbers would be sent whereupon the WV server would check which of those contacts are registered to the WV server and send those WV-ID'"'"'s back to the user of the mobile phone. In yet a further embodiment, a plurality of different fields for each contact record could be sent with a priority attached to each field. In such a situation, the WV server will first search for those contacts having fields with the highest priority and identify whether those contacts are in fact registered to the WV server.
It should also be appreciated that an embodiment is envisaged wherein at least one of the contacts stored in the database on the mobile phone have at least two different mobile numbers for that contact. In such a case, both mobile numbers can be sent off to the WV server which is then able to search for whatever fields are matched, or alternatively a priority search can be given to one of the mobile numbers.
Therefore, broadly speaking the contacts database in the mobile phone may comprise one of three types of contact records:
1) contact information only, i.e. any of the fields shown in
2) contact information and WV-ID, which means that at least one of the contacts has a WV-ID. It is therefore necessary that the WV-ID or the contact information is sent to the WV server to check that this WV-ID is still correct for the relevant contact.
3) contact information and WV-ID and subscribed, which means that the relevant contact has in fact subscribed to the WV server in the past. This can be confirmed by the WV server, or alternatively the contacts which are subscribed are ignored and the contact information of the other contacts in the database that are not subscribed are sent to the WV server for checking.
In another embodiment of the present invention, upon initiation of the “Search all names” command, the control processor 312 searches only for WV-IDs contained in each of the contact records stored on the mobile phone. The compiled list of WV-IDs is then sent to the WV server which compares the compiled list with its own list of WV-ID'"'"'s that are registered to the server. The matching WV-IDs are then sent back from the WV server to the mobile station.
However, if the WV server maintains a database of registered users similar to the contacts database 500 in the mobile phone, then the comparison circuitry in the WV server is able to compare not just the WV-IDs but also other details relating to a contact. Accordingly, in another embodiment, upon initiation of the “Search all names” command, the control processor 312 searches for a single item of suitable identification information contained in each of the contact records in the following order of priority: WV-ID, then mobile phone number, then home phone number, then email address. Alternatively, the control processor 312 may search for all telephone numbers contained in each of the contact records, or even every detail contained in each of the contact records. In any case, the compiled list of identification information is then sent to the WV server which searches for each item of identification information in its database of registered users. Where the search finds a record containing a data field which matches (or maybe substantially matches) the item of identification information, the WV-ID corresponding to that record is added to a list of matching WV-IDs. The matching WV-IDs are then sent back from the WV server to the mobile station.
Alternatively, the search need not necessarily return the matching WV-IDs but may simply indicate in a message from the WV server to the mobile phone that one or more contacts have matching registration information on the WV server.
Clearly, at all stages in this process the relationship between the sent and received information must be arranged so as to enable correlation between the matching WV-IDs and the original contact records in the mobile phone.
Instead of choosing the “Search all names” option at step 46 in
In yet a further embodiment, if the database is present in the server, the WV server can verify that one of the mobile phone contacts is registered to a WV server and can then return a plurality of contact details associated with that registered contact to the mobile phone. The user can use this returned information to update the contact database on the mobile phone.
The WV server 4 having the comparison circuitry is then able to compare the identification information sent from the mobile station with the users that are registered to the presence server and compiles a list of matching WV-IDs which are returned to the mobile station. The matching WV-IDs are stored in the appropriate contact records in the contacts database, and the corresponding contact names are indicated as a list at stage 50 as previously described.
The user is then able to make use of a “Mark” command at stage 52 to select from a resulting list of matching names (i.e. contacts which are registered to the WV server), which of the contacts he wishes to subscribe to. Once the user has selected which contacts he wants to add to his subscribed list, he can then select the “Done” command and the next screen 54 requests the user to confirm the selection. Once confirmed, the control processor 312 flags the contact records corresponding to the selected names as being subscribed to the presence service. The control processor 312 also sends a subscription request with the WV-IDs corresponding to the selected contacts to the WV server which in turn subscribes the user to those selected WV registered users. At stage 56, the user interface displays to the user that the new subscription containing three entries has been activated.
In an alternative embodiment, the comparison circuitry could reside in the mobile station itself, whereby when the user selects the “search all names” command at stage 46 the user interface will translate this and signal to the WV server to send across a list of all the users subscribed to the presence service. This list is then received by the mobile station, which then performs a comparison with the users that are stored on the mobile station and produces a resulting list of the matched users.
In the described embodiments, the user of the mobile phone is able to issue a single command, i.e. “Search all names” 600 via the user interface 314 of the mobile phone 300. The mobile phone will have translation circuitry, for example a network interface element (not shown) located in the RF circuitry 304 of the mobile phone 300, which is responsible for translating the command issued by the user interface into a particular format of radio message(s) to be sent over the radio interface between the mobile phone and the WV server. The “search all names” command 600 is translated by a network interface element into whatever radio format message is deemed most appropriate. Therefore, a user of a mobile station to determine via a single command (i.e. “search all names” 600) which of his contacts are registered to the WV server.
It should be understood that the circuitry for performing the comparison can take on many forms, for example the circuitry could have parallel processing elements so that all the requests are searched at the same time, i.e. by performing the comparison in parallel.
The searching function is useful for both the instant messaging as well as for presence data. For instant messaging one user can communicate with another user via a server in a substantially real-time manner. Instead for presence data, considering the previous example, a user Adam could update his status “Bored at the office” by sending presence data to the WV server. This presence data would be stored in the server where it would remain in an unchanged state until Adam updated his status. If another user, John, requests the presence of user Adam then user John would receive a message from the WV server indicating that Adam was “Bored at the office”. Therefore, whereas instant messaging is affected in a substantially “real time” manner, the WV server which maintains the presence information does not have to involve a “real time” message between two users. However, in the presence embodiment user John would obtain a substantially instant message from the WV server regarding the status of Adam, although Adam may have sent his status to the network server some time previously.
Because the searching and matching operation according to an embodiment of the present invention is performed for all contacts stored in the mobile phone simultaneously, rather than on a on-by-one basis, the user is quickly and efficiently able to establish which of the contacts is subscribed to the presence service of the WV server. That is, the searching and matching operation can be performed in one process, rather than checking one at a time whether each relevant user is subscribed to the presence service. The search and matching operation results in a matched list, which could contain: no names (i.e. none of the requested contacts were on the server), one name (i.e. one of the contacts is subscribed to the server) or a list of names (i.e. more than one contact was subscribed to the server). The user is then able to select from the resulting matched list which contact to subscribe to. This encourages the usage of the presence service for the IMPS server substantially as compared to a one-at-a-time subscription approach, which is tedious and time consuming.
In an alternative embodiment, an even quicker way of performing the searching and matching operation is to ignore steps 50, 52 and 54 described in relation to
Although in the described embodiment a “Search all names” command was used which was translated into performing a search and match operation on all contacts stored on the mobile station, it should be appreciated that other commands could be used. The user interface could be setup to provide other command options where only a particular selection of names stored on the mobile phone could be sent to the WV server via a single command. For example, the display of the user interface at stage 46 of
It should also be appreciated that in an alternative embodiment, the user does not store his contacts on his user station. Instead a request is sent along with the relevant user identity information of the relevant contact to the WV server. Thus, some of the contacts can communicate their identity information to the user over a voice channel (wherein said contact identity information is not necessarily stored on the user station) and the user station can send this to the WV server.
It should also be appreciated that although the word “mobile phone” has been used to describe the client in the preferred embodiment, IMPS is specifically concerned with the ability of different clients to operate in the network. For example, the mobile station could be replaced with desktop computers, PDA'"'"'s (Personal Digital Assistants), other handheld devices, etc.
It should also be appreciated that WV IMPS is intended to be used seamlessly across different networks, for example, wireless communication networks, fixed line networks (for example the Internet), and their related variants. That is, the WV client 10 shown in
It should be appreciated that the record fields shown in the contacts database 500 of
The above described embodiments of the present invention allow a user to check with a single command on the user interface whether contacts stored on the user station are in fact registered to a service of the IMPS server and then the user has the ability to selectively subscribe to one or more of the registered contacts.
There follows a discussion of the white paper on the Wireless Village initiative to further describe technology relating to embodiments of the present invention.
The Wireless Village initiative is about building community around new and innovative Mobile Instant Messaging and Presence Services (IMPS). Instant Messaging and Presence is moving from the desktop and Internet to the mobile domain. Ericsson, Motorola and Nokia recognise the need for an industry standard for mobile IMPS. These companies formed the Wireless Village Initiative to ensure the interoperability of wireless messaging services and IM in particular.
Today'"'"'s wireless landscape is rapidly changing as mobile phones and networks are being enhanced to provide services beyond just voice services. The wireless industry is now seeing the rapid expansion of mobile data services. This expansion is being fueled by a variety of factors:
Internet and wireless domains are converging
Tremendous adoption rates of SMS and its lucrative business model
Mobile consumers and professionals are asking for new wireless applications
Operators need to leverage their investment in 3G spectrums
Operators are extending their brand to consumers via portals and new services.
Chief among the technologies consumers are asking for is mobile instant messaging and presence services (IMPS). Research Portal.com reports instant messaging is the Number Two requested application after voice. With the monumental growth patterns of SMS, where 10 billion messages are sent every month globally according to the GSM Association, and the adoption rate of desktop instant messaging (IM), with over 100 million registered users and over 50 million regular users as reported by Jupiter Media Metrix, we foresee that wireless IMPS will capitalize on both these trends.
Today, the world of desktop IM can be characterized by multiple, competing, proprietary systems and a lack of interoperability that is reminiscent of the early stages of email development. One of the challenges in bringing IM to the wireless market is to enable a standards-based approach that supports the goals of interoperability and roaming, ensuring the success of an application that will be as popular as email.
It is the goal of the Wireless Village initiative to ensure interoperability of mobile instant messaging and presence services while building community both around the initiative and through the deployment of innovative new IMPS services.
It is the strategy of the Wireless Village initiative to help the wireless operator succeed in attracting and retaining customers, leveraging their investment in current 2 G and 2.5 G as well as emerging 3 G networks and increasing profits by providing a comprehensive solution that addresses both the network operator'"'"'s requirements and the end-user'"'"'s needs. The Wireless Village solution enables the operator to leverage their existing customer base, SMS usage patterns and business models—while attracting new customers, enabling partnerships with existing IM providers, providing new value-add services, all while building their own IMPS communities.
The Wireless Village Instant Messaging and Presence Service (IMPS) includes four primary features:
Presence is the key enabling technology for the Wireless Village initiative. In the desktop world users have been able to announce their status to authorized recipients, facilitating instant messaging.
In the Wireless Village model, Presence takes on a richer meaning. It includes client device availability (my phone is on/off, in a call), user status (available, unavailable, in a meeting), location, client device capabilities (voice, text, GPRS, multimedia) and searchable personal statuses such as mood (happy, angry) and hobbies (football, fishing, computing, dancing). Since presence information is personal, it is only made available according to the user'"'"'s wishes—access control features put the control of the user presence information in the users'"'"' hands.
Instant Messaging is a familiar concept in both the mobile and desktop worlds. Desktop IM clients, two-way SMS and two-way paging are all forms of Instant Messaging. Wireless Village will enable interoperable mobile IM in concert with other innovative features to provide an enhanced user experience.
Groups or chat are a fun and familiar concept on the Internet. The Wireless Village initiative enables both operators and end-users to create and manage groups. Users can invite their friends and family to chat in group discussions. Operators can build common interest groups where end-users can meet each other online.
Shared Content allows users and operators to setup their own storage area where they can post pictures, music and other multimedia content while enabling the sharing with other individuals and groups in an IM or chat session.
These features, taken in part or as a whole, provide the basis for innovative new services that build upon a common interoperable framework. The Wireless Village initiative will use its community of supporters as a forum in which to test that framework.
Everyone benefits from the Wireless Village solution:
- End Users
- Device Manufacturers
- Service Providers
- Application Developers
End users benefit from the Wireless Village services—which work from any device, be it a mobile phone or desktop PC, on any network—by knowing they can communicate with their friends and family.
Device Manufacturers benefit by having only to implement a single protocol to support a common set of widely adopted features. The cost reductions made possible through strong industry support of a common protocol are necessary given the constraints on mobile devices: low power consumption, storage space, memory and cost.
Service Providers offering Wireless Village services benefit from having to deploy a single server solution that will address multiple customer needs while interoperating seamlessly across multiple devices.
Application Developers have a common framework upon which they can build new services for presence, messaging, group and content delivery.
In order for IMPS to be successful, it is imperative that client devices, both mobiles and PCs can interoperate. To ensure interoperability and the widespread adoption of the solution, the Wireless Village initiative is promoting jointly developed architecture and protocols as industry specifications.
One of the key benefits to the operator in deploying the Wireless Village solution is the ability to brand the service and build an end-user community. Friends and colleagues want to be able to communicate with each other independent of location, time or device constraints. We predict that the inherent mobility of wireless devices, coupled with an IM solution that leverages the desktop PCs, will very quickly drive the creation of persistent IMPS communities.
The Wireless Village specification defines how the IMPS system should interface with the existing wireless network infrastructures, as well as, providing an open interface to existing IM communities on the Internet. This enables operators to establish business relationships with existing IM providers such as AOL, ICQ, Yahoo, MSN and others.
Gartner Group reports that messaging will be the #1 data revenue source for carriers for the next 5 years (39% in 2002 and 62% in 2005). The architecture and open protocol of the Wireless Village specification supports multiple server deployments such that the operator can host their own service, in addition to enabling the enterprise with their own IMPS servers. The Wireless Village initiative'"'"'s flexible architecture and open interfaces help promote the widespread adoption of IMPS servers. Our expectation is that IMPS servers will become as prevalent as email servers in the near future.
Where possible, the protocol makes use of existing Internet and Web technologies. These technologies are implemented widely and are well tested, so their use ensures easy implementation and interoperability testing.
XML, the Extensible Markup Language, is rapidly emerging as the lingua franca for representing structured data over the Web. To the greatest extent possible, the protocol uses XML to represent the protocol data being exchanged during an IMPS session.
IMPS activities in the IETF IMPP have received widespread interest throughout the industry. Although it is still in development, to the greatest extent possible, the Wireless Village initiative will support the CPIM draft and build upon it.
Other useful standards in this space include the Multipurpose Internet Mail Extensions (MIME) for registering the format of the IMPS protocol messages.
The Wireless Village defines and promotes a set of universal standards and specifications for mobile instant messaging and presence services. The standards and specifications will be used for exchanging messages and presence information between mobile devices, mobile services and Internet-based instant messaging services. All will be fully interoperable and will leverage existing web technologies.
The Wireless Village interoperability framework includes the Wireless Village system architecture and an open protocol suite at the IMPS application level to provide interoperable mobile IMPS services among workstations, network application servers, and mobile information appliances such as mobile handsets, handheld computers, PDAs and other mobile devices.
The Wireless Village System Architecture, as shown in
The Wireless Village Server is the central point in this system. It is composed of four Application Service Elements that are accessible via the Service Access Point. The Application Service Elements are:
- Presence Service Element
- Instant Messaging Service Element
- Group Service Element
- Content Service Element
The Wireless Village Client consists of an Embedded Client and a Command-Line Interface (CLI) Client. It communicates with the Wireless Village Server to accomplish IMPS features and functions and to provide users with IMPS services.
The Wireless Village System Architecture is consistent with 3GPP TS 22.121 Virtual Home Environment and 3GPP TS 23.127 Open Service Architecture. The interoperability between Wireless Village Servers and Clients, and between Wireless Village Servers is achieved through the Wireless Village Protocol Suite.
The Wireless Village Protocol Suite consists of the Client-Server Protocol (CSP), Server-Server Protocol (SSP) and Command Line Protocol (CLP). The protocol stack is shown in
CSP is designed to provide Embedded Clients in mobile terminals and desktop clients access to the Wireless Village Server.
SSP is designed to provide the communication and interaction means among the Wireless Village Servers and the SSP Gateways. SSP allows the Wireless Village clients to subscribe to the IMPS services provided by different servers that are distributed across the network. SSP allows the Wireless Village clients to communicate with existing proprietary Instant Messaging networks through the SSP Gateway.
CLP is designed to provide the Wireless Village server and the CLI client with the means to communicate and interact with each other to support the IMPS services in a legacy CLI client.
The Wireless Village Protocol Suite runs at the application level, and is compliant with IETF RFC 2778, RFC 2779 and the IMPP CPIM model. The Wireless Village Protocol Suite may run independently over different transport layer and bearer protocols.
The Wireless Village initiative is a community-building effort. We endeavor to build a community of technology companies around a common standard, and to enable service providers to build their own end-user communities.
The Wireless Village initiative is an industry-leading coalition and a comprehensive solution that leverages a standards-based approach to wireless instant messaging and presence.
Ericsson, Motorola, and Nokia are leaders in wireless communications solutions.
The Wireless Village initiative is open to participation from all industry leaders that desire to support these specifications and help build this community.