SYSTEM AND METHOD TO FACILITATE DOWNLOADING DATA AT A MOBILE WIRELESS DEVICE
First Claim
1. A method comprising:
- receiving at a first wireless communication device a user request to download a requested data file;
determining at the first wireless communication device whether the requested data file is stored at a second wireless communication device with which the first wireless communication device communicates via a local wireless link; and
if the requested data file is determined to be stored at the second wireless communication device, the first wireless communication device retrieving the requested data file from second wireless communication device via the local wireless link.
1 Assignment
0 Petitions

Accused Products

Abstract
The invention relates to systems and method to facilitate downloading a data file. In one embodiment, a method includes receiving at a first wireless communication device a request to download a requested data file. A determination is made at the first wireless communication device whether the requested data file is stored at a second wireless communication device with which the first wireless communication device communicates via a local wireless link. If the requested data file is determined to be stored at the second wireless communication device, the first wireless communication device retrieving the requested data file from second wireless communication device via the local wireless link.
140 Citations
AUTOMATIC ANALYSIS OF LOG ENTRIES THROUGH USE OF CLUSTERING | ||
Patent #
US 20110131453A1
Filed 12/02/2009
|
Current Assignee
International Business Machines Corporation
|
Original Assignee
International Business Machines Corporation
|
SYSTEM AND METHOD FOR TRACKING BILLING EVENTS IN A MOBILE WIRELESS NETWORK FOR A NETWORK OPERATOR | ||
Patent #
US 20110201304A1
Filed 04/28/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
TARGETED NOTIFICATION OF CONTENT AVAILABILITY TO A MOBILE DEVICE | ||
Patent #
US 20110207436A1
Filed 02/17/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
APPARATUS AND METHOD FOR ALLOCATING DATA FLOWS BASED ON INDICATION OF SELECTION CRITERIA | ||
Patent #
US 20110188376A1
Filed 01/10/2011
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
COMMUNICATION METHOD OF HUB AND TRANSMITTING, RECEIVING TERMINAL INCLUDED IN VIRTUAL GROUP | ||
Patent #
US 20110274039A1
Filed 01/28/2011
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Content delivery to a mobile device from a content service | ||
Patent #
US 20090157792A1
Filed 12/13/2007
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
METHOD AND APPARATUS FOR DATA STORAGE IN A PEER-TO-PEER NETWORK | ||
Patent #
US 20120011200A1
Filed 07/05/2011
|
Current Assignee
TV Bank Corporation
|
Original Assignee
Roxbeam Media Network Corp.
|
Application and network-based long poll request detection and cacheability assessment therefor | ||
Patent #
US 8,166,164 B1
Filed 10/14/2011
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
CACHING ADAPTED FOR MOBILE APPLICATION BEHAVIOR AND NETWORK CONDITIONS | ||
Patent #
US 20120110109A1
Filed 10/14/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Cache defeat detection and caching of content addressed by identifiers intended to defeat cache | ||
Patent #
US 8,190,701 B2
Filed 11/01/2011
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Method and Apparatus for Pre-Caching in a Telecommunication System | ||
Patent #
US 20120164974A1
Filed 11/06/2009
|
Current Assignee
Telefonaktiebolaget LM Ericsson
|
Original Assignee
Telefonaktiebolaget LM Ericsson
|
AUTOMATIC ANALYSIS OF LOG ENTRIES THROUGH USE OF CLUSTERING | ||
Patent #
US 20120173466A1
Filed 03/12/2012
|
Current Assignee
International Business Machines Corporation
|
Original Assignee
International Business Machines Corporation
|
Automatic analysis of log entries through use of clustering | ||
Patent #
US 8,230,259 B2
Filed 12/02/2009
|
Current Assignee
International Business Machines Corporation
|
Original Assignee
International Business Machines Corporation
|
Application and network-based long poll request detection and cacheability assessment therefor | ||
Patent #
US 8,291,076 B2
Filed 03/05/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Social caching for device resource sharing and management | ||
Patent #
US 8,316,098 B2
Filed 04/19/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Distributed management of keep-alive message signaling for mobile network resource conservation and optimization | ||
Patent #
US 8,326,985 B2
Filed 11/01/2011
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
System and method for a mobile device to use physical storage of another device for caching | ||
Patent #
US 8,356,080 B2
Filed 07/20/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Electronic-mail filtering for mobile devices | ||
Patent #
US 8,364,181 B2
Filed 12/10/2007
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Automatic analysis of log entries through use of clustering | ||
Patent #
US 8,386,854 B2
Filed 03/12/2012
|
Current Assignee
International Business Machines Corporation
|
Original Assignee
International Business Machines Corporation
|
Context aware data presentation | ||
Patent #
US 8,412,675 B2
Filed 02/24/2006
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Aligning data transfer to optimize connections established for transmission over a wireless network | ||
Patent #
US 8,417,823 B2
Filed 11/18/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Flexible real-time inbox access | ||
Patent #
US 8,438,633 B1
Filed 12/18/2006
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Publishing data in an information community | ||
Patent #
US 8,468,126 B2
Filed 12/14/2005
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Distributed caching in a wireless network of content delivered for a mobile application over a long-held request | ||
Patent #
US 8,484,314 B2
Filed 10/14/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Provisioning applications for a mobile device | ||
Patent #
US 8,494,510 B2
Filed 12/06/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Data pre-fetching based on user demographics | ||
Patent #
US 8,509,816 B2
Filed 11/11/2011
|
Current Assignee
International Business Machines Corporation
|
Original Assignee
International Business Machines Corporation
|
Mobile network background traffic data management with optimized polling intervals | ||
Patent #
US 8,539,040 B2
Filed 02/28/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Secure end-to-end transport through intermediary nodes | ||
Patent #
US 8,549,587 B2
Filed 02/14/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
System and method for executing commands that are non-native to the native environment of a mobile device | ||
Patent #
US 8,561,086 B2
Filed 05/17/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Detecting and preserving state for satisfying application requests in a distributed proxy and cache system | ||
Patent #
US 8,621,075 B2
Filed 04/27/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Cache state management on a mobile device to preserve user experience | ||
Patent #
US 8,635,339 B2
Filed 08/22/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Polling | ||
Patent #
US 8,693,494 B2
Filed 03/31/2008
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Cache defeat detection and caching of content addressed by identifiers intended to defeat cache | ||
Patent #
US 8,700,728 B2
Filed 05/17/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Cross-platform event engine | ||
Patent #
US 8,209,709 B2
Filed 07/05/2010
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Distributed system for cache defeat detection and caching of content addressed by identifiers intended to defeat cache | ||
Patent #
US 8,204,953 B2
Filed 11/01/2011
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Electronic-mail filtering for mobile devices | ||
Patent #
US 8,738,050 B2
Filed 01/07/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile device equipped with mobile network congestion recognition to make intelligent decisions regarding connecting to an operator network | ||
Patent #
US 8,750,123 B1
Filed 07/31/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Maintaining an IP connection in a mobile network | ||
Patent #
US 8,761,756 B2
Filed 09/13/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks International Oy
|
Method and apparatus for pre-caching in a telecommunication system | ||
Patent #
US 8,761,727 B2
Filed 11/06/2009
|
Current Assignee
Telefonaktiebolaget LM Ericsson
|
Original Assignee
Telefonaktiebolaget LM Ericsson
|
Efficient High Availability Storage Systems | ||
Patent #
US 20140189053A1
Filed 05/24/2013
|
Current Assignee
Futurewei Technologies Incorporated
|
Original Assignee
Futurewei Technologies Incorporated
|
Integrated messaging | ||
Patent #
US 8,774,844 B2
Filed 04/08/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Dynamic bandwidth adjustment for browsing or streaming activity in a wireless network based on prediction of user behavior when interacting with mobile applications | ||
Patent #
US 8,775,631 B2
Filed 02/25/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Timing of keep-alive messages used in a system for mobile network resource conservation and optimization | ||
Patent #
US 8,782,222 B2
Filed 09/05/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Application discovery on mobile devices | ||
Patent #
US 8,787,947 B2
Filed 06/18/2008
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Content delivery to a mobile device from a content service | ||
Patent #
US 8,793,305 B2
Filed 12/13/2007
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
System and method of a relay server for managing communications and notification between a mobile device and a web access server | ||
Patent #
US 8,799,410 B2
Filed 04/13/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Maintaining mobile terminal information for secure communications | ||
Patent #
US 8,805,334 B2
Filed 09/05/2008
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Integrated messaging | ||
Patent #
US 8,805,425 B2
Filed 01/28/2009
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile device power management in data synchronization over a mobile network with or without a trigger notification | ||
Patent #
US 8,811,952 B2
Filed 05/05/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Method and system for management of a virtual network connection without heartbeat messages | ||
Patent #
US 8,812,695 B2
Filed 04/03/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
VIRTUAL CHANNEL JOINING | ||
Patent #
US 20140250204A1
Filed 07/17/2013
|
Current Assignee
Open Garden Incorporated
|
Original Assignee
Stanislav Shalunov, Gregory Hazel, Micha Benoliel
|
System and method for tracking billing events in a mobile wireless network for a network operator | ||
Patent #
US 8,831,561 B2
Filed 04/28/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
System and method for making requests on behalf of a mobile device based on atomic processes for mobile network traffic relief | ||
Patent #
US 8,832,228 B2
Filed 04/26/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Distributed caching for resource and mobile network traffic management | ||
Patent #
US 8,838,783 B2
Filed 07/05/2011
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Flexible real-time inbox access | ||
Patent #
US 8,839,412 B1
Filed 09/13/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Web-based access to data objects | ||
Patent #
US 8,838,744 B2
Filed 01/28/2009
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile traffic categorization and policy for network use optimization while preserving user experience | ||
Patent #
US 8,843,153 B2
Filed 11/01/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
System for providing policy based content service in a mobile network | ||
Patent #
US 8,849,902 B2
Filed 06/24/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Hierarchies and categories for management and deployment of policies for distributed wireless traffic optimization | ||
Patent #
US 8,861,354 B2
Filed 12/14/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Policy based content service | ||
Patent #
US 8,862,657 B2
Filed 01/25/2008
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
System of redundantly clustered machines to provide failover mechanisms for mobile traffic management and network resource conservation | ||
Patent #
US 8,868,753 B2
Filed 12/06/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Content broker assisting distribution of content | ||
Patent #
US 8,868,639 B2
Filed 03/08/2013
|
Current Assignee
Headwater Partners II LLC
|
Original Assignee
Headwater Partners II LLC
|
Provisioning of e-mail settings for a mobile terminal | ||
Patent #
US 8,873,411 B2
Filed 01/12/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Signaling optimization in a wireless network for traffic utilizing proprietary and non-proprietary protocols | ||
Patent #
US 8,874,761 B2
Filed 03/15/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile application traffic optimization | ||
Patent #
US 8,886,176 B2
Filed 07/22/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Optimization of resource polling intervals to satisfy mobile device requests | ||
Patent #
US 8,903,954 B2
Filed 11/22/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile virtual network operator | ||
Patent #
US 8,909,192 B2
Filed 08/11/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Bandwidth measurement | ||
Patent #
US 8,909,759 B2
Filed 10/12/2009
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Detection and management of user interactions with foreground applications on a mobile device in distributed caching | ||
Patent #
US 8,909,202 B2
Filed 01/07/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
System and method for providing a network service in a distributed fashion to a mobile device | ||
Patent #
US 8,914,002 B2
Filed 08/11/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Optimization of mobile traffic directed to private networks and operator configurability thereof | ||
Patent #
US 8,918,503 B2
Filed 08/28/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Method and apparatus for intercepting events in a communication system | ||
Patent #
US RE45,348 E1
Filed 03/16/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Application and network-based long poll request detection and cacheability assessment therefor | ||
Patent #
US 8,966,066 B2
Filed 10/12/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Mobile device and method to utilize the failover mechanism for fault tolerance provided for mobile traffic management and network/device resource conservation | ||
Patent #
US 8,977,755 B2
Filed 12/06/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Monitoring mobile application activities for malicious traffic on a mobile device | ||
Patent #
US 8,984,581 B2
Filed 07/11/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Connection architecture for a mobile network | ||
Patent #
US 8,989,728 B2
Filed 09/07/2006
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Predictive content delivery | ||
Patent #
US 9,002,828 B2
Filed 01/02/2009
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Flexible and dynamic integration schemas of a traffic management system with various network operators for network traffic alleviation | ||
Patent #
US 9,009,250 B2
Filed 12/07/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Caching adapted for mobile application behavior and network conditions | ||
Patent #
US 9,021,048 B2
Filed 10/14/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile network reporting and usage analytics system and method aggregated using a distributed traffic optimization system | ||
Patent #
US 9,021,021 B2
Filed 12/10/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Efficient high availability storage systems | ||
Patent #
US 9,037,679 B2
Filed 05/24/2013
|
Current Assignee
Futurewei Technologies Incorporated
|
Original Assignee
Futurewei Technologies Incorporated
|
Mobile network traffic coordination across multiple applications | ||
Patent #
US 9,043,433 B2
Filed 05/25/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Intelligent rendering of information in a limited display environment | ||
Patent #
US 9,047,142 B2
Filed 12/16/2010
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile network traffic coordination across multiple applications | ||
Patent #
US 9,049,179 B2
Filed 01/20/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Location-based operations and messaging | ||
Patent #
US 9,055,102 B2
Filed 08/02/2010
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Selective data compression by a distributed traffic management system to reduce mobile data traffic and signaling traffic | ||
Patent #
US 9,060,032 B2
Filed 05/09/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Proxy server associated with a mobile carrier for enhancing mobile traffic management in a mobile network | ||
Patent #
US 9,065,765 B2
Filed 10/08/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks Inc
|
Distributed implementation of dynamic wireless traffic policy | ||
Patent #
US 9,077,630 B2
Filed 07/08/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Device resources sharing for network resource conservation | ||
Patent #
US 9,084,105 B2
Filed 04/19/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Mobile network background traffic data management | ||
Patent #
US 9,100,873 B2
Filed 09/14/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Managing cache to prevent overloading of a wireless network due to user activity | ||
Patent #
US 9,131,397 B2
Filed 06/06/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Communication method of hub and transmitting, receiving terminal included in virtual group | ||
Patent #
US 9,137,145 B2
Filed 01/28/2011
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Optimized and selective management of policy deployment to mobile clients in a congested network to prevent further aggravation of network congestion | ||
Patent #
US 9,161,258 B2
Filed 03/15/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
FILE TRANSFERRING METHOD AN DEVICE THROUGH WI-FI DIRECT | ||
Patent #
US 20150295995A1
Filed 06/21/2013
|
Current Assignee
XiAn Zhongxing New Software Co. Ltd.
|
Original Assignee
ZTE Corporation
|
Radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol | ||
Patent #
US 9,173,128 B2
Filed 03/06/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Dynamic categorization of applications for network access in a mobile network | ||
Patent #
US 9,203,864 B2
Filed 02/04/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Mobile device having content caching mechanisms integrated with a network operator for traffic alleviation in a wireless network and methods therefor | ||
Patent #
US 9,208,123 B2
Filed 12/07/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Content broker that offers preloading opportunities | ||
Patent #
US 9,210,217 B2
Filed 03/07/2013
|
Current Assignee
Headwater Partners II LLC
|
Original Assignee
Headwater Partners II LLC
|
Mobile device with application or context aware fast dormancy | ||
Patent #
US 9,241,314 B2
Filed 03/15/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Automatic generation and distribution of policy information regarding malicious mobile traffic in a wireless network | ||
Patent #
US 9,239,800 B2
Filed 07/11/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Extending user relationships | ||
Patent #
US 9,251,193 B2
Filed 10/28/2007
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Application or context aware fast dormancy | ||
Patent #
US 9,271,238 B2
Filed 03/15/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Request and response characteristics based adaptation of distributed caching in a mobile network | ||
Patent #
US 9,275,163 B2
Filed 10/17/2011
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol | ||
Patent #
US 9,277,443 B2
Filed 12/07/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
System and method for a mobile device to use physical storage of another device for caching | ||
Patent #
US 9,300,719 B2
Filed 01/14/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks Inc
|
Systems and methods for application management of mobile device radio state promotion and demotion | ||
Patent #
US 9,307,493 B2
Filed 03/15/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
System and method for reduction of mobile network traffic used for domain name system (DNS) queries | ||
Patent #
US 9,325,662 B2
Filed 01/09/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
User as an end point for profiling and optimizing the delivery of content and data in a wireless network | ||
Patent #
US 9,326,189 B2
Filed 02/04/2013
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Wireless traffic management system cache optimization using http headers | ||
Patent #
US 9,330,196 B2
Filed 06/14/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Distributing content by generating and preloading queues of content | ||
Patent #
US 9,338,233 B2
Filed 03/07/2013
|
Current Assignee
Headwater Partners II LLC
|
Original Assignee
Headwater Partners II LLC
|
Mobile application traffic optimization | ||
Patent #
US 9,407,713 B2
Filed 01/16/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Selective data compression by a distributed traffic management system to reduce mobile data traffic and signaling traffic | ||
Patent #
US 9,432,486 B2
Filed 05/16/2015
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
METHODS AND APPARATUSES FOR PROVIDING CONTENT DATA AND ACCESSING CONTENT DATA | ||
Patent #
US 20160277876A1
Filed 11/18/2013
|
Current Assignee
Nokia US Holdings. Inc.
|
Original Assignee
Nokia Technologies Oy
|
DISTRIBUTED MICROCACHING FOR CONTENT DELIVERY | ||
Patent #
US 20160283436A1
Filed 03/23/2015
|
Current Assignee
Comcast Cable Communications LLC
|
Original Assignee
Comcast Cable Communications LLC
|
Exchanging energy credits wirelessly | ||
Patent #
US 9,503,975 B2
Filed 03/31/2014
|
Current Assignee
Open Garden Incorporated
|
Original Assignee
Open Garden Incorporated
|
Content distribution based on a value metric | ||
Patent #
US 9,503,510 B2
Filed 03/07/2013
|
Current Assignee
Headwater Partners II LLC
|
Original Assignee
Headwater Partners II LLC
|
Virtual channel joining | ||
Patent #
US 9,705,957 B2
Filed 07/17/2013
|
Current Assignee
Open Garden Incorporated
|
Original Assignee
Open Garden Incorporated
|
Mobile device configured for communicating with another mobile device associated with an associated user | ||
Patent #
US 9,712,986 B2
Filed 03/22/2012
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Apparatus and method for allocating data flows based on indication of selection criteria | ||
Patent #
US 9,749,152 B2
Filed 01/10/2011
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Operation modes for mobile traffic optimization and concurrent management of optimized and non-optimized traffic | ||
Patent #
US 9,832,095 B2
Filed 12/14/2012
|
Current Assignee
Seven Networks LLC
|
Original Assignee
Seven Networks LLC
|
Methods and apparatuses for providing content data and accessing content data | ||
Patent #
US 9,930,476 B2
Filed 11/18/2013
|
Current Assignee
Nokia US Holdings. Inc.
|
Original Assignee
Provenance Asset Group LLC
|
METHOD, SYSTEM AND APPARATUS | ||
Patent #
US 20180152807A1
Filed 05/05/2015
|
Current Assignee
Nokia Solutions Networks Oy
|
Original Assignee
Nokia Solutions Networks Oy
|
File transferring method an device through Wi-Fi direct | ||
Patent #
US 10,250,669 B2
Filed 06/21/2013
|
Current Assignee
XiAn Zhongxing New Software Co. Ltd.
|
Original Assignee
XiAn Zhongxing New Software Co. Ltd.
|
Enhanced customer service for mobile carriers using real-time and historical mobile application and traffic or optimization data associated with mobile devices in a mobile network | ||
Patent #
US 10,263,899 B2
Filed 04/10/2013
|
Current Assignee
Seven Networks Inc
|
Original Assignee
Seven Networks LLC
|
Predictive device to device file transfer system for local cloud storage files | ||
Patent #
US 10,264,054 B2
Filed 02/10/2017
|
Current Assignee
International Business Machines Corporation
|
Original Assignee
International Business Machines Corporation
|
Content distribution with a quality based on current network connection type | ||
Patent #
US 10,356,199 B2
Filed 10/06/2016
|
Current Assignee
Headwater Partners II LLC
|
Original Assignee
Headwater Partners II LLC
|
Micro-staging device and method for micro-staging | ||
Patent #
US 10,474,691 B2
Filed 05/25/2012
|
Current Assignee
Dell Products LP
|
Original Assignee
Dell Products LP
|
Terminal-aided backhaul compression | ||
Patent #
US 10,560,868 B2
Filed 08/21/2014
|
Current Assignee
Guangdong OPPO Mobile Telecommunications Corporation Limited
|
Original Assignee
Guangdong OPPO Mobile Telecommunications Corporation Limited
|
Content-based delivery service | ||
Patent #
US 10,616,748 B2
Filed 05/05/2015
|
Current Assignee
Nokia Solutions Networks Oy
|
Original Assignee
Nokia Solutions Networks Oy
|
COMMUNICATION TERMINAL, COMMUNICATION METHOD, PROGRAM, AND RECORDING MEDIUM | ||
Patent #
US 20100293253A1
Filed 02/05/2009
|
Current Assignee
Lenovo Innovation Company Limited Hong Kong
|
Original Assignee
NEC Corporation
|
Downloading | ||
Patent #
US 20100144330A1
Filed 12/04/2008
|
Current Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
Original Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
Management of a Hybrid Communication Network Comprising a Cellular Network and a Local Network | ||
Patent #
US 20100284388A1
Filed 12/28/2007
|
Current Assignee
Telecom Italia SPA
|
Original Assignee
Telecom Italia SPA
|
SYSTEMS AND METHODS FOR TEMPORARY MEDIA FILE STORAGE ON A WIRELESS COMMUNICATION DEVICE | ||
Patent #
US 20080039058A1
Filed 01/25/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
SUPER SHARE | ||
Patent #
US 20080109852A1
Filed 10/20/2006
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications USA Incorporated, Sony Corporation
|
SYSTEM AND METHOD FOR PEER TO PEER VIDEO STREAMING | ||
Patent #
US 20080144621A1
Filed 12/14/2006
|
Current Assignee
ATT Intellectual Property I LP
|
Original Assignee
ATT Knowledge Ventures L.P.
|
System and method for cellular telephone network access point | ||
Patent #
US 20060068815A1
Filed 09/27/2004
|
Current Assignee
Enterprise Systems Technologies S.a.r.l.
|
Original Assignee
Siemens Enterprise Communications Inc.
|
Content delivery architecture for mobile access networks | ||
Patent #
US 7,039,672 B2
Filed 04/08/2003
|
Current Assignee
Nokia Solutions Networks Oy
|
Original Assignee
Nokia Corporation
|
Terminal for automatically changing operating mode and wireless network system having the same, and method thereof | ||
Patent #
US 20060104200A1
Filed 11/16/2005
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
PEER-TO-PEER NETWORK AND USER INFORMATION DISCOVERY AND SHARING FOR MOBILE USERS AND DEVICES | ||
Patent #
US 20060098588A1
Filed 07/28/2005
|
Current Assignee
Toshiba Corporation
|
Original Assignee
Toshiba Corporation, Telcordia Incorporated
|
Integrated web cache | ||
Patent #
US 20040087304A1
Filed 10/20/2003
|
Current Assignee
Nokia of America Corporation
|
Original Assignee
Alcatel-Lucent USA Inc.
|
20 Claims
-
1. A method comprising:
-
receiving at a first wireless communication device a user request to download a requested data file; determining at the first wireless communication device whether the requested data file is stored at a second wireless communication device with which the first wireless communication device communicates via a local wireless link; and if the requested data file is determined to be stored at the second wireless communication device, the first wireless communication device retrieving the requested data file from second wireless communication device via the local wireless link. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10)
-
-
11. A wireless communication device comprising:
-
a first wireless transceiver configured to transmit and receive data via a wireless wide area network according to a first wireless technology; a second wireless transceiver configured to transmit and receive via a wireless local area network data according to a second wireless technology that is different from the first wireless technology; and a processor programmed to execute file access controls that employ the second wireless transceiver to search for a local wireless communication device having already stored therein a copy of a requested data file and, in response to locating the local wireless communication device having the requested data file, the file access controls causing the requested data file to be retrieved from the local wireless communication device via the second wireless transceiver. - View Dependent Claims (12, 13, 14, 15, 16, 17)
-
-
18. A system to facilitate acquisition of a requested data file, comprising:
-
a first portable wireless communication device that receives a request to download the requested data file that was accessed, if the requested data file satisfies predetermined file criteria, the first portable wireless communication device employing a local wireless communication link to discover at least one second portable wireless communication device and to issue a request to the second portable wireless communication device for the requested data file; the second portable wireless communication device being programmed to determine if the requested data file is stored in memory thereof and, if the requested data file is stored in memory thereof, the second portable wireless communication device being programmed to send a copy of the requested data file directly to the first portable wireless communication device via the local wireless communication link. - View Dependent Claims (19, 20)
-
1 Specification
The invention relates generally to systems and methods to facilitate downloading data files at a wireless communication device.
Improvements in wireless communication devices are continually being developed to meet ever increasing consumer demands. In addition to the standard voice function, current devices often support many additional services and accessories. Such expanded functionality is enabled, at least in part, in view of the enhanced infrastructure available for communication as well as increased processing power of the individual devices.
As an example, many users utilize wireless devices to browse the Internet and download files. The speed of the download is generally dependent on the type of wireless network through which the files are downloaded. For instance, many wireless communication devices, such as cellular telephones, are configured to access data over more than one type of wireless network. Such devices are known as dual or multi-mode devices. Many wireless networks, such as the cellular data networks (e.g., EDGE, GSM or the like) are generally slower than wireless local area networks, such as those implemented according to the 802.11x standards. As more telephones are equipped with cellular data network accessibility, data transfers over cellular data networks tend to occupy a significant portion of the service provider'"'"'s bandwidth.
The invention relates generally to systems and methods to facilitate downloading data files at a wireless communication device.
One embodiment relates to a method that includes receiving at a first wireless communication device a request to download a requested data file. A determination is made at the first wireless communication device whether the requested data file is stored at a second wireless communication device with which the first wireless communication device communicates via a local wireless link. If the requested data file is determined to be stored at the second wireless communication device, the first wireless communication device retrieving the requested data file from second wireless communication device via the local wireless link.
Another embodiment relates to a wireless communication device that includes a first wireless transceiver configured to transmit and receive data via a wireless wide area network according to a first wireless technology. A second wireless transceiver is configured to transmit and receive via a wireless local area network data according to a second wireless technology that is different from the first wireless technology. A processor is programmed to execute file access controls that employ the second wireless transceiver to search for a local wireless communication device having already stored therein a copy of a requested data file. In response to locating the local wireless communication device having the requested data file, the file access controls causes the requested data file to be retrieved from the local wireless communication device via the second wireless transceiver.
Another embodiment relates to a system to facilitate acquisition of a requested data file. The system includes a first portable wireless communication device that makes a request to download the requested data file. If the requested data file satisfies predetermined file criteria, the first portable wireless communication device employs a local wireless communication link to discover at least one second portable wireless communication device and to issue a request to the second portable wireless communication device for the requested data file. The second portable wireless communication device is programmed to determine if the requested data file is stored in memory thereof. If the requested data file is stored in memory of the second portable wireless communication device, the second portable wireless communication device is programmed to send a copy of the requested data file directly to the first portable wireless communication device via the local wireless communication link.
The invention relates generally to systems and methods to facilitate downloading data files at a wireless communication device. The systems and methods employ the use of distributed storage of data files, such as can be cached in memory of mobile wireless communication devices. In response to a request to download a desired file at a wireless communication device, the device can determine if another wireless communication device has the desired file stored locally in memory. When such other local wireless communication device has already downloaded and stored the desired file (e.g., in response to a user-initiated request at such device), the wireless communication device can retrieve the file from such local wireless communication device through a local wireless link, such as peer-to-peer connection.
As will be appreciated by those skilled in the art, portions of the invention may be embodied as a method, data processing system, or computer program product. Accordingly, these portions of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Furthermore, portions of the invention may be a computer program product on a computer-usable storage medium having computer readable program code on the medium. Any suitable computer-readable medium may be utilized including, but not limited to, static and dynamic storage devices, hard disks, optical storage devices, and magnetic storage devices.
Certain embodiments of the invention are described herein with reference to flowchart illustrations of methods, systems, and computer program products. It will be understood that blocks of the illustrations, and combinations of blocks in the illustrations, can be implemented by computer-executable instructions. These computer-executable instructions may be provided to one or more processor of a computer, special purpose computer (e.g., a handheld or portable communication device), or other programmable data processing apparatus (or a combination of devices and circuits) to produce a machine, such that the instructions, which execute via the processor, implement the functions specified in the block or blocks.
These computer-executable instructions may also be stored in computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture including instructions which implement the function specified in the flowchart block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the flowchart block or blocks.
In the example of
In order to accommodate multiple types of wireless technologies, the wireless device 12 can include any number of two or more communication modules, depicted as COMM—1 22 and COMM—2 24. Each communication module 22 or 24 is programmed and configured to provide for communication via a respective one of the base station 18 or access point 20 according to corresponding radio technology and protocols. The wireless communication device 12 also includes a processor 26 and memory 28 that is programmed to control the operating functions of the wireless device. The memory 28 can also be utilized to store data, such as in the form of video, audio, text and/or application files.
By way of further example, the wireless device 12 can connect to the data server 14 such as for downloading a data file 30. The data file can be located in the network via a corresponding resource identifier, such as a uniform resource locator (URL). The time required for the wireless device 12 to download the data file from the server 14 depends largely on the available bandwidth for the connection from the wireless device to the network 16. The bandwidth varies for different types of wireless communication technologies. For instance, a wireless connection from the wireless device 12 to the wireless AP 20 often provides download speeds typically ranging anywhere from 1 to 100 megabits per second (Mbps), which can further vary according to the type of modulation techniques and standards implemented by the wireless access point 20. In this example, the wireless device uses communications module 22 to access the network 16 via the wireless AP 20.
For the example where the wireless communication device 12 is a cellular telephone, the device can be configured to employ the communication module 22 to transmit and receive cellular data through a wide area cellular data network that includes the base station 18. Examples of cellular data networks include the enhanced data rates for GSM evolution (EDGE) or third generation mobile telecommunications technologies (e.g., universal mobile telecommunication system (UMTS) or GSM based technologies) as well as extensions of the third generation technologies, including 3GPP or WiMax. Due to the increased versatility and data capabilities associated with many wireless devices 12, the extensive data transfers through the base station 18 can result in significant utilization of available bandwidth. Accordingly, the systems and methods described herein provide an alternative approach to retrieve requested data files using faster local wireless connections, as appropriate. The local connections can be implemented as peer-to-peer wireless connections between different wireless devices.
In order for a requestor wireless device to retrieve a desired data file from a source wireless device, such as the device 12, the source wireless device must already have the desired file stored in its memory 28. For instance, in response to a request to download the file 30, the wireless device 12 can connect to a primary data source (the data server 14) and retrieve the data file through the network 16. The request for the file 30 can be initiated by a user at the wireless device or the request can be initiated in connection with other types of data transfer. For instance, the request can be initiated automatically by an application running on the wireless device 12 or indirectly in response to a user accessing a web page. Additionally, as used herein the term “data file” is intended to encompass any type of data that can be transferred via a wireless communication link. Examples of such files can include media files, which may be sent as a single file for storage in memory or be streamed via an appropriate streaming protocol for playout on the device 12. Alternatively, or additionally, the file 30 can be implemented as a large embedded image or other element (e.g., streaming media) that can be embedded in a webpage being accessed via the wireless device 12.
Since the wireless device 12 is a dual or multi-mode device, the retrieval can be performed using a selected and available one of the communication modules 22 or 24 and one of the respective data paths, such as the local wireless network via the wireless AP 20 or the wide area cellular data network via the base station 18. The data file 30 can then be stored in the memory 28 of the wireless device 12. If file exceeds a predetermined file size, a log entry can be also stored in the memory 28 associated with the data file 30 stored therein. The log entry can identify file attributes, such as file size, file name and URL where the file was obtained.
While the example of
A user can employ the second wireless device 52 to browse websites and identify a data file to be downloaded. The file can be identified explicitly by the user or indirectly by an application or in connection with accessing a URL. In response to requesting a data file the wireless device employs a file access control application 56. The file access control application 56 is programmed to identify and control from where the second wireless device 52 obtains the requested data file. Thus, initially a file is identified for download at the second wireless device 52. The wireless device can identify the desired file by file attributes, such as including a file name, creation time, expiration time, size and a resource locator or identifier (e.g., a URL) for the file. For example, creation time and expiration time can be utilized by controls implemented in either or both 12 and 52 to determine and control whether, how many times or a time window during which a given file or element can be reused by different wireless devices.
In the example scenario of
In response to initiating a file download at the requestor device 52, the file access control 56 at the wireless device 52 determines the size of the requested file, such as is provided by a web server at which the file was accessed by the second wireless device. If the size of the file is determined to exceed a predetermined threshold (e.g., greater than 1 megabyte), the file access control 56 can initiate a scan for other local wireless devices capable of communicating over a local wireless link, depicted at 58. The local wireless link 58 can be implemented as a peer-to-peer wireless connection utilizing a known wireless communication technology, such as the 802.11x technologies as are known in the art.
The file access control 56 can be configured to automatically make such connection to one or more other wireless devices (e.g., the device 12). If the communication module in the device 52 that communicates over the link 58 is not already turned on, the file access control 56 can automatically turn it on to initiate the scan. In this way, the file access control 56 can transparently scan to determine whether the link 58 is available is available. Alternatively, the file access control 56 can and present this alternative connection opportunity as a manual option to the user via a graphical or text-based user interface at the device 52 to require user authorization before downloading the file, as initiated by the user. Additional determinations can be made to ascertain a relative connection speed for the link 58, such as including whether the link 58 would be faster for downloading the file from the wireless device 12 than using cellular data network via the base station 54 to access the file from a primary resource web server (not shown). After performing such scan, if it is further determined to no other wireless device are available, the file access control 56 can turn off the communication module and thereby conserve power.
By way of further example, a user may be located at a sporting event or other venue having a plurality of individuals, many of which have cellular telephones or PDA'"'"'s, handheld game systems or the like devices configured to enable wireless data communication. A portion of such wireless communication devices can be programmed and configured with file access control applications and, therefore, capable to operate as mirror site or server of data files stored thereon. Part of such functionality allows the device to automatically respond to an initial query from the wireless device 52, such that the device 52 can generate a list of possible wireless devices that can be queried via such local wireless connection to ascertain whether such devices include a copy of the requested file. The second wireless device 52 can sort the list of devices based on history, signal strength or other criteria (e.g., historical information ranking reliable sources of data) to facilitate retrieving the file.
Based on the sorted list, the second wireless device 52 can connect to another wireless device 12 through a peer-to-peer wireless connection 58 and send a query to determine if the wireless device 12 includes a copy of the desired file. The query can identify the file by one or more file attributes, such as a resource identifier (e.g., URL), file name, file size or other descriptors. If the wireless device 12 already has a copy of the file, it can employ its file access control 60 to respond to the request with an affirmative acknowledgement. The second wireless device 52 can in turn request the file 30 from the connected wireless device 12 through the local wireless link 58. The file access control 60 of the first wireless device 12 in turn handles responses and sending a copy of the file 30. The file access control and sending of the file can be performed at the device wireless 12 as part of a background process so as not to adversely affect user experience at the first wireless device. The file access control 60 of the first wireless device further can be disabled or enabled, which can occur manually in response to the user disabling the functionality. Alternatively, the file access control 60 can be disabled automatically, such as in response to detecting a low battery or other condition that might adversely affect performance.
As a further example, users can be part of a social networking group and the system 50 enables videos and other media previously viewed by one or more users to be cached on their wireless devices and shared with nearby friends via the wireless link 58. Each device further can be programmed to allow each user to manually enable or disable such file sharing functionality. Additionally, when programmable by the user, the file access control further can be programmed with a trusted set of users, such as by allowing each user to permit access to its stored filed. Alternatively, the file access control can implement such functionality transparently without distinction or authorization by requesting devices.
While the example of
In the example of
The wireless communication device 100 can be a dual or multimode device having a plurality of radio transceivers, depicted in the example of
The processor 102 is programmed with file access control applications including a data requestor 120 and a caching engine 122. The data requestor 120 includes a request evaluator 124 that is programmed to evaluate a data request initiated by user (e.g., via the user interface 108) and ascertain an appropriate resource from which to obtain the requested data. The initial request for data, for example, can be made over the first radio transceiver 110 (e.g., via cellular data network). The request evaluator 124, for example, can identify the request as either corresponding to a media purchase or downloading or a large file. A purchase can be detected by detecting a request for a secure connection (for the purchase).
In response to identifying the request as a type requiring a faster wireless connection (e.g., a file purchase and/or a large file), the data requestor 120 can employ a communication control module 126 to select an appropriate data path for retrieving the data, which may determine the source from where the requested data file is downloaded. The path may include first radio transceiver 110 (e.g., employing a first wireless technology, such as cellular data) or the second radio transceiver 112 (e.g., employing a second wireless technology, such as 802.11x). The communication control module 126 can select the data path depending on the size of the data file. The communication control module 126 thus can employ the second transceiver 112 and its wireless interface 116 to transparently scan to for one or more possible sources. If the scan identifies one or more available local sources, connections can be sequentially initiated automatically for performing the file download or, alternatively, the file access controls can present connection options to the user (e.g., via the user interface 108) before initiating the connections for file download.
As an example, if the size of the requested file is below a threshold, the communication control module 126 can maintain the current wireless link to download the requested data file such that the file will be downloaded from the primary source (e.g., location on a data server) where the file was originally located. If the data file exceeds the predetermined threshold, the communication control module 126 can employ the second radio transceiver 112 and the second data wireless interface 116 for locating local wireless devices that may contain a copy of the data file. If the second radio transceiver is turned off, the communication control module 126 can automatically turn on and activate the transceiver 112 and scan for discovery of possible local sources of the desired data file. If a local connection is not available, the transceiver 112 and interface 116 can be returned to its original state.
When the scan reveals multiple possible local download sources, the communication control module 126 can sort a list of available local wireless devices discovered via the scanning process into an order designed to facilitate the downloading process. The order, for example, can be based on signal strength of the wireless connection, history (e.g., how many times data has been retrieved from the local wireless device) or a user-defined trusted list. The communication control module 126 may also truncate the list to a fixed number of devices that may be queried in order to determine if a wireless device includes a copy of the requested file. If a local access point is available for communication through the second radio transceiver (and not already connected), the communication control module 126 can automatically connect to the available access point for connection to the primary source (e.g., URL) for downloading the requested data file. Thus, the file access controls at the device 100 seeks to locate a wireless connection to download the file at a high data rate for user convenience and without use of bandwidth in its cellular data network.
The caching engine 122 is programmed to control storing data files 105 in the memory and sending stored files in response to a request from another local wireless device. The caching engine 122 includes a download monitor 128 that is programmed to monitor downloads, store the data files(s) 105 in the memory 104 and create a corresponding log file 132. The log file 132 can be utilized to facilitate access, retrieval and sending of the data file to a requestor device, such as through a peer-to-peer wireless connection described herein. The log file 132 can include descriptors or metadata for each of the stored data files 105. For example, the log file 132 can be implemented as a look-up table that includes the creation time and file expiration time. Thus, the caching engine or other methods can be programmed to remove or delete a given file or otherwise make it unavailable for subsequent download or reuse after its expiration time has been exceeded. Other log file attributes may include file name, the resource identifier for the file as well as the size of each data file 105.
The caching engine 130 also includes controls 130 for handling requests for data. The controls 130 can include a matching function 134 that compares the criteria in the log file 132 with information in a data file query received from a nearby local wireless device to determine if a data file stored in the memory 104 matches a file that is being requested by the local wireless device. The matching engine 134 can look for an exact match between the information stored in the log 132 and in the received query. Alternatively, matching can be performed on a statistical or other basis such that a sufficiently high likelihood of a match can be utilized to respond that file is stored locally and then send the file. For instance, if the file size is not identical but the file name, version number and URL as well as one or more attributes match, an affirmative response to the query can be provided to the requestor device.
If a match exists, the controls 130 further can control accessing the file form the memory 104 based upon the information in the log file 132. The controls 130 thus can be utilized to access the data file from the memory based upon the information in the log 132. Thus, the controls 130 can work in conjunction with communication control module 126 to send the requested data file through the second data wireless interface for packetizing the data and sending it over the second radio transceiver 112 to the requesting local wireless device. The communication of the data file to the requestor can be performed directly over a wireless peer-to-peer connection or other type of wireless connection (e.g., via an ad hoc wireless network through a router or access point).
In view of the structural and functional features described above, certain methods will be better appreciated with reference to
At 204, a determination is made as to whether the requested file has a size that exceeds a predetermined threshold. The threshold can be programmable, such as by a user or by the network provider of the wireless device. If the file size is sufficiently small and does not exceed the threshold (NO), the method can proceed from 204 to 206 in which the requested file can be retrieved and stored via the current wireless data connection. Thus, for example if the initial request was made while accessing the data source through a cellular data connection, the file will be downloaded via the cellular data connection. Since the file size is small and below the threshold the download should proceed in a relatively short amount of time.
At 204, if the file size is determined to exceed the threshold, the method proceeds to 208. At 208, the wireless device initiates a scan for discovery of local wireless devices, such as connections according to the 802.11x standards. The scan thus can be utilized to identify a set of one or more wireless devices that may be capable of responding with a copy of the requested data file if such devices have already stored the copy of data. At 210, a determination is made as to whether a local wireless access point is available. The local access point can be identified based on the results of the scan implemented at 208. If the local wireless access point is available, the method proceeds to 212 in which the wireless device can be connected to the access point and in turn to the resource (e.g., URL) for accessing the requested file from the data server. From 212, the method proceeds to 214 in which the requested file is retrieved and stored via the wireless link through the access point, which can connect directly to the primary source of the data file.
If no access point is available at 210, (NO) the method proceeds to 216 in which the P identified local wireless access devices are sorted into an order, where P is a positive integer denoting the number of wireless devices that may be examined for locating a copy of the requested data. It is to be understood that the set of P devices can be a subset of the available devices and may be sorted in order according to signal strength and/or historical information. Historical information can identify the number of times files have been successfully downloaded from a given local wireless. For instance, if a given wireless device has been successfully accessed for downloading files it may receive a higher score so as to be placed near the top or at the top of the devices.
At 218, the wireless device connects through a local wireless link to another wireless device. The connection can be a peer-to-peer wireless connection or can be through a router, as appropriate. At 220, a determination is made as to whether the connected device has a copy of the requested file cached in its memory. If the determination is affirmative (YES), the method proceeds to 214 to retrieve and store the requested file. If the wireless device to which the requestor is connected does not have a copy of the file, the method proceeds to 222. At 222 a determination is made as to whether there are any more devices in the list that is ordered at 216. If there are additional devices, the method proceeds to 224 to identify the next device, such as by incrementing through the list. The method can then repeat to 218 to 222 in connection with locating a wireless device that might have a copy of the file. If there are no more devices in the list, at 222, the method proceeds to 206.
At 206 the wireless device/requestor can receive and store a copy of the file using the wireless connection for accessing the file from the primary source (e.g., a data or web server) where it was originally accessed by the requestor.
In view of the foregoing, it will be appreciated that the systems and methods disclosed herein provide an approach that can establish an ad hoc mesh network between nearby portable wireless devices (e.g., cellular telephones, PDAs, laptops, portable games or other wireless-enabled devices). As described herein, mobile web cache servers/agents can be implemented on one or more such handhelds based on data that is downloaded and stored in memory of such devices. Other mobile users can be automatically redirected to local contents available within the mesh network via a wireless link instead of using a WAN/Internet connection through a cellular data network. As a result, network operators'"'"' radio bandwidth will be reduced accordingly. Operators can also charge for additional services that are built on top of such a network. Monetary incentives can also be provided to subscribers who allow such mobile web cache system on their handhelds.
What have been described above are examples and embodiments of the invention. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the invention, but one of ordinary skill in the art will recognize that many further combinations and permutations of the invention are possible. Accordingly, the invention is intended to embrace all such alterations, modifications and variations that fall within the scope of the application, including the appended claims.