SENSOR FOR PERCUTANEOUS INTRAVASCULAR DEPLOYMENT WITHOUT AN INDWELLING CANNULA
First Claim
1. A kit for introducing an analyte sensor into a blood vessel, comprising:
- the analyte sensor comprising a distal end region, a proximal end region, and an elongate body, wherein the analyte sensor is sized and configured for percutaneous insertion into the blood vessel, and wherein the analyte sensor comprises an indicator system immobilized along the distal end region, said indicator system being adapted to generate a signal related to the concentration of analyte in the blood, wherein the indicator system is operably coupled to the proximal end region; and
a removable introducer having a distal end region, a proximal end region, and an elongate body comprising a lumen configured to slidably receive the analyte sensor, wherein the elongate body of the introducer has at least one score line along a longitudinal axis, wherein the score line is a weakened portion of the elongate body.
1 Assignment
0 Petitions

Accused Products

Abstract
The present invention relates to a sensor for percutaneous insertion and intravascular residence without an indwelling cannula. In preferred embodiments, a glucose sensor is inserted into a blood vessel using a removable cannula. After the cannula is removed, the glucose sensor remains within the blood vessel by itself and forms a seal with the patient'"'"'s tissue.
445 Citations
Transcutaneous analyte sensor | ||
Patent #
US 7,885,697 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Optimized sensor geometry for an implantable glucose sensor | ||
Patent #
US 7,881,763 B2
Filed 05/02/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Low oxygen in vivo analyte sensor | ||
Patent #
US 7,899,511 B2
Filed 01/17/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 7,905,833 B2
Filed 06/21/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Low oxygen in vivo analyte sensor | ||
Patent #
US 7,901,354 B2
Filed 05/01/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 7,946,984 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 7,949,381 B2
Filed 04/11/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 7,920,906 B2
Filed 03/09/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated receiver for continuous analyte sensor | ||
Patent #
US 7,927,274 B2
Filed 07/29/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,010,174 B2
Filed 08/22/2003
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
MEASUREMENT DEVICES AND METHODS FOR MEASURING ANALYTE CONCENTRATION INCORPORATING TEMPERATURE AND PH CORRECTION | ||
Patent #
US 20110224516A1
Filed 03/11/2011
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 7,998,071 B2
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,005,524 B2
Filed 03/24/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated delivery device for continuous glucose sensor | ||
Patent #
US 7,976,492 B2
Filed 08/06/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,052,601 B2
Filed 08/20/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensing biointerface | ||
Patent #
US 8,060,174 B2
Filed 04/14/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,060,173 B2
Filed 08/01/2003
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Device and method for determining analyte levels | ||
Patent #
US 7,792,562 B2
Filed 12/22/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Low oxygen in vivo analyte sensor | ||
Patent #
US 7,771,352 B2
Filed 05/01/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Dual electrode system for a continuous analyte sensor | ||
Patent #
US 7,831,287 B2
Filed 04/28/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 7,826,981 B2
Filed 01/18/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 7,797,028 B2
Filed 04/14/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS | ||
Patent #
US 20100099970A1
Filed 12/22/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous medical device with variable stiffness | ||
Patent #
US 7,783,333 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 7,828,728 B2
Filed 02/14/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 7,857,760 B2
Filed 02/22/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
DEVICE AND METHODS FOR CALIBRATING ANALYTE SENSORS | ||
Patent #
US 20090018426A1
Filed 05/09/2008
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,073,519 B2
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,073,520 B2
Filed 05/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Use of an equilibrium intravascular sensor to achieve tight glycemic control | ||
Patent #
US 8,088,097 B2
Filed 11/20/2008
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
Porous membranes for use with implantable devices | ||
Patent #
US 8,118,877 B2
Filed 01/17/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,128,562 B2
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 8,133,178 B2
Filed 02/22/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,150,488 B2
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Device and method for determining analyte levels | ||
Patent #
US 8,155,723 B2
Filed 01/28/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Calibration techniques for a continuous analyte sensor | ||
Patent #
US 8,160,671 B2
Filed 09/01/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,162,829 B2
Filed 03/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,167,801 B2
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,175,673 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,177,716 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,195,265 B2
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,206,297 B2
Filed 12/16/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,216,139 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,224,413 B2
Filed 10/10/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,558 B2
Filed 09/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,557 B2
Filed 12/28/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,555 B2
Filed 03/18/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,229,536 B2
Filed 05/27/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 8,231,531 B2
Filed 06/01/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,231,532 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for processing analyte sensor data | ||
Patent #
US 8,233,959 B2
Filed 09/01/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,233,958 B2
Filed 10/12/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,235,896 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Calibration techniques for a continuous analyte sensor | ||
Patent #
US 8,249,684 B2
Filed 09/01/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,251,906 B2
Filed 04/15/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Oxygen enhancing membrane systems for implantable devices | ||
Patent #
US 8,255,032 B2
Filed 01/15/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Oxygen enhancing membrane systems for implantable devices | ||
Patent #
US 8,255,030 B2
Filed 04/25/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,255,031 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Oxygen enhancing membrane systems for implantable devices | ||
Patent #
US 8,255,033 B2
Filed 04/25/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,257,259 B2
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,260,392 B2
Filed 06/09/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal data artifacts in a glucose sensor data stream | ||
Patent #
US 8,260,393 B2
Filed 06/13/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,265,726 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,265,725 B2
Filed 10/12/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,273,022 B2
Filed 02/13/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,275,439 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Implantable analyte sensor | ||
Patent #
US 8,277,713 B2
Filed 05/03/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated receiver for continuous analyte sensor | ||
Patent #
US 8,282,550 B2
Filed 07/29/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,282,549 B2
Filed 12/08/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,287,454 B2
Filed 09/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,287,453 B2
Filed 11/07/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,290,561 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,292,810 B2
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,306,598 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,311,749 B2
Filed 05/26/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,321,149 B2
Filed 06/29/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,346,336 B2
Filed 03/18/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,346,337 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,346,338 B2
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,353,829 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,357,091 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,366,614 B2
Filed 03/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for processing sensor data | ||
Patent #
US 8,369,919 B2
Filed 10/24/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,372,005 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,374,667 B2
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,380,273 B2
Filed 04/11/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Calibration techniques for a continuous analyte sensor | ||
Patent #
US 8,386,004 B2
Filed 09/07/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,391,945 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,394,021 B2
Filed 10/01/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,409,131 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,412,301 B2
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing sensor data | ||
Patent #
US 8,423,113 B2
Filed 10/24/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Dual electrode system for a continuous analyte sensor | ||
Patent #
US 8,423,114 B2
Filed 10/01/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Calibration techniques for a continuous analyte sensor | ||
Patent #
US 8,428,678 B2
Filed 05/16/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,435,179 B2
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,442,610 B2
Filed 08/21/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,457,708 B2
Filed 12/05/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated delivery device for continuous glucose sensor | ||
Patent #
US 8,460,231 B2
Filed 07/11/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,465,425 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Optical sensor configuration for ratiometric correction of blood glucose measurement | ||
Patent #
US 8,467,843 B2
Filed 11/04/2009
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,469,886 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,473,021 B2
Filed 07/31/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Measurement devices and methods for measuring analyte concentration incorporating temperature and pH correction | ||
Patent #
US 8,473,222 B2
Filed 03/11/2011
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,480,580 B2
Filed 04/19/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,483,791 B2
Filed 04/11/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,491,474 B2
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Optical determination of pH and glucose | ||
Patent #
US 8,498,682 B2
Filed 07/02/2010
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
Sensor head for use with implantable devices | ||
Patent #
US 8,509,871 B2
Filed 10/28/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,515,519 B2
Filed 02/26/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Device and method for determining analyte levels | ||
Patent #
US 8,527,025 B1
Filed 11/22/1999
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Device and method for determining analyte levels | ||
Patent #
US 8,527,026 B2
Filed 03/02/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Use of an equilibrium intravascular sensor to achieve tight glycemic control | ||
Patent #
US 8,535,262 B2
Filed 12/09/2011
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,548,553 B2
Filed 06/22/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Particle-containing membrane and particulate electrode for analyte sensors | ||
Patent #
US 8,560,039 B2
Filed 09/17/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 8,560,037 B2
Filed 03/26/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated medicament delivery device for use with continuous analyte sensor | ||
Patent #
US 8,562,558 B2
Filed 06/05/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 8,579,816 B2
Filed 01/07/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Polymer membranes for continuous analyte sensors | ||
Patent #
US 8,583,204 B2
Filed 03/05/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,597,189 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,612,159 B2
Filed 02/16/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,615,282 B2
Filed 02/22/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 8,611,978 B2
Filed 01/07/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,617,071 B2
Filed 06/21/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,622,905 B2
Filed 12/11/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,622,906 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,641,619 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,649,841 B2
Filed 04/03/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,652,043 B2
Filed 07/20/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,657,745 B2
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing analyte sensor data | ||
Patent #
US 8,657,747 B2
Filed 04/05/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,660,627 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,663,109 B2
Filed 03/29/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,666,469 B2
Filed 11/16/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,668,645 B2
Filed 01/03/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,670,815 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,672,844 B2
Filed 02/27/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for processing analyte sensor data | ||
Patent #
US 8,672,845 B2
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,676,287 B2
Filed 12/11/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Device and method for determining analyte levels | ||
Patent #
US 8,676,288 B2
Filed 06/22/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Polymer membranes for continuous analyte sensors | ||
Patent #
US 8,682,408 B2
Filed 03/05/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,688,188 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,690,775 B2
Filed 04/11/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Optical sensor configuration for ratiometric correction of glucose measurement | ||
Patent #
US 8,700,115 B2
Filed 05/15/2013
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,700,117 B2
Filed 12/08/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Sensors with thromboresistant coating | ||
Patent #
US 8,715,589 B2
Filed 05/14/2013
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Medtronic Minimed Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,721,545 B2
Filed 03/22/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,734,348 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,734,346 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Real time intravascular monitoring device | ||
Patent #
US 8,734,345 B2
Filed 08/01/2011
|
Current Assignee
Covidien LP
|
Original Assignee
Covidien LP
|
Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement | ||
Patent #
US 8,738,107 B2
Filed 05/09/2008
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Medtronic Minimed Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,738,109 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Cellulosic-based resistance domain for an analyte sensor | ||
Patent #
US 8,744,546 B2
Filed 04/28/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,744,545 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,747,315 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,761,856 B2
Filed 04/27/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,771,187 B2
Filed 05/31/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,774,888 B2
Filed 01/20/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,774,887 B2
Filed 03/24/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,777,853 B2
Filed 04/04/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,788,006 B2
Filed 12/11/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,788,008 B2
Filed 05/31/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,790,260 B2
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,792,954 B2
Filed 03/19/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,792,955 B2
Filed 06/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,792,953 B2
Filed 03/19/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,795,177 B2
Filed 01/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,801,611 B2
Filed 03/22/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,801,612 B2
Filed 04/27/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,801,610 B2
Filed 07/24/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated medicament delivery device for use with continuous analyte sensor | ||
Patent #
US 8,808,228 B2
Filed 06/05/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,808,182 B2
Filed 04/27/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous medical device with variable stiffness | ||
Patent #
US 8,812,072 B2
Filed 04/17/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,812,073 B2
Filed 06/01/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,821,400 B2
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Optical systems and methods for ratiometric measurement of blood glucose concentration | ||
Patent #
US 8,838,195 B2
Filed 02/06/2008
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Medtronic Minimed Incorporated
|
Membrane for use with implantable devices | ||
Patent #
US 8,840,552 B2
Filed 12/08/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,840,553 B2
Filed 02/26/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,843,187 B2
Filed 06/01/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,880,137 B2
Filed 04/18/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Integrated delivery device for continuous glucose sensor | ||
Patent #
US 8,882,741 B2
Filed 04/30/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 8,886,273 B2
Filed 11/07/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 8,886,272 B2
Filed 02/22/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Oxygen enhancing membrane systems for implantable devices | ||
Patent #
US 8,909,314 B2
Filed 07/20/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Dual electrode system for a continuous analyte sensor | ||
Patent #
US 8,911,369 B2
Filed 12/15/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,915,849 B2
Filed 02/03/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,915,850 B2
Filed 03/28/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,920,319 B2
Filed 12/28/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Integrated delivery device for continuous glucose sensor | ||
Patent #
US 8,920,401 B2
Filed 04/30/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Device and method for determining analyte levels | ||
Patent #
US 8,923,947 B2
Filed 07/23/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Polymer membranes for continuous analyte sensors | ||
Patent #
US 8,954,128 B2
Filed 10/18/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,974,386 B2
Filed 11/01/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Use of an equilibrium sensor to monitor glucose concentration | ||
Patent #
US 8,979,790 B2
Filed 09/11/2013
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Medtronic Minimed Incorporated
|
Optical determination of pH and glucose | ||
Patent #
US 8,983,565 B2
Filed 07/25/2013
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Medtronic Minimed Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,011,332 B2
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,011,331 B2
Filed 12/29/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,014,773 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,042,953 B2
Filed 03/02/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,044,199 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated delivery device for continuous glucose sensor | ||
Patent #
US 9,050,413 B2
Filed 04/30/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,060,742 B2
Filed 03/19/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,695 B2
Filed 04/12/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,697 B2
Filed 10/27/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,694 B2
Filed 04/03/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,072,477 B2
Filed 06/21/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,078,626 B2
Filed 03/31/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,078,607 B2
Filed 06/17/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 9,078,608 B2
Filed 07/13/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,107,623 B2
Filed 04/15/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,149,219 B2
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Low oxygen in vivo analyte sensor | ||
Patent #
US 9,155,496 B2
Filed 02/18/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated delivery device for continuous glucose sensor | ||
Patent #
US 9,155,843 B2
Filed 07/26/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Polymer membranes for continuous analyte sensors | ||
Patent #
US 9,173,607 B2
Filed 01/30/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Polymer membranes for continuous analyte sensors | ||
Patent #
US 9,173,606 B2
Filed 01/30/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,192,328 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 9,220,449 B2
Filed 07/09/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 9,247,900 B2
Filed 06/04/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,247,901 B2
Filed 08/02/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,282,925 B2
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 9,314,196 B2
Filed 09/07/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,326,716 B2
Filed 12/05/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Sensor head for use with implantable devices | ||
Patent #
US 9,328,371 B2
Filed 07/16/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,326,714 B2
Filed 06/29/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Device and method for determining analyte levels | ||
Patent #
US 9,339,223 B2
Filed 12/30/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Particle-containing membrane and particulate electrode for analyte sensors | ||
Patent #
US 9,339,222 B2
Filed 05/31/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,351,668 B2
Filed 10/12/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,364,173 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,414,777 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,420,965 B2
Filed 07/01/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,420,968 B2
Filed 04/04/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,427,183 B2
Filed 07/12/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Device and method for determining analyte levels | ||
Patent #
US 9,439,589 B2
Filed 11/25/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Methods and systems for promoting glucose management | ||
Patent #
US 9,446,194 B2
Filed 03/26/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 9,451,908 B2
Filed 12/19/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
MEDICAL DEVICES AND INSERTION SYSTEMS AND METHODS | ||
Patent #
US 20160278679A1
Filed 05/18/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,498,159 B2
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,498,155 B2
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Dual electrode system for a continuous analyte sensor | ||
Patent #
US 9,504,413 B2
Filed 04/15/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,510,782 B2
Filed 04/04/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Membrane for use with implantable devices | ||
Patent #
US 9,532,741 B2
Filed 07/25/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated receiver for continuous analyte sensor | ||
Patent #
US 9,538,946 B2
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Polymer membranes for continuous analyte sensors | ||
Patent #
US 9,549,699 B2
Filed 10/17/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Polymer membranes for continuous analyte sensors | ||
Patent #
US 9,566,026 B2
Filed 10/17/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Polymer membranes for continuous analyte sensors | ||
Patent #
US 9,572,523 B2
Filed 09/22/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Dual electrode system for a continuous analyte sensor | ||
Patent #
US 9,579,053 B2
Filed 03/26/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,585,607 B2
Filed 04/04/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Oxygen enhancing membrane systems for implantable devices | ||
Patent #
US 9,597,027 B2
Filed 10/30/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,610,034 B2
Filed 11/09/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,610,031 B2
Filed 04/13/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,649,069 B2
Filed 06/29/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 9,668,677 B2
Filed 10/26/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Polymer membranes for continuous analyte sensors | ||
Patent #
US 9,693,721 B2
Filed 06/17/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing sensor data | ||
Patent #
US 9,717,449 B2
Filed 01/15/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 9,724,028 B2
Filed 11/24/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,724,045 B1
Filed 04/06/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated medicament delivery device for use with continuous analyte sensor | ||
Patent #
US 9,741,139 B2
Filed 08/09/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,750,441 B2
Filed 08/15/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,750,460 B2
Filed 04/14/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Low oxygen in vivo analyte sensor | ||
Patent #
US 9,757,061 B2
Filed 09/01/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Dry insertion and one-point in vivo calibration of an optical analyte sensor | ||
Patent #
US 9,757,057 B2
Filed 11/06/2013
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Medtronic Minimed Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,775,543 B2
Filed 12/30/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensing biointerface | ||
Patent #
US 9,788,766 B2
Filed 05/19/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,801,572 B2
Filed 06/18/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Sensor head for use with implantable devices | ||
Patent #
US 9,804,114 B2
Filed 03/02/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,814,414 B2
Filed 03/30/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,833,143 B2
Filed 06/05/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Optical systems and methods for ratiometric measurement of blood glucose concentration | ||
Patent #
US 9,839,378 B2
Filed 08/07/2014
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Medtronic Minimed Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 9,895,089 B2
Filed 05/20/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 9,918,668 B2
Filed 03/09/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Device and method for determining analyte levels | ||
Patent #
US 9,931,067 B2
Filed 09/13/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated delivery device for continuous glucose sensor | ||
Patent #
US 9,937,293 B2
Filed 08/19/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 9,986,942 B2
Filed 08/10/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Oxygen enhancing membrane systems for implantable devices | ||
Patent #
US 9,993,186 B2
Filed 02/09/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,022,078 B2
Filed 05/23/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Particle-containing membrane and particulate electrode for analyte sensors | ||
Patent #
US 10,028,683 B2
Filed 10/07/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Particle-containing membrane and particulate electrode for analyte sensors | ||
Patent #
US 10,028,684 B2
Filed 09/21/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Membrane for use with implantable devices | ||
Patent #
US 10,039,480 B2
Filed 02/11/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Dual electrode system for a continuous analyte sensor | ||
Patent #
US 10,136,844 B2
Filed 11/18/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Polymer membranes for continuous analyte sensors | ||
Patent #
US 10,143,410 B2
Filed 06/01/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing sensor data | ||
Patent #
US 10,182,751 B2
Filed 06/26/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,201,301 B2
Filed 04/18/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,231,654 B2
Filed 06/23/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Low oxygen in vivo analyte sensor | ||
Patent #
US 10,265,000 B2
Filed 08/03/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated medicament delivery device for use with continuous analyte sensor | ||
Patent #
US 10,278,580 B2
Filed 06/09/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Dual electrode system for a continuous analyte sensor | ||
Patent #
US 10,299,712 B2
Filed 09/05/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Cellulosic-based resistance domain for an analyte sensor | ||
Patent #
US 10,300,507 B2
Filed 02/14/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,314,525 B2
Filed 01/06/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 10,327,638 B2
Filed 10/30/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,349,873 B2
Filed 04/27/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensing biointerface | ||
Patent #
US 10,376,188 B2
Filed 09/21/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated medicament delivery device for use with continuous analyte sensor | ||
Patent #
US 10,403,012 B2
Filed 07/18/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,478,108 B2
Filed 02/05/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 10,524,703 B2
Filed 01/24/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Methods and systems for promoting glucose management | ||
Patent #
US 10,537,678 B2
Filed 12/16/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Particle-containing membrane and particulate electrode for analyte sensors | ||
Patent #
US 10,561,352 B2
Filed 07/03/2018
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,610,137 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,610,136 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Oxygen enhancing membrane systems for implantable devices | ||
Patent #
US 10,610,140 B2
Filed 05/11/2018
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,610,135 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Methods and systems for promoting glucose management | ||
Patent #
US 10,610,642 B2
Filed 12/30/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,617,336 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated insulin delivery system with continuous glucose sensor | ||
Patent #
US 10,653,835 B2
Filed 10/24/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensing biointerface | ||
Patent #
US 10,667,729 B2
Filed 06/27/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensing biointerface | ||
Patent #
US 10,667,730 B2
Filed 10/16/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Methods and systems for simulating glucose response to simulated actions | ||
Patent #
US 10,675,405 B2
Filed 12/04/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensing biointerface | ||
Patent #
US 10,702,193 B2
Filed 01/14/2020
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,709,364 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,709,362 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,709,363 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,716,498 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,722,152 B2
Filed 11/05/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,743,801 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 10,786,185 B2
Filed 01/05/2018
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,799,158 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,799,159 B2
Filed 02/13/2020
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,813,577 B2
Filed 02/13/2020
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,813,576 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated insulin delivery system with continuous glucose sensor | ||
Patent #
US 10,835,672 B2
Filed 05/05/2020
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,856,787 B2
Filed 07/31/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Splittable cannula having radiopaque marker | ||
Patent #
US 7,879,024 B2
Filed 02/04/2005
|
Current Assignee
St Jude Medical Atrial Fibrillation Divison Incorporated
|
Original Assignee
St Jude Medical Atrial Fibrillation Divison Incorporated
|
Method, system, and apparatus for neural localization | ||
Patent #
US 7,959,577 B2
Filed 03/31/2008
|
Current Assignee
Mis Ip Holdings LLC
|
Original Assignee
Baxano Inc.
|
Intelligent wearable monitor systems and methods | ||
Patent #
US 7,981,058 B2
Filed 03/14/2005
|
Current Assignee
The Trustees of Dartmounth College
|
Original Assignee
The Trustees of Dartmounth College
|
METHOD AND SYSTEM FOR QUANTIFYING AN INTENTION OF MOVEMENT OF A USER | ||
Patent #
US 20100292617A1
Filed 05/15/2009
|
Current Assignee
Chak Seng Leung
|
Original Assignee
Chak Seng Leung
|
Communication system and method to be performed in a communication system | ||
Patent #
US 20090028089A1
Filed 08/31/2007
|
Current Assignee
Nokia Technologies Oy
|
Original Assignee
Nokia Corporation
|
EQUILIBRIUM NON-CONSUMING FLUORESCENCE SENSOR FOR REAL TIME INTRAVASCULAR GLUCOSE MEASUREMENT | ||
Patent #
US 20090018418A1
Filed 05/09/2008
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
Insulin Syringe Storage Rack | ||
Patent #
US 20090026108A1
Filed 09/20/2007
|
Current Assignee
Michelle Ross
|
Original Assignee
Michelle Ross
|
POLYVIOLOGEN BORONIC ACID QUENCHERS FOR USE IN ANALYTE SENSORS | ||
Patent #
US 20090081803A1
Filed 07/11/2008
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
Abnormal motion detector and monitor | ||
Patent #
US 20090062696A1
Filed 05/19/2008
|
Current Assignee
Smart Monitor Corp.
|
Original Assignee
Vaidhi Nathan
|
HPTS-MONO AND BIS CYS-MA POLYMERIZABLE FLUORESCENT DYES FOR USE IN ANALYTE SENSORS | ||
Patent #
US 20090061528A1
Filed 08/06/2008
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
Medical Device Automatic Start-up Upon Contact to Patient Tissue | ||
Patent #
US 20090076336A1
Filed 09/12/2008
|
Current Assignee
Medtronic Monitoring Inc.
|
Original Assignee
Corventis
|
DEVICES, METHODS AND SYSTEMS FOR NEURAL LOCALIZATION | ||
Patent #
US 20090171381A1
Filed 01/12/2009
|
Current Assignee
Baxano Inc.
|
Original Assignee
Baxano Inc.
|
MOBILE BALANCING PROSTHESIS | ||
Patent #
US 20090192416A1
Filed 04/10/2007
|
Current Assignee
Dietmar Basta, Arneborg Ernst
|
Original Assignee
Dietmar Basta, Arneborg Ernst
|
Automated adaptive muscle stimulation method and apparatus | ||
Patent #
US 20090228068A1
Filed 01/23/2009
|
Current Assignee
DJO GLOBAL SWITZERLAND SRL
|
Original Assignee
DJO GLOBAL SWITZERLAND SRL
|
Coiled circuit bio-sensor | ||
Patent #
US 20080009687A1
Filed 05/25/2007
|
Current Assignee
Northrop Grumman Systems Corp.
|
Original Assignee
Northrop Grumman Systems Corp.
|
PHOTOELECTRIC CONVERTER AND X-RAY IMAGE PICK-UP DEVICE | ||
Patent #
US 20080001091A1
Filed 08/24/2007
|
Current Assignee
Canon Kabushiki Kaisha
|
Original Assignee
Canon Kabushiki Kaisha
|
FLUORESCENT DYES FOR USE IN GLUCOSE SENSING | ||
Patent #
US 20080027245A1
Filed 07/24/2007
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
ANALYTE SENSOR | ||
Patent #
US 20080086042A1
Filed 03/26/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Method and apparatus for providing data processing and control in a medical communication system | ||
Patent #
US 20080287761A1
Filed 05/14/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transducer Unit, Device Arrangement and a Method Utilizing the Device Arrangement for Creating and Presenting an Estimate of Bone Mass Development | ||
Patent #
US 20080312560A1
Filed 05/25/2005
|
Current Assignee
Newtest Oy
|
Original Assignee
Newtest Oy
|
Specialized Human Servo Device And Process For Tissue Modulation Of Human Fingerprints | ||
Patent #
US 20080306363A1
Filed 01/06/2006
|
Current Assignee
LIGHTOUCH MEDICAL INC.
|
Original Assignee
LIGHTOUCH MEDICAL INC.
|
Apparatus and method for measuring myocardial oxygen consumption | ||
Patent #
US 7,181,260 B2
Filed 11/12/2004
|
Current Assignee
Guillermo Gutierrez
|
Original Assignee
Guillermo Gutierrez
|
Attitude Indicator And Activity Monitoring Device | ||
Patent #
US 20070038155A1
Filed 07/10/2006
|
Current Assignee
NOCWATCH INTERNATIONAL INC.
|
Original Assignee
NOCWATCH INTERNATIONAL INC.
|
Apparatus and methods for analyzing body fluid samples | ||
Patent #
US 20070060872A1
Filed 02/13/2006
|
Current Assignee
OptiScan Biomedical Corporation
|
Original Assignee
OptiScan Biomedical Corporation
|
Apparatus for intraoperative neural monitoring | ||
Patent #
US 7,216,001 B2
Filed 01/12/2004
|
Current Assignee
Medtronic Xomed Incorporated
|
Original Assignee
Medtronic Xomed Incorporated
|
DELIVERY DEVICE, SYSTEMS AND METHODS OF USE | ||
Patent #
US 20070100356A1
Filed 11/13/2006
|
Current Assignee
Evalve Inc.
|
Original Assignee
Evalve Inc.
|
Kink resistant introducer with mapping capabilities | ||
Patent #
US 7,229,450 B1
Filed 02/11/2003
|
Current Assignee
Pacesetter Incorporated
|
Original Assignee
Pacesetter Incorporated
|
Analysis system for reagent-free determination of the concentration of an analyte in living tissue | ||
Patent #
US 7,277,740 B2
Filed 03/12/2004
|
Current Assignee
Roche Diabetes Care Inc.
|
Original Assignee
Roche Diagnostics Operations Incorporated
|
Testing Efficacy of Therapeutic Mechanical or Electrical Nerve or Muscle Stimulation | ||
Patent #
US 20070265675A1
Filed 05/09/2007
|
Current Assignee
Ams Research Corporation
|
Original Assignee
Ams Research Corporation
|
Electrical-optical hybrid connector | ||
Patent #
US 5,109,452 A
Filed 07/16/1990
|
Current Assignee
Puritan Bennett Corp.
|
Original Assignee
Puritan Bennett Corp.
|
Method and apparatus for analyzing a test material by inducing and detecting light-matter interactions | ||
Patent #
US 6,370,406 B1
Filed 08/20/1999
|
Current Assignee
Cirrex Systems LLC
|
Original Assignee
Cirrex Corp.
|
Optical determination of glucose utilizing boronic acid adducts | ||
Patent #
US 20060083688A1
Filed 12/07/2005
|
Current Assignee
Regents of the University of California
|
Original Assignee
Regents of the University of California
|
Device for determining a value that is representative of accelerations as well as an ergometer | ||
Patent #
US 20060135888A1
Filed 01/28/2004
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Methods and apparatus for coagulating and/or constricting hollow anatomical structures | ||
Patent #
US 20060189979A1
Filed 08/05/2005
|
Current Assignee
Covidien LP
|
Original Assignee
Tyco Healthcare Group LP
|
Monitoring apparatus for ambulatory subject and a method for monitoring the same | ||
Patent #
US 20060270949A1
Filed 08/13/2004
|
Current Assignee
MEDCARE SYSTEMS PTY. LTD.
|
Original Assignee
MEDCARE SYSTEMS PTY. LTD.
|
Peripherally inserted central catheter with continuous central venous oximetry and proximal high flow port | ||
Patent #
US 20050054975A1
Filed 10/22/2004
|
Current Assignee
Mayo Foundation For Medical Education And Research
|
Original Assignee
Mayo Foundation For Medical Education And Research
|
Intelligent wearable monitor systems and methods | ||
Patent #
US 20050240086A1
Filed 03/14/2005
|
Current Assignee
The Trustees of Dartmounth College
|
Original Assignee
The Trustees of Dartmounth College
|
Automated adaptive muscle stimulation method and apparatus | ||
Patent #
US 20050283204A1
Filed 01/28/2005
|
Current Assignee
DJO GLOBAL SWITZERLAND SRL
|
Original Assignee
Compex Medical S.A.
|
Percutaneous chemical sensor based on fluorescence resonant energy transfer (FRET) | ||
Patent #
US 20050267326A1
Filed 03/24/2005
|
Current Assignee
The Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California
|
Original Assignee
The Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California
|
Glucose sensing molecules having selected fluorescent properties | ||
Patent #
US 6,682,938 B1
Filed 09/15/2000
|
Current Assignee
Lawrence Livermore National Security LLC
|
Original Assignee
Minimed Inc., Regents of the University of California
|
Optical determination of glucose utilizing boronic acid adducts | ||
Patent #
US 20040028612A1
Filed 06/05/2003
|
Current Assignee
Regents of the University of California
|
Original Assignee
Regents of the University of California
|
Method of making a kink-resistant catheter | ||
Patent #
US 6,702,972 B1
Filed 08/23/2000
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
DIAMETRICS MEDICAL LIMITED
|
Optical-based sensing devices | ||
Patent #
US 6,711,423 B2
Filed 09/27/2001
|
Current Assignee
Senseonics Incorporated
|
Original Assignee
Sensors For Medicine and Science Incorporated
|
Apparatus for measuring body fat | ||
Patent #
US 20040077969A1
Filed 08/22/2003
|
Current Assignee
KAO Corporation
|
Original Assignee
KAO Corporation
|
Physical movement analyzer and physical movement analyzing method | ||
Patent #
US 20040230138A1
Filed 04/06/2004
|
Current Assignee
Matsushita Electric Industrial Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Splittable cannula having radiopaque marker | ||
Patent #
US 20040267203A1
Filed 06/26/2003
|
Current Assignee
St Jude Medical Atrial Fibrillation Divison Incorporated
|
Original Assignee
St Jude Medical Atrial Fibrillation Divison Incorporated
|
Apparatus and method for determining adequacy of electrode-to-skin contact and electrode quality for bioelectrical measurements | ||
Patent #
US 20040243018A1
Filed 11/28/2003
|
Current Assignee
Z-Tech Incorporated
|
Original Assignee
Z-Tech Incorporated
|
Analysis system for reagent-free determination of the concentration of an analyte in living tissue | ||
Patent #
US 20040260162A1
Filed 03/12/2004
|
Current Assignee
Roche Diabetes Care Inc.
|
Original Assignee
Roche Diagnostics Operations Incorporated
|
Implantable myocardial ischemia detection, indication and action technology | ||
Patent #
US 20030013974A1
Filed 09/15/2002
|
Current Assignee
Infinite Biomedical Technologies LLC
|
Original Assignee
Nitish V. Thakor, Ananth Natarajan
|
Analytical device for in vivo analysis in the body of a patient | ||
Patent #
US 6,584,335 B1
Filed 05/08/2000
|
Current Assignee
Roche Diagnostics GmbH
|
Original Assignee
Roche Diagnostics GmbH
|
Peelable PTFE sheaths and methods for manufacture of same | ||
Patent #
US 6,663,595 B2
Filed 05/21/2002
|
Current Assignee
Teleflex Medical Incorporated
|
Original Assignee
TFX Medical Inc.
|
Detection of biological molecules using chemical amplification and optical sensors | ||
Patent #
US 20020018843A1
Filed 08/21/2001
|
Current Assignee
Minimed Inc.
|
Original Assignee
Minimed Inc.
|
Introducer element and method of using same | ||
Patent #
US 6,363,273 B1
Filed 12/22/1999
|
Current Assignee
Integra Lifesciences Corporation
|
Original Assignee
Codman Shurtleff Incorporated
|
Personal event monitor with linear omnidirectional response | ||
Patent #
US 6,361,508 B1
Filed 04/20/2000
|
Current Assignee
United States Of America As Represented By The Secretary Of The Army
|
Original Assignee
The United States Of America As Represented By The Secretary Of The Army
|
Analyte monitoring device and methods of use | ||
Patent #
US 6,175,752 B1
Filed 04/30/1998
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Therasense Incorporated
|
Method of creating a tip on a catheter | ||
Patent #
US 6,187,130 B1
Filed 05/26/1999
|
Current Assignee
Boston Scientific Scimed
|
Original Assignee
Scimed Life Systems Incorporated
|
Process and devices for determining the instant of injection and the duration of injection in thermodilution measurements | ||
Patent #
US 6,200,301 B1
Filed 08/31/1998
|
Current Assignee
Pulsion Medical Systems AG
|
Original Assignee
Pulsion Medical Systems AG
|
Protected peelable U-wing introducer | ||
Patent #
US 6,273,874 B1
Filed 08/18/1999
|
Current Assignee
Becton Dickinson Co
|
Original Assignee
Becton Dickinson Co
|
Detection of biological molecules using chemical amplification and optical sensors | ||
Patent #
US 6,011,984 A
Filed 11/21/1996
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Minimed Inc.
|
Guidewire for catheter | ||
Patent #
US 6,019,736 A
Filed 05/15/1997
|
Current Assignee
Cathguide Corp.
|
Original Assignee
Francisco J. Avellanet
|
Method and apparatus for introducing an intravenous catheter | ||
Patent #
US 6,156,010 A
Filed 06/17/1998
|
Current Assignee
Injectimed Inc.
|
Original Assignee
Injectimed Inc.
|
Multi-parameter sensor apparatus | ||
Patent #
US 5,596,988 A
Filed 12/07/1994
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Biomedical Sensors Limited
|
Fluorescent compound suitable for use in the detection of saccharides | ||
Patent #
US 5,503,770 A
Filed 11/07/1994
|
Current Assignee
Research Development Corporation Of Japan
|
Original Assignee
Research Development Corporation Of Japan
|
Solid state sensors | ||
Patent #
US 5,511,547 A
Filed 02/16/1994
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Biomedical Sensors Limited
|
Automatic calibrating apparatus for laboratory ion concentration meter | ||
Patent #
US 5,511,408 A
Filed 07/28/1993
|
Current Assignee
Horiba Limited
|
Original Assignee
Horiba Limited
|
Method and means for detecting polyhydroxyl compounds | ||
Patent #
US 5,512,246 A
Filed 11/17/1993
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Anthony P. Russell
|
Flexible, kink-resistant, introducer sheath and method of manufacture | ||
Patent #
US 5,380,304 A
Filed 02/23/1993
|
Current Assignee
Cook Medical Incorporated
|
Original Assignee
Cook Incorporated
|
Measurement of bladder oxygen | ||
Patent #
US 5,389,217 A
Filed 04/28/1994
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Biomedical Sensors Limited
|
Introducer system having kink resistant splittable sheath | ||
Patent #
US 5,409,469 A
Filed 11/04/1993
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Intravascular catheter with kink resistant tip | ||
Patent #
US 5,279,596 A
Filed 06/25/1992
|
Current Assignee
Cordis Corporation
|
Original Assignee
Cordis Corporation
|
Assembly of a tube and a part and apparatus and method of manufacture | ||
Patent #
US 5,280,130 A
Filed 05/22/1992
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Biomedical Sensors Limited
|
Emission based fiber optic sensors for pH and carbon dioxide analysis | ||
Patent #
US 5,280,548 A
Filed 03/11/1993
|
Current Assignee
Ohmeda Pte Limited
|
Original Assignee
BOC Health Care Incorporated
|
Apparatus for locating a nerve and for protecting nerves from injury during surgery | ||
Patent #
US 5,284,154 A
Filed 10/23/1992
|
Current Assignee
Brigham and Womens Hospital Incorporated
|
Original Assignee
Brigham and Womens Hospital Incorporated
|
Vacuum coating apparatus | ||
Patent #
US 5,286,294 A
Filed 04/07/1992
|
Current Assignee
GEN GEN CORPORATION
|
Original Assignee
GEN GEN CORPORATION
|
Flexible coating for magnetic resonance imaging compatible invasive devices | ||
Patent #
US 5,290,266 A
Filed 08/14/1992
|
Current Assignee
General Electric Company
|
Original Assignee
General Electric Company
|
Sealing means for endotracheal tubes | ||
Patent #
US 5,305,740 A
Filed 05/06/1992
|
Current Assignee
Health and Human Services United States of America As Represented By The SEC
|
Original Assignee
United States Department Of Health And Human Services
|
Fluorescent pH indicators | ||
Patent #
US 5,302,731 A
Filed 07/13/1992
|
Current Assignee
Becton Dickinson Co
|
Original Assignee
Becton Dickinson Co
|
Catheter introducer | ||
Patent #
US 5,334,157 A
Filed 09/09/1993
|
Current Assignee
Gesco International Inc.
|
Original Assignee
Gesco International Inc.
|
Method for bonding an analyte-sensitive dye compound to an addition-cure silicone | ||
Patent #
US 5,182,353 A
Filed 07/24/1990
|
Current Assignee
Puritan Bennett Corp.
|
Original Assignee
Puritan Bennett Corp.
|
Dual fiberoptic cell for multiple serum measurements | ||
Patent #
US 5,176,882 A
Filed 12/06/1990
|
Current Assignee
Pelikan Technologies Inc.
|
Original Assignee
HP Inc.
|
Packaging system for a sterilizable calbratable medical device | ||
Patent #
US 5,178,267 A
Filed 12/20/1990
|
Current Assignee
ABBOTT LABORATORIES ABBOTT PARK LAKE IL A CORP. OF IL
|
Original Assignee
Abbott Laboratories Incorporated
|
Non-buckling thin-walled sheath for the percutaneous insertion of intraluminal catheters | ||
Patent #
US 5,180,376 A
Filed 05/01/1990
|
Current Assignee
Cathco Inc.
|
Original Assignee
Cathco Inc.
|
Method for calibration of a measurement apparatus | ||
Patent #
US 5,185,263 A
Filed 11/04/1991
|
Current Assignee
Avl Medical Instruments AG
|
Original Assignee
Avl Medical Instruments AG
|
Package for endoscopic ligating instrument | ||
Patent #
US 5,082,112 A
Filed 02/05/1991
|
Current Assignee
United States Surgical Corporation
|
Original Assignee
United States Surgical Corporation
|
Sensor system | ||
Patent #
US 5,093,266 A
Filed 02/27/1989
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Shiley Incorporated
|
Surface modification of plastic substrates | ||
Patent #
US 5,098,618 A
Filed 03/14/1990
|
Current Assignee
Joseph Zelez
|
Original Assignee
Joseph Zelez
|
Membrane splittable tubing | ||
Patent #
US 5,104,388 A
Filed 05/08/1990
|
Current Assignee
FBK INTERNATIONAL CORPORATION
|
Original Assignee
FBK INTERNATIONAL CORPORATION
|
Boronic acid dyes | ||
Patent #
US 5,108,502 A
Filed 08/28/1991
|
Current Assignee
HP Inc.
|
Original Assignee
HP Inc.
|
Apparatus and method for an introducer | ||
Patent #
US 5,141,497 A
Filed 06/06/1989
|
Current Assignee
Becton Dickinson Co
|
Original Assignee
Becton Dickinson Co
|
Fiber-optic physiological probes | ||
Patent #
US 5,000,901 A
Filed 03/09/1990
|
Current Assignee
Hospira Incorporated
|
Original Assignee
Abbott Laboratories Incorporated
|
Oximeter | ||
Patent #
US 5,007,704 A
Filed 03/14/1989
|
Current Assignee
Edwards Lifesciences Corporation
|
Original Assignee
Baxter International Inc.
|
Optical probe | ||
Patent #
US 5,005,576 A
Filed 03/30/1989
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
HP Inc.
|
Ventricular catheter assembly | ||
Patent #
US 4,903,707 A
Filed 04/22/1988
|
Current Assignee
CAMINO NEUROCARE INC.
|
Original Assignee
CAMINO LABORATORIES
|
Intravascular delivery device | ||
Patent #
US 4,906,232 A
Filed 03/01/1988
|
Current Assignee
Abbott Laboratories Incorporated
|
Original Assignee
Abbott Laboratories Incorporated
|
Liquid light tube end cap assembly | ||
Patent #
US 4,801,187 A
Filed 04/30/1986
|
Current Assignee
Dade International Inc.
|
Original Assignee
Baxter Travenol Laboratories Incorporated
|
Method and apparatus for in vitro calibration of oxygen saturation monitor | ||
Patent #
US 4,796,633 A
Filed 06/25/1985
|
Current Assignee
Baxter International Inc.
|
Original Assignee
American Hospital Supply Corp.
|
pH-sensitive optrode | ||
Patent #
US 4,803,049 A
Filed 12/12/1984
|
Current Assignee
Regents of the University of California
|
Original Assignee
Regents of the University of California
|
Blood electrolyte sensors including crosslinked polyetherurethane membranes | ||
Patent #
US 4,816,130 A
Filed 12/14/1987
|
Current Assignee
Becton Dickinson Co
|
Original Assignee
Becton Dickinson Co
|
Arterial blood gas syringe | ||
Patent #
US 4,821,738 A
Filed 11/19/1987
|
Current Assignee
Vital Signs Incorporated
|
Original Assignee
Vital Signs Colorado Inc.
|
Electrochemical assay for cis-diols | ||
Patent #
US 4,820,636 A
Filed 02/21/1986
|
Current Assignee
Generics International Incorporated
|
Original Assignee
Medisense Incorporated
|
Multi-channel optical transmission system | ||
Patent #
US 4,822,127 A
Filed 06/16/1986
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
Shiley Incorporated
|
Integrated optic system for monitoring blood pressure | ||
Patent #
US 4,727,730 A
Filed 07/10/1986
|
Current Assignee
Medex Inc
|
Original Assignee
Medex Inc
|
Reinforced therapeutic tube | ||
Patent #
US 4,737,153 A
Filed 02/04/1987
|
Current Assignee
TOYO CLOTH CO. LTD. 1754 TARUI SENNAN-SHI OSAKA-FU JAPAN, Japan U-Pica Company Ltd.
|
Original Assignee
Kuraray Company Limited
|
Micro-feed pump for an artificial pancreas | ||
Patent #
US 4,636,144 A
Filed 04/03/1986
|
Current Assignee
Fujisawa Pharmaceutical Co. Ltd.
|
Original Assignee
Fujisawa Pharmaceutical Co. Ltd.
|
Fiber-optic acceleration sensor with photoluminescent material | ||
Patent #
US 4,649,271 A
Filed 01/24/1985
|
Current Assignee
Takaoka Electric Manufacturing Company Limited
|
Original Assignee
Asea Aktiebolag
|
Flash chamber | ||
Patent #
US 4,654,031 A
Filed 04/15/1985
|
Current Assignee
Deseret Medical Inc.
|
Original Assignee
Warner-Lambert Company
|
Apparatus and method for effecting percutaneous catheterization of a blood vessel using a small gauge introducer needle | ||
Patent #
US 4,650,472 A
Filed 08/30/1985
|
Current Assignee
Cook Incorporated
|
Original Assignee
Cook Incorporated
|
Reporter compounds containing boron | ||
Patent #
US 4,659,817 A
Filed 08/08/1984
|
Current Assignee
Childrens Medical Center Corporation
|
Original Assignee
Childrens Medical Center Corporation
|
Chemical substance measuring apparatus | ||
Patent #
US 4,568,444 A
Filed 04/18/1985
|
Current Assignee
KURARAY CO. LTD. 1652 SAKAZU KURASHIKI-CITY OKAYAMA PREF JAPAN
|
Original Assignee
Kuraray Company Limited
|
Bed rocking mechanism | ||
Patent #
US 4,490,867 A
Filed 12/21/1982
|
Current Assignee
LYCLSELE NYA PLATPRODUKTER AB.
|
Original Assignee
LYCKSELE NYA PLATPRODUKTER AB
|
Fluorometric assay | ||
Patent #
US 4,495,293 A
Filed 02/24/1983
|
Current Assignee
Abbott Laboratories Incorporated
|
Original Assignee
Abbott Laboratories Incorporated
|
Apparatus for turning a person confined to bed | ||
Patent #
US 4,502,169 A
Filed 07/23/1982
|
Current Assignee
Torsten Persson
|
Original Assignee
Torsten Persson
|
Monitoring metabolic control in diabetic patients by measuring glycosylated amino acids and peptides in urine | ||
Patent #
US 4,371,374 A
Filed 11/17/1980
|
Current Assignee
Rockefeller University
|
Original Assignee
Rockefeller University
|
Split sleeve introducers for pacemaker electrodes and the like | ||
Patent #
US 4,345,606 A
Filed 03/24/1980
|
Current Assignee
Littleford Elizabeth H, BATES H. RICHARD AS PERSONAL REPRESENTATIVE OF THE ESTATE OF PHILIP O. LITTLEFORD DECEASED
|
Original Assignee
Philip O. Littleford
|
Self-locking cerebral electrical probe | ||
Patent #
US 4,245,645 A
Filed 07/20/1978
|
Current Assignee
Pierre-Michel Arseneault, Roland Picard, Gratien Bouillon, Gilles Tremblay
|
Original Assignee
Pierre-Michel Arseneault, Roland Picard, Gratien Bouillon, Gilles Tremblay
|
Body positioner | ||
Patent #
US 4,180,879 A
Filed 08/04/1978
|
Current Assignee
Rose A. Mann
|
Original Assignee
Rose A. Mann
|
Fiber optic pH probe | ||
Patent #
US 4,200,110 A
Filed 11/28/1977
|
Current Assignee
Government of the United States of America
|
Original Assignee
Government of the United States of America
|
PO.sub.2 /PCO.sub.2 sensor | ||
Patent #
US 4,197,853 A
Filed 07/20/1978
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GD Searle LLC
|
Method and arrangement for measuring the concentration of gases | ||
Patent #
US 4,003,707 A
Filed 02/26/1976
|
Current Assignee
Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften e.V.
|
Original Assignee
Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften e.V.
|
Sterilizable, peelable pouch or tray assembly | ||
Patent #
US 3,930,580 A
Filed 10/19/1973
|
Current Assignee
American Poultry Company Incorporated
|
Original Assignee
American Poultry Company Incorporated
|
Use of an equilibrium intravascular sensor to achieve tight glycemic control | ||
Patent #
US 8,088,097 B2
Filed 11/20/2008
|
Current Assignee
Medtronic Minimed Incorporated
|
Original Assignee
GluMetrics Inc.
|
Analytical apparatus and process | ||
Patent #
US 3,865,548 A
Filed 03/05/1973
|
Current Assignee
Jacques Padawer
|
Original Assignee
Albert Einstein College of Medicine of Yeshiva University
|
OCCUPANT TURNING DEVICE FOR BED | ||
Patent #
US 3,874,010 A
Filed 03/15/1974
|
Current Assignee
William M. Geary
|
Original Assignee
William M. Geary
|
MOTION TRANSLATING DEVICE | ||
Patent #
US 3,488,098 A
Filed 03/26/1968
|
Current Assignee
ATT Mobility
|
Original Assignee
Bernard J. Sobczak
|
ELECTROCHEMICAL ELECTRODE WITH HEATING MEANS | ||
Patent #
US 3,795,239 A
Filed 09/02/1971
|
Current Assignee
Kontron
|
Original Assignee
Hoffmann-La Roche Incorporated
|
Azo dyestuffs | ||
Patent #
US 2,496,151 A
Filed 08/14/1946
|
Current Assignee
Charles R. Dawson, David Wasserman
|
Original Assignee
Charles R. Dawson, David Wasserman
|
Hospital bed and lifting and turning device | ||
Patent #
US 3,302,219 A
Filed 01/14/1966
|
Current Assignee
Joe F. Harris
|
Original Assignee
Joe F. Harris
|
36 Claims
-
1. A kit for introducing an analyte sensor into a blood vessel, comprising:
-
the analyte sensor comprising a distal end region, a proximal end region, and an elongate body, wherein the analyte sensor is sized and configured for percutaneous insertion into the blood vessel, and wherein the analyte sensor comprises an indicator system immobilized along the distal end region, said indicator system being adapted to generate a signal related to the concentration of analyte in the blood, wherein the indicator system is operably coupled to the proximal end region; and a removable introducer having a distal end region, a proximal end region, and an elongate body comprising a lumen configured to slidably receive the analyte sensor, wherein the elongate body of the introducer has at least one score line along a longitudinal axis, wherein the score line is a weakened portion of the elongate body. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
-
-
16. A method for deploying a sensor in a blood vessel of a patient, comprising:
positioning the sensor in the blood vessel, such that at least a distal portion of the sensor resides within the blood vessel and at least a proximal portion of the sensor extends out of the patient, wherein there are no additional components associated with the sensor within the patient. - View Dependent Claims (17, 18, 19, 20, 21, 22, 23, 24, 25)
-
26. A method for measuring an analyte concentration in a blood vessel, comprising:
-
providing a sensor configured to reside at least in part within the blood vessel and generate a signal related to the analyte concentration in the blood; introducing the sensor into the blood vessel through an introducer assembly; removing the introducer assembly, leaving only the analyte sensor in the patient; and detecting the signal to measure the analyte concentration in the blood. - View Dependent Claims (27, 28)
-
-
29. A method for deploying a sensor in a blood vessel, comprising:
-
providing an introducer assembly comprising a hypodermic needle slidably engaged within a splitable cannula, wherein a piercing tip of the hypodermic needle extends distally beyond the splitable cannula; cannulating the blood vessel with the introducer assembly; withdrawing the hypodermic needle while leaving the splitable cannula in the blood vessel; inserting the sensor through the splitable cannula and into the blood vessel; withdrawing the splitable cannula from the blood vessel while leaving the sensor in the blood vessel; and splitting and removing the cannula from the sensor. - View Dependent Claims (30, 31, 32, 33, 34, 35)
-
-
36. A method for continuous monitoring of blood glucose levels in a patient, comprising:
-
providing an introducer assembly comprising a hypodermic needle slidably engaged within a removable cannula, wherein a piercing tip of the hypodermic needle extends distally beyond the removable cannula; inserting the introducer assembly into a peripheral vein or artery; retracting the hypodermic needle from the removable cannula, while leaving the removable cannula in the peripheral vein or artery; providing an optical glucose sensor comprising a fluorescent indicator system disposed along a distal end region and adapted to generate an optical signal related to the blood glucose level in response to light, an elongate fiber-optic body, and an optical coupling disposed along a proximal end region; inserting the optical glucose sensor through the removable cannula and into the peripheral vein or artery; retracting the removable cannula from the vein or artery, while leaving the sensor in the peripheral vein or artery; removing the removable cannula from the sensor; connecting the optical coupling to a device comprising a light source and a detector; and detecting the optical signal to monitor the blood glucose level of the patient.
-
1 Specification
This application claims the benefit of U.S. Provisional Patent Application No. 61/045,887, filed Apr. 17, 2008, the entire contents of which are incorporated herein by reference and should be considered a part of this specification.
1. Field of the Invention
A sensor for intravascular residence is disclosed along with methods for percutaneous deployment of the sensor. In preferred embodiments, the sensor is a fiber-optic glucose sensor which is inserted and resides in a peripheral vein without an indwelling cannula.
2. Description of the Related Art
Despite advances in glucose detection technologies, there are no minimally invasive, accurate, real-time, in vivo sensors on the market for monitoring glucose levels over a period of days or weeks. Consequently, it has been a significant burden on diabetics, patients and hospital staff to perform frequent blood sampling for conventional ex vivo blood glucose monitoring. There are short-term continuous glucose sensors that use enzyme-based glucose detection in the interstitial fluid. However, such sensors are relatively large, complex and expensive. These electrochemical sensors also consume reactants (e.g., glucose), which may become limiting particularly when the sensors are walled off due to the patient'"'"'s foreign body reaction. Moreover, the equilibration lag time may change and the correlation between blood and interstitial glucose levels may become tenuous, particularly in seriously ill (e.g., ICU) patients.
Intravascular sensor deployment raises other technical difficulties. Typically, one sensor for each analyte has been placed in a patient'"'"'s blood vessel(s) through an indwelling cannula. If it is desired to measure several analytes, a plurality of sensors are often required, which can cause attendant discomfort to the patient and complexity of the electronic monitoring equipment. Moreover, even the deployment of a single sensor within a peripheral vein presents continuous maintenance issues for the nursing staff. The present state of the art is that sensors are deployed through indwelling cannulas. Because blood becomes trapped and clots within such cannulas and between the cannula and the sensor, the cannula must be flushed continuously or periodically, typically with saline/heparin. In the ICU, for example, the nursing staff regularly purge (e.g., every 4 hrs) the trapped blood and clots, to maintain cannula access to the vein open.
Accordingly, there remains an important unmet need for a sensor configured for intravascular deployment and methods of deploying such a sensor, wherein the sensor by itself is left to reside within the vein, without any additional structural components (e.g., an indwelling cannula).
A method is disclosed for deploying a sensor in a blood vessel of a patient. The method comprises positioning the sensor in the blood vessel, such that at least a distal portion of the sensor resides within the blood vessel and at least a proximal portion of the sensor extends out of the patient, wherein there are no additional components associated with the sensor within the patient.
In one preferred embodiment, the blood vessel is a peripheral vein. In another preferred embodiment, the sensor is an optical fiber glucose sensor.
In one embodiment, the step of positioning the sensor further comprises introducing the sensor into the blood vessel through an introducer assembly.
In another embodiment, the step of positioning the sensor further comprises removing the introducer assembly, leaving only the sensor in the patient.
A method for measuring an analyte concentration in a blood vessel is disclosed in accordance with another embodiment. The method comprises: providing a sensor configured to reside at least in part within the blood vessel and generate a signal related to the analyte concentration in the blood; introducing the sensor into the blood vessel through an introducer assembly; removing the introducer assembly, leaving only the analyte sensor in the patient; and detecting the signal to measure the analyte concentration in the blood.
A method for deploying a sensor in a blood vessel is disclosed in accordance with another embodiment. The method comprises: providing an introducer assembly comprising a hypodermic needle slidably engaged within a splitable cannula, wherein a piercing tip of the hypodermic needle extends distally beyond the splitable cannula; cannulating the blood vessel with the introducer assembly; withdrawing the hypodermic needle, leaving the splitable cannula in the vessel; inserting the sensor through the splitable cannula and into the vessel; withdrawing the splitable cannula from the vessel, leaving the sensor in the vessel; and splitting and removing the cannula from the sensor.
A method for continuous monitoring of blood glucose levels in a patient is disclosed in accordance with another embodiment. The method comprises: providing an introducer assembly comprising a hypodermic needle slidably engaged within a removable cannula, wherein a piercing tip of the hypodermic needle extends distally beyond the removable cannula; inserting the introducer assembly into a peripheral vein; retracting the hypodermic needle from the removable cannula, while leaving the removable cannula in the peripheral vein; providing an optical glucose sensor comprising a fluorescent indicator system disposed along a distal end region and adapted to generate an optical signal related to the blood glucose level in response to light, an elongate fiber-optic body, and an optical coupling disposed along a proximal end region; inserting the optical glucose sensor through the removable cannula and into the peripheral vein; retracting the removable cannula from the vein, while leaving the sensor in the peripheral vein; removing the removable cannula from the sensor; connecting the optical coupling to a device comprising a light source and a detector; and detecting the optical signal to monitor the blood glucose level of the patient. In one preferred embodiment, the removable cannula has at least one scoring such that the removable cannula can be split.
For purposes of summarizing the invention, certain aspects, advantages and novel features of the invention are described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein. These and other objects and advantages of the present invention will be more apparent from the following description taken in conjunction with the accompanying drawings.
In one embodiment, the present invention involves a method for deploying a sensor in a blood vessel of a patient, wherein the sensor resides within the patient without any additional device or structural components, e.g., introducer, cannula, catheter, sleeve, etc. The deployment of a naked, preferably very small and non-thrombogenic, sensor addresses some of the disadvantages that presently face patients and medical staff, e.g., thrombogenesis, constant staff care, etc. The sensor can be adapted to sense any analyte using known sensing systems and/or chemistries. The blood vessel can be an artery or a vein. The method comprises positioning the sensor in the blood vessel, such that a distal portion of the sensor resides within the blood vessel by itself, and a proximal portion of the sensor extends out of the patient, wherein there are no additional components associated with the sensor within the patient.
More particularly, new and elegant solutions to some of the technical challenges faced by patients and medical staff in using existing in vivo glucose sensors are disclosed. In one embodiment, a solution to the technical challenges involves using a sensor comprising equilibrium, non-consuming fluorescence-based detection chemistry. Equilibrium optical sensing addresses the problems associated with rate-limiting consumption of enzymatic reactants in current electrochemical sensors. Further, placement within a peripheral vein, as opposed to subcutaneous (interstitial) placement, provides direct monitoring of blood glucose levels, thereby avoiding the problems associated with measuring glucose levels in the interstitial fluid-e.g., uncertain and changing equilibration time for glucose between the blood and the interstitial fluid. In another embodiment, deployment of a very small diameter, non-thrombogenic fiber-optic sensor within a vein, without an indwelling cannula, addresses the serious burden on the nursing staff related to continuous or periodic flushing of the cannula to maintain open access to the vein.
Examples of small diameter, equilibrium optical sensors are disclosed in U.S. Pat. No. 6,627,177 and U.S. Patent Publ. No. 2006/0083688, and co-pending U.S. patent application Ser. Nos. 11/296,898; 11/782,553; 11/671,880; 12/027,158; 12/026,396; 60/917,309; 60/917,307; 60/954,204; 60/915,372; 60/949,145; and 60/989,732; each of which is incorporated herein in its entirety by reference thereto.
Processes for inserting catheters into a blood vessel are known. Generally, a hypodermic needle is first inserted into the blood vessel. Once the hypodermic needle is in place in the blood vessel, a guidewire may be threaded through the hypodermic needle and into the blood vessel. After the guidewire has been inserted into the blood vessel through the hypodermic needle, the hypodermic needle can be removed, leaving the guidewire in place in the blood vessel. Next, a cannula is threaded over the guidewire and into the blood vessel. Finally, the guidewire is removed and the catheter is introduced into the blood vessel through the cannula. When the catheter is an analyte sensor, the cannula is left indwelling.
In preferred embodiments, the present invention relates to a fiber-optic glucose sensor that is introduced into and resides within a blood vessel (or interstitial site) by itself, without an indwelling cannula or permanent introducer. The small diameter and flexibility of such a sensor provide obvious advantages in relation to patient comfort. Liao, K.-C., et al., Biosens. Bioelectron. (2008), doi: 10.1016/j.bios.2008.01.012 recently disclosed a smaller and less invasive glucose sensor designed for interstitial implantation, wherein glucose sensitivity is mediated by Con A binding and Quantum dots are used as FRET donors; the sensor chemistry is immobilized at the end of an optical fiber in a PEG-DA hydrogel. However, Liao et al., does not disclose intravascular deployment. Interstitial fluid is generally slow to equilibrate with glucose. Thus, intravascular monitoring is highly preferred because it is the glucose in blood that is important, particularly where patients are critically ill and the medical staff is trying to maintain tight glycemic control. Very sick patients tend to exhibit huge fluid shifts, which dramatically change glucose response time/correlation between blood glucose and interstitial fluid glucose.
In some embodiments, e.g., for walking diabetics, interstitial deployment of an equilibrium fiber-optic sensor may be utilized. The equilibrium between blood and interstitial fluid glucose will tend to be relatively constant in such patients, wherein the convenience (less-invasive nature) of interstitial deployment may be preferred.
The sensor 10 can be percutaneously introduced into a blood vessel by using a removable introducer 20, embodiments of which are illustrated in
As shown in
Additional types of removable introducers 20 are also suitable for introducing the sensor 10 into a blood vessel. For example, an introducer 20 that can be removed by cutting can be used in some embodiments. The cutting tool used to cut the introducer 20 can be designed to cut the introducer 20 without damaging the sensor 10 underneath.
In some embodiments, the introducer 20 can be made out of a metal, metal alloy, resin (for example, a thermosetting resin such as an epoxy resin or phenolic resin), polymer (for example, a thermoplastic polymer or, in some cases, an elastomeric polymer) or a combination of the forgoing compounds. The polymer can be polyacrylate, polyurethane, polysulfone, polypropylene, polytetrafluoroethylene, polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polyvinyl chloride, or any other suitable polymer. In certain embodiments, the introducer comprises polyurethane.
Examples of removable introducers that can be used in accordance with some embodiments are described in U.S. Pat. Nos. 4,345,606, 5,141,497, 5,334,157, 5,409,469, 6,273,874, and 6,663,595, and EP 0402057B1; each of which is incorporated herein in its entirety by reference thereto.
In some embodiments, an introducer assembly comprises an introducer with a hypodermic needle coaxially engaged within the lumen of the introducer. The hypodermic needle or stylus is typically within the lumen of the introducer 20 before the introducer 20 is inserted into the patient to access the patient'"'"'s blood vessel or interstitial site. The distal end of the hypodermic needle or stylus can extend beyond the distal end 22 of the introducer 20 so that the hypodermic needle or stylus can help the introducer 20 penetrate the patient'"'"'s tissue to access the blood vessel. In addition, the hypodermic needle can help the medical practitioner locate the blood vessel by allowing the medical practitioner to visualize blood when the hypodermic needle enters a blood vessel. It is understood that any member capable of piercing the skin and traversing the underlying tissue can be used in accordance with embodiments of the invention—it need not be a “hypodermic needle” per se. In one embodiment, the introducer itself may comprise a beveled or otherwise piercing distal end that is splitable, peelable, etc., such that a separate needle need not be used to access the blood vessel or interstitial site.
In some embodiments, the hypodermic needle has a diameter that is only slightly less than the diameter of the elongate body 26 of the introducer 20. This can be accomplished by making the walls of the elongate body 26 relatively thin. In addition, the hypodermic needle can have a diameter that is only slightly less than the lumen 36 of the introducer 20 so that the hypodermic needle fits snugly into the lumen 36. In some embodiments, the distal end 22 of the introducer 20 can be beveled or tapered to provide a gradual increase in diameter of the distal portion of the elongate body 26. In some embodiments, e.g., where a metal needle and a stretchable polymeric introducer are employed, the diameter of the needle may be equal to or even larger than the diameter of the introducer, such that the introducer expands to accommodate the needle.
The hypodermic needle, which projects past the distal end 22 of the introducer 20, is used to puncture the skin and tissue of the patient, creating a hole with a diameter substantially equal to the diameter of the hypodermic needle. As the hypodermic needle and introducer 20 are advanced through the patient'"'"'s tissue and into the blood vessel or interstitial site, the distal end 22 of the introducer 20 enters the hole made by the hypodermic needle. As described above, in some embodiments the beveled or tapered distal end 22 facilitates insertion of the elongate body 26 of the introducer 20 into the hole made by the hypodermic needle by closely matching the diameter of the distal end 22 to the diameter of the hole. The beveled or tapered distal end 22 also allows the hole to be gradually stretched wider, rather than further cutting or tearing the tissue, as the introducer is advanced. The wall of the elongate body 26 can be thin in order to reduce the degree of widening of the hole that occurs as the introducer is advanced. In addition, the gradual widening or stretching of the hole facilitates the formation of a tight seal between the patient'"'"'s tissue and the elongate body 26.
After the introducer 20 is inserted into the blood vessel, the hypodermic needle or stylus can be removed from the lumen 36 of the introducer 20. In some embodiments, the elongate body 26 can be flexible and kink resistant. The elongate body 26 can be made flexible by fabricating the elongate body 26 out of a polymer such as polyacrylate, polyurethane, polysulfone, polypropylene, polytetrafluoroethylene, polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polyvinyl chloride, or any other suitable polymer. The elongate body 26 can be made stiff, while maintaining its flexibility, and kink resistant by embedding or incorporating a coil of wire into the polymer elongate body 26. This is especially true for elastomeric polymers, such as polyacrylate and polyurethane. Preferably, the wire is very thin and can be made out of a variety of metals or metal alloys, such as steel, nickel, titanium, aluminum or a combination of each. However, in some embodiments, the elongate body 26 does not comprise a coil of wire. Making the elongate body 26 flexible and kink resistant reduces the likelihood that the lumen 36 will kink or collapse, which can make insertion of the sensor 10 through the introducer 20 difficult.
The sensor 10, a fiber-optic glucose sensor in preferred embodiments, can be inserted into the lumen 36 of the introducer 20 and into the blood vessel. In some embodiments, the sensor 10 has a diameter that is the same as or substantially similar to the diameter of the hypodermic needle or to the inner diameter of the lumen 36 of the introducer 20. The sensor 10 can have a smooth surface to facilitate passage of the sensor 10 through the lumen 36 of the introducer 20. In some embodiments, a lubricant can be used to facilitate passage of the sensor 10 through the lumen 36 of the introducer 20.
After the sensor 10 has been introduced into the blood vessel or interstitial site through the lumen 36 of the introducer 20, the introducer 20 can be withdrawn from the patient'"'"'s tissue. The introducer 20 can be removed from the sensor 10 by peeling, splitting or cutting the introducer 20, as described above.
Once the introducer 20 has been removed, the stretched hole closes around the sensor 10, forming a seal. The surface of the sensor 10 can be made smooth to enhance the seal between the patient'"'"'s tissue and the surface of the sensor 10. This allows the sensor 10 to reside in the blood vessel or interstitial site without using a permanent indwelling cannula that also resides in the blood vessel or interstitial site.
In some embodiments, the sensor 10 can be given anti-thrombogenic properties by, for example, coating or treating the surface of the sensor 10 with heparin or another compound with anti-thrombogenic properties. In addition, the sensor 10 can be fabricated with a smooth surface having low thrombogenicity. For example, the sensor 10 surface can be made of a polymer such as polytetrafluoroethylene. Portions of the sensor 10 that include a porous or semipermeable membrane can be given a smooth surface by the polymerization of a polymer, such as a hydrogel, within the pores of the membrane, as described in co-pending U.S. application Ser. No. 12/026,396, filed Feb. 5, 2008, which is hereby incorporated by reference in its entirety.
In some embodiments, a fiber-optic glucose sensor can be inserted into a blood vessel or an interstitial space of the patient as described herein. The glucose sensor comprises an optical glucose measurement system that measures glucose concentration levels using glucose-sensing chemical indicator systems. Such indicator systems preferably comprise a fluorophore operably coupled to a glucose binding moiety. Preferably, the glucose binding moiety acts as a quencher with respect to the fluorophore (e.g., suppresses the fluorescent emission signal of the fluorophore in response to excitation light when it associates with the fluorophore). In preferred embodiments, as the glucose binding moiety binds glucose (e.g., as glucose concentrations rise), it dissociates from the fluorophore, which then generates a fluorescent emission signal upon excitation. Accordingly, in such embodiments, the higher the glucose concentration, the more glucose bound by the binding moiety, the less quenching, and the higher the fluorescence intensity of the fluorophore upon excitation.
The optical glucose measurement system measures, in certain embodiments, the glucose concentrations intravascularly or interstitially and in real-time through the use of such fluorophore-quencher indicator systems. The glucose-sensing indicator systems can be immobilized in a hydrogel. The hydrogel can be inserted into an optical fiber such that light may be transmitted through the hydrogel while at least a portion of the hydrogel is in contact with blood. The hydrogel is preferably permeable to analytes, specifically glucose. The optical fiber together with the hydrogels can comprise a glucose sensor that is placed in a mammalian (human or animal) blood vessel or interstitial space. In certain embodiments, light is transmitted into the glucose sensor from a light source. The light source can be a light emitting diode that emits an optical excitation signal. The optical excitation signal can excite the fluorophore systems in the presence of glucose, such that the fluorophores emit light at an emission wavelength. In certain embodiments, the fluorophore systems can be configured to emit an optical emission signal at a first wavelength having an intensity related to the blood glucose concentration in the blood vessel or the interstitial fluid glucose concentration in the interstitial space. The light can be directed out of the glucose sensor such that the light is detected by a light sensitive module (or detector system) that can comprise at least one detector. Detectors include any component capable of converting light into a measurable signal, and may include but are not limited to photomultipliers, photodiodes, diode arrays, or the like. The at least one detector can be configured to measure the intensity of the emission wavelength because the intensity of the emission wavelength, in certain embodiments, is related to the glucose concentration present in the blood. In certain embodiments, the light sensitive module (or detector system) comprises an interference filter, an amplifier, and/or an analog-to-digital converter. The light sensitive module (or detector system) can also comprise a microspectrometer, spectrometer, or the like.
Various non-glucose related factors can affect the measurements of the intensity of the emission wavelength, resulting in measurement errors. In certain embodiments, the measurement errors are eliminated or are substantially eliminated or reduced by employing a ratio of certain signals. The measurement errors that may be eliminated include but are not limited to changes in the intensity of the light generated from the light source(s), changes in the coupling efficiency of light into the optical fibers, bending of the optical fiber and the ensuing loss of light from the fiber, changes in the sensitivity of the detection circuit due to, for example, temperature or age or duration of use. In certain embodiments, the ratio of certain signals is unaffected by changes in the light source intensity, the coupling efficiency of the light source into the optical fibers, bending of the optical fibers or the like. The ratio of certain signals can be the ratio of an emission signal to an excitation signal. In certain embodiments, the ratio of certain signals is the ratio of an emission signal to a second optical signal. The second signal may be the excitation light signal which is transmitted through the optical system, through the sensor and indicator system, and reflects back at least in part from the sensor into the light sensitive module (or detector system). Alternatively, the second signal may be generated by a separate reference light, for example red light, which is not absorbed by the indictor system. The second signal may be generated by certain fluorophores as a second emission signal at a different wavelength—the intensity of which is independent of glucose. Any light that is propagated through the optical system, can be either not altered by the glucose concentration or is the excitation light. Light not altered by the glucose concentration can be detected by the light sensitive system (or detector system) and may be used as the second or reference light signal.
From the disclosure herein, it will be apparent to those of ordinary skill in the art that other sources of measurement errors may also be eliminated by employing a ratio of certain signals.
The indicator system (also referred to herein as a fluorophore system) can comprise a fluorophore operably coupled to a quencher. In certain embodiments, the fluorophore system comprises a polymer matrix comprising a fluorophore susceptible to quenching by a viologen, a viologen quencher with quenching efficacy dependent on glucose concentration, and a glucose permeable polymer, wherein said matrix is in contact with blood in vivo. Preferably the fluorophore is a fluorescent organic dye, the quencher is a boronic acid functionalized viologen, and the matrix is a hydrogel.
“Fluorophore” refers to a substance that when illuminated by light at a particular wavelength emits light at a longer wavelength; i.e. it fluoresces. Fluorophores include but are not limited to organic dyes, organometallic compounds, metal chelates, fluorescent conjugated polymers, quantum dots or nanoparticles and combinations of the above. Fluorophores may be discrete moieties or substituents attached to a polymer.
Fluorophores that may be used in preferred embodiments are capable of being excited by light of wavelength at or greater than about 400 nm, with a Stokes shift large enough that the excitation and emission wavelengths are separable by at least 10 nm. In some embodiments, the separation between the excitation and emission wavelengths may be equal to or greater than about 30 nm. These fluorophores are preferably susceptible to quenching by electron acceptor molecules, such as viologens, and are resistant to photo-bleaching. They are also preferably stable against photo-oxidation, hydrolysis and biodegradation.
In some embodiments, the fluorophore may be a discrete compound.
In some embodiments, the fluorophore may be a pendant group or a chain unit in a water-soluble or water-dispersible polymer having molecular weight of about 10,000 daltons or greater, forming a dye-polymer unit. In one embodiment, such dye-polymer unit may also be non-covalently associated with a water-insoluble polymer matrix M1 and is physically immobilized within the polymer matrix M1, wherein M1 is permeable to or in contact with an analyte solution. In another embodiment, the dye on the dye-polymer unit may be negatively charged, and the dye-polymer unit may be immobilized as a complex with a cationic water-soluble polymer, wherein said complex is permeable to or in contact with the analyte solution. In one embodiment, the dye may be one of the polymeric derivatives of hydroxypyrene trisulfonic acid. The polymeric dyes may be water-soluble, water-swellable or dispersible in water. In some embodiments, the polymeric dyes may also be cross-linked. In preferred embodiments, the dye has a negative charge.
In other embodiments, the dye molecule may be covalently bonded to the water-insoluble polymer matrix M1, wherein said M1 is permeable to or in contact with the analyte solution. The dye molecule bonded to M1 may form a structure M1-L1-Dye. L1 is a hydrolytically stable covalent linker that covalently connects the sensing moiety to the polymer or matrix. Examples of L1 include lower alkylene (e.g., C1-C8 alkylene), optionally terminated with or interrupted by one or more divalent connecting groups selected from sulfonamide (—SO2NH—), amide —(C═O)N—, ester —(C═O)—O—, ether.-O—, sulfide —S—, sulfone (—SO2—), phenylene —C6H4—, urethane —NH(C═O)—O—, urea —NH(C═O)NH—, thiourea —NH(C═S)—NH—, amide —(C═O)NH—, amine —NR— (where R is defined as alkyl having 1 to 6 carbon atoms) and the like, or a combination thereof. In one embodiment, the dye is bonded to a polymer matrix through the sulfonamide functional groups.
In accordance with broad aspects of the present invention, the analyte binding moiety provides the at least dual functionality of being able to bind analyte and being able to modulate the apparent concentration of the fluorophore (e.g., detected as a change in emission signal intensity) in a manner related to the amount of analyte binding. In preferred embodiments, the analyte binding moiety is associated with a quencher. “Quencher” refers to a compound that reduces the emission of a fluorophore when in its presence. Quencher (Q) is selected from a discrete compound, a reactive intermediate which is convertible to a second discrete compound or to a polymerizable compound or Q is a pendant group or chain unit in a polymer prepared from said reactive intermediate or polymerizable compound, which polymer is water-soluble or dispersible or is an insoluble polymer, said polymer is optionally crosslinked.
In one example, the moiety that provides glucose recognition in the embodiments is an aromatic boronic acid. The boronic acid is covalently bonded to a conjugated nitrogen-containing heterocyclic aromatic bis-onium structure (e.g., a viologen). “Viologen” refers generally to compounds having the basic structure of a nitrogen containing conjugated N-substituted heterocyclic aromatic bis-onium salt, such as 2,2′-, 3,3′- or 4,4′-N,N′ bis-(benzyl) bipyridium dihalide (i.e., dichloride, bromide chloride), etc. Viologen also includes the substituted phenanthroline compounds. The boronic acid substituted quencher preferably has a pKa of between about 4 and 9, and reacts reversibly with glucose in aqueous media at a pH from about 6.8 to 7.8 to form boronate esters. The extent of reaction is related to glucose concentration in the medium. Formation of a boronate ester diminishes quenching of the fluorphore by the viologen resulting in an increase in fluorescence dependent on glucose concentration. A useful bis-onium salt is compatible with the analyte solution and capable of producing a detectable change in the fluorescent emission of the dye in the presence of the analyte to be detected.
Bis-onium salts in the embodiments of this invention are prepared from conjugated heterocyclic aromatic di-nitrogen compounds. The conjugated heterocyclic aromatic di-nitrogen compounds are selected from dipyridyls, dipyridyl ethylenes, dipyridyl phenylenes, phenanthrolines, and diazafluorenes, wherein the nitrogen atoms are in a different aromatic ring and are able to form an onium salt. It is understood that all isomers of said conjugated heterocyclic aromatic di-nitrogen compounds in which both nitrogens can be substituted are useful in this invention. In one embodiment, the quencher may be one of the bis-onium salts derived from 3,3′-dipyridyl, 4,4′-dipyridyl and 4,7-phenanthroline.
In some embodiments, the viologen-boronic acid adduct may be a discrete compound having a molecular weight of about 400 daltons or greater. In other embodiments, it may also be a pendant group or a chain unit of a water-soluble or water-dispersible polymer with a molecular weight greater than about 10,000 daltons. In one embodiment, the quencher-polymer unit may be non-covalently associated with a polymer matrix and is physically immobilized therein. In yet another embodiment, the quencher-polymer unit may be immobilized as a complex with a negatively charge water-soluble polymer.
In other embodiments, the viologen-boronic acid moiety may be a pendant group or a chain unit in a crosslinked, hydrophilic polymer or hydrogel sufficiently permeable to the analyte (e.g., glucose) to allow equilibrium to be established.
In other embodiments, the quencher may be covalently bonded to a second water-insoluble polymer matrix M2, which can be represented by the structure M2-L2-Q. L2 is a linker selected from the group consisting of a lower alkylene (e.g., C1-C8 alkylene), sulfonamide, amide, quaternary ammonium, pyridinium, ester, ether, sulfide, sulfone, phenylene, urea, thiourea, urethane, amine, and a combination thereof. The quencher may be linked to M2 at one or two sites in some embodiments.
In certain embodiments, at least one quencher precursor is used to attach the quenching moiety to at least one polymer. For example, aromatic groups may be used to functionalize a viologen with combinations of boronic acid groups and reactive groups. In certain embodiments, this process includes attaching an aromatic group to each of the two nitrogens in the dipyridyl core of the viologen. At least one boronic acid group, a reactive group, or a combination of the two are then attached to each aromatic group, such that the groups attached to each of the two nitrogens on the dipyridyl core of the viologen may either be the same or different. Certain combinations of the functionalized viologen quenching moiety are described as follows:
a) a first aromatic group having a pendent reactive group is attached to the first nitrogen and a second aromatic group having at least one pendent boronic group is attached to the second nitrogen;
b) one or more boronic acid groups are attached to a first aromatic group, which is attached to the first nitrogen, and one boronic acid group and a reactive group are attached to a second aromatic group, which second aromatic group is attached to the second nitrogen;
c) one boronic acid group and a reactive group are attached to a first aromatic group, which first aromatic group is attached to the first nitrogen, and one boronic acid group and a reactive group are attached to a second aromatic group, which is attached to the second nitrogen; and
d) one boronic acid group is attached to an aromatic group, which aromatic group is attached to each of the two nitrogens, and a reactive group is attached to a carbon in a heteroaromatic ring in the heteroaromatic centrally located group.
Preferred embodiments comprise two boronic acid moieties and one polymerizable group or coupling group wherein the aromatic group is a benzyl substituent bonded to the nitrogen and the boronic acid groups are attached to the benzyl ring and may be in the ortho- meta- or para-positions.
In some embodiments, the porous membrane sheath 114 can be made from a polymeric material such as polyethylene, polycarbonate, polysulfone or polypropylene. Other materials can also be used to make the porous membrane sheath 114 such as zeolites, ceramics, metals, or combinations of these materials. In some embodiments, the porous membrane sheath 114 is microporous and has a mean pore size that is less than approximately two nanometers. In other embodiments, the porous membrane sheath 114 is mesoporous and has a mean pore size that is between approximately two nanometers to approximately fifty nanometers. In still other embodiments, the porous membrane sheath 114 is macroporous and has a mean pore size that is greater than approximately fifty nanometers.
In some embodiments as shown in
In some embodiments as shown in
In some embodiments as shown in
With reference to
With reference to
The invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is therefore indicated by the appended claims rather than the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.