ANALYTE SENSOR
First Claim
1. A system for evaluating a change in a sensitivity of an analyte sensor over a predetermined time period, the system comprising:
- an analyte sensor; and
a computer system, wherein the computer system comprises;
an input module configured to receive sensor analyte data and reference analyte data, wherein the sensor data comprises one or more sensor analyte values measured in a biological sample of a host and wherein the reference data comprises one or more reference analyte values; and
a processor module configured to intermittently calculate a sensitivity of the analyte sensor based at least in part on the reference analyte data and to evaluate a change in sensitivity by evaluating a plurality of time-spaced sensitivity calculations over a predetermined time period.
1 Assignment
0 Petitions

Accused Products

Abstract
Systems and methods of use for continuous analyte measurement of a host'"'"'s vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host'"'"'s circulatory system.
680 Citations
Analyte monitoring device and methods of use | ||
Patent #
US 7,885,699 B2
Filed 08/06/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing continuous calibration of implantable analyte sensors | ||
Patent #
US 7,885,698 B2
Filed 02/28/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 7,884,729 B2
Filed 08/02/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
ANALYTE SENSOR | ||
Patent #
US 20110024307A1
Filed 07/01/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated transmitter unit and sensor introducer mechanism and methods of use | ||
Patent #
US 7,883,464 B2
Filed 09/30/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20110077490A1
Filed 09/29/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 7,869,853 B1
Filed 08/06/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Variable volume, shape memory actuated insulin dispensing pump | ||
Patent #
US 7,922,458 B2
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
On-body medical device securement | ||
Patent #
US 7,951,080 B2
Filed 10/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and method | ||
Patent #
US 7,920,907 B2
Filed 06/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 7,928,850 B2
Filed 05/08/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing dynamic multi-stage signal amplification in a medical device | ||
Patent #
US 7,948,369 B2
Filed 08/02/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Variable volume, shape memory actuated insulin dispensing pump | ||
Patent #
US 7,993,109 B2
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Variable volume, shape memory actuated insulin dispensing pump | ||
Patent #
US 7,993,108 B2
Filed 04/13/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Smart messages and alerts for an infusion delivery and management system | ||
Patent #
US 7,981,034 B2
Filed 02/28/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Electrochemical analyte sensor | ||
Patent #
US 7,996,054 B2
Filed 02/20/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 7,996,158 B2
Filed 05/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing integrated medication infusion and analyte monitoring system | ||
Patent #
US 8,029,460 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Variable volume, shape memory actuated insulin dispensing pump | ||
Patent #
US 8,029,245 B2
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Glucose measuring device for use in personal area network | ||
Patent #
US 8,066,639 B2
Filed 06/04/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Glucose measuring device integrated into a holster for a personal area network device | ||
Patent #
US 8,029,443 B2
Filed 09/26/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor transmitter unit configuration for a data monitoring and management system | ||
Patent #
US 8,029,441 B2
Filed 02/28/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Variable volume, shape memory actuated insulin dispensing pump | ||
Patent #
US 8,047,812 B2
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing integrated medication infusion and analyte monitoring system | ||
Patent #
US 8,029,459 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Variable volume, shape memory actuated insulin dispensing pump | ||
Patent #
US 8,047,811 B2
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Variable volume, shape memory actuated insulin dispensing pump | ||
Patent #
US 8,029,250 B2
Filed 12/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 7,860,544 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensors and methods of use | ||
Patent #
US 7,822,455 B2
Filed 07/31/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 7,811,231 B2
Filed 12/26/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing peak detection circuitry for data communication systems | ||
Patent #
US 7,679,407 B2
Filed 04/27/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing basal profile modification in analyte monitoring and management systems | ||
Patent #
US 7,766,829 B2
Filed 11/04/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing rechargeable power in data monitoring and management systems | ||
Patent #
US 7,756,561 B2
Filed 09/30/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 7,768,408 B2
Filed 05/17/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensors and methods of use | ||
Patent #
US 7,826,879 B2
Filed 02/28/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing dynamic multi-stage signal amplification in a medical device | ||
Patent #
US 7,768,387 B2
Filed 04/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 7,775,975 B2
Filed 03/26/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and apparatus for providing analyte sensor insertion | ||
Patent #
US 7,697,967 B2
Filed 09/28/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 7,768,386 B2
Filed 07/31/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device And Methods Of Use | ||
Patent #
US 20100241388A1
Filed 06/03/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Close proximity communication device and methods | ||
Patent #
US 7,826,382 B2
Filed 05/30/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 7,857,760 B2
Filed 02/22/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and apparatus for providing temperature sensor module in a data communication system | ||
Patent #
US 20090082693A1
Filed 12/29/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Therasense Incorporated
|
ANALYTE MONITORING SYSTEM AND METHOD | ||
Patent #
US 20080071158A1
Filed 06/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
ANALYTE SENSOR | ||
Patent #
US 20080086042A1
Filed 03/26/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
ANALYTE SENSOR | ||
Patent #
US 20080108942A1
Filed 03/26/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and apparatus for providing rolling data in communication systems | ||
Patent #
US 8,123,686 B2
Filed 03/01/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 8,103,471 B2
Filed 05/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal converting cradle for medical condition monitoring and management system | ||
Patent #
US 8,085,151 B2
Filed 06/26/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method of calibrating of an analyte-measurement device, and associated methods, devices and systems | ||
Patent #
US 8,116,840 B2
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 8,089,363 B2
Filed 02/07/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
RF tag on test strips, test strip vials and boxes | ||
Patent #
US 8,115,635 B2
Filed 11/24/2009
|
Current Assignee
Therasense Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring and management system and methods therefor | ||
Patent #
US 8,086,292 B2
Filed 10/27/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing rechargeable power in data monitoring and management systems | ||
Patent #
US 8,112,138 B2
Filed 09/26/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing leak detection in data monitoring and management systems | ||
Patent #
US 8,112,240 B2
Filed 04/29/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Device and method for automatic data acquisition and/or detection | ||
Patent #
US 8,121,857 B2
Filed 02/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors | ||
Patent #
US 8,135,548 B2
Filed 10/26/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated, University of Virginia Patent Foundation
|
Method and apparatus for providing dynamic multi-stage amplification in a medical device | ||
Patent #
US 8,149,103 B2
Filed 05/23/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 8,149,117 B2
Filed 08/29/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in medical communication system | ||
Patent #
US 8,140,142 B2
Filed 04/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for determining analyte levels | ||
Patent #
US 8,140,312 B2
Filed 01/31/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring and management device and method to analyze the frequency of user interaction with the device | ||
Patent #
US 8,160,900 B2
Filed 06/26/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,162,829 B2
Filed 03/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,175,673 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,177,716 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for detecting false hypoglycemic conditions | ||
Patent #
US 8,185,181 B2
Filed 10/29/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 8,187,183 B2
Filed 10/11/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing integrated analyte monitoring and infusion system therapy management | ||
Patent #
US 8,206,296 B2
Filed 08/07/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing analyte monitoring | ||
Patent #
US 8,211,016 B2
Filed 09/26/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method of calibrating an analyte-measurement device, and associated methods, devices and systems | ||
Patent #
US 8,219,175 B2
Filed 06/29/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method of calibrating an analyte-measurement device, and associated methods, devices and systems | ||
Patent #
US 8,219,174 B2
Filed 06/29/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration | ||
Patent #
US 8,216,138 B1
Filed 10/23/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing analyte monitoring | ||
Patent #
US 8,216,137 B2
Filed 07/20/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Optimizing analyte sensor calibration | ||
Patent #
US 8,219,173 B2
Filed 09/30/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,224,413 B2
Filed 10/10/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for providing offset model based calibration for analyte sensor | ||
Patent #
US 8,224,415 B2
Filed 01/29/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
RF tag on test strips, test strip vials and boxes | ||
Patent #
US 8,223,021 B2
Filed 11/24/2009
|
Current Assignee
Therasense Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,558 B2
Filed 09/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,557 B2
Filed 12/28/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,555 B2
Filed 03/18/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring devices and methods therefor | ||
Patent #
US 8,226,891 B2
Filed 03/31/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,231,532 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 8,239,166 B2
Filed 05/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,235,896 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for sterilizing an analyte sensor | ||
Patent #
US 8,252,229 B2
Filed 04/10/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,255,031 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,260,392 B2
Filed 06/09/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 8,260,558 B2
Filed 05/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,265,726 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Apparatus for providing power management in data communication systems | ||
Patent #
US 8,273,295 B2
Filed 11/24/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,273,022 B2
Filed 02/13/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,275,439 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,275,438 B2
Filed 11/07/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,287,454 B2
Filed 09/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,298,142 B2
Filed 11/07/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
DETECTION DEVICE | ||
Patent #
US 20120274935A1
Filed 04/25/2012
|
Current Assignee
Seiko Epson Corporation
|
Original Assignee
Seiko Epson Corporation
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,306,598 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing an integrated analyte sensor insertion device and data processing unit | ||
Patent #
US 8,333,714 B2
Filed 09/10/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Fluid delivery device with autocalibration | ||
Patent #
US 8,343,093 B2
Filed 05/28/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing integrated medication infusion and analyte monitoring system | ||
Patent #
US 8,343,092 B2
Filed 11/24/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing a fault tolerant display unit in an electronic device | ||
Patent #
US 8,344,966 B2
Filed 01/31/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,346,336 B2
Filed 03/18/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,346,337 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor calibration management | ||
Patent #
US 8,346,335 B2
Filed 01/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,353,829 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,357,091 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
RF tag on test strips, test strip vials and boxes | ||
Patent #
US 8,358,210 B2
Filed 11/24/2009
|
Current Assignee
Therasense Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 8,362,904 B2
Filed 04/18/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,364,230 B2
Filed 03/25/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 8,364,231 B2
Filed 03/25/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,366,614 B2
Filed 03/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data communication in continuous glucose monitoring and management system | ||
Patent #
US 8,368,556 B2
Filed 04/29/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
MULTI-DIRECTIONAL MICROFLUIDIC DRUG DELIVERY DEVICE | ||
Patent #
US 20130035560A1
Filed 08/01/2012
|
Current Assignee
Alcyone Lifesciences Inc.
|
Original Assignee
Alcyone Lifesciences Inc.
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,372,005 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor with lag compensation | ||
Patent #
US 8,374,668 B1
Filed 10/23/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing calibration of an analyte sensor in an analyte monitoring system | ||
Patent #
US 8,376,945 B2
Filed 11/23/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Closed loop control system with safety parameters and methods | ||
Patent #
US 8,377,031 B2
Filed 08/31/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,380,273 B2
Filed 04/11/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
RF tag on test strips, test strip vials and boxes | ||
Patent #
US 8,390,455 B2
Filed 11/24/2009
|
Current Assignee
Therasense Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,391,945 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,396,528 B2
Filed 03/25/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,409,131 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Assessing measures of glycemic variability | ||
Patent #
US 8,409,093 B2
Filed 10/23/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Device and method for automatic data acquisition and/or detection | ||
Patent #
US 8,417,545 B2
Filed 02/17/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,425,416 B2
Filed 03/25/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated device for continuous in vivo analyte detection and simultaneous control of an infusion device | ||
Patent #
US 8,425,417 B2
Filed 11/07/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and apparatus for providing dynamic multi-stage amplification in a medical device | ||
Patent #
US 8,427,298 B2
Filed 04/02/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for transferring analyte test data | ||
Patent #
US 8,437,966 B2
Filed 11/20/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 8,444,560 B2
Filed 05/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,447,376 B2
Filed 11/07/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 8,449,464 B2
Filed 11/07/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 8,456,301 B2
Filed 05/08/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Glucose measuring module and insulin pump combination | ||
Patent #
US 8,460,243 B2
Filed 06/10/2003
|
Current Assignee
Smiths Medical ASD Inc.
|
Original Assignee
Abbott Diabetes Care Incorporated, Deltek Inc.
|
Analyte monitoring system and methods | ||
Patent #
US 8,461,985 B2
Filed 05/08/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Electrochemical analyte sensor | ||
Patent #
US 8,463,351 B2
Filed 08/06/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,465,425 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Closed loop blood glucose control algorithm analysis | ||
Patent #
US 8,467,972 B2
Filed 04/28/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 8,471,714 B2
Filed 12/30/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,473,021 B2
Filed 07/31/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor with time lag compensation | ||
Patent #
US 8,473,022 B2
Filed 01/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing analyte monitoring system calibration accuracy | ||
Patent #
US 8,478,557 B2
Filed 07/30/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,478,377 B2
Filed 11/07/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,480,580 B2
Filed 04/19/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing real time analyte sensor calibration with retrospective backfill | ||
Patent #
US 8,483,967 B2
Filed 04/28/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for determining analyte levels | ||
Patent #
US 8,484,005 B2
Filed 03/19/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for transferring analyte test data | ||
Patent #
US 8,483,974 B2
Filed 11/20/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system having an alert | ||
Patent #
US 8,497,777 B2
Filed 04/15/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal converting cradle for medical condition monitoring and management system | ||
Patent #
US 8,502,682 B2
Filed 12/23/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing continuous calibration of implantable analyte sensors | ||
Patent #
US 8,506,482 B2
Filed 02/07/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Close proximity communication device and methods | ||
Patent #
US 8,509,107 B2
Filed 11/01/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Integrated introducer and transmitter assembly and methods of use | ||
Patent #
US 8,512,243 B2
Filed 09/30/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing peak detection circuitry for data communication systems | ||
Patent #
US 8,512,246 B2
Filed 03/15/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Glucose measuring device for use in personal area network | ||
Patent #
US 8,512,239 B2
Filed 04/20/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Integrated analyte sensor and infusion device and methods therefor | ||
Patent #
US 8,512,244 B2
Filed 09/26/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for dynamically updating calibration parameters for an analyte sensor | ||
Patent #
US 8,515,517 B2
Filed 09/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Displays for a medical device | ||
Patent #
US 8,514,086 B2
Filed 08/30/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,532,730 B2
Filed 10/04/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and device for providing offset model based calibration for analyte sensor | ||
Patent #
US 8,532,935 B2
Filed 07/16/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Use of an equilibrium intravascular sensor to achieve tight glycemic control | ||
Patent #
US 8,535,262 B2
Filed 12/09/2011
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
Glucose measurement device and methods using RFID | ||
Patent #
US 8,542,122 B2
Filed 01/17/2013
|
Current Assignee
Therasense Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring and management system and methods therefor | ||
Patent #
US 8,543,183 B2
Filed 12/23/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Medical device insertion | ||
Patent #
US 8,545,403 B2
Filed 12/28/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 8,560,038 B2
Filed 05/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for transferring analyte test data | ||
Patent #
US 8,560,250 B2
Filed 08/18/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Laboratories Incorporated
|
Computerized determination of insulin pump therapy parameters using real time and retrospective data processing | ||
Patent #
US 8,560,082 B2
Filed 01/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,562,528 B2
Filed 11/07/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated medicament delivery device for use with continuous analyte sensor | ||
Patent #
US 8,562,558 B2
Filed 06/05/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and apparatus for mounting a data transmission device in a communication system | ||
Patent #
US 8,571,624 B2
Filed 12/29/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 8,571,808 B2
Filed 01/23/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Infusion devices and methods | ||
Patent #
US 8,579,853 B2
Filed 10/31/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor calibration management | ||
Patent #
US 8,583,205 B2
Filed 04/16/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing basal profile modification in analyte monitoring and management systems | ||
Patent #
US 8,585,591 B2
Filed 07/10/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Subcutaneous glucose electrode | ||
Patent #
US 8,588,881 B2
Filed 03/02/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing glycemic control | ||
Patent #
US 8,591,410 B2
Filed 06/01/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 8,593,287 B2
Filed 07/20/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for powering an electronic device | ||
Patent #
US 8,593,109 B2
Filed 11/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Health management devices and methods | ||
Patent #
US 8,597,188 B2
Filed 06/20/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,597,189 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring devices and methods therefor | ||
Patent #
US 8,597,575 B2
Filed 07/23/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 8,600,681 B2
Filed 05/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor introducer and methods of use | ||
Patent #
US 8,602,991 B2
Filed 06/07/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,612,159 B2
Filed 02/16/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 8,612,163 B2
Filed 08/30/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Insertion devices and methods | ||
Patent #
US 8,613,703 B2
Filed 05/29/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte meter with a moveable head and methods of using the same | ||
Patent #
US 8,613,892 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Health monitor | ||
Patent #
US 8,617,069 B2
Filed 06/20/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,617,071 B2
Filed 06/21/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 8,622,903 B2
Filed 05/25/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,622,906 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Variable rate closed loop control and methods | ||
Patent #
US 8,622,988 B2
Filed 08/31/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,626,257 B2
Filed 11/07/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and system for evaluating analyte sensor response characteristics | ||
Patent #
US 8,635,046 B2
Filed 06/22/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data communication in data monitoring and management systems | ||
Patent #
US 8,638,220 B2
Filed 05/23/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,641,619 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and structure for securing a monitoring device element | ||
Patent #
US 8,641,618 B2
Filed 06/26/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Glucose measuring device for use in personal area network | ||
Patent #
US 8,647,269 B2
Filed 04/20/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,649,841 B2
Filed 04/03/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,652,043 B2
Filed 07/20/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 8,653,977 B2
Filed 06/21/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,660,627 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for determining elapsed sensor life | ||
Patent #
US 8,665,091 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,666,469 B2
Filed 11/16/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,668,645 B2
Filed 01/03/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,670,815 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,672,844 B2
Filed 02/27/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for early signal attenuation detection using blood glucose measurements | ||
Patent #
US 8,676,513 B2
Filed 06/21/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Device and method for automatic data acquisition and/or detection | ||
Patent #
US 8,676,601 B2
Filed 04/08/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 8,682,615 B2
Filed 08/04/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for transferring analyte test data | ||
Patent #
US 8,682,598 B2
Filed 08/27/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Laboratories Incorporated
|
Method of calibrating an analyte-measurement device, and associated methods, devices and systems | ||
Patent #
US 8,684,930 B2
Filed 06/29/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,688,188 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing dynamic multi-stage signal amplification in a medical device | ||
Patent #
US 8,698,615 B2
Filed 04/22/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Optical sensor configuration for ratiometric correction of glucose measurement | ||
Patent #
US 8,700,115 B2
Filed 05/15/2013
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
Electrochemical analyte sensor | ||
Patent #
US 8,706,180 B2
Filed 06/10/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Mitigating single point failure of devices in an analyte monitoring system and methods thereof | ||
Patent #
US 8,710,993 B2
Filed 11/21/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Sensors with thromboresistant coating | ||
Patent #
US 8,715,589 B2
Filed 05/14/2013
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Medtronic Minimed Incorporated
|
Analyte sensor calibration management | ||
Patent #
US 8,718,739 B2
Filed 12/28/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing analyte monitoring system calibration accuracy | ||
Patent #
US 8,718,965 B2
Filed 06/24/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors | ||
Patent #
US 8,718,958 B2
Filed 03/12/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated, University of Virginia Patent Foundation
|
Method and system for providing integrated analyte monitoring and infusion system therapy management | ||
Patent #
US 8,727,982 B2
Filed 06/25/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system having an alert | ||
Patent #
US 8,730,058 B2
Filed 07/29/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,734,348 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
On-body medical device securement | ||
Patent #
US 8,734,344 B2
Filed 05/29/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Closed loop control with improved alarm functions | ||
Patent #
US 8,734,422 B2
Filed 08/31/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,734,346 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Close proximity communication device and methods | ||
Patent #
US 8,737,259 B2
Filed 08/05/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement | ||
Patent #
US 8,738,107 B2
Filed 05/09/2008
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Medtronic Minimed Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,738,109 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Subcutaneous glucose electrode | ||
Patent #
US 8,741,590 B2
Filed 04/03/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Optimizing analyte sensor calibration | ||
Patent #
US 8,744,547 B2
Filed 07/09/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,744,545 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Medical device inserters and processes of inserting and using medical devices | ||
Patent #
US 8,764,657 B2
Filed 03/30/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data communication in continuous glucose monitoring and management system | ||
Patent #
US 8,771,183 B2
Filed 02/16/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,774,886 B2
Filed 10/04/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Detection device | ||
Patent #
US 8,773,658 B2
Filed 04/25/2012
|
Current Assignee
Seiko Epson Corporation
|
Original Assignee
Seiko Epson Corporation
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,774,887 B2
Filed 03/24/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Robust closed loop control and methods | ||
Patent #
US 8,795,252 B2
Filed 10/16/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Real time management of data relating to physiological control of glucose levels | ||
Patent #
US 8,798,934 B2
Filed 07/23/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for sterilizing an analyte sensor | ||
Patent #
US 8,802,006 B2
Filed 08/27/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Displays for a medical device | ||
Patent #
US 8,816,862 B2
Filed 08/19/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensors and methods of manufacturing same | ||
Patent #
US 8,828,201 B2
Filed 07/01/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and apparatus for providing analyte sensor calibration | ||
Patent #
US 8,834,366 B2
Filed 07/31/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Optical systems and methods for ratiometric measurement of blood glucose concentration | ||
Patent #
US 8,838,195 B2
Filed 02/06/2008
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Medtronic Minimed Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,840,553 B2
Filed 02/26/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing analyte sensor insertion | ||
Patent #
US 8,852,101 B2
Filed 09/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing an integrated analyte sensor insertion device and data processing unit | ||
Patent #
US 8,862,198 B2
Filed 12/17/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Closed loop control system interface and methods | ||
Patent #
US 8,876,755 B2
Filed 07/14/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,880,137 B2
Filed 04/18/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Device for channeling fluid and methods of use | ||
Patent #
US 8,880,138 B2
Filed 09/30/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Apparatus for providing power management in data communication systems | ||
Patent #
US 8,906,307 B2
Filed 08/18/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,911,367 B2
Filed 03/26/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,915,850 B2
Filed 03/28/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,920,319 B2
Filed 12/28/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing glycemic control | ||
Patent #
US 8,924,159 B2
Filed 06/01/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Multi-function analyte test device and methods therefor | ||
Patent #
US 8,930,203 B2
Filed 02/03/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for powering an electronic device | ||
Patent #
US 8,933,664 B2
Filed 11/25/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data management in integrated analyte monitoring and infusion system | ||
Patent #
US 8,932,216 B2
Filed 08/07/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing dynamic multi-stage signal amplification in a medical device | ||
Patent #
US 8,937,540 B2
Filed 02/24/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Detection device | ||
Patent #
US 8,970,839 B2
Filed 04/06/2012
|
Current Assignee
Seiko Epson Corporation
|
Original Assignee
Seiko Epson Corporation
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,974,386 B2
Filed 11/01/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Use of an equilibrium sensor to monitor glucose concentration | ||
Patent #
US 8,979,790 B2
Filed 09/11/2013
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Medtronic Minimed Incorporated
|
Analyte sensor sensitivity attenuation mitigation | ||
Patent #
US 8,986,208 B2
Filed 09/30/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods for managing power and noise | ||
Patent #
US 8,993,331 B2
Filed 08/31/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 9,000,929 B2
Filed 11/22/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in medical communication system | ||
Patent #
US 9,008,743 B2
Filed 04/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,011,332 B2
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,011,331 B2
Filed 12/29/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,014,773 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensors and methods of use | ||
Patent #
US 9,031,630 B2
Filed 11/01/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 9,035,767 B2
Filed 05/30/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Receivers for analyzing and displaying sensor data | ||
Patent #
US 9,041,730 B2
Filed 02/11/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring devices and methods therefor | ||
Patent #
US 9,039,975 B2
Filed 12/02/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,042,953 B2
Filed 03/02/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for detecting false hypoglycemic conditions | ||
Patent #
US 9,050,041 B2
Filed 05/21/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Infusion devices and methods | ||
Patent #
US 9,064,107 B2
Filed 09/30/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 9,060,719 B2
Filed 12/13/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,695 B2
Filed 04/12/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,697 B2
Filed 10/27/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for early signal attenuation detection using blood glucose measurements | ||
Patent #
US 9,066,709 B2
Filed 03/17/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Electronic devices having integrated reset systems and methods thereof | ||
Patent #
US 9,069,536 B2
Filed 10/30/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,694 B2
Filed 04/03/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,072,477 B2
Filed 06/21/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,078,607 B2
Filed 06/17/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data communication in continuous glucose monitoring and management system | ||
Patent #
US 9,088,452 B2
Filed 01/31/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing rolling data in communication systems | ||
Patent #
US 9,095,290 B2
Filed 02/27/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing power management in data communication systems | ||
Patent #
US 9,109,926 B2
Filed 12/08/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing analyte monitoring | ||
Patent #
US 9,113,828 B2
Filed 07/09/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Integrated analyte sensor and infusion device and methods therefor | ||
Patent #
US 9,119,582 B2
Filed 06/30/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 9,125,548 B2
Filed 05/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensors and methods of manufacturing same | ||
Patent #
US 9,131,885 B2
Filed 07/01/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Advanced analyte sensor calibration and error detection | ||
Patent #
US 9,149,220 B2
Filed 04/13/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 9,177,456 B2
Filed 06/10/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system having an alert | ||
Patent #
US 9,178,752 B2
Filed 04/25/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Close proximity communication device and methods | ||
Patent #
US 9,184,875 B2
Filed 04/25/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Medical device inserters and processes of inserting and using medical devices | ||
Patent #
US 9,186,098 B2
Filed 03/24/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Displays for a medical device | ||
Patent #
US 9,186,113 B2
Filed 08/11/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in medical communication system | ||
Patent #
US 9,204,827 B2
Filed 04/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Medical device inserters and processes of inserting and using medical devices | ||
Patent #
US 9,215,992 B2
Filed 03/24/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Displays for a medical device | ||
Patent #
US 9,226,714 B2
Filed 01/08/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Error detection in critical repeating data in a wireless sensor system | ||
Patent #
US 9,226,701 B2
Filed 04/28/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensors and methods of manufacturing same | ||
Patent #
US 9,237,864 B2
Filed 07/01/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Flexible patch for fluid delivery and monitoring body analytes | ||
Patent #
US 9,259,175 B2
Filed 10/23/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Medical device inserters and processes of inserting and using medical devices | ||
Patent #
US 9,265,453 B2
Filed 03/24/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Mitigating single point failure of devices in an analyte monitoring system and methods thereof | ||
Patent #
US 9,289,179 B2
Filed 04/11/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing real time analyte sensor calibration with retrospective backfill | ||
Patent #
US 9,310,230 B2
Filed 06/24/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof | ||
Patent #
US 9,317,656 B2
Filed 11/21/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 9,314,198 B2
Filed 04/03/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte signal processing device and methods | ||
Patent #
US 9,314,195 B2
Filed 08/31/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing notification function in analyte monitoring systems | ||
Patent #
US 9,320,461 B2
Filed 09/29/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor calibration management | ||
Patent #
US 9,320,462 B2
Filed 05/05/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing basal profile modification in analyte monitoring and management systems | ||
Patent #
US 9,323,898 B2
Filed 11/15/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 9,320,466 B2
Filed 10/18/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor with time lag compensation | ||
Patent #
US 9,320,468 B2
Filed 06/21/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
On-body medical device securement | ||
Patent #
US 9,326,727 B2
Filed 05/15/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems, devices and methods for managing glucose levels | ||
Patent #
US 9,326,709 B2
Filed 03/09/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,326,716 B2
Filed 12/05/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,326,714 B2
Filed 06/29/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Alarm characterization for analyte monitoring devices and systems | ||
Patent #
US 9,326,707 B2
Filed 11/10/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 9,332,944 B2
Filed 01/31/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor with lag compensation | ||
Patent #
US 9,332,934 B2
Filed 02/08/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing analyte sensor insertion | ||
Patent #
US 9,332,933 B2
Filed 09/29/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods of use | ||
Patent #
US 9,339,217 B2
Filed 11/21/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor with increased reference capacity | ||
Patent #
US 9,351,677 B2
Filed 03/04/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Interconnect for on-body analyte monitoring device | ||
Patent #
US 9,351,669 B2
Filed 09/30/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,357,951 B2
Filed 09/29/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and system for dynamically updating calibration parameters for an analyte sensor | ||
Patent #
US 9,357,959 B2
Filed 08/19/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor transmitter unit configuration for a data monitoring and management system | ||
Patent #
US 9,364,149 B2
Filed 10/03/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for powering an electronic device | ||
Patent #
US 9,380,971 B2
Filed 12/05/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Closed loop control and signal attenuation detection | ||
Patent #
US 9,392,969 B2
Filed 08/31/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing analyte sensor calibration | ||
Patent #
US 9,398,872 B2
Filed 08/28/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing analyte sensor and data processing device | ||
Patent #
US 9,398,882 B2
Filed 09/10/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing dynamic multi-stage signal amplification in a medical device | ||
Patent #
US 9,402,584 B2
Filed 01/14/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor and apparatus for insertion of the sensor | ||
Patent #
US 9,402,544 B2
Filed 02/01/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor devices, connections, and methods | ||
Patent #
US 9,402,570 B2
Filed 12/11/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing calibration of an analyte sensor in an analyte monitoring system | ||
Patent #
US 9,408,566 B2
Filed 02/13/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for processing analyte sensor data | ||
Patent #
US 9,433,376 B2
Filed 03/12/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Assessing measures of glycemic variability | ||
Patent #
US 9,439,586 B2
Filed 03/29/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 9,451,908 B2
Filed 12/19/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Electronic devices having integrated reset systems and methods thereof | ||
Patent #
US 9,465,420 B2
Filed 06/26/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Multi-rate analyte sensor data collection with sample rate configurable signal processing | ||
Patent #
US 9,474,475 B1
Filed 03/13/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Integrated introducer and transmitter assembly and methods of use | ||
Patent #
US 9,480,421 B2
Filed 08/19/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 9,483,608 B2
Filed 05/20/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,498,159 B2
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Receivers for analyzing and displaying sensor data | ||
Patent #
US 9,498,164 B2
Filed 12/05/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Receivers for analyzing and displaying sensor data | ||
Patent #
US 9,498,165 B2
Filed 12/05/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Receivers for analyzing and displaying sensor data | ||
Patent #
US 9,504,430 B2
Filed 12/05/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor with increased reference capacity | ||
Patent #
US 9,517,025 B2
Filed 05/12/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor retention mechanism and methods of use | ||
Patent #
US 9,521,968 B2
Filed 09/30/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same | ||
Patent #
US 9,532,737 B2
Filed 02/28/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing glycemic control | ||
Patent #
US 9,541,556 B2
Filed 11/25/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Displays for a medical device | ||
Patent #
US 9,549,694 B2
Filed 11/11/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for determining analyte levels | ||
Patent #
US 9,558,325 B2
Filed 06/24/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Devices, systems and methods for on-skin or on-body mounting of medical devices | ||
Patent #
US 9,572,534 B2
Filed 06/28/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Robust closed loop control and methods | ||
Patent #
US 9,572,934 B2
Filed 08/01/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for determining elapsed sensor life | ||
Patent #
US 9,574,914 B2
Filed 03/03/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,610,034 B2
Filed 11/09/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Closed loop control with improved alarm functions | ||
Patent #
US 9,610,046 B2
Filed 04/29/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in medical communication system | ||
Patent #
US 9,615,780 B2
Filed 04/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Model based variable risk false glucose threshold alarm prevention mechanism | ||
Patent #
US 9,622,691 B2
Filed 10/30/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring devices and methods therefor | ||
Patent #
US 9,625,413 B2
Filed 05/19/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for dynamically updating calibration parameters for an analyte sensor | ||
Patent #
US 9,629,578 B2
Filed 03/26/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor and apparatus for insertion of the sensor | ||
Patent #
US 9,636,068 B2
Filed 06/24/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Pump system modular components for delivering medication and analyte sensing at seperate insertion sites | ||
Patent #
US 9,636,450 B2
Filed 02/15/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Udo Hoss, Gary A. Stafford
|
Analyte monitoring system and methods | ||
Patent #
US 9,649,057 B2
Filed 05/11/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Optimizing analyte sensor calibration | ||
Patent #
US 9,662,056 B2
Filed 05/22/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing basal profile modification in analyte monitoring and management systems | ||
Patent #
US 9,669,162 B2
Filed 03/16/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Sensitivity calibration of in vivo sensors used to measure analyte concentration | ||
Patent #
US 9,675,290 B2
Filed 10/29/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Medical device inserters and processes of inserting and using medical devices | ||
Patent #
US 9,687,183 B2
Filed 03/30/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data communication in continuous glucose monitoring and management system | ||
Patent #
US 9,693,688 B2
Filed 07/16/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor devices, connections, and methods | ||
Patent #
US 9,693,713 B2
Filed 06/27/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data management in integrated analyte monitoring and infusion system | ||
Patent #
US 9,697,332 B2
Filed 12/08/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for processing analyte sensor data | ||
Patent #
US 9,700,253 B2
Filed 03/12/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof | ||
Patent #
US 9,721,063 B2
Filed 03/09/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Glucose measuring device for use in personal area network | ||
Patent #
US 9,730,584 B2
Filed 02/10/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor calibration management | ||
Patent #
US 9,730,623 B2
Filed 02/05/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Alarm characterization for analyte monitoring devices and systems | ||
Patent #
US 9,730,650 B2
Filed 01/15/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 9,737,249 B2
Filed 06/17/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Integrated medicament delivery device for use with continuous analyte sensor | ||
Patent #
US 9,741,139 B2
Filed 08/09/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and apparatus for providing dynamic multi-stage signal amplification in a medical device | ||
Patent #
US 9,743,866 B2
Filed 07/13/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for powering an electronic device | ||
Patent #
US 9,743,863 B2
Filed 06/01/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Assessing measures of glycemic variability | ||
Patent #
US 9,743,865 B2
Filed 06/25/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for transcutaneously implanting medical devices | ||
Patent #
US 9,743,862 B2
Filed 03/29/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Mitigating single point failure of devices in an analyte monitoring system and methods thereof | ||
Patent #
US 9,743,872 B2
Filed 02/04/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 9,750,440 B2
Filed 04/12/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Interconnect for on-body analyte monitoring device | ||
Patent #
US 9,750,444 B2
Filed 04/27/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing notification function in analyte monitoring systems | ||
Patent #
US 9,750,439 B2
Filed 04/08/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensors and methods of manufacturing same | ||
Patent #
US 9,763,608 B2
Filed 12/04/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor with time lag compensation | ||
Patent #
US 9,770,211 B2
Filed 04/08/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Integrated introducer and transmitter assembly and methods of use | ||
Patent #
US 9,775,563 B2
Filed 09/21/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Smart messages and alerts for an infusion delivery and management system | ||
Patent #
US 9,782,076 B2
Filed 07/18/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Variable speed sensor insertion devices and methods of use | ||
Patent #
US 9,788,771 B2
Filed 10/23/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Continuous analyte measurement systems and systems and methods for implanting them | ||
Patent #
US 9,795,326 B2
Filed 07/22/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing glycemic control | ||
Patent #
US 9,795,328 B2
Filed 01/06/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing analyte sensor insertion | ||
Patent #
US 9,795,331 B2
Filed 04/28/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 9,797,880 B2
Filed 10/11/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing rolling data in communication systems | ||
Patent #
US 9,801,545 B2
Filed 07/30/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in medical communication system | ||
Patent #
US 9,801,571 B2
Filed 09/16/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Advanced analyte sensor calibration and error detection | ||
Patent #
US 9,801,575 B2
Filed 04/13/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Sensitivity calibration of in vivo sensors used to measure analyte concentration | ||
Patent #
US 9,801,577 B2
Filed 06/07/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 9,804,150 B2
Filed 03/24/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor with lag compensation | ||
Patent #
US 9,804,148 B2
Filed 04/29/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Advanced analyte sensor calibration and error detection | ||
Patent #
US 9,808,190 B2
Filed 12/30/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and system for providing an integrated analyte sensor insertion device and data processing unit | ||
Patent #
US 9,808,186 B2
Filed 09/26/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Displays for a medical device | ||
Patent #
US 9,814,416 B2
Filed 12/13/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing analyte monitoring | ||
Patent #
US 9,814,428 B2
Filed 08/22/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Close proximity communication device and methods | ||
Patent #
US 9,831,985 B2
Filed 09/29/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing calibration of an analyte sensor in an analyte monitoring system | ||
Patent #
US 9,833,181 B2
Filed 07/13/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Receivers for analyzing and displaying sensor data | ||
Patent #
US 9,833,199 B2
Filed 05/19/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Optical systems and methods for ratiometric measurement of blood glucose concentration | ||
Patent #
US 9,839,378 B2
Filed 08/07/2014
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Medtronic Minimed Incorporated
|
Method and system for dynamically updating calibration parameters for an analyte sensor | ||
Patent #
US 9,839,383 B2
Filed 04/21/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensors and methods of use | ||
Patent #
US 9,844,329 B2
Filed 05/06/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Advanced analyte sensor calibration and error detection | ||
Patent #
US 9,848,809 B2
Filed 04/13/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors | ||
Patent #
US 9,882,660 B2
Filed 04/30/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated, University of Virginia Patent Foundation
|
Analyte sensor | ||
Patent #
US 9,907,497 B2
Filed 10/18/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data | ||
Patent #
US 9,907,492 B2
Filed 09/18/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring and management device and method to analyze the frequency of user interaction with the device | ||
Patent #
US 9,913,600 B2
Filed 02/23/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Model based variable risk false glucose threshold alarm prevention mechanism | ||
Patent #
US 9,913,619 B2
Filed 04/13/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for reducing or preventing backflow in a delivery system | ||
Patent #
US 9,919,129 B2
Filed 12/18/2013
|
Current Assignee
Alcyone Lifesciences Inc.
|
Original Assignee
Alcyone Lifesciences Inc.
|
Method and apparatus for providing glycemic control | ||
Patent #
US 9,931,075 B2
Filed 11/12/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor devices, connections, and methods | ||
Patent #
US 9,931,066 B2
Filed 05/31/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing analyte monitoring and therapy management system accuracy | ||
Patent #
US 9,936,910 B2
Filed 04/25/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Closed loop control with reference measurement and methods thereof | ||
Patent #
US 9,943,644 B2
Filed 08/31/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data communication in continuous glucose monitoring and management system | ||
Patent #
US 9,949,639 B2
Filed 06/27/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for determining elapsed sensor life | ||
Patent #
US 9,949,678 B2
Filed 02/16/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 9,962,091 B2
Filed 01/06/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte signal processing device and methods | ||
Patent #
US 9,968,302 B2
Filed 04/04/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems | ||
Patent #
US 9,968,306 B2
Filed 10/21/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Sensor inserter assembly | ||
Patent #
US 9,980,670 B2
Filed 04/03/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods | ||
Patent #
US 9,980,669 B2
Filed 11/07/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor and apparatus for insertion of the sensor | ||
Patent #
US 9,993,188 B2
Filed 03/31/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 10,002,233 B2
Filed 05/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Advanced analyte sensor calibration and error detection | ||
Patent #
US 10,004,442 B2
Filed 09/21/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Infusion devices and methods | ||
Patent #
US 10,007,759 B2
Filed 06/03/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system having an alert | ||
Patent #
US 10,009,244 B2
Filed 10/30/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Medical device inserters and processes of inserting and using medical devices | ||
Patent #
US 10,010,280 B2
Filed 03/30/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Device and method for automatic data acquisition and/or detection | ||
Patent #
US 10,022,499 B2
Filed 08/18/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Introducer assembly and methods of use | ||
Patent #
US 10,028,680 B2
Filed 03/19/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 10,031,002 B2
Filed 12/02/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data communication in continuous glucose monitoring and management system | ||
Patent #
US 10,039,881 B2
Filed 07/07/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor sensitivity attenuation mitigation | ||
Patent #
US 10,045,739 B2
Filed 03/23/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 10,045,720 B2
Filed 10/15/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 10,052,055 B2
Filed 11/05/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for reducing or preventing backflow in a delivery system | ||
Patent #
US 10,065,016 B2
Filed 01/21/2015
|
Current Assignee
Alcyone Lifesciences Inc.
|
Original Assignee
Alcyone Lifesciences Inc.
|
Sensor insertion devices and methods of use | ||
Patent #
US 10,070,810 B2
Filed 10/10/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Sensor fault detection using analyte sensor data pattern comparison | ||
Patent #
US 10,076,285 B2
Filed 03/13/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems, devices and methods for managing glucose levels | ||
Patent #
US 10,078,380 B2
Filed 04/07/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods of use | ||
Patent #
US 10,082,493 B2
Filed 04/29/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for providing offset model based calibration for analyte sensor | ||
Patent #
US 10,089,446 B2
Filed 09/03/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Calibration of analyte measurement system | ||
Patent #
US 10,092,229 B2
Filed 06/29/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in medical communication system | ||
Patent #
US 10,111,608 B2
Filed 04/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing continuous calibration of implantable analyte sensors | ||
Patent #
US 10,117,614 B2
Filed 09/11/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for detecting false hypoglycemic conditions | ||
Patent #
US 10,117,606 B2
Filed 06/03/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 10,119,956 B2
Filed 10/27/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Displays for a medical device | ||
Patent #
US 10,123,752 B2
Filed 11/10/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Dropout detection in continuous analyte monitoring data during data excursions | ||
Patent #
US 10,132,793 B2
Filed 08/20/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Medical devices and methods | ||
Patent #
US 10,136,816 B2
Filed 08/31/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same | ||
Patent #
US 10,136,845 B2
Filed 03/14/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Mitigating single point failure of devices in an analyte monitoring system and methods thereof | ||
Patent #
US 10,136,847 B2
Filed 08/24/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Microfluidic drug delivery devices with venturi effect | ||
Patent #
US 10,137,244 B2
Filed 08/01/2012
|
Current Assignee
Alcyone Lifesciences Inc.
|
Original Assignee
Alcyone Lifesciences Inc.
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 10,143,409 B2
Filed 10/27/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor transmitter unit configuration for a data monitoring and management system | ||
Patent #
US 10,159,433 B2
Filed 04/18/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Receivers for analyzing and displaying sensor data | ||
Patent #
US 10,165,986 B2
Filed 10/26/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and system for providing data communication in continuous glucose monitoring and management system | ||
Patent #
US 10,172,518 B2
Filed 04/13/2018
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Closed loop control system with safety parameters and methods | ||
Patent #
US 10,173,007 B2
Filed 02/13/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 10,178,954 B2
Filed 05/09/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Sensitivity calibration of in vivo sensors used to measure analyte concentration | ||
Patent #
US 10,188,334 B2
Filed 10/20/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Closed loop control and signal attenuation detection | ||
Patent #
US 10,188,794 B2
Filed 06/16/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Integrated transmitter unit and sensor introducer mechanism and methods of use | ||
Patent #
US 10,194,863 B2
Filed 02/07/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing dynamic multi-stage signal amplification in a medical device | ||
Patent #
US 10,194,846 B2
Filed 08/25/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing analyte monitoring | ||
Patent #
US 10,194,868 B2
Filed 11/10/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Accuracy of continuous glucose sensors | ||
Patent #
US 10,194,850 B2
Filed 07/14/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Methods and systems for early signal attenuation detection and processing | ||
Patent #
US 10,194,844 B2
Filed 03/04/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,201,301 B2
Filed 04/18/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing integrated analyte monitoring and infusion system therapy management | ||
Patent #
US 10,206,629 B2
Filed 04/28/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data management in data monitoring system | ||
Patent #
US 10,206,611 B2
Filed 08/23/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems, devices, and methods for assembling an applicator and sensor control device | ||
Patent #
US 10,213,139 B2
Filed 05/13/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Integrated analyte sensor and infusion device and methods therefor | ||
Patent #
US 10,220,145 B2
Filed 08/11/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Sensor inserter having introducer | ||
Patent #
US 10,226,207 B2
Filed 09/28/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,231,654 B2
Filed 06/23/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Displays for a medical device | ||
Patent #
US RE47,315 E1
Filed 06/30/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 10,261,069 B2
Filed 10/20/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Receivers for analyzing and displaying sensor data | ||
Patent #
US 10,265,030 B2
Filed 12/17/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and system for providing calibration of an analyte sensor in an analyte monitoring system | ||
Patent #
US 10,278,630 B2
Filed 11/30/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Receivers for analyzing and displaying sensor data | ||
Patent #
US 10,278,650 B2
Filed 12/16/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Medical device inserters and processes of inserting and using medical devices | ||
Patent #
US 10,292,632 B2
Filed 10/15/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing analyte sensor insertion | ||
Patent #
US 10,307,091 B2
Filed 10/20/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Advanced analyte sensor calibration and error detection | ||
Patent #
US 10,327,688 B2
Filed 05/31/2018
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and apparatus for providing glycemic control | ||
Patent #
US 10,327,682 B2
Filed 10/20/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Closed loop control system interface and methods | ||
Patent #
US 10,328,201 B2
Filed 10/30/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for dynamically updating calibration parameters for an analyte sensor | ||
Patent #
US 10,342,469 B2
Filed 12/08/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Integrated introducer and transmitter assembly and methods of use | ||
Patent #
US 10,342,489 B2
Filed 09/25/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Dropout detection in continuous analyte monitoring data during data excursions | ||
Patent #
US 10,345,291 B2
Filed 11/16/2018
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing notification function in analyte monitoring systems | ||
Patent #
US 10,349,874 B2
Filed 08/31/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in medical communication system | ||
Patent #
US 10,349,877 B2
Filed 04/03/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 10,349,873 B2
Filed 04/27/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and system for providing an integrated analyte sensor insertion device and data processing unit | ||
Patent #
US 10,362,972 B2
Filed 10/17/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for reducing or preventing backflow in a delivery system | ||
Patent #
US 10,363,394 B2
Filed 09/20/2017
|
Current Assignee
Alcyone Lifesciences Inc.
|
Original Assignee
Alcyone Lifesciences Inc.
|
Flexible patch for fluid delivery and monitoring body analytes | ||
Patent #
US 10,363,363 B2
Filed 01/06/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Integrated medicament delivery device for use with continuous analyte sensor | ||
Patent #
US 10,403,012 B2
Filed 07/18/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring system and methods for managing power and noise | ||
Patent #
US 10,429,250 B2
Filed 03/26/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Noise rejection methods and apparatus for sparsely sampled analyte sensor data | ||
Patent #
US 10,433,773 B1
Filed 03/13/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Multi-directional microfluidic drug delivery device | ||
Patent #
US 10,434,251 B2
Filed 08/01/2012
|
Current Assignee
Alcyone Lifesciences Inc.
|
Original Assignee
Alcyone Lifesciences Inc.
|
Systems and methods for drug delivery, treatment, and monitoring | ||
Patent #
US 10,441,770 B2
Filed 07/31/2014
|
Current Assignee
Alcyone Lifesciences Inc.
|
Original Assignee
Alcyone Lifesciences Inc.
|
Smart messages and alerts for an infusion delivery and management system | ||
Patent #
US 10,448,834 B2
Filed 10/05/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Advanced analyte sensor calibration and error detection | ||
Patent #
US 10,448,873 B2
Filed 12/01/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Displays for a medical device | ||
Patent #
US 10,456,091 B2
Filed 11/05/2018
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Methods and devices for protecting catheter tips and stereotactic fixtures for microcatheters | ||
Patent #
US 10,456,533 B2
Filed 06/17/2014
|
Current Assignee
Alcyone Lifesciences Inc.
|
Original Assignee
Alcyone Lifesciences Inc.
|
Analyte sensor calibration management | ||
Patent #
US 10,463,288 B2
Filed 08/11/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 10,463,310 B2
Filed 09/07/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor with increased reference capacity | ||
Patent #
US 10,470,691 B2
Filed 12/06/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,478,108 B2
Filed 02/05/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Medical devices and methods | ||
Patent #
US 10,492,685 B2
Filed 08/31/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 10,524,703 B2
Filed 01/24/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Methods and devices for treating stroke | ||
Patent #
US 10,531,882 B2
Filed 01/04/2017
|
Current Assignee
Alcyone Lifesciences Inc.
|
Original Assignee
Alcyone Lifesciences Inc.
|
Advanced analyte sensor calibration and error detection | ||
Patent #
US 10,555,695 B2
Filed 07/02/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for display device and sensor electronics unit communication | ||
Patent #
US 10,561,349 B2
Filed 03/28/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Advanced analyte sensor calibration and error detection | ||
Patent #
US 10,561,354 B2
Filed 07/02/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for display device and sensor electronics unit communication | ||
Patent #
US 10,568,552 B2
Filed 03/28/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing analyte sensor data | ||
Patent #
US 10,588,557 B2
Filed 07/18/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,602,968 B2
Filed 09/10/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,610,137 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,610,136 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Advanced analyte sensor calibration and error detection | ||
Patent #
US 10,610,141 B2
Filed 09/27/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,610,135 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and system for providing data communication in continuous glucose monitoring and management system | ||
Patent #
US 10,617,296 B2
Filed 01/07/2019
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,617,336 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Device and method for automatic data acquisition and/or detection | ||
Patent #
US 10,617,823 B2
Filed 06/27/2018
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Advanced analyte sensor calibration and error detection | ||
Patent #
US 10,624,568 B2
Filed 08/13/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 10,634,662 B2
Filed 11/05/2018
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor on body unit | ||
Patent #
US D882,432 S1
Filed 04/18/2019
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 10,653,317 B2
Filed 01/10/2019
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 10,653,344 B2
Filed 11/19/2018
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Dropout detection in continuous analyte monitoring data during data excursions | ||
Patent #
US 10,656,139 B2
Filed 07/08/2019
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Methods and devices for analyte monitoring calibration | ||
Patent #
US 10,660,554 B2
Filed 03/08/2018
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 10,667,733 B2
Filed 12/14/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Compact medical device inserters and related systems and methods | ||
Patent #
US 10,674,944 B2
Filed 05/13/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Advanced analyte sensor calibration and error detection | ||
Patent #
US 10,682,084 B2
Filed 05/07/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Insulin delivery apparatuses capable of bluetooth data transmission | ||
Patent #
US 10,685,749 B2
Filed 12/28/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,709,364 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,709,362 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,709,363 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,716,498 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,722,152 B2
Filed 11/05/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Advanced analyte sensor calibration and error detection | ||
Patent #
US 10,722,162 B2
Filed 09/27/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Introducer assembly and methods of use | ||
Patent #
US 10,736,547 B2
Filed 07/09/2018
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,743,801 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 10,750,952 B2
Filed 03/26/2018
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Interconnect for on-body analyte monitoring device | ||
Patent #
US 10,765,351 B2
Filed 08/10/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Medical device inserters and processes of inserting and using medical devices | ||
Patent #
US 10,772,547 B1
Filed 06/19/2020
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Displays for a medical device | ||
Patent #
US 10,772,572 B2
Filed 10/25/2019
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor and apparatus for insertion of the sensor | ||
Patent #
US 10,786,190 B2
Filed 01/07/2020
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 10,799,158 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for display device and sensor electronics unit communication | ||
Patent #
US 10,799,157 B2
Filed 08/29/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,799,159 B2
Filed 02/13/2020
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Drug delivery methods with tracer | ||
Patent #
US 10,806,396 B2
Filed 01/26/2015
|
Current Assignee
Alcyone Lifesciences Inc.
|
Original Assignee
Alcyone Lifesciences Inc.
|
Analyte sensor | ||
Patent #
US 10,813,577 B2
Filed 02/13/2020
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,813,576 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 10,820,841 B2
Filed 08/09/2018
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Methods and systems for early signal attenuation detection and processing | ||
Patent #
US 10,820,842 B2
Filed 06/18/2020
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Continuous analyte measurement systems and systems and methods for implanting them | ||
Patent #
US 10,827,954 B2
Filed 10/20/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 10,835,161 B2
Filed 02/12/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Advanced analyte sensor calibration and error detection | ||
Patent #
US 10,835,162 B2
Filed 09/27/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated insulin delivery system with continuous glucose sensor | ||
Patent #
US 10,835,672 B2
Filed 05/05/2020
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor control unit | ||
Patent #
US D902,408 S1
Filed 03/15/2019
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data | ||
Patent #
US 10,842,420 B2
Filed 03/02/2018
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Biosensor device to target analytes in situ, in vivo, and/or in real time, and methods of making and using the same | ||
Patent #
US 10,849,540 B2
Filed 03/11/2014
|
Current Assignee
University of Toledo
|
Original Assignee
University of Toledo
|
Analyte sensor device | ||
Patent #
US D903,877 S1
Filed 01/25/2019
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Remote monitoring of analyte measurements | ||
Patent #
US 10,856,736 B2
Filed 03/26/2020
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring and management device and method to analyze the frequency of user interaction with the device | ||
Patent #
US 10,856,785 B2
Filed 03/08/2018
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,856,787 B2
Filed 07/31/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Remote monitoring of analyte measurements | ||
Patent #
US 10,860,687 B2
Filed 06/23/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Remote monitoring of analyte measurements | ||
Patent #
US 10,869,599 B2
Filed 03/26/2020
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Real time management of data relating to physiological control of glucose levels | ||
Patent #
US 10,872,102 B2
Filed 08/01/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Devices, systems and methods for on-skin or on-body mounting of medical devices | ||
Patent #
US 10,874,338 B2
Filed 06/19/2020
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Multi-rate analyte sensor data collection with sample rate configurable signal processing | ||
Patent #
US 10,874,336 B2
Filed 10/12/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Medical device inserters and processes of inserting and using medical devices | ||
Patent #
US 10,881,341 B1
Filed 09/23/2020
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Medical device inserters and processes of inserting and using medical devices | ||
Patent #
US 10,881,340 B2
Filed 01/15/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for display device and sensor electronics unit communication | ||
Patent #
US 10,881,335 B2
Filed 08/29/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Displays for a medical device | ||
Patent #
US 10,881,355 B2
Filed 06/15/2020
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Communication station and software for interfacing with an infusion pump, analyte monitor, analyte meter, or the like | ||
Patent #
US 7,647,237 B2
Filed 06/26/2002
|
Current Assignee
Minimed Inc.
|
Original Assignee
Minimed Inc.
|
ANALYTE SENSOR | ||
Patent #
US 20090018424A1
Filed 03/25/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
EQUILIBRIUM NON-CONSUMING FLUORESCENCE SENSOR FOR REAL TIME INTRAVASCULAR GLUCOSE MEASUREMENT | ||
Patent #
US 20090018418A1
Filed 05/09/2008
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
DEVICE AND METHODS FOR CALIBRATING ANALYTE SENSORS | ||
Patent #
US 20090018426A1
Filed 05/09/2008
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
Method of optical measurements for determining various parameters of the patient's blood | ||
Patent #
US 7,317,939 B2
Filed 04/24/2006
|
Current Assignee
OrSense Ltd.
|
Original Assignee
OrSense Ltd.
|
Self flushing luer activated blood sampling devices | ||
Patent #
US 7,314,452 B2
Filed 02/23/2006
|
Current Assignee
Edwards Lifesciences Corporation
|
Original Assignee
Edwards Lifesciences Corporation
|
Medical suction valve | ||
Patent #
US 7,318,814 B2
Filed 08/12/2002
|
Current Assignee
Boston Scientific Scimed
|
Original Assignee
Boston Scientific Scimed
|
Infusion device for medical use | ||
Patent #
US 7,316,662 B2
Filed 06/12/2003
|
Current Assignee
Gambro Lundia AB
|
Original Assignee
Gambro Lundia AB
|
Impedance spectroscopy based systems and methods | ||
Patent #
US 7,315,767 B2
Filed 09/05/2003
|
Current Assignee
Solianis Holding AG
|
Original Assignee
Solianis Holding AG
|
Systems and methods for processing analyte sensor data | ||
Patent #
US 20070016381A1
Filed 09/01/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Aerosol metering valve | ||
Patent #
US 7,168,597 B1
Filed 02/23/2000
|
Current Assignee
GlaxoSmithKline LLC
|
Original Assignee
Smithkline Beecham Corporation
|
Method and apparatus for blood glucose testing from a reversible infusion line | ||
Patent #
US 7,162,290 B1
Filed 09/16/2005
|
Current Assignee
Palco Laboratories
|
Original Assignee
Palco Laboratories
|
Optical fiber cable provided with stabilized waterblocking material | ||
Patent #
US 5,285,513 A
Filed 11/30/1992
|
Current Assignee
Furukawa Electric North America Incorporated
|
Original Assignee
ATT Inc.
|
Method of manufacturing and testing an electronic device, and an electronic device | ||
Patent #
US 6,167,614 B1
Filed 09/08/1999
|
Current Assignee
Round Rock Research LLC
|
Original Assignee
Micron Technology Inc.
|
Transcutaneous medical device with variable stiffness | ||
Patent #
US 20060015024A1
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20060020188A1
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20060020190A1
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR MANUFACTURE OF AN ANALYTE-MEASURING DEVICE INCLUDING A MEMBRANE SYSTEM | ||
Patent #
US 20060015020A1
Filed 07/06/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Device and method for in vitro determination of analyte concentrations within body fluids | ||
Patent #
US 6,989,891 B2
Filed 08/14/2002
|
Current Assignee
OptiScan Biomedical Corporation
|
Original Assignee
OptiScan Biomedical Corporation
|
Device and method for determining analyte levels | ||
Patent #
US 20040011671A1
Filed 07/27/2001
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
In vivo biosensor apparatus and method of use | ||
Patent #
US 6,673,596 B1
Filed 12/02/1999
|
Current Assignee
University of Tennessee Research Foundation
|
Original Assignee
UT-Battelle LLC, University of Tennessee Research Foundation
|
Gas column pressure monitoring catheters | ||
Patent #
US 6,673,022 B1
Filed 07/18/2000
|
Current Assignee
IRRAS USA Inc.
|
Original Assignee
InnerSpace Medical Inc.
|
Drug delivery systems and methods | ||
Patent #
US 20040015134A1
Filed 07/14/2003
|
Current Assignee
Elan Pharma International Limited
|
Original Assignee
Elan Pharma International Limited
|
Water detection system and method | ||
Patent #
US 6,683,535 B1
Filed 08/09/2000
|
Current Assignee
Alderon Industries LLC
|
Original Assignee
Alderon Industries LLC
|
Fluid flow meter for gravity fed intravenous fluid delivery systems | ||
Patent #
US 6,679,865 B2
Filed 12/07/2001
|
Current Assignee
Medrip Limited
|
Original Assignee
NEDRIP LTD.
|
Self-contained, automatic transcutaneous physiologic sensing system | ||
Patent #
US 20040010207A1
Filed 07/15/2002
|
Current Assignee
Insulet Corporation
|
Original Assignee
Insulet Corporation
|
Detection of sensor off conditions in a pulse oximeter | ||
Patent #
US 6,510,329 B2
Filed 01/24/2001
|
Current Assignee
Datex-Ohmeda Incorporated
|
Original Assignee
Datex-Ohmeda Incorporated
|
Noninvasion biological optical measuring instrument, measured portion holding device, and method for manufacturing the same | ||
Patent #
US 20030023171A1
Filed 08/02/2002
|
Current Assignee
Hamamatsu Photonics KK
|
Original Assignee
Hamamatsu Photonics KK
|
Implantable enzyme-based monitoring systems adapted for long term use | ||
Patent #
US 6,512,939 B1
Filed 06/27/2000
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Medtronic Minimed Incorporated
|
Sensor head for use with implantable devices | ||
Patent #
US 20030032874A1
Filed 07/27/2001
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Subcutaneous glucose electrode | ||
Patent #
US 6,514,718 B2
Filed 11/29/2001
|
Current Assignee
Therasense Incorporated
|
Original Assignee
Therasense Incorporated
|
DIABETES MANAGEMENT SYSTEM | ||
Patent #
US 20030028089A1
Filed 07/31/2001
|
Current Assignee
Roche Diabetes Care Inc.
|
Original Assignee
Roche Diagnostics Corporation
|
Implantable glucose sensor | ||
Patent #
US 6,343,225 B1
Filed 09/14/1999
|
Current Assignee
Arbmetrics LLC
|
Original Assignee
Implanted Biosystems Incorporated
|
Methods of monitoring glucose levels in a subject and uses thereof | ||
Patent #
US 20020026111A1
Filed 08/10/2001
|
Current Assignee
Animas Technologies LLC
|
Original Assignee
Animas Technologies LLC
|
Method and device for predicting physiological values | ||
Patent #
US 20020019022A1
Filed 07/23/2001
|
Current Assignee
LifeScan IP Holdings LLC
|
Original Assignee
Cygnus Inc.
|
Glucose monitor calibration methods | ||
Patent #
US 6,424,847 B1
Filed 02/23/2000
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Medtronic Minimed Incorporated
|
Automated delivery device and method for its operation | ||
Patent #
US 6,171,276 B1
Filed 08/05/1998
|
Current Assignee
Pharmacia AB
|
Original Assignee
Pharmacia Upjohn AB
|
Method and device for predicting physiological values | ||
Patent #
US 6,180,416 B1
Filed 09/30/1998
|
Current Assignee
LifeScan IP Holdings LLC
|
Original Assignee
Cygnus Inc.
|
Analyte monitoring device and methods of use | ||
Patent #
US 6,175,752 B1
Filed 04/30/1998
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Therasense Incorporated
|
Phonopneumograph system | ||
Patent #
US 6,168,568 B1
Filed 10/04/1996
|
Current Assignee
Isonea Limited
|
Original Assignee
Karmel Medical Acoustic Technologies Ltd.
|
Method for protecting implantable devices | ||
Patent #
US 6,189,536 B1
Filed 04/15/1999
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Electronic control unit and tubing assembly system for automatically controlling urinary irrigation | ||
Patent #
US 6,183,437 B1
Filed 11/13/1997
|
Current Assignee
Frank J. Walker Sr
|
Original Assignee
Guardian Medical Systems Inc.
|
Optical shutter, spectrometer and method for spectral analysis | ||
Patent #
US 6,191,860 B1
Filed 08/06/1999
|
Current Assignee
OrSense Ltd.
|
Original Assignee
OrSense Ltd.
|
Multilevel ERI for implantable medical devices | ||
Patent #
US 6,016,448 A
Filed 10/27/1998
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Device for the detection of analyte and administration of a therapeutic substance | ||
Patent #
US 6,014,577 A
Filed 11/20/1997
|
Current Assignee
Abbott Laboratories Incorporated
|
Original Assignee
Abbott Laboratories Incorporated
|
Fluid management system for arthroscopic surgery | ||
Patent #
US 6,024,720 A
Filed 08/28/1998
|
Current Assignee
AVAcore Technologies Inc.
|
Original Assignee
Aquarius Medical Corporation
|
Method for flushing and calibrating a sensor in a body fluid analysis system | ||
Patent #
US 6,027,445 A
Filed 06/30/1998
|
Current Assignee
Sphere Medical Limited
|
Original Assignee
Siemens Elema AB
|
Device for the detection of analyte and administration of a therapeutic substance | ||
Patent #
US 6,032,059 A
Filed 07/22/1997
|
Current Assignee
Abbott Laboratories Incorporated
|
Original Assignee
Abbott Laboratories Incorporated
|
Electrochemical analyte | ||
Patent #
US 6,134,461 A
Filed 03/04/1998
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
E. Heller Company
|
Implantable medical device microstrip telemetry antenna | ||
Patent #
US 5,861,019 A
Filed 07/25/1997
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Attachment apparatus for an implantable medical device employing ultrasonic energy | ||
Patent #
US 5,871,514 A
Filed 08/01/1997
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Medical valve and method of use | ||
Patent #
US 5,873,862 A
Filed 04/22/1997
|
Current Assignee
ICU Medical Incorporated
|
Original Assignee
ICU Medical Incorporated
|
Device for monitoring changes in analyte concentration | ||
Patent #
US 5,711,861 A
Filed 11/22/1995
|
Current Assignee
LEGACY GOOD SAMARITAN HOSPITAL AND MEDICAL CENTER
|
Original Assignee
Ward W. Kenneth, Eric S. Wilgus
|
Electrocatalytic glucose sensor | ||
Patent #
US 5,704,354 A
Filed 06/23/1995
|
Current Assignee
Siemens AG
|
Original Assignee
Siemens AG
|
Subcutaneous glucose electrode | ||
Patent #
US 5,593,852 A
Filed 09/01/1994
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Adam Heller, Michael V. Pishko
|
Breathable liquid elimination analysis | ||
Patent #
US 5,590,651 A
Filed 01/17/1995
|
Current Assignee
Temple University of The Commonwealth System of Higher Education
|
Original Assignee
Temple University of The Commonwealth System of Higher Education
|
Ambulatory infusion pump | ||
Patent #
US 5,482,446 A
Filed 03/09/1994
|
Current Assignee
Baxter International Inc.
|
Original Assignee
Baxter International Inc.
|
Replaceable catheter system for physiological sensors, tissue stimulating electrodes and/or implantable fluid delivery systems | ||
Patent #
US 5,484,404 A
Filed 05/06/1994
|
Current Assignee
Alfred E. Mann Foundation For Scientific Research
|
Original Assignee
Alfred E. Mann Foundation For Scientific Research
|
Telemetric transmitter unit | ||
Patent #
US 5,491,474 A
Filed 11/16/1994
|
Current Assignee
Polar Electro Oy
|
Original Assignee
Polar Electro Inc USA
|
Electrochemical sensors | ||
Patent #
US 5,494,562 A
Filed 06/27/1994
|
Current Assignee
Siemens Healthcare Diagnostics Incorporated
|
Original Assignee
CIBA Vision Corporation
|
Body fluid flow control valve and method | ||
Patent #
US 5,380,268 A
Filed 06/07/1993
|
Current Assignee
Douglas E. Wheeler
|
Original Assignee
Douglas E. Wheeler
|
Fluid sample collection and delivery system and methods particularly adapted for body fluid sampling | ||
Patent #
US 5,380,665 A
Filed 01/27/1993
|
Current Assignee
International Technidyne Corporation
|
Original Assignee
International Technidyne Corporation
|
Check valve manifold assembly for use in angioplasty | ||
Patent #
US 5,378,229 A
Filed 01/25/1994
|
Current Assignee
Cordis Corporation
|
Original Assignee
Cordis Corporation
|
Apparatus for pumping and directing fluids for hematology testing | ||
Patent #
US 5,380,491 A
Filed 01/21/1993
|
Current Assignee
Drew Scientific Holdings Inc.
|
Original Assignee
CDC Technologies Inc.
|
Transcutaneous sensor insertion set | ||
Patent #
US 5,390,671 A
Filed 03/15/1994
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Minimed Inc.
|
Method of fabricating thin film sensors | ||
Patent #
US 5,391,250 A
Filed 03/15/1994
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Minimed Inc.
|
Medical diagnostic system | ||
Patent #
US 5,279,294 A
Filed 03/26/1990
|
Current Assignee
Cascade Medical Inc.
|
Original Assignee
CASCADE MEDICAL INC.
|
Fluid sample analyte collector and calibration assembly | ||
Patent #
US 5,284,570 A
Filed 06/26/1991
|
Current Assignee
RADIOMETER CALIFORNIA INC.
|
Original Assignee
PPG Industries Incorporated
|
Self-supporting woven vascular graft | ||
Patent #
US 5,282,848 A
Filed 04/19/1993
|
Current Assignee
Maquet Cardiovascular LLC
|
Original Assignee
Meadox Medicals Inc.
|
Continuous display of peak and mean blood flow velocities | ||
Patent #
US 5,287,753 A
Filed 05/02/1992
|
Current Assignee
Advanced Technology Materials Inc.
|
Original Assignee
Advanced Technology Materials Inc.
|
Electromagnetic method and apparatus to measure constituents of human or animal tissue | ||
Patent #
US 5,178,142 A
Filed 07/03/1991
|
Current Assignee
Robert A. Peura, Lock J. Paul, Stephen Wells, MORROW CO. PARTNERSHIP
|
Original Assignee
VivaScan Corp.
|
Valve assembly for use in medical devices | ||
Patent #
US 5,176,658 A
Filed 05/03/1991
|
Current Assignee
Sherwood Services AG
|
Original Assignee
Sherwood Medical Company
|
Flow-through type hydrogen peroxide electrode | ||
Patent #
US 5,182,004 A
Filed 11/15/1989
|
Current Assignee
Horiba Limited
|
Original Assignee
Horiba Limited
|
Irrigation control valve for endoscopic instrument | ||
Patent #
US 5,188,591 A
Filed 01/26/1990
|
Current Assignee
Davol Incorporated
|
Original Assignee
James H. Dorsey III
|
Safety enhanced device and method for effecting application of a therapeutic agent | ||
Patent #
US 5,088,981 A
Filed 07/31/1987
|
Current Assignee
Medex Inc
|
Original Assignee
IVION CORPORATION
|
Method and apparatus for analyzing blood | ||
Patent #
US 5,089,421 A
Filed 03/30/1990
|
Current Assignee
Susan Dieffenbach
|
Original Assignee
Susan Dieffenbach
|
Sterilizing dressing device and method for skin puncture | ||
Patent #
US 4,988,341 A
Filed 06/05/1989
|
Current Assignee
Clinical Diagnostic Systems Inc.
|
Original Assignee
Eastman Kodak Company
|
Three-parameter optical fiber sensor and system | ||
Patent #
US 4,986,671 A
Filed 04/12/1989
|
Current Assignee
Luxtron Corp.
|
Original Assignee
Luxtron Corp.
|
Gravity flow fluid balance system | ||
Patent #
US 4,994,026 A
Filed 08/31/1988
|
Current Assignee
Minntech Corporation
|
Original Assignee
W R Grace Company - CONN
|
Biological fluid measuring device | ||
Patent #
US 4,994,167 A
Filed 07/07/1988
|
Current Assignee
DexCom Incorporated
|
Original Assignee
Markwell Medical Institute Inc.
|
Continuous glucose monitoring and a system utilized therefor | ||
Patent #
US 4,890,621 A
Filed 01/19/1988
|
Current Assignee
NORTH-STAR RESEARCH INSTITUTE LTD. A CORP. OF DE
|
Original Assignee
NORTHSTAR RESEARCH INSTITUTE LTD.
|
Two-dimensional diffusion glucose substrate sensing electrode | ||
Patent #
US 4,890,620 A
Filed 02/17/1988
|
Current Assignee
Regents of the University of California
|
Original Assignee
Regents of the University of California
|
Ambulatory infusion pump | ||
Patent #
US 4,900,305 A
Filed 06/27/1988
|
Current Assignee
Queens University At Kingston
|
Original Assignee
Queens University At Kingston
|
Sphenoidal electrode and insertion method | ||
Patent #
US 4,805,625 A
Filed 07/08/1987
|
Current Assignee
AD-Tech Medical Instrument Corp.
|
Original Assignee
AD-Tech Medical Instrument Corp.
|
Arrangement for stabilizing a gas-reference electrode | ||
Patent #
US 4,808,292 A
Filed 10/24/1986
|
Current Assignee
Manfred Kessler, Jens Hoper
|
Original Assignee
Manfred Kessler, Jens Hoper
|
Reciprocating pump for a medication administering device | ||
Patent #
US 4,808,089 A
Filed 09/01/1987
|
Current Assignee
Siemens AG
|
Original Assignee
Siemens AG
|
Implantable gas-containing biosensor and method for measuring an analyte such as glucose | ||
Patent #
US 4,721,677 A
Filed 05/07/1987
|
Current Assignee
Childrens Hospital Medical Center
|
Original Assignee
Childrens Hospital Medical Center
|
Blood component monitoring system | ||
Patent #
US 4,736,748 A
Filed 04/03/1987
|
Current Assignee
Nihon Kohden Corporation
|
Original Assignee
Kuraray Company Limited
|
Implantable telemetry transmission system for analog and digital data | ||
Patent #
US RE32,361 E
Filed 07/19/1982
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Method of producing combination ion selective sensing electrode | ||
Patent #
US 4,565,666 A
Filed 07/18/1984
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Flow through ion selective electrode | ||
Patent #
US 4,565,665 A
Filed 08/03/1983
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Chemical substance measuring apparatus | ||
Patent #
US 4,568,444 A
Filed 04/18/1985
|
Current Assignee
KURARAY CO. LTD. 1652 SAKAZU KURASHIKI-CITY OKAYAMA PREF JAPAN
|
Original Assignee
Kuraray Company Limited
|
Apparatus for electrochemical measurements | ||
Patent #
US 4,571,292 A
Filed 08/12/1982
|
Current Assignee
Case Western Reserve University
|
Original Assignee
Case Western Reserve University
|
Dental prophylactic apparatus | ||
Patent #
US 4,492,575 A
Filed 04/27/1983
|
Current Assignee
ELECTROC MEDICAL SYSTEMS S.A. LE SENTIER A SWISS CORP.
|
Original Assignee
Electro Medical Systems S.A.
|
Plural module medication delivery system | ||
Patent #
US 4,494,950 A
Filed 01/19/1982
|
Current Assignee
Johns Hopkins University
|
Original Assignee
Johns Hopkins University
|
Implantable glucose sensor | ||
Patent #
US 4,431,004 A
Filed 10/27/1981
|
Current Assignee
Ennis C. Layne, Samuel P. Bessman, Lyell J. Thomas
|
Original Assignee
Ennis C. Layne, Samuel P. Bessman, Lyell J. Thomas
|
Reference electrode catheter | ||
Patent #
US 4,432,366 A
Filed 11/27/1981
|
Current Assignee
SENTRON V.O.F. OOSTEINDE 8 9301 LJ RODEN THE NETHERLANDS A CORP. OF NETHERLANDS
|
Original Assignee
Cordis Corporation
|
Surgical fluid flow system | ||
Patent #
US 4,369,785 A
Filed 02/21/1980
|
Current Assignee
CONTEMPORARY OCU-FLO INC.
|
Original Assignee
CONTEMPORARY OCU-FLO INC.
|
Method of producing porous plastic materials | ||
Patent #
US 4,076,656 A
Filed 07/20/1973
|
Current Assignee
DeBell Richardson Inc.
|
Original Assignee
DEBELL RICHARDSON INC.
|
System for continuous withdrawal and analysis of blood | ||
Patent #
US 4,008,717 A
Filed 03/05/1976
|
Current Assignee
Johns Hopkins University
|
Original Assignee
Johns Hopkins University
|
Rate sensing batch analysis method | ||
Patent #
US 3,933,593 A
Filed 08/09/1972
|
Current Assignee
Beckman Instruments Inc.
|
Original Assignee
Beckman Instruments Inc.
|
METHOD AND APPARATUS FOR AUTOMATIC ELECTROCHEMICAL ANALYSIS | ||
Patent #
US 3,556,950 A
Filed 07/15/1966
|
Current Assignee
International Business Machines Corporation
|
Original Assignee
Dahms Harald
|
25 Claims
-
1. A system for evaluating a change in a sensitivity of an analyte sensor over a predetermined time period, the system comprising:
-
an analyte sensor; and a computer system, wherein the computer system comprises; an input module configured to receive sensor analyte data and reference analyte data, wherein the sensor data comprises one or more sensor analyte values measured in a biological sample of a host and wherein the reference data comprises one or more reference analyte values; and a processor module configured to intermittently calculate a sensitivity of the analyte sensor based at least in part on the reference analyte data and to evaluate a change in sensitivity by evaluating a plurality of time-spaced sensitivity calculations over a predetermined time period. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25)
-
1 Specification
This application is a continuation-in-part of U.S. application Ser. No. 10/633,367 filed Aug. 1, 2003; and is a continuation-in-part of U.S. application Ser. No. 11/543,396 filed Oct. 4, 2006, and is a continuation-in-part of U.S. application Ser. No. 12/258,345 filed Oct. 24, 2008; and is a continuation-in-part of U.S. application Ser. No. 11/004,561 filed Dec. 3, 2004. U.S. application Ser. No. 12/258,345 claims the benefit of U.S. Provisional Application No. Application No. 61/014,398 filed Dec. 17, 2007. U.S. application Ser. No. 11/004,561 claims the benefit of U.S. Provisional Application No. Application No. 60/527,323 filed Dec. 5, 2003; U.S. Provisional Application No. Application No. 60/587,787 filed Jul. 13, 2004; and U.S. Provisional Application No. Application No. 60/614,683 filed Sep. 30, 2004. The disclosures of each of the abovementioned applications is hereby expressly incorporated by reference in its entirety and is hereby expressly made a portion of this application.
The preferred embodiments relate generally to systems and methods for measuring an analyte in a host.
In today'"'"'s medical practice, analyte levels in patient biological samples (e.g., fluids, tissues and the like collected from patients) are routinely measured during the process of diagnosing, monitoring and/or prognosticating a patient'"'"'s medical status. For example, a basic metabolic panel (e.g., BMP or chem.-7) measures sodium, potassium, chloride, bicarbonate, blood urea nitrogen (BUN), creatinine and glucose. Bodily sample analyte tests are routinely conducted in a variety of medical settings (e.g., doctor'"'"'s office, clinic, hospital, by medical personnel) and in the home by the host and/or a caretaker. For example, some medical conditions require frequent testing of blood analyte levels. For example, diabetes mellitus, a disorder in which the pancreas cannot create sufficient insulin (Type I or insulin dependent) and/or in which insulin is not effective (Type 2 or non-insulin dependent), is one exemplary medical condition, wherein bodily fluid samples (e.g., blood, interstitial fluid) are routinely tested, in order to ascertain the patient'"'"'s (e.g., host'"'"'s) glucose status, often by the host or a caretaker. In the diabetic state, the victim suffers from high blood sugar, which can cause an array of physiological derangements associated with the deterioration of small blood vessels, for example, kidney failure, skin ulcers, or bleeding into the vitreous of the eye. A hypoglycemic reaction (low blood sugar) can be induced by an inadvertent overdose of insulin, or after a normal dose of insulin or glucose-lowering agent accompanied by extraordinary exercise or insufficient food intake.
Conventionally, a person admitted to a hospital for certain conditions (with or without diabetes) is tested for blood sugar level by a single point blood glucose meter, which typically requires uncomfortable finger pricking methods or blood draws and can produce a burden on the hospital staff during a patient'"'"'s hospital stay. Due to the lack of convenience, blood sugar glucose levels are generally measured as little as once per day or up to once per hour. Unfortunately, such time intervals are so far spread apart that hyperglycemic or hypoglycemic conditions unknowingly occur, incurring dangerous side effects. It is not only unlikely that a single point value will not catch some hyperglycemic or hypoglycemic conditions, it is also likely that the trend (direction) of the blood glucose value is unknown based on conventional methods. This inhibits the ability to make educated insulin therapy decisions.
A variety of sensors are known that use an electrochemical cell to provide output signals by which the presence or absence of an analyte, such as glucose, in a sample can be determined. For example, in an electrochemical cell, an analyte (or a species derived from it) that is electro-active generates a detectable signal at an electrode, and this signal can be used to detect or measure the presence and/or amount within a biological sample. In some conventional sensors, an enzyme is provided that reacts with the analyte to be measured, and the byproduct of the reaction is qualified or quantified at the electrode. An enzyme has the advantage that it can be very specific to an analyte and also, when the analyte itself is not sufficiently electro-active, can be used to interact with the analyte to generate another species which is electro-active and to which the sensor can produce a desired output. In one conventional amperometric glucose oxidase-based glucose sensor, immobilized glucose oxidase catalyses the oxidation of glucose to form hydrogen peroxide, which is then quantified by amperometric measurement (for example, change in electrical current) through a polarized electrode.
In a first aspect, an integrated sensor system is provided for measuring an analyte in a sample of a host and for fluid infusion into the host, comprising: an analyte sensor configured and arranged for measuring an analyte concentration in a biological sample of a circulatory system of a host; a vascular access device; tubing assembly comprising tubing; and a flow control device configured to regulate exposure of the analyte sensor to a biological sample and to a reference solution according to a flow profile, wherein the flow control device comprises a valve, and wherein the valve is configured and arranged with a gravity flow position and a controlled flow position.
In an embodiment of the first aspect, the system is configured such that the analyte sensor is flushed by the reference solution when the valve is in the gravity flow position.
In an embodiment of the first aspect, the gravity flow position comprises a first flow rate of the solution, wherein the controlled flow position comprises a second flow rate of the solution, and wherein a ratio of the first flow rate to the second flow rate is at least about 10:1.
In an embodiment of the first aspect, the gravity flow position has a flow rate of at least about 600 ml/hr.
In an embodiment of the first aspect, the controlled flow position has a flow rate of from about 0.5 ml/hr to about 4.0 ml/hour.
In an embodiment of the first aspect, the valve is configured and arranged to receive the tubing in a substantially linear configuration.
In an embodiment of the first aspect, the valve and the tubing assembly are configured and arranged such that the tubing is in a stretched state after installation of the tubing in the valve.
In an embodiment of the first aspect, valve is configured and arranged such that the tubing is substantially linear in the gravity flow position and the tubing is substantially non-linear in the controlled flow position.
In an embodiment of the first aspect, the valve is configured and arranged to preclude tubing installation when the valve is in the controlled flow position.
In an embodiment of the first aspect, the valve is configured and arranged to receive the tubing assembly in only one orientation.
In an embodiment of the first aspect, the valve and tubing assembly are configured and arranged to releasably interlock such that a portion of the valve mechanically interlocks with a portion of the tubing assembly.
In an embodiment of the first aspect, the vascular access device and the tubing assembly are configured and arranged to substantially preclude rotational movement between the vascular access device and the tubing assembly when engaged.
In an embodiment of the first aspect, the system further comprises a free-flow mitigation device.
In an embodiment of the first aspect, the free-flow mitigation device comprises a spring clip occluder located on the tubing assembly.
In an embodiment of the first aspect, the system is configured for electronic control of the free-flow mitigation device.
In an embodiment of the first aspect, the system further comprises an electronic solenoid associated with the flow control device, wherein the electronic solenoid provides electronic control of the free-flow mitigation device.
In an embodiment of the first aspect, the system is configured and arranged such that the free-flow mitigation device precludes flow responsive to at least one of power removal, loss to the system, and loss to the flow control device.
In an embodiment of the first aspect, the system is configured and arranged such that the free-flow mitigation device is controlled at least in part by the flow profile.
In an embodiment of the first aspect, the system further comprises an intravenous bag containing a reference solution, wherein the reference solution has a known analyte concentration.
In an embodiment of the first aspect, the analyte sensor is configured to measure at least one analyte selected from the group consisting of albumin, alkaline phosphatase, alanine transaminase, aspartate aminotransferase, bilirubin, blood urea nitrogen, calcium, carbon dioxide, chloride, creatinine, glucose, gamma-glutamyl transpeptidase, hematocrit, lactate, lactate dehydrogenase, magnesium, oxygen, pH, phosphorus, potassium, sodium, total protein, uric acid, a metabolic marker and a drug.
In a second aspect, a system configured to measure at least one analyte in a host is provided, the system comprising: a vascular access device comprising a first portion configured for insertion into a host and a second portion configured to remain outside the host after insertion of the first portion; at least one analyte sensor located within the second portion of the vascular access device, such that the at least one analyte sensor is exposed to a biological sample when the biological sample is drawn back by a distance of about 40 mm or less into the vascular access device, when the vascular access device is in fluid communication with a circulatory system of the host; and a flow control device configured to regulate exposure of the at least one analyte sensor to a biological sample and to a reference solution according to a flow profile.
In an embodiment of the second aspect, the at least one analyte sensor is exposed to the biological sample when a volume of about 300 μl or less of the biological sample is drawn back.
In an embodiment of the second aspect, the at least one analyte sensor is exposed to the biological sample when a volume of about 200 μl or less of the biological sample is drawn back.
In an embodiment of the second aspect, the vascular access device comprises a catheter.
In an embodiment of the second aspect, the second portion comprises a connecting end of the catheter, wherein the connecting end is configured for connection to tubing.
In an embodiment of the second aspect, the vascular access device is a catheter, and wherein the catheter is 22 gauge or smaller.
In an embodiment of the second aspect, the second portion comprises a fluid coupler, wherein the fluid coupler is configured to releasably mate with the catheter.
In an embodiment of the second aspect, the at least one sensor is incorporated into the second portion.
In an embodiment of the second aspect, the at least one sensor is located on an inner surface of the second portion.
In an embodiment of the second aspect, the at least one sensor is disposed within a lumen of the second portion.
In an embodiment of the second aspect, at least a portion of the at least one sensor is disposed in an orientation substantially parallel to a longitudinal axis of the second portion.
In an embodiment of the second aspect, at least a portion of the at least one sensor is disposed in an orientation substantially perpendicular to a longitudinal axis of the second portion.
In an embodiment of the second aspect, the at least one sensor comprises an exposed electroactive surface area with a dimension substantially equal to a width of a lumen of the second portion.
In an embodiment of the second aspect, the exposed electroactive surface area intersects the lumen of the second portion.
In an embodiment of the second aspect, the second portion is configured to provide identification information associated with the flow profile.
In an embodiment of the second aspect, the system is configured to program the flow profile of the flow control device in response to an automatic receipt of the identification information.
In an embodiment of the second aspect, the identification information is provided by a mechanical structure of the second portion.
In an embodiment of the second aspect, the identification information is provided by electronics of the second portion.
In an embodiment of the second aspect, the vascular access device comprises at least two lumens, and wherein the system is configured and arranged to infuse a fluid into a first lumen of the vascular access device, and wherein the system is configured and arranged to draw back a biological sample into a second lumen of the vascular access device.
In an embodiment of the second aspect, the at least one analyte sensor is configured to measure an analyte selected from the group consisting of albumin, alkaline phosphatase, alanine transaminase, aspartate aminotransferase, bilirubin, blood urea nitrogen, calcium, carbon dioxide, chloride, creatinine, glucose, gamma-glutamyl transpeptidase, hematocrit, lactate, lactate dehydrogenase, magnesium, oxygen, pH, phosphorus, potassium, sodium, total protein, uric acid, a metabolic marker and a drug.
In an embodiment of the second aspect, the system comprises at least three analyte sensors located within the second portion of the vascular access device, wherein the three sensors in combination are configured to measure at least three analytes selected from the group consisting of albumin, alkaline phosphatase, alanine transaminase, aspartate aminotransferase, bilirubin, blood urea nitrogen, calcium, carbon dioxide, chloride, creatinine, glucose, gamma-glutamyl transpeptidase, hematocrit, lactate, lactate dehydrogenase, magnesium, oxygen, pH, phosphorus, potassium, sodium, total protein, uric acid, a metabolic marker and a drug.
In an embodiment of the second aspect, the system comprises at least eight analyte sensors located within the second portion of the vascular access device, wherein the three sensors in combination are configured to measure at least eight analytes selected from the group consisting of albumin, alkaline phosphatase, alanine transaminase, aspartate aminotransferase, bilirubin, blood urea nitrogen, calcium, carbon dioxide, chloride, creatinine, glucose, gamma-glutamyl transpeptidase, hematocrit, lactate, lactate dehydrogenase, magnesium, oxygen, pH, phosphorus, potassium, sodium, total protein, uric acid, a metabolic marker and a drug.
In an embodiment of the second aspect, a lumen of the second portion is wider than a lumen of the first portion.
In a third aspect, a system configured to measure at least one analyte in a host is provided, the system comprising: a catheter comprising a first portion configured for insertion into a host and a second portion configured to remain outside the host after insertion of the first portion; and at least one analyte sensor located within the second portion of the catheter, such that the at least one analyte sensor is exposed to a biological sample when the biological sample is drawn back into the catheter to a distance of about 40 mm or less, when the catheter is in fluid communication with a circulatory system of the host.
In an embodiment of the third aspect, the at least one analyte sensor is exposed to the biological sample when a volume of about 300 μl or less of the biological sample is drawn back.
In an embodiment of the third aspect, the at least one analyte sensor is exposed to the biological sample when a volume of about 200 μl or less of the biological sample is drawn back.
In an embodiment of the third aspect, the catheter is 22 gauge or smaller.
In an embodiment of the third aspect, the second portion comprises a fluid coupler, wherein the fluid coupler is configured to releasably mate with the catheter.
In an embodiment of the third aspect, the at least one sensor is incorporated into the second portion.
In an embodiment of the third aspect, the at least one sensor is located on an inner surface of the second portion.
In an embodiment of the third aspect, the at least one sensor is disposed within a lumen of the second portion.
In an embodiment of the third aspect, at least a portion of the at least one sensor is disposed in an orientation substantially parallel to a longitudinal axis of the second portion.
In an embodiment of the third aspect, at least a portion of the at least one sensor is disposed in an orientation substantially perpendicular to a longitudinal axis of the second portion.
In an embodiment of the third aspect, the at least one sensor comprises an exposed electroactive surface area with a dimension substantially equal to a width of a lumen of the second portion.
In an embodiment of the third aspect, the exposed electroactive surface area intersects the lumen of the second portion.
In an embodiment of the third aspect, the second portion is configured to provide identification information associated with a flow profile.
In an embodiment of the third aspect, the system is configured to program the flow profile of the flow control device in response to an automatic receipt of the identification information.
In an embodiment of the third aspect, the identification information is provided by a mechanical structure of the catheter.
In an embodiment of the third aspect, the identification information is provided by electronics associated with the catheter.
In an embodiment of the third aspect, the catheter comprises at least two lumens, and wherein the system is configured and arranged to infuse a fluid into a first lumen of the catheter, and wherein the system is configured and arranged draw back a biological sample into a second lumen of the catheter.
In an embodiment of the third aspect, the at least one analyte sensor is configured to measure an analyte selected from the group consisting of albumin, alkaline phosphatase, alanine transaminase, aspartate aminotransferase, bilirubin, blood urea nitrogen, calcium, carbon dioxide, chloride, creatinine, glucose, gamma-glutamyl transpeptidase, hematocrit, lactate, lactate dehydrogenase, magnesium, oxygen, pH, phosphorus, potassium, sodium, total protein, uric acid, a metabolic marker and a drug.
In an embodiment of the third aspect, the system comprises at least three analyte sensors located within the second portion of the catheter, wherein the three sensors in combination are configured to measure at least three analytes selected from the group consisting of albumin, alkaline phosphatase, alanine transaminase, aspartate aminotransferase, bilirubin, blood urea nitrogen, calcium, carbon dioxide, chloride, creatinine, glucose, gamma-glutamyl transpeptidase, hematocrit, lactate, lactate dehydrogenase, magnesium, oxygen, pH, phosphorus, potassium, sodium, total protein, uric acid, a metabolic marker and a drug.
In an embodiment of the third aspect, the system comprises at least eight analyte sensors located within the second portion of the catheter, wherein the eight sensors in combination are configured to measure at least eight analytes selected from the group consisting of albumin, alkaline phosphatase, alanine transaminase, aspartate aminotransferase, bilirubin, blood urea nitrogen, calcium, carbon dioxide, chloride, creatinine, glucose, gamma-glutamyl transpeptidase, hematocrit, lactate, lactate dehydrogenase, magnesium, oxygen, pH, phosphorus, potassium, sodium, total protein, uric acid, a metabolic marker and a drug.
In an embodiment of the third aspect, the system further comprises a flow control device configured to regulate exposure of the at least one sensor to a biological sample and to a solution according to a flow profile.
In an embodiment of the third aspect, a lumen of the second portion is wider than a lumen of the first portion.
In a fourth aspect, a system configured to measure at least one analyte in a biological sample of the host is provided, the system comprising: a fluid coupler comprising a first end and a second end, wherein the first end is configured to releasably mate with a connecting end of a catheter, and wherein the second end is configured to releasably mate with a tubing assembly; and at least one analyte sensor located within the fluid coupler such that when the fluid coupler is mated to a catheter inserted into a circulatory system of a host, the at least one analyte sensor is exposed to a biological sample when the biological sample is drawn back into the catheter to a distance of about 40 mm or less.
In an embodiment of the fourth aspect, the at least one analyte sensor is exposed to the biological sample when a volume of about 300 μl or less of the biological sample is drawn back.
In an embodiment of the fourth aspect, the at least one analyte sensor is exposed to the biological sample when a volume of about 200 μl or less of the biological sample is drawn back.
In an embodiment of the fourth aspect, the at least one analyte sensor is incorporated into the fluid coupler.
In an embodiment of the fourth aspect, the at least one analyte sensor is located on an inner surface of the fluid coupler.
In an embodiment of the fourth aspect, the at least one analyte sensor is disposed within a lumen of the fluid coupler.
In an embodiment of the fourth aspect, at least a portion of the at least one sensor is disposed in an orientation substantially parallel to a longitudinal axis of the fluid coupler.
In an embodiment of the fourth aspect, at least a portion of the at least one sensor is disposed in an orientation substantially perpendicular to a longitudinal axis of the fluid coupler.
In an embodiment of the fourth aspect, the at least one sensor comprises an exposed electroactive surface area with a dimension substantially equal to a width of a lumen of the fluid coupler.
In an embodiment of the fourth aspect, the exposed electroactive surface area intersects the lumen of the fluid coupler.
In an embodiment of the fourth aspect, the fluid coupler is configured to provide identification information associated with a flow profile.
In an embodiment of the fourth aspect, the system is configured to program the flow profile of the flow control device in response to an automatic receipt of the identification information.
In an embodiment of the fourth aspect, the identification information is provided by a mechanical structure of the fluid coupler.
In an embodiment of the fourth aspect, the identification information is provided by electronics associated with the fluid coupler.
In an embodiment of the fourth aspect, the fluid coupler comprises at least two lumens, and wherein the system is configured and arranged to infuse a fluid into a first lumen of the fluid coupler, and wherein the system is configured and arranged draw back a biological sample into a second lumen of the fluid coupler.
In an embodiment of the fourth aspect, the at least one analyte sensor is configured to measure an analyte selected from the group consisting of albumin, alkaline phosphatase, alanine transaminase, aspartate aminotransferase, bilirubin, blood urea nitrogen, calcium, carbon dioxide, chloride, creatinine, glucose, gamma-glutamyl transpeptidase, hematocrit, lactate, lactate dehydrogenase, magnesium, oxygen, pH, phosphorus, potassium, sodium, total protein, uric acid, a metabolic marker and a drug.
In an embodiment of the fourth aspect, the system comprises at least three analyte sensors located within the fluid coupler, wherein the three sensors in combination are configured to measure at least three analytes selected from the group consisting of albumin, alkaline phosphatase, alanine transaminase, aspartate aminotransferase, bilirubin, blood urea nitrogen, calcium, carbon dioxide, chloride, creatinine, glucose, gamma-glutamyl transpeptidase, hematocrit, lactate, lactate dehydrogenase, magnesium, oxygen, pH, phosphorus, potassium, sodium, total protein, uric acid, a metabolic marker and a drug.
In an embodiment of the fourth aspect, the system comprises at least eight analyte sensors located within the fluid coupler, wherein the three sensors in combination are configured to measure at least eight analytes selected from the group consisting of albumin, alkaline phosphatase, alanine transaminase, aspartate aminotransferase, bilirubin, blood urea nitrogen, calcium, carbon dioxide, chloride, creatinine, glucose, gamma-glutamyl transpeptidase, hematocrit, lactate, lactate dehydrogenase, magnesium, oxygen, pH, phosphorus, potassium, sodium, total protein, uric acid, a metabolic marker and a drug.
In an embodiment of the fourth aspect, the system further comprises a catheter.
In an embodiment of the fourth aspect, the system further comprises a flow control device configured to regulate exposure of the at least one sensor to a biological sample and to a solution according to a flow profile.
In a fifth aspect, a method for evaluating a change in a sensitivity of an analyte sensor over a predetermined time period is provided, the method comprising: receiving sensor data from an analyte sensor, wherein the sensor data comprises one or more sensor analyte values measured in a biological sample of a host; intermittently calculating a sensitivity of the analyte sensor based at least in part on reference analyte data; and evaluating a change in sensitivity by evaluating a plurality of time-spaced sensitivity calculations over a predetermined time period.
In an embodiment of the fifth aspect, the predetermined time period is less than or equal to about 30 minutes.
In an embodiment of the fifth aspect, the predetermined time period is less than or equal to about 20 minutes.
In an embodiment of the fifth aspect, the predetermined time period is less than or equal to about 10 minutes.
In an embodiment of the fifth aspect, the step of evaluating a change in sensitivity comprises evaluating at least two sensitivity measurements during the predetermined time period.
In an embodiment of the fifth aspect, the method further comprises averaging and/or filtering the at least two sensitivity measurements prior to the step of evaluating the at least two sensitivity measurements.
In an embodiment of the fifth aspect, the step of evaluating a change in sensitivity comprises comparing the change in sensitivity with one or more criteria.
In an embodiment of the fifth aspect, the method further comprises using a most recent sensitivity calculation evaluated to calibrate the analyte sensor when the change in sensitivity meets one or more criteria.
In an embodiment of the fifth aspect, the method further comprises not using a most recent sensitivity calculation evaluated to calibrate the analyte sensor when the change in sensitivity does not meet one or more criteria.
In an embodiment of the fifth aspect, the step of intermittently calculating a sensitivity of the analyte sensor comprises intermittently receiving a reference analyte value.
In an embodiment of the fifth aspect, the step of intermittently receiving a reference analyte value comprises periodically receiving a measured analyte concentration from a reference analyte solution.
In an embodiment of the fifth aspect, the step of intermittently receiving a reference analyte value comprises receiving a reference analyte value obtained from an in vitro analyte monitor.
In an embodiment of the fifth aspect, the step of evaluating a sensitivity is iteratively performed on the plurality of time-spaced sensitivity calculations over the predetermined time period.
In an embodiment of the fifth aspect, the predetermined time period is at least about 30 minutes.
In an embodiment of the fifth aspect, the predetermined time period is at least about 60 minutes.
In an embodiment of the fifth aspect, the predetermined time period is at least about 120 minutes.
In an embodiment of the fifth aspect, the step of evaluating a sensitivity is iteratively performed on the plurality of time-spaced sensitivity calculations over the predetermined time period.
In an embodiment of the fifth aspect, the step of evaluating a sensitivity comprises evaluating all sensitivity calculations over a sensor session.
In an embodiment of the fifth aspect, the step of evaluating a sensitivity is based at least in part on a priori sensitivity information.
In an embodiment of the fifth aspect, the a priori sensitivity information is an expected profile.
In an embodiment of the fifth aspect, the a priori sensitivity information defines a range of acceptable change in sensitivity.
In an embodiment of the fifth aspect, the analyte sensor comprises a first working electrode and a second working electrode, wherein the first working electrode is configured to provide a first signal comprising an analyte component and a baseline component and wherein the second working electrode is configured to provide a second signal comprising a baseline component without an analyte component.
In an embodiment of the fifth aspect, the step of intermittently calculating a sensitivity of the analyte sensor is based at least in part on the first signal.
In an embodiment of the fifth aspect, the step of intermittently calculating a sensitivity of the analyte sensor is based at least in part on the second signal.
In an embodiment of the fifth aspect, the method further comprises subtracting the second signal from the first signal to obtain a subtracted signal, wherein the step of intermittently calculating a sensitivity of the analyte sensor is based at least in part on the subtracted signal.
In an embodiment of the fifth aspect, the analyte sensor is intermittently exposed to a biological sample and to a reference solution.
In an embodiment of the fifth aspect, the step of intermittently calculating a sensitivity of the analyte sensor is based at least in part on a signal obtained when the analyte sensor is exposed to a biological sample.
In an embodiment of the fifth aspect, the step of intermittently calculating a sensitivity of the analyte sensor is based at least in part on a signal obtained when the analyte sensor is exposed to a reference solution.
In an embodiment of the fifth aspect, the step of intermittently calculating a sensitivity of the analyte sensor is based at least in part on a signal obtained when the analyte sensor is exposed to a biological sample and a signal obtained when the analyte sensor is exposed to a reference solution.
In a sixth aspect, a system for evaluating a change in a sensitivity of an analyte sensor over a predetermined time period is provided, the system comprising: an analyte sensor; and a computer system, wherein the computer system comprises: an input module configured to receive sensor analyte data and reference analyte data, wherein the sensor data comprises one or more sensor analyte values measured in a biological sample of a host and wherein the reference data comprises one or more reference analyte values; and a processor module configured to intermittently calculate a sensitivity of the analyte sensor based at least in part on the reference analyte data and to evaluate a change in sensitivity by evaluating a plurality of time-spaced sensitivity calculations over a predetermined time period.
In an embodiment of the sixth aspect, the predetermined time period is less than or equal to about 30 minutes.
In an embodiment of the sixth aspect, the predetermined time period is less than or equal to about 20 minutes.
In an embodiment of the sixth aspect, the predetermined time period is less than or equal to about 10 minutes.
In an embodiment of the sixth aspect, the processor module is configured to evaluate the change in sensitivity at least in part by evaluating at least two sensitivity measurements during the predetermined time period.
In an embodiment of the sixth aspect, the processor module is further configured to average and/or filter the at least two sensitivity measurements prior to evaluating the at least two sensitivity measurements.
In an embodiment of the sixth aspect, the processor module is further configured to compare the change in sensitivity with one or more criteria.
In an embodiment of the sixth aspect, the processor module is further configured to use a most recent sensitivity calculation evaluated to calibrate the analyte sensor when the change in sensitivity meets one or more criteria.
In an embodiment of the sixth aspect, the processor module is further configured to not use a most recent sensitivity calculation evaluated to calibrate the analyte sensor when the change in sensitivity does not meet one or more criteria.
In an embodiment of the sixth aspect, the predetermined time period is at least about 30 minutes.
In an embodiment of the sixth aspect, the predetermined time period is at least about 60 minutes.
In an embodiment of the sixth aspect, the predetermined time period is at least about 120 minutes.
In an embodiment of the sixth aspect, the processor module is configured to iteratively evaluate a sensitivity of the plurality of time-spaced sensitivity calculations over the predetermined time period.
In an embodiment of the sixth aspect, the processor module is configured to evaluate all sensitivity calculations over a sensor session.
In an embodiment of the sixth aspect, the processor module is configured to evaluate a sensitivity based at least in part on a priori sensitivity information.
In an embodiment of the sixth aspect, the a priori sensitivity information is an expected profile.
In an embodiment of the sixth aspect, the a priori sensitivity information defines a range of acceptable change in sensitivity.
In an embodiment of the sixth aspect, the analyte sensor data comprises a first signal comprising an analyte component and a baseline component and a second signal comprising a baseline component without an analyte component.
In an embodiment of the sixth aspect, the processor module is configured to calculate a sensitivity of the analyte sensor based at least in part on the first signal.
In an embodiment of the sixth aspect, the processor module is configured to calculate a sensitivity of the analyte sensor based at least in part on the second signal.
In an embodiment of the sixth aspect, the processor module is further configured to calculate a sensitivity of the analyte sensor based at least in part on a subtracted signal, wherein the subtracted signal comprises the second signal subtracted from the first signal.
In an embodiment of the sixth aspect, the system further comprises a flow control device configured to intermittently expose the sensor to the biological sample and to a reference solution.
In an embodiment of the sixth aspect, the processor module is configured to intermittently calculate a sensitivity of the analyte sensor based at least in part on a signal obtained when the analyte sensor is exposed to the biological sample.
In an embodiment of the sixth aspect, the processor module is configured to intermittently calculate a sensitivity of the analyte sensor based at least in part on a signal obtained when the analyte sensor is exposed to the reference solution.
In an embodiment of the sixth aspect, the processor module is configured to intermittently calculate a sensitivity of the analyte sensor based on a signal obtained when the analyte sensor is exposed to the biological sample and a signal obtained when the analyte sensor is exposed to the reference solution.
In a seventh aspect, a method for performing a diagnostic of an analyte sensor system is provided, comprising: providing a sensor system comprising an analyte sensor and a flow control device configured to intermittently expose the analyte sensor to a biological sample and an infusion solution, wherein the analyte sensor comprises: a first working electrode configured to provide a first signal comprising an analyte component and a baseline component; and a second working electrode configured to provide a second signal comprising a baseline component substantially without an analyte component; and evaluating the sensor system based at least in part on the second signal.
In an embodiment of the seventh aspect, the second signal comprises a signal waveform, and wherein the step of evaluating the sensor system comprises evaluating the signal waveform for at least one of an expected shape and a pattern when the analyte sensor is exposed to at least one of the biological sample and the infusion solution.
In an embodiment of the seventh aspect, the step of evaluating the signal waveform comprises evaluating at least one of a similarity and a correlation between the signal waveform and a waveform template.
In an embodiment of the seventh aspect, the waveform template is based at least in part on a priori information.
In an embodiment of the seventh aspect, the waveform template is based at least in part on a signal waveform measured by the sensor system.
In an embodiment of the seventh aspect, the step of evaluating at least one of a similarity and a correlation of the signal waveform to a waveform template comprises performing a correlation waveform analysis.
In an embodiment of the seventh aspect, the method further comprises updating the waveform template when at least one of the similarity and the correlation between the signal waveform and the waveform template meets one or more criteria.
In an embodiment of the seventh aspect, the method further comprises detecting a level of interferent in the biological sample, wherein the waveform template is updated when the level of interferent meets one or more criteria.
In an embodiment of the seventh aspect, the step of evaluating the signal waveform comprises evaluating a monotonicity of the signal waveform.
In an embodiment of the seventh aspect, the step of evaluating a monotonicity of the signal waveform comprises performing a correlation waveform analysis of the signal waveform with the waveform template.
In an embodiment of the seventh aspect, the step of evaluating a monotonicity of the signal waveform comprises performing a time-series analysis.
In an embodiment of the seventh aspect, the step of evaluating the sensor system comprises detecting an interferent by evaluating at least one of an amplitude, a change in amplitude, a signal waveform, and a change in a signal waveform of the second signal when the sensor is exposed to the biological sample.
In an embodiment of the seventh aspect, the step of detecting an interferent is further based at least in part on a calibrated analyte value.
In an embodiment of the seventh aspect, the method further comprises controlling a display of the sensor system based at least in part on a level of interferent detected on the second signal.
In an embodiment of the seventh aspect, the method further comprises processing the first signal and the second signal to obtain a subtracted signal, wherein the step of processing is based at least in part a level of interferent of the sensor system.
In an embodiment of the seventh aspect, the method further comprises determining a level of reliability of the sensor system by comparing at least one of an amplitude, a change in amplitude, a signal waveform, and a change in a signal waveform of the second signal to one or more criteria.
In an embodiment of the seventh aspect, the method further comprises controlling a display of the sensor system based at least in part on the level of reliability of the sensor system.
In an embodiment of the seventh aspect, the step of evaluating comprises determining a success of a biological sample draw-back from a host'"'"'s circulatory system to the analyte sensor.
In an embodiment of the seventh aspect, the method further comprises displaying an analyte value measured during the biological sample draw-back in response to a determination of a successful biological sample draw-back.
In an embodiment of the seventh aspect, the step of evaluating comprises determining a success of infusing the infusion solution such that the biological sample is washed from the sensor.
In an embodiment of the seventh aspect, the step of determining a success of infusing comprises displaying an analyte value measured in the biological sample after infusing the infusion solution in response to a determination of a successful infusion.
In an eighth aspect, a system for performing a diagnostic of an analyte sensor system is provided, comprising: an analyte sensor system comprising a sensor, wherein the analyte sensor comprises a first working electrode configured to provide a first signal comprising an analyte component and a baseline component and a second working electrode configured to provide a second signal comprising a baseline component substantially without an analyte component; a flow control device configured to intermittently expose the analyte sensor to a biological sample and an infusion solution; and a processor module configured to evaluate the analyte sensor system based at least in part on the second signal.
In an embodiment of the eighth aspect, the second signal comprises a signal waveform, and wherein the processor module is configured to evaluate the signal waveform for at least one of an expected shape and a pattern when the analyte sensor is exposed to at least one of the biological sample and the infusion solution.
In an embodiment of the eighth aspect, the processor module is configured to evaluate the signal waveform by evaluating at least one of a similarity and a correlation between the signal waveform and a waveform template.
In an embodiment of the eighth aspect, the waveform template is based at least in part on a priori information.
In an embodiment of the eighth aspect, the waveform template is based at least in part on a signal waveform measured by the analyte sensor system.
In an embodiment of the eighth aspect, the processor module is configured to evaluate at least one of a similarity and a correlation between the signal waveform and the waveform template by performing a correlation waveform analysis.
In an embodiment of the eighth aspect, the processor module is further configured to update the waveform template when at least one of a similarity and a correlation between the signal waveform and the waveform template meets one or more criteria.
In an embodiment of the eighth aspect, the processor module is configured to detect a level of an interferent in the biological sample, and wherein the processor module is further configured to update the waveform template when the level of the interferent meets one or more criteria.
In an embodiment of the eighth aspect, the processor module is configured to evaluate the signal waveform by evaluating a monotonicity of the signal waveform.
In an embodiment of the eighth aspect, the processor module is configured to evaluate a monotonicity at least in part by performing a correlation waveform analysis of the signal waveform with a waveform template.
In an embodiment of the eighth aspect, the processor module is configured evaluate a monotonicity at least in part by performing a time-series analysis.
In an embodiment of the eighth aspect, the processor module is configured to detect an interferent at least in part by evaluating at least one of an amplitude, a change in amplitude, a signal waveform, and a change in a signal waveform of the second signal when the sensor is exposed to a biological sample.
In an embodiment of the eighth aspect, the processor module is configured to detect an interferent at least in part by evaluating a calibrated analyte value with one or more criteria.
In an embodiment of the eighth aspect, the one or more criteria are based on physiological feasibility.
In an embodiment of the eighth aspect, the processor module is configured to control a display of the analyte sensor system based at least in part on a level of an interferent detected on the second signal.
In an embodiment of the eighth aspect, the processor module is further configured to process the first signal and the second signal to obtain a subtracted signal based at least in part on a level of an interferent of the sensor system.
In an embodiment of the eighth aspect, the processor module is configured evaluate a level of reliability of the sensor system at least in part by comparing at least one of an amplitude, a change in amplitude, a signal waveform, and a change in a signal waveform of the second signal to one or more criteria.
In an embodiment of the eighth aspect, the processor module is configured to control a display of the sensor system based at least in part on a level of reliability of the sensor system.
In an embodiment of the eighth aspect, processor module is further configured determine a success of drawing-back of a biological sample from a host'"'"'s circulatory system to the analyte sensor, based at least in part on the evaluation of the analyte sensor system.
In an embodiment of the eighth aspect, the processor module is configured to display an analyte value measured during the biological sample draw-back, in response to a determination of a successful draw-back of the biological sample.
In an embodiment of the eighth aspect, the processor module is further configured to determine a success of infusing the infusion solution such that the biological sample is washed from the sensor.
In an embodiment of the eighth aspect, the processor module is configured to display an analyte value measured in the biological sample after infusing the infusion solution, in response to a determination of a successful infusion.
In a ninth aspect, a method for determining a stability of an analyte sensor is provided, the method comprising: exposing an analyte sensor to a biological sample, wherein the analyte sensor comprises a first working electrode that measures an analyte component and a baseline component and a second working electrode that measures a baseline component substantially without an analyte component; receiving sensor data from the analyte sensor, wherein the sensor data comprises first sensor data associated with the first working electrode and second sensor data associated with the second working electrode; and determining a stability of the analyte sensor based at least in part on the second sensor data.
In an embodiment of the ninth aspect, the second sensor data comprises a plurality of time spaced data points, and wherein the step of determining a stability of the analyte sensor comprises evaluating a change in amplitude of two or more of the plurality of time spaced data points.
In an embodiment of the ninth aspect, the step of exposing the analyte sensor to a biological sample comprises intermittently exposing the analyte sensor to a biological sample and to an infusion solution.
In an embodiment of the ninth aspect, the step of evaluating comprises comparing a plurality of time spaced points measured when the analyte sensor is exposed to the biological sample.
In an embodiment of the ninth aspect, the step of evaluating comprises comparing a first point measured when the analyte sensor is exposed to the biological sample to a second point measured when the analyte sensor is exposed to the infusion solution.
In an embodiment of the ninth aspect, the step of evaluating comprises evaluating transient information of the second sensor data during a step change from exposure of the sensor to the infusion solution to exposure of the sensor to the biological sample.
In an embodiment of the ninth aspect, the method further comprises determining a predetermined level of stability when a change in an amplitude of the second sensor data meets one or more criteria.
In an embodiment of the ninth aspect, the method further comprises controlling a display associated with the analyte sensor system in response to the determination of the predetermined level of stability.
In an embodiment of the ninth aspect, the step of controlling a display comprises providing at least one of a numeric estimated analyte value, a directional trend of analyte concentration, and a graphical representation of a plurality of estimated analyte values.
In an embodiment of the ninth aspect, the step of controlling a display comprises requesting reference analyte data.
In an embodiment of the ninth aspect, the step of determining a stability of the analyte sensor is performed during a predetermined time period.
In an embodiment of the ninth aspect, the step of determining a stability of the analyte sensor is performed after a predetermined time period.
In an embodiment of the ninth aspect, the method further comprises repeating the step of determining a stability, wherein the step is conducted after a system re-start.
In an embodiment of the ninth aspect, the analyte sensor is a glucose sensor.
In a tenth aspect, a system for determining a stability of an analyte sensor is provided, the system comprising: an analyte sensor; and a computer system, the computer system comprising: an input module operatively connected to the analyte sensor and configured to receive sensor data from an analyte sensor, wherein the analyte sensor comprises a first working electrode configured to provide first sensor data comprising an analyte component and a baseline component and a second working electrode configured to provide second sensor data comprising a baseline component substantially without an analyte component; and a processor module configured to determine a stability of the analyte sensor based at least in part on the second sensor data.
In an embodiment of the tenth aspect, the processor module is configured to determine a stability of the analyte sensor at least in part by evaluating a change in amplitude of a plurality of time spaced points from the second sensor data.
In an embodiment of the tenth aspect, the system further comprises a flow control device configured and arranged to intermittently expose the analyte sensor to a biological sample and to an infusion solution.
In an embodiment of the tenth aspect, the processor module is configured to evaluate the change in amplitude at least in part by comparing a plurality of time spaced points from the second sensor data measured when the analyte sensor is exposed to the biological sample.
In an embodiment of the tenth aspect, the processor module is configured to evaluate the change in amplitude at least in part by comparing a first point measured when the analyte sensor is exposed to the biological sample to a second point measured when the analyte sensor is exposed to the infusion solution.
In an embodiment of the tenth aspect, the processor module is configured to evaluate the change in amplitude at least in part by evaluating transient information of the second sensor data during a step change from exposure of the sensor to the infusion solution to exposure of the sensor to the biological sample.
In an embodiment of the tenth aspect, the processor module is configured to determine a level of stability when a change in amplitude of a plurality of time spaced points from the second sensor data meets one or more criteria.
In an embodiment of the tenth aspect, the processor module is configured to control a display of calibrated sensor based at least in part on the level of stability.
In an embodiment of the tenth aspect, the calibrated sensor data comprises at least one of a numeric estimated analyte value, a directional trend of analyte concentration, and a graphical representation of a plurality of estimated analyte values.
In an embodiment of the tenth aspect, the processor module is configured to request reference analyte data based at least in part on the level of stability.
In an embodiment of the tenth aspect, the processor module is further configured to determine a stability of the analyte sensor during a predetermined time period.
In an embodiment of the tenth aspect, processor module is further configured to determine a stability of the analyte sensor after a predetermined time period.
In an embodiment of the tenth aspect, the analyte sensor is a glucose sensor.
The following description and examples illustrate some exemplary embodiments of the disclosed invention in detail. Those of skill in the art will recognize that there are numerous variations and modifications of this invention that are encompassed by its scope. Accordingly, the description of a certain exemplary embodiment should not be deemed to limit the scope of the preferred embodiments.
In order to facilitate an understanding of the preferred embodiments, a number of terms are defined below.
The term “analyte” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a substance or chemical constituent in a biological sample (e.g., bodily fluids, including, blood, serum, plasma, interstitial fluid, cerebral spinal fluid, lymph fluid, ocular fluid, saliva, oral fluid, urine, excretions or exudates). Analytes can include naturally occurring substances, artificial substances, metabolites, and/or reaction products. In some embodiments, the analyte for measurement by the sensing regions, devices, and methods is albumin, alkaline phosphatase, alanine transaminase, aspartate aminotransferase, bilirubin, blood urea nitrogen, calcium, CO2, chloride, creatinine, glucose, gamma-glutamyl transpeptidase, hematocrit, lactate, lactate dehydrogenase, magnesium, oxygen, pH, phosphorus, potassium, sodium, total protein, uric acid, metabolic markers, and drugs. However, other analytes are contemplated as well, including but not limited to acetaminophen, dopamine, ephedrine, terbutaline, ascorbate, uric acid, oxygen, d-amino acid oxidase, plasma amine oxidase, xanthine oxidase, NADPH oxidase, alcohol oxidase, alcohol dehydrogenase, pyruvate dehydrogenase, diols, Ros, NO, bilirubin, cholesterol, triglycerides, gentisic acid, ibuprophen, L-Dopa, methyl dopa, salicylates, tetracycline, tolazamide, tolbutamide, acarboxyprothrombin; acylcarnitine; adenine phosphoribosyl transferase; adenosine deaminase; albumin; alpha-fetoprotein; amino acid profiles (arginine (Krebs cycle), histidine/urocanic acid, homocysteine, phenylalanine/tyrosine, tryptophan); andrenostenedione; antipyrine; arabinitol enantiomers; arginase; benzoylecgonine (cocaine); biotinidase; biopterin; c-reactive protein; carnitine; carnosinase; CD4; ceruloplasmin; chenodeoxycholic acid; chloroquine; cholesterol; cholinesterase; conjugated 1-β hydroxy-cholic acid; cortisol; creatine kinase; creatine kinase MM isoenzyme; cyclosporin A; d-penicillamine; de-ethylchloroquine; dehydroepiandrosterone sulfate; DNA (acetylator polymorphism, alcohol dehydrogenase, alpha 1-antitrypsin, cystic fibrosis, Duchenne/Becker muscular dystrophy, glucose-6-phosphate dehydrogenase, hemoglobin A, hemoglobin S, hemoglobin C, hemoglobin D, hemoglobin E, hemoglobin F, D-Punjab, beta-thalassemia, hepatitis B virus, HCMV, HIV-1, HTLV-1, Leber hereditary optic neuropathy, MCAD, RNA, PKU, Plasmodium vivax, sexual differentiation, 21-deoxycortisol); desbutylhalofantrine; dihydropteridine reductase; diptheria/tetanus antitoxin; erythrocyte arginase; erythrocyte protoporphyrin; esterase D; fatty acids/acylglycines; free β-human chorionic gonadotropin; free erythrocyte porphyrin; free thyroxine (FT4); free tri-iodothyronine (FT3); fumarylacetoacetase; galactose/gal-1-phosphate; galactose-1-phosphate uridyltransferase; gentamicin; glucose-6-phosphate dehydrogenase; glutathione; glutathione perioxidase; glycocholic acid; glycosylated hemoglobin; halofantrine; hemoglobin variants; hexosaminidase A; human erythrocyte carbonic anhydrase I; 17-alpha-hydroxyprogesterone; hypoxanthine phosphoribosyl transferase; immunoreactive trypsin; lactate; lead; lipoproteins ((a), B/A-1, β); lysozyme; mefloquine; netilmicin; phenobarbitone; phenyloin; phytanic/pristanic acid; progesterone; prolactin; prolidase; purine nucleoside phosphorylase; quinine; reverse tri-iodothyronine (rT3); selenium; serum pancreatic lipase; sissomicin; somatomedin C; specific antibodies (adenovirus, anti-nuclear antibody, anti-zeta antibody, arbovirus, Aujeszky'"'"'s disease virus, dengue virus, Dracunculus medinensis, Echinococcus granulosus, Entamoeba histolytica, enterovirus, Giardia duodenalisa, Helicobacter pylori, hepatitis B virus, herpes virus, HIV-1, IgE (atopic disease), influenza virus, Leishmania donovani, leptospira, measles/mumps/rubella, Mycobacterium leprae, Mycoplasma pneumoniae, Myoglobin, Onchocerca volvulus, parainfluenza virus, Plasmodium falciparum, poliovirus, Pseudomonas aeruginosa, respiratory syncytial virus, rickettsia (scrub typhus), Schistosoma mansoni, Toxoplasma gondii, Trepenoma pallidium, Trypanosoma cruzi/rangeli, vesicular stomatis virus, Wuchereria bancrofti, yellow fever virus); specific antigens (hepatitis B virus, HIV-1); succinylacetone; sulfadoxine; theophylline; thyrotropin (TSH); thyroxine (T4); thyroxine-binding globulin; trace elements; transferrin; UDP-galactose-4-epimerase; urea; uroporphyrinogen I synthase; vitamin A; white blood cells; and zinc protoporphyrin. Salts, sugar, protein, fat, vitamins, and hormones naturally occurring in blood or interstitial fluids can also constitute analytes in certain embodiments. The analyte can be naturally present in the biological fluid, for example, a metabolic product, a hormone, an antigen, an antibody, and the like. Alternatively, the analyte can be introduced into the body, for example, a contrast agent for imaging, a radioisotope, a chemical agent, a fluorocarbon-based synthetic blood, or a drug or pharmaceutical composition, including but not limited to insulin; ethanol; cannabis (marijuana, tetrahydrocannabinol, hashish); inhalants (nitrous oxide, amyl nitrite, butyl nitrite, chlorohydrocarbons, hydrocarbons); cocaine (crack cocaine); stimulants (amphetamines, methamphetamines, Ritalin, Cylert, Preludin, Didrex, PreState, Voranil, Sandrex, Plegine); depressants (barbituates, methaqualone, tranquilizers such as Valium, Librium, Miltown, Serax, Equanil, Tranxene); hallucinogens (phencyclidine, lysergic acid, mescaline, peyote, psilocybin); narcotics (heroin, codeine, morphine, opium, meperidine, Percocet, Percodan, Tussionex, Fentanyl, Darvon, Talwin, Lomotil); designer drugs (analogs of fentanyl, meperidine, amphetamines, methamphetamines, and phencyclidine, for example, Ecstasy); anabolic steroids; and nicotine. The metabolic products of drugs and pharmaceutical compositions are also contemplated analytes. Analytes such as neurochemicals and other chemicals generated within the body can also be analyzed, such as, for example, ascorbic acid, uric acid, dopamine, noradrenaline, 3-methoxytyramine (3MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxytryptamine (5HT), histamine, Advanced Glycation End Products (AGEs) and 5-hydroxyindoleacetic acid (FHIAA).
The term “antegrade” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refers without limitation to orientation (e.g., of a catheter) with the direction of blood flow.
The term “baseline,” “noise” and “background signal” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a component of an analyte sensor signal that is not related to the analyte concentration. In one example of a glucose sensor, the baseline is composed substantially of signal contribution due to factors other than glucose (for example, interfering species, non-reaction-related hydrogen peroxide, or other electroactive species with an oxidation/reduction potential that overlaps with hydrogen peroxide). In some embodiments wherein a calibration is defined by solving for the equation y=mx+b, the value of b represents the baseline, or background, of the signal.
The terms “baseline and/or sensitivity shift,” “baseline and/or sensitivity drift,” “shift,” and “drift” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to a change in the baseline and/or sensitivity of the sensor signal over time. While the term “shift” generally refers to a substantially distinct change over a relatively short time period, and the term “drift” generally refers to a substantially gradual change over a relatively longer time period, the terms can be used interchangeably and can also be generally referred to as “change” in baseline and/or sensitivity.
The term “biological sample” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refers without limitation to a sample of a host body, for example, blood, serum, plasma, interstitial fluid, cerebral spinal fluid, lymph fluid, ocular fluid, saliva, oral fluid, urine, sweat, excretions, exudates, and the like.
The term “blood chemistry analysis device” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refers without limitation to a device that measures a variety of blood components, characteristics or analytes therein. In one embodiment, a blood chemistry analysis device periodically withdraws an aliquot of blood from the host, measures glucose, O2, CO2, PCO2, PO2, potassium, sodium, pH, lactate, urea, bilirubin, creatinine, hematocrit, various minerals, and/or various metabolites, and the like, and returns the blood to the host'"'"'s circulatory system. A variety of devices exist for testing various blood properties/analytes at the bedside, such as but not limited to the blood gas and chemistry devices manufactured by Via Medical (Austin, Tex., USA).
The term “blood pressure monitor” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refers without limitation to an instrument for monitoring the blood pressure of a human or other animal. For example, a blood pressure monitor can be an invasive blood pressure monitor, which periodically monitors the host'"'"'s blood pressure via a peripheral artery, using a blood pressure transducer, such as but not limited to a disposable blood pressure transducer. Utah Medical Products Inc. (Midvale, Utah, USA) produces a variety of DELTRAN® Brand disposable blood pressure transducers that are suitable for use with various embodiments disclosed herein.
The term “calibration” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the relationship and/or process of determining the relationship between the sensor data and the corresponding reference data, which can be used to convert sensor data into values substantially equivalent to the reference data. In some embodiments, namely, in continuous analyte sensors, calibration can be updated or recalibrated over time if changes in the relationship between the sensor data and reference data occur, for example, due to changes in sensitivity, baseline, transport, metabolism, and the like.
The term “casting” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a process where a fluid material is applied to a surface or surfaces and allowed to cure or dry. The term is broad enough to encompass a variety of coating techniques, for example, using a draw-down machine (i.e., drawing-down), dip coating, spray coating, spin coating, and the like.
The term “catheter” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refers without limitation to a tube that can be inserted into a host'"'"'s body (e.g., cavity, duct or vessel). In some circumstances, catheters allow drainage or injection of fluids or access by medical instruments or devices. In some embodiments, a catheter is a thin, flexible tube (e.g., a “soft” catheter). In alternative embodiments, the catheter can be a larger, solid tube (e.g., a “hard” catheter). The term “cannula” is interchangeable with the term “catheter” herein.
The term “coaxial” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refers without limitation to having a common axis, having coincident axes or mounted on concentric shafts.
The term “constant analyte” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refers without limitation to an analyte that remains relatively constant over a time period, for example over an hour to a day as compared to other variable analytes. For example, in a person with diabetes, oxygen and urea may be relatively constant analytes in particular tissue compartments relative to glucose, which is known to oscillate between about 40 and 400 mg/dL during a 24-hour cycle. Although analytes such as oxygen and urea are known to oscillate to a lesser degree, for example due to physiological processes in a host, they are substantially constant, relative to glucose, and can be digitally filtered, for example low pass filtered, to minimize or eliminate any relatively low amplitude oscillations. Constant analytes other than oxygen and urea are also contemplated.
The terms “constant noise” and “constant background” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refer without limitation to the component of the background signal that remains relatively constant over time. For example, certain electroactive compounds found in the human body are relatively constant factors (e.g., baseline of the host'"'"'s physiology) and do not significantly adversely affect accuracy of the calibration of the glucose concentration (e.g., they can be relatively constantly eliminated using the equation y=mx+b). In some circumstances, constant background noise can slowly drift over time (e.g., increases or decreases), however this drift need not adversely affect the accuracy of a sensor, for example, because a sensor can be calibrated and re-calibrated and/or the drift measured and compensated for.
The terms “continuous” and “continuously” as used herein are broad terms, and are to be given their ordinary and customary meanings to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to the condition of being marked by substantially uninterrupted extension in space, time or sequence. In one embodiment, an analyte concentration is measured continuously or continually, for example at time intervals ranging from fractions of a second up to, for example, about 1, 2, 5, 10, 15, 20, 30, 40, 50 or 60 minutes, or longer. It should be understood that continuous glucose sensors generally continually measure glucose concentration without required user initiation and/or interaction for each measurement, such as described with reference to U.S. Pat. No. 6,001,067, for example. These terms include situations wherein data gaps can exist (e.g., when a continuous glucose sensor is temporarily not providing data).
The term “continuous (or continual) analyte sensing” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the period in which monitoring of analyte concentration is continuously, continually, and or intermittently (regularly or irregularly) performed, for example, about every 5 to 10 minutes.
The term “count” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a unit of measurement of a digital signal. For example, a raw data stream or raw data signal measured in counts is directly related to a voltage (for example, converted by an A/D converter), which is directly related to current from the working electrode. In some embodiments, the terms can refer to data that has been integrated or averaged over a time period (e.g., 5 minutes).
The terms “coupling” and “operatively coupling” as used herein are broad terms, and are to be given their ordinary and customary meanings to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to a joining or linking together of two or more things, such as two parts of a device or two devices, such that the things can function together. In one example, two containers can be operatively coupled by tubing, such that fluid can flow from one container to another. Coupling does not imply a physical connection. For example, a transmitter and a receiver can be operatively coupled by radio frequency (RF) transmission/communication.
The term “diffusion barrier” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning) and refers without limitation to something that obstructs the random movement of compounds, species, atoms, molecules, or ions from one site in a medium to another. In some embodiments, a diffusion barrier is structural, such as a wall that separates two working electrodes and substantially prevents diffusion of a species from one electrode to the other. In some embodiments, a diffusion barrier is spatial, such as separating working electrodes by a distance sufficiently large enough to substantially prevent a species at a first electrode from affecting a second electrode. In other embodiments, a diffusion barrier can be temporal, such as by turning the first and second working electrodes on and off, such that a reaction at a first electrode will not substantially affect the function of the second electrode.
The term “dip coating” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to coating, which involves dipping an object or material into a liquid coating substance.
The term “distal to” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the spatial relationship between various elements in comparison to a particular point of reference. In general, the term indicates an element is located relatively far from the reference point than another element.
The term “domain” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a region of the membrane system that can be a layer, a uniform or non-uniform gradient (for example, an anisotropic region of a membrane), or a portion of a membrane.
The term “electrochemical break-in” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the time, after in vitro and/or in vivo settling of the current output from the sensor following the application of the potential to the sensor.
The term “electrochemically reactive surface” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a surface where an electrochemical reaction takes place. For example, a working electrode measures hydrogen peroxide produced by the enzyme-catalyzed reaction of the analyte detected, which reacts to create an electric current. Glucose analyte can be detected utilizing glucose oxidase, which produces H2O2 as a byproduct. H2O2 reacts with the surface of the working electrode, producing two protons (2H+), two electrons (2e−) and one molecule of oxygen (O2), which produces the electronic current being detected.
The terms “electronic connection,” “electrical connection,” “electrical contact” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refer without limitation to any connection between two electrical conductors known to those in the art. In one embodiment, electrodes are in electrical connection with the electronic circuitry of a device.
The terms “electronics” and “sensor electronics” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to electronics operatively coupled to the sensor and configured to measure, process, receive, and/or transmit data associated with a sensor. In some embodiments, the electronics include at least a potentiostat that provides a bias to the electrodes and measures a current to provide the raw data signal. The electronics are configured to calculate at least one analyte sensor data point. For example, the electronics can include a potentiostat, A/D converter, RAM, ROM, and/or transmitter. In some embodiments, the potentiostat converts the raw data (e.g., raw counts) collected from the sensor and converts it to a value familiar to the host and/or medical personnel. For example, the raw counts from a glucose sensor can be converted to milligrams of glucose per deciliter of blood (e.g., mg/dl). In some embodiments, the sensor electronics include a transmitter that transmits the signals from the potentiostat to a receiver (e.g., a remote analyzer, such as but not limited to a remote analyzer unit), where additional data analysis and glucose concentration determination can occur.
The term “ex vivo portion” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a portion of a device (for example, a sensor) adapted to remain and/or exist outside of a living body of a host.
The term “fluid communication” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refers without limitation to two or more components (e.g., things such as parts of a body or parts of a device) functionally linked such that fluid can move from one component to another. These terms do not imply directionality.
The term “GOx” as used herein is a broad term, and is to be given their ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refers without limitation to the enzyme Glucose Oxidase (e.g., GOx is an abbreviation).
The term “helix” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refers without limitation to a spiral or coil, or something in the form of a spiral or coil (e.g. a corkscrew or a coiled spring). In one example, a helix is a mathematical curve that lies on a cylinder or cone and makes a constant angle with the straight lines lying in the cylinder or cone. A “double helix” is a pair of parallel helices intertwined about a common axis, such as but not limited to that in the structure of DNA.
The term “host” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to animals or plants, for example humans.
The term “hyperglycemia” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refers without limitation to a condition in which an excessive or high amount of glucose exists in a host. Hyperglycemia is one of the classic symptoms of diabetes mellitus. Non-diabetic hyperglycemia is associated with obesity and certain eating disorders, such as bulimia nervosa. Hyperglycemia is also associated with other diseases (or medications) affecting pancreatic function, such as pancreatic cancer. Hyperglycemia is also associated with poor medical outcomes in a variety of clinical settings, such as intensive or critical care settings.
The term “hypoglycemia” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refers without limitation to a condition in which a limited or low amount of glucose exists in a host. Hypoglycemia can produce a variety of symptoms and effects but the principal problems arise from an inadequate supply of glucose as fuel to the brain, resulting in impairment of function (neuroglycopenia). Derangements of function can range from vaguely “feeling bad” to coma, and (rarely) permanent brain damage or death.
The terms “inactive enzyme” or “inactivated enzyme” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refer without limitation to an enzyme (e.g., glucose oxidase, GOx) that has been rendered inactive (e.g., “killed” or “dead”) and has no enzymatic activity. Enzymes can be inactivated using a variety of techniques known in the art, such as but not limited to heating, freeze-thaw, denaturing in organic solvent, acids or bases, cross-linking, genetically changing enzymatically critical amino acids, and the like. In some embodiments, a solution containing active enzyme can be applied to the sensor, and the applied enzyme subsequently inactivated by heating or treatment with an inactivating solvent.
The term “indwell” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refers without limitation to reside within a host'"'"'s body. Some medical devices can indwell within a host'"'"'s body for various lengths of time, depending upon the purpose of the medical device, such as but not limited to a few hours, days, or weeks, to months, years, or even the host'"'"'s entire lifetime. In one exemplary embodiment, an arterial catheter may indwell within the host'"'"'s artery for a few hours, days, a week, or longer, such as but not limited to the host'"'"'s perioperative period (e.g., from the time the host is admitted to the hospital to the time he is discharged).
The terms “insulative properties,” “electrical insulator” and “insulator” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning) and refers without limitation to the tendency of materials that lack mobile charges to prevent movement of electrical charges between two points. In one exemplary embodiment, an electrically insulative material may be placed between two electrically conductive materials, to prevent movement of electricity between the two electrically conductive materials. In some embodiments, the terms refer to a sufficient amount of insulative property (e.g., of a material) to provide a necessary function (electrical insulation). The terms “insulator” and “non-conductive material” can be used interchangeably herein.
The terms “integral,” “integrally,” “integrally formed,” integrally incorporated,” “unitary” and “composite” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and they are not to be limited to a special or customized meaning), and refer without limitation to the condition of being composed of essential parts or elements that together make a whole. The parts are essential for completeness of the whole. In one exemplary embodiment, at least a portion (e.g., the in vivo portion) of the sensor is formed from at least one platinum wire at least partially covered with an insulative coating, which is at least partially helically wound with at least one additional wire, the exposed electroactive portions of which are covered by a membrane system (see description of
The terms “interferants” and “interfering species” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and they are not to be limited to a special or customized meaning), and refer without limitation to effects and/or species that interfere with the measurement of an analyte of interest in a sensor to produce a signal that does not accurately represent the analyte measurement. In one example of an electrochemical sensor, interfering species are compounds with an oxidation/reduction potential that overlaps with the analyte to be measured, producing a false positive signal. In another example of an electrochemical sensor, interfering species are substantially non-constant compounds (e.g., the concentration of an interfering species fluctuates over time). Interfering species include but are not limited to compounds with electroactive acidic, amine or sulfhydryl groups, urea, lactic acid, phosphates, citrates, peroxides, amino acids, amino acid precursors or break-down products, nitric oxide (NO), NO-donors, NO-precursors, acetaminophen, ascorbic acid, bilirubin, cholesterol, creatinine, dopamine, ephedrine, ibuprofen, L-dopa, methyl dopa, salicylate, tetracycline, tolazamide, tolbutamide, triglycerides, and uric acid electroactive species produced during cell metabolism and/or wound healing, electroactive species that arise during body pH changes and the like.
The term “in vivo portion” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a portion of a device (for example, a sensor) adapted for insertion into and/or existence within a living body of a host.
The term “medical device” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refers without limitation to an instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other similar or related article, including a component part, or accessory which is intended for use in the diagnosis of disease or other conditions, or in the cure, mitigation, treatment, or prevention of disease, in man or other animals, or intended to affect the structure or any function of the body of man or other animals. Medical devices that can be used in conjunction with various embodiments of the analyte sensor system include any monitoring device requiring placement in a human vessel, duct or body cavity, a dialysis machine, a heart-lung bypass machine, blood collection equipment, a blood pressure monitor, an automated blood chemistry analysis device and the like.
The terms “membrane” and “membrane system” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to a permeable or semi-permeable membrane that can be comprised of one or more domains and is typically constructed of materials of one or more microns in thickness, which is permeable to oxygen and to an analyte, e.g. glucose or another analyte. In one example, the membrane system includes an immobilized glucose oxidase enzyme, which enables a reaction to occur between glucose and oxygen whereby a concentration of glucose can be measured.
The term “membrane break-in” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to equilibration of the membrane to its surrounding environment (e.g., physiological environment in vivo).
The term “needle” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to a slender hollow instrument for introducing material into or removing material from the body.
The term “non-constant noise” or non-constant background” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refer without limitation to a component of the background signal that is relatively non-constant, for example, transient and/or intermittent. For example, certain electroactive compounds, are relatively non-constant (e.g., intermittent interferents due to the host'"'"'s ingestion, metabolism, wound healing, and other mechanical, chemical and/or biochemical factors), which create intermittent (e.g., non-constant) “noise” on the sensor signal that can be difficult to “calibrate out” using a standard calibration equations (e.g., because the background of the signal does not remain constant).
The term “non-enzymatic” as used herein is a broad term, and is to be given their ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refers without limitation to a lack of enzyme activity. In some embodiments, a “non-enzymatic” membrane portion contains no enzyme; while in other embodiments, the “non-enzymatic” membrane portion contains inactive enzyme. In some embodiments, an enzyme solution containing inactive enzyme or no enzyme is applied.
The terms “operatively connected,” “operatively linked,” “operably connected,” and “operably linked” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to one or more components linked to one or more other components. The terms can refer to a mechanical connection, an electrical connection, or any connection that allows transmission of signals between the components. For example, one or more electrodes can be used to detect the amount of analyte in a sample and to convert that information into a signal; the signal can then be transmitted to a circuit. In such an example, the electrode is “operably linked” to the electronic circuitry. The terms include wired and wireless connections.
The term “potentiostat” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to an electronic instrument that controls the electrical potential between the working and reference electrodes at one or more preset values. Typically, a potentiostat works to keep the potential constant by noticing changes in the resistance of the system and compensating inversely with a change in the current. As a result, a change to a higher resistance would cause the current to decrease to keep the voltage constant in the system. In some embodiments, a potentiostat forces whatever current is necessary to flow between the working and counter electrodes to keep the desired potential, as long as the needed cell voltage and current do not exceed the compliance limits of the potentiostat.
The term “pressure transducer” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refers without limitation to a component of an intra-arterial blood pressure monitor that measures the host'"'"'s blood pressure.
The terms “processor module” and “microprocessor” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to a computer system, state machine, processor, and the like designed to perform arithmetic or logic operations using logic circuitry that responds to and processes the basic instructions that drive a computer.
The term “proximal to” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the spatial relationship between various elements in comparison to a particular point of reference. In general, the term indicates an element is located relatively near to the reference point than another element.
The term “pump” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refers without limitation to a device used to move liquids, or slurries. In general, a pump moves liquids from lower pressure to higher pressure, and overcomes this difference in pressure by adding energy to the system (such as a water system).
The term “sensor break-in” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or customized meaning), and refers without limitation to the time (after implantation) during which the sensor'"'"'s signal is becoming substantially representative of the analyte (e.g., glucose) concentration (e.g., where the current output from the sensor is stable relative to the glucose level). The signal may not be ‘flat’ when the sensor has broken-in, but in general, variation in the signal level at that point is due to a change in the analyte (e.g., glucose) concentration. In some embodiments, sensor break-in occurs prior to obtaining a meaningful calibration of the sensor output. In some embodiments, sensor break-in generally includes both electrochemical break-in and membrane break-in.
The terms “small diameter sensor,” “small structured sensor,” and “micro-sensor” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer without limitation to sensing mechanisms that are less than about 2 mm in at least one dimension, and more preferably less than about 1 mm in at least one dimension. In some embodiments, the sensing mechanism (sensor) is less than about 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.5, 0.4, 0.3, 0.2, or 0.1 mm. In some embodiments, the sensing mechanism is a needle-type sensor, wherein the diameter is less than about 1 mm (see, for example, U.S. Pat. No. 6,613,379 and U.S. Patent Publication No. US-2006-0020187-A1, each of which is incorporated herein by reference in its entirety). In some alternative embodiments, the sensing mechanism includes electrodes deposited on a planar substrate, wherein the thickness of the implantable portion is less than about 1 mm, see, for example U.S. Pat. No. 6,175,752 and U.S. Pat. No. 5,779,665, both of which are incorporated herein by reference in their entirety.
The terms “raw data,” “raw data stream”, “raw data signal”, “data signal”, and “data stream” as used herein are broad terms, and are to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are not to be limited to a special or customized meaning)