×

CONTACT STATE ESTIMATING APPARATUS

  • US 20130258100A1
  • Filed: 02/27/2013
  • Published: 10/03/2013
  • Est. Priority Date: 03/30/2012
  • Status: Active Grant
First Claim
Patent Images

1. A contact state estimating apparatus configured to estimate a contact state between a surface of an actual object and a virtual face which is a surface of a virtual object having a designated shape, by using a pair of image sensors configured to acquire each of a pair of images composed of a plurality of pixels having a designated physical quantity as a pixel value by imaging the actual object, and a range image sensor configured to measure distance up to the actual object and to allocate the measured distance with respect to each of a plurality of pixels composing a target region of one of the images obtained by one of the image sensors among the pair of image sensors, comprising:

  • a first processing element configured to calculate a sum of a value of a first cost function having a first deviation allocated to each pixel in the target region as a main variable, as a first cost;

    a second processing element configured to calculate a sum of a value of a second cost function having a second deviation allocated to each pixel in the target region or both of the first deviation and the second deviation as a main variable, as a second cost; and

    a third processing element configured to search for a position and a posture of the virtual face in a case of contacting the surface of the actual object so as to approximate a total cost of the first cost and the second cost to a smallest value or a minimum value,wherein the first deviation is defined as a variable such that a magnitude of an absolute value is determined according to a length of an interval between an actual point whose position is determined by a distance to the actual object obtained by the range image sensor and a virtual point which is a result of projecting the actual point to the virtual face in a line of sight direction of the one of the image sensors, and being a positive value in a case where the virtual point is positioned farther than the actual point with reference to the one of the image sensors, while being a negative value in a case where the virtual point is positioned nearer than the actual point with reference to the one of the image sensors,wherein the second deviation is defined as a variable such that a magnitude is determined according to a magnitude of a difference between the designated physical quantity possessed by the pixels of the one of the images and the designated physical quantity possessed by the pixels of the other image obtained by the other image sensor corresponding to the pixels of the one of the images in a form according to the position and the posture of the virtual face, andwherein each of the first cost function and the second cost function is defined as a function which shows a smallest value or a minimum value in a case where a value of the main variable is 0 and which is an increasing function in a positive definition domain.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×