AUDIO ACCESSIBILITY
First Claim
1. An audio delivery method, comprising:
- using an image capture device to capture an image of a listening area;
at one or more programmed processors;
processing the image to locate a position of a listener in the listening area,processing the image to identify a face of the listener in the listening area,processing the image to locate a position of the listener'"'"'s ears,retrieving a stored listener profile associated with the identified face,adjusting one or more audio characteristics based upon the listener profile, andcontrolling a directional beam of audio to direct the directional beam of audio toward the listener'"'"'s ears;
using the image capture device to capture a subsequent sequence of images of the listener; and
at the one or more programmed processors;
monitoring movement in position of the listener'"'"'s ears in the listening area by analysis of the subsequent sequence of images, andadjusting the directional beam of audio in accordance with movements of the listener within the listening area.
1 Assignment
0 Petitions

Accused Products

Abstract
An audio delivery method. An image of a listening area is captured and processed to locate a position of a listener in the room. A stored listener profile associated with the listener is retrieved and audio characteristics are established based on the listener'"'"'s profile. A directional beam of audio is directed toward the listener'"'"'s ears and the directional beam is adjusted to track movement of the listener. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
33 Citations
PROVIDING AUDIO AND ALTERNATE AUDIO SIMULTANEOUSLY DURING A SHARED MULTIMEDIA PRESENTATION | ||
Patent #
US 20150301788A1
Filed 04/22/2014
|
Current Assignee
ATT Intellectual Property I LP
|
Original Assignee
ATT Intellectual Property I LP
|
Adjusting speakers using facial recognition | ||
Patent #
US 9,544,679 B2
Filed 12/08/2014
|
Current Assignee
Harman International Industries Incorporated
|
Original Assignee
Harman International Industries Incorporated
|
ADJUSTING SPEAKERS USING FACIAL RECOGNITION | ||
Patent #
US 20160165337A1
Filed 12/08/2014
|
Current Assignee
Harman International Industries Incorporated
|
Original Assignee
Harman International Industries Incorporated
|
Distributed wireless speaker system | ||
Patent #
US 9,560,449 B2
Filed 01/17/2014
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Systems and methods for delivery of personalized audio | ||
Patent #
US 9,686,625 B2
Filed 07/21/2015
|
Current Assignee
Disney Enterprises Incorporated
|
Original Assignee
Disney Enterprises Incorporated
|
Ultrasonic speaker assembly with ultrasonic room mapping | ||
Patent #
US 9,693,169 B1
Filed 03/16/2016
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Ultrasonic speaker assembly for audio spatial effect | ||
Patent #
US 9,693,168 B1
Filed 02/08/2016
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Networked speaker system with follow me | ||
Patent #
US 9,699,579 B2
Filed 12/18/2015
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Systems and methods for delivery of personalized audio | ||
Patent #
US 9,736,615 B2
Filed 10/04/2016
|
Current Assignee
Disney Enterprises Incorporated
|
Original Assignee
Disney Enterprises Incorporated
|
Ultrasonic speaker assembly using variable carrier frequency to establish third dimension sound locating | ||
Patent #
US 9,794,724 B1
Filed 07/20/2016
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Gimbal-mounted linear ultrasonic speaker assembly | ||
Patent #
US 9,826,330 B2
Filed 03/14/2016
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Centralized wireless speaker system | ||
Patent #
US 9,826,332 B2
Filed 02/09/2016
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Networked speaker system with LED-based wireless communication and object detection | ||
Patent #
US 9,854,362 B1
Filed 10/20/2016
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Audio speaker system with virtual music performance | ||
Patent #
US 9,866,986 B2
Filed 01/24/2014
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Adjusting speakers using facial recognition | ||
Patent #
US 9,866,951 B2
Filed 01/10/2017
|
Current Assignee
Harman International Industries Incorporated
|
Original Assignee
Harman International Industries Incorporated
|
Distributed wireless speaker system | ||
Patent #
US 9,924,291 B2
Filed 02/16/2016
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Networked speaker system with LED-based wireless communication and personal identifier | ||
Patent #
US 9,924,286 B1
Filed 10/20/2016
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Providing audio and alternate audio simultaneously during a shared multimedia presentation | ||
Patent #
US 9,971,319 B2
Filed 04/22/2014
|
Current Assignee
ATT Intellectual Property I LP
|
Original Assignee
ATT Intellectual Property I LP
|
Networked speaker system with LED-based wireless communication and room mapping | ||
Patent #
US 10,075,791 B2
Filed 10/20/2016
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Dynamically adjust audio attributes based on individual speaking characteristics | ||
Patent #
US 10,154,346 B2
Filed 04/21/2017
|
Current Assignee
Dish Technologies LLC
|
Original Assignee
Dish Technologies LLC
|
System and method for dynamically selecting supplemental content based on viewer emotions | ||
Patent #
US 10,171,877 B1
Filed 10/30/2017
|
Current Assignee
Dish Network LLC
|
Original Assignee
Dish Network LLC
|
Systems and methods for delivery of personalized audio | ||
Patent #
US 10,292,002 B2
Filed 07/12/2017
|
Current Assignee
Disney Enterprises Incorporated
|
Original Assignee
Disney Enterprises Incorporated
|
Systems and Methods for Delivery of Personalized Audio | ||
Patent #
US 20190222952A1
Filed 03/28/2019
|
Current Assignee
Disney Enterprises Incorporated
|
Original Assignee
Disney Enterprises Incorporated
|
Modifying an apparent elevation of a sound source utilizing second-order filter sections | ||
Patent #
US 10,397,724 B2
Filed 03/26/2018
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Systems and methods for delivery of personalized audio | ||
Patent #
US 10,484,813 B2
Filed 03/28/2019
|
Current Assignee
Disney Enterprises Incorporated
|
Original Assignee
Disney Enterprises Incorporated
|
Modifying an apparent elevation of a sound source utilizing second-order filter sections | ||
Patent #
US 10,602,299 B2
Filed 07/08/2019
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
System and method for dynamically selecting supplemental content based on viewer environment | ||
Patent #
US 10,616,650 B2
Filed 11/19/2018
|
Current Assignee
Dish Network LLC
|
Original Assignee
Dish Network LLC
|
Networked speaker system with combined power over Ethernet and audio delivery | ||
Patent #
US 10,623,859 B1
Filed 10/23/2018
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Providing audio and alternate audio simultaneously during a shared multimedia presentation | ||
Patent #
US 10,754,313 B2
Filed 04/17/2018
|
Current Assignee
ATT Intellectual Property I LP
|
Original Assignee
ATT Intellectual Property I LP
|
Sound field forming apparatus and method | ||
Patent #
US 10,880,638 B2
Filed 06/21/2017
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
A DEVICE FOR AND A METHOD OF PROCESSING DATA | ||
Patent #
US 20100226499A1
Filed 03/22/2007
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Miniature Surround-Sound Loudspeaker | ||
Patent #
US 20080159571A1
Filed 07/12/2005
|
Current Assignee
1 Corporation
|
Original Assignee
1 Limited
|
Method and device for developing a virtual speaker distant from the sound source | ||
Patent #
US 6,229,899 B1
Filed 09/24/1998
|
Current Assignee
American Technology Incorporated
|
Original Assignee
American Technology Incorporated
|
33 Claims
-
1. An audio delivery method, comprising:
-
using an image capture device to capture an image of a listening area; at one or more programmed processors; processing the image to locate a position of a listener in the listening area, processing the image to identify a face of the listener in the listening area, processing the image to locate a position of the listener'"'"'s ears, retrieving a stored listener profile associated with the identified face, adjusting one or more audio characteristics based upon the listener profile, and controlling a directional beam of audio to direct the directional beam of audio toward the listener'"'"'s ears; using the image capture device to capture a subsequent sequence of images of the listener; and at the one or more programmed processors; monitoring movement in position of the listener'"'"'s ears in the listening area by analysis of the subsequent sequence of images, and adjusting the directional beam of audio in accordance with movements of the listener within the listening area. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8)
-
-
9. An audio delivery method, comprising:
-
using an image capture device to capture an image of a listening area; at one or more programmed processors; processing the image to locate a position of a listener in the listening area, processing the image to identify a face of the listener in the listening area, processing the image to locate a position of the listener'"'"'s left and right ears, retrieving a stored listener profile associated with the identified face, adjusting one or more audio characteristics based upon the listener profile, and controlling left and right channel directional beams of audio to direct the left and right directional beams of audio toward the listener'"'"'s left and right ears respectively; using the image capture device to capture a subsequent sequence of images of the listener; and at the one or more programmed processors; monitoring movement in position of the listener'"'"'s ears in the listening area by analysis of the subsequent sequence of images, and adjusting a mixing of audio carried by the left and right directional beams of audio in accordance with movements of the listener'"'"'s left and right ears within the listening area. - View Dependent Claims (10, 11, 12, 13, 14, 15)
-
-
16. An audio delivery system, comprising:
-
an image capture device configured to capture an image of a listening area; one or more programmed processors programmed to; process the image to locate a position of a listener in the listening area, process the image to identify a face of the listener in the listening area, process the image to locate a position of the listener'"'"'s ears, retrieve a stored listener profile associated with the identified face, adjust one or more audio characteristics based upon the listener profile, and control a directional beam of audio to direct the directional beam of audio toward the listener'"'"'s ears; the image capture device further being configured to capture a subsequent sequence of images of the listener; and the one or more programmed processors being further programmed to; monitor movement in position of the listener'"'"'s ears in the listening area by analysis of the subsequent sequence of images, and adjust the directional beam of audio in accordance with movements of the listener within the listening area. - View Dependent Claims (17, 18, 19, 20, 21, 22, 23)
-
-
24. An audio delivery system, comprising:
-
an image capture device configured to capture an image of a listening area; one or more programmed processors programmed to; process the image to locate a position of a listener in the listening area, process the image with to identify a face of the listener in the listening area, process the image to locate a position of the listener'"'"'s left and right ears, retrieve a stored listener profile associated with the identified face, adjust one or more audio characteristics based upon the listener profile, and control left and right channel directional beams of audio to direct the left and right directional beams of audio toward the listener'"'"'s left and right ears respectively; the image capture device further being configured to capture a subsequent sequence of images of the listener; and the one or more programmed processors being further programmed to; monitor movement in position of the listener'"'"'s ears in the listening area by analysis of the subsequent sequence of images, and adjust a mixing of audio carried by the left and right directional beams of audio in accordance with movements of the listener'"'"'s left and right ears within the listening area. - View Dependent Claims (25, 26, 27, 28, 29, 30)
-
-
31. An audio delivery method, comprising:
-
at a programmed processor, retrieving and reading a stored listener profile to ascertain audio characteristic settings associated with a listener; and at an audio mixer, the programmed processor adjusting a mixing of channels of a multiple channel audio program to an equal or reduced number of channels based upon the stored listener profile. - View Dependent Claims (32, 33)
-
1 Specification
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever. Trademarks are the property of their respective owners.
The Advanced Communications Services Act in the United States has requirements to address various disabilities, one of which is hearing. The Act requires that television equipment providers take steps to try to improve the presentation of audio to a person who has a hearing disability.
Certain illustrative embodiments illustrating organization and method of operation, together with objects and advantages may be best understood by reference to the detailed description that follows taken in conjunction with the accompanying drawings in which:
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail specific embodiments, with the understanding that the present disclosure of such embodiments is to be considered as an example of the principles and not intended to limit the invention to the specific embodiments shown and described. In the description below, like reference numerals are used to describe the same, similar or corresponding parts in the several views of the drawings.
The terms “a” or “an”, as used herein, are defined as one or more than one. The term “plurality”, as used herein, is defined as two or more than two. The term “another”, as used herein, is defined as at least a second or more. The terms “including” and/or “having”, as used herein, are defined as comprising (i.e., open language). The term “coupled”, as used herein, is defined as connected, although not necessarily directly, and not necessarily mechanically. The term “program” or “computer program” or similar terms, as used herein, is defined as a sequence of instructions designed for execution on a computer system. A “program”, or “computer program”, may include a subroutine, a function, a procedure, an app, an object method, an object implementation, in an executable application, an applet, a servlet, a source code, an object code, a script, a program module, a shared library/dynamic load library and/or other sequence of instructions designed for execution on a computer system. As used herein, the term “television receiver device” or similar is intended to encompass any television receiver including a television set, a set-top box (STB), or other device configured to receive television programming. A “display” or similar can form part of a television device or a computer system capable of receiving content that includes audio. Devices consistent with the teachings herein can be instantiated into a STB, a standalone sound bar, or external add-on audio device, or a monitor having audio capability but no tuner as well as other implementations.
Reference throughout this document to “one embodiment”, “certain embodiments”, “an embodiment”, “an implementation”, “an example” or similar terms means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of such phrases or in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments without limitation.
The term “or” as used herein is to be interpreted as an inclusive or meaning any one or any combination. Therefore, “A, B or C” means “any of the following: A; B; C; A and B; A and C; B and C; A, B and C”. An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
The term “audio characteristics” is to be interpreted to mean attributes that can be adjusted in an electronic audio signal including, but not limited to, volume, equalization, compression, room simulations, channel mix, etc.
As noted previously, the Advanced Communications Services Act in the United States has requirements to address various disabilities, one of which is hearing. The Act requires that television equipment providers take steps to try to improve the presentation of audio to a person who has a hearing disability.
It is noted that hearing disabilities vary greatly from person to person and often are asymmetrical. The hearing loss may be restricted to one ear, or may be more or less severe in one ear than the other. Also, the affected frequencies vary from person to person and even from ear to ear on the same person. Such hearing disabilities may present difficulties when multiple people with differing hearing abilities are in the same television viewing area. This can result in television audio being adjusted primarily to address the hearing of the person with the poorest hearing, which may be uncomfortably loud for other listeners.
Audio signals can be made to be highly directional using ultrasonic techniques in which arrays of small ultrasonic transducers are used to send ultrasonic beams that are quite directional. This high level of directionality is primarily the result of the transducers being made to approximate the wavelength of the ultrasonic signals transmitted. By sending two ultrasonic signals toward a listener'"'"'s ear, audio can be encoded into the frequency differences between the two signals. As a result of non-linearities in the air and the ears, a mixing of the two ultrasonic signals occurs resulting in sum and difference signals. The difference signals represent the originally encoded audio and can be heard by the listener. By directing two such sets of beams toward a listener'"'"'s left and right ears, stereo audio programming can be achieved.
This mechanism can be utilized advantageously to provide improvement in the hearing of audio in those who are hearing impaired. It is common, for example when watching television (TV), for a hearing impaired person to require high volume levels to be able to enjoy the television programming Unfortunately, this can be at the expense of other listeners who are not hearing impaired and would prefer a lower volume level.
Accordingly, delivery of the audio to a listener can be tailored to the individual'"'"'s hearing characteristics, and in conjunction with ultrasonic delivery, the individualized audio can be directed to an individual. Furthermore, the individual can be identified by a camera, using image recognition and then the tailored sound can be directed to the identified individual. Aiming of the sound can be done in several ways. A phased array of transducers can be used, but there are limitations with this method, such as the granularly (angular) of the directivity, and also the number of listeners that can be targeted simultaneously.
The preferred method is to use ultrasonic delivery of the individualized sound as discussed above. Sound is frequency shifted to the ultrasonic range, such as approximately 40 kHz. The ultrasonic sound is then beat with another ultrasonic sound, which results in the sum, difference and fundamentals. Only the difference signal is heard by the listener. Since the wavelength of the ultrasonic sound is an appreciable portion of the dimension of the transducer, this results in a very directional delivery of the sound. This allows directing sound to an individual recipient.
In order to aim the sound, one technique is to have several adjustable zones, which may be either fixed or pre-set. A listener typically sits in discrete fixed locations typically dictated by the relatively fixed location of the chairs or sofa'"'"'s in a room. Hence once set, only the listener will have to be identified and his location amongst the pre-set locations needs to be determined. The identity of the listener could be simplified if the user manually identified himself, or could be more sophisticated as using such techniques as RFID, Bluetooth, possession of the remote control or one of many remote controls, possession of a cellular phone, which is identifiable, etc. In the preferred implementation, a camera or other image capture device is used to locate and identify listeners using facial recognition and stored listener profiles, and to spatially characterize each listener.
Turning now to
In order to customize the audio experience of each of the listeners, a profile can be established for each listener, and a default or guest profile can be provided for unrecognized listeners. The camera 24, by imaging the listening area, can be used to provide images that upon analysis can determine 1) the location of each listener, 2) the location of the head and ears of each listener, 3) recognize each registered and profiled listener, or assign the listener to be a guest, 4) to track movements of the listeners, 5) to note movements that are of significance to the listening experience in the listeners, and 6) to tailor the audio program to the listener'"'"'s preferences or hearing abilities as set forth in the listener'"'"'s profile. In this manner, if listener 36 has normal hearing and listener 40 has degraded hearing abilities, each can be treated individually according to their needs and preferences with minimal impact on the other. In another embodiment, a preferred language may be included in the profile, and thus multiple languages may be provided. Various audio language sub-channels may be used to accommodate listeners preferring a language other than that provided in the main audio channel, or the default language indicated during setup. In another embodiment, a word substitution engine could selectively replace objectionable words or phrases for those specific listeners identified and associated with a parental control limitation or restriction.
By way of example, and not limitation, consider an implementation in a television system and the profile screen 50 of a listener named “George” as depicted in
Using this profile as a template, the audio system can beam a specialized audio signal to George in which the right channel volume is quite high and the left volume is higher than normal. Additionally, the audio in the right channel will be adjusted to provide more volume on middle and high frequencies than the low frequencies. This profile can be established experimentally with the assistance of the audio system or based upon the listener'"'"'s preference. In one embodiment, an audio setup would guide the user in setting up a personal profile by playing testing the listener'"'"'s hearing and modifying the audio characteristics in accordance with listener responses to an audio setup protocol. In examples of such implementations, test tones can be generated and the user can respond to determine at what level a particular user can hear a particular range of frequencies. In so doing, the user can either manually adjust the equalization to improve his or her ability to hear or the audio system can deduce an appropriate equalization for use in the profile.
In another example implementation, words or phrases can be displayed on the display while being played audibly (e.g., once in each channel) and the user queried as to the ability to understand the spoken words or phrases that are displayed. For example, since most hearing problems start with degradation of the ability to hear high frequency components. Hence words such as “spoon”, “ship”, “thicket”, etc. with substantial high frequency content can be played and the user can indicate a particular Q, equalization, filtering and balance that results in best intelligibility, and/or equality of hearing on right and left sides. The system can run each user through a training process in which filter characteristics are systematically varied and each user can assist in optimizing the ability to hear speech with greatest intelligibility. Once the data are established for the profile, the profile can be saved using button 74 or as part of an automated setup process to exit the profile and save or the listener can exit without saving by using button 78 which reverts the profile back to prior settings or no profile if none was previously established.
In this example, it is presumed that the audio program will be beamed to the listener in stereo, but this is not to be considered limiting since the audio could be beamed in monophonic form equally well with lesser requirements on the directivity and accuracy of the audio beam. Moreover, although the audio can be beamed to left and right ears, there is no requirement that there be no overlapping in the ultrasonic audio beams.
It is noted that when surround sound is delivered in stereo in a conventional stereo audio system, the stereo mix is often a mix that is derived from larger number of channels in a multi-channel audio program. For example, a 5.1 channel audio system has a center channel, a left front channel, a right front channel, a rear left channel, a rear right channel and a subwoofer channel. In such multi-channel audio mixes, it is common that the center channel carries the bulk of the dialog (speech) in the television program or movie being watched. Similarly, the low frequencies are handled in the subwoofer channel, etc. When this is mixed to stereo, the center channel dialog is commonly split among the left and right channels. Since only one or two channels are most commonly used for television and other audio reproduction, the mix-down of audio signals from the multi-channel audio to a lesser number of channels can be adjusted to achieve a more desirable listening experience for those with hearing impairments.
For example, if the listener has an impaired ability to recognize speech in the presence of other sounds, it may be advantage to provide a higher level of the center channel mix to that listener based on the listener'"'"'s profile. Hence, an audio delivery method consistent with certain embodiments utilizes a programmed processor to retrieve and read a stored listener profile to ascertain audio characteristic settings associated with a listener; and at an audio mixer, the programmed processor can adjust a mixing of channels of a multiple channel audio program to a reduced number of channels based upon the stored listener profile so as to improve the listening experience of the listener.
Referring now to
By way of example and not limitation, when the head position is detected to move from that shown in
It is also noted that when a person is having hearing difficulty, it is often a near automatic action of a listener with a hearing impairment to rotate his head so that the best ear is facing the source of audio. Accordingly, the present changing of mixing or other audio characteristics is consistent with an improvement that takes advantage of this common human reaction.
Referring now to
Once the audio profiles are loaded, the audio is directionally beamed to the recognized listeners at 132 at their physical location within the listening area. Similarly, unrecognized listeners simultaneously receive directional beams of audio at their physical location within the listening area using a default or guest profile at 136. In order to maintain a continuous tracking of the physical location of the listeners and also to monitor their head position if that is utilized in the manner discussed above, the process is continuously updated by initiating a repeating of the process at 140 where the process proceeds back to 108. While not explicitly depicted in this example process 100, block 124 can be skipped if no new listeners enter the listening area.
Function 128 of process 100 can be implemented in a variety of ways including the example process depicted as 128 of
An example system consistent with certain implementations is depicted as system 200 of
The captured images are processed as discussed previously to identify and locate people in the listening area 206. The facial recognition algorithm of 222 is then executed to compare the faces found with faces in the profile database 226. When a listener is identified in profile database 226, the programmed processor (or processors) 218 use the profile data to carry out a mixing and equalization function within audio processor 230 so that the audio from audio source 234 is adjusted to compensate for the hearing of the listener in accord with the listener'"'"'s profile.
This process is continually updated so as to identify movements of the various listeners and maintain appropriate beam or beams of audio to each listener in the manner discussed above.
Direction of the beams of audio may be carried out in any operative manner. For example, as depicted in
Thus, in accord with certain implementations, an audio delivery method involves using an image capture device to capture an image of a listening area; at one or more programmed processors: processing the image to locate a position of a listener in the listening area, processing the image to identify a face of the listener in the listening area, processing the image to locate a position of the listener'"'"'s ears, retrieving a stored listener profile associated with the identified face, adjusting one or more audio characteristics based upon the listener profile, and controlling a directional beam of audio to direct the directional beam of audio toward the listener'"'"'s ears. An image capture device is used to capture a subsequent sequence of images of the listener, and at the one or more programmed processors: monitoring movement in position of the listener'"'"'s ears in the listening area by analysis of the subsequent sequence of images, and adjusting the directional beam of audio in accordance with movements of the listener within the listening area.
In certain implementations, the directional beam of audio comprises a mix-down of a multi-channel audio program that includes a multiple channels. In certain implementations, adjusting the directional beam of audio includes changing a mixing of the multi-channel audio program. In certain implementations, the multi-channel audio program includes a center channel and where the mixing of the multiple channels comprises increasing an amplitude of the center channel program to an ear of the listener that is moved to a closest location to a source of the directional beams of audio. In certain implementations, the directional beams of audio comprise ultrasonic audio beams. In certain implementations, the image capture device comprises a camera integrated into a television receiver device. In certain implementations, the image capture device comprises a camera integrated into an electronic display device. In certain implementations, the controlling involves controlling servo motors that position gimbal mounted ultrasonic transducer arrays.
Another audio delivery method involves using an image capture device to capture an image of a listening area. At one or more programmed processors: the process proceeds by processing the image to locate a position of a listener in the listening area, processing the image to identify a face of the listener in the listening area, processing the image to locate a position of the listener'"'"'s left and right ears, retrieving a stored listener profile associated with the identified face, adjusting one or more audio characteristics based upon the listener profile, and controlling left and right channel directional beams of audio to direct the left and right directional beams of audio toward the listener'"'"'s left and right ears respectively; using the image capture device to capture a subsequent sequence of images of the listener. At the one or more programmed processors the process further involves: monitoring movement in position of the listener'"'"'s ears in the listening area by analysis of the subsequent sequence of images, and adjusting a mixing of audio carried by the left and right directional beams of audio in accordance with movements of the listener'"'"'s left and right ears within the listening area.
In certain implementations, the left and right directional beams of audio comprise a stereo mix-down of a multi-channel audio program that includes a center channel. In certain implementations, adjusting the mixing of audio comprises increasing an amplitude of the center channel program to either one of the right or left ears of the listener so as to increase amplitude of the center channel program for the one of the right or left ears of the listener that is moved to a closest location to a source of the directional beams of audio. In certain implementations, the directional beams of audio comprise ultrasonic audio beams. In certain implementations, the image capture device comprises a camera integrated into a television receiver device. In certain implementations, the image capture device comprises a camera integrated into an electronic display device. In certain implementations, the controlling comprises controlling servo motors that position gimbal mounted ultrasonic transducer arrays.
Another example of an audio delivery system has an image capture device configured to capture an image of a listening area. One or more programmed processors are programmed to: process the image to locate a position of a listener in the listening area, process the image to identify a face of the listener in the listening area, process the image to locate a position of the listener'"'"'s ears, retrieve a stored listener profile associated with the identified face, adjust one or more audio characteristics based upon the listener profile, and control a directional beam of audio to direct the directional beam of audio toward the listener'"'"'s ears. The image capture device is further configured to capture a subsequent sequence of images of the listener; and the one or more programmed processors are further programmed to: monitor movement in position of the listener'"'"'s ears in the listening area by analysis of the subsequent sequence of images, and adjust the directional beam of audio in accordance with movements of the listener within the listening area.
In certain implementations, the directional beam of audio comprises a mix-down of a multi-channel audio program that includes a multiple channels. In certain implementations, adjusting the directional beam of audio comprises changing a mixing of the multi-channels audio program. In certain implementations, the multi-channel audio program includes a center channel and where the mixing of the multiple channels comprises increasing an amplitude of the center channel program to an ear of the listener that is moved to a closest location to a source of the directional beams of audio. In certain implementations, the directional beams of audio comprise ultrasonic audio beams. In certain implementations, the image capture device comprises a camera integrated into a television receiver device. In certain implementations, the image capture device comprises a camera integrated into an electronic display device. In certain implementations, at least one gimbal mounted ultrasonic transducer arrays, and where controlling and adjusting the directional beam of audio comprises controlling servo motors that position the gimbal mounted ultrasonic transducer array.
Another audio delivery system has an image capture device configured to capture an image of a listening area. One or more programmed processors are programmed to process the image to locate a position of a listener in the listening area, process the image with to identify a face of the listener in the listening area, process the image to locate a position of the listener'"'"'s left and right ears, retrieve a stored listener profile associated with the identified face, adjust one or more audio characteristics based upon the listener profile, and control left and right channel directional beams of audio to direct the left and right directional beams of audio toward the listener'"'"'s left and right ears respectively. The image capture device is further configured to capture a subsequent sequence of images of the listener; and the one or more programmed processors are further programmed to: monitor movement in position of the listener'"'"'s ears in the listening area by analysis of the subsequent sequence of images, and adjust a mixing of audio carried by the left and right directional beams of audio in accordance with movements of the listener'"'"'s left and right ears within the listening area.
In certain implementations, the left and right directional beams of audio comprise a stereo mix-down of a multi-channel audio program that includes a center channel. In certain implementations, adjusting the mixing of audio comprises increasing an amplitude of the center channel program to either one of the right or left ears of the listener so as to increase amplitude of the center channel program for the one of the right or left ears of the listener that is moved to a closest location to a source of the directional beams of audio. In certain implementations, the directional beams of audio comprise ultrasonic audio beams. In certain implementations, the image capture device comprises a camera integrated into a television receiver device. In certain implementations, the image capture device comprises a camera integrated into an electronic display device. In certain implementations, at least a pair of gimbal mounted ultrasonic transducer arrays, and where controlling and adjusting the directional beams of audio comprises controlling servo motors that position the gimbal mounted ultrasonic transducer arrays.
An audio delivery method consistent with certain implementations involves at a programmed processor, retrieving and reading a stored listener profile to ascertain audio characteristic settings associated with a listener; and at an audio mixer, the programmed processor adjusting a mixing of channels of a multiple channel audio program to an equal or reduced number of channels based upon the stored listener profile.
In certain implementations, the method further involves playing the equal or reduced number of channels to the listener. In certain implementations, the programmed processor further adjusts the mixing of the channels based upon a position of the listener.
In audio delivery method, an image of a listening area is captured and processed to locate a position of a listener in the room. A stored listener profile associated with the listener is retrieved and audio characteristics are established based on the listener'"'"'s profile. A directional beam of audio is directed toward the listener'"'"'s ears and the directional beam is adjusted to track movement of the listener.
Those skilled in the art will recognize, upon consideration of the above teachings, that certain of the above exemplary embodiments are based upon use of one or more programmed processors. However, the invention is not limited to such exemplary embodiments, since other embodiments could be implemented using hardware component equivalents such as special purpose hardware and/or dedicated processors. Similarly, general purpose computers, microprocessor based computers, micro-controllers, optical computers, analog computers, dedicated processors, application specific circuits and/or dedicated hard wired logic may be used to construct alternative equivalent embodiments.
Certain example embodiments described herein, are or may be implemented using a programmed processor such as processor 218 executing programming instructions that are broadly described above in flow chart form that can be stored on any suitable non-transitory electronic or computer readable storage medium, where the term “non-transitory” as used herein is intended only to exclude propagating waves and not devices such as random access memory that loses information when power is removed or rewritable memory. However, those skilled in the art will appreciate, upon consideration of the present teaching, that the processes described above can be implemented in any number of variations and in many suitable programming languages without departing from embodiments of the present invention. For example, the order of certain operations carried out can often be varied, additional operations can be added or operations can be deleted without departing from certain embodiments of the invention. Error trapping, time outs, etc. can be added and/or enhanced and variations can be made in user interface and information presentation without departing from certain embodiments of the present invention. Such variations are contemplated and considered equivalent.
While certain illustrative embodiments have been described, it is evident that many alternatives, modifications, permutations and variations will become apparent to those skilled in the art in light of the foregoing description.