Voltage regulator tester
First Claim
1. A voltage regulator tester for testing automotive voltage regulators comprising:
- a. an adjustable direct current power source;
b. a circuit connected to the power source and including a volt-meter for monitoring the adjusted voltage output level of said power source, said circuit having terminals connecting a voltage regulator to be tested thereto;
c. a test load in the circuit for simulating the field coil of an automotive alternator with which a voltage regulator to be tested is normally used;
d. a lamp in the circuit for indicating the presence of electrical current in said test load when energized; and
e. automatic switching means in the circuit to connect said volt-meter to said test load when said regulator is supplying electrical current thereto and to disconnect said volt-meter when the supply of current to said test load is interrupted by the voltage regulator.
0 Assignments
0 Petitions

Accused Products

Abstract
A test circuit for automotive voltage regulators includes means for simulating transient battery voltages, a meter for monitoring these voltages as related to the operation of the regulator being tested, switching means to protect the meter and also to facilitate the reading thereof, a test load simulating the field coil of an automotive alternator, and an indicator light for determining when the test load is energized. The volt meter indicator moves to show increasing voltage and returns to zero when the regulator interrupts the current to the test load.
233 Citations
Automotive vehicle battery test system | ||
Patent #
US 7,924,015 B2
Filed 05/06/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester with promotion feature | ||
Patent #
US 7,940,053 B2
Filed 05/25/2010
|
Current Assignee
Interstate Battery Systems Of America Incorporated, Midtronics Incorporated
|
Original Assignee
Interstate Battery Systems Of America Incorporated, Midtronics Incorporated
|
Electronic battery test based upon battery requirements | ||
Patent #
US 7,940,052 B2
Filed 02/02/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 7,999,505 B2
Filed 10/05/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery maintenance tool with probe light | ||
Patent #
US 7,977,914 B2
Filed 10/31/2007
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
SCAN TOOL FOR ELECTRONIC BATTERY TESTER | ||
Patent #
US 20110208454A1
Filed 02/28/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Kevin I. Bertness
|
Battery tester with promotion feature to promote use of the battery tester by providing the user with codes having redeemable value | ||
Patent #
US 7,791,348 B2
Filed 02/27/2007
|
Current Assignee
Interstate Battery Systems Of America Incorporated, Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Energy management system for automotive vehicle | ||
Patent #
US 7,688,074 B2
Filed 06/14/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Wireless battery tester with information encryption means | ||
Patent #
US 7,772,850 B2
Filed 07/11/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with vehicle type input | ||
Patent #
US 7,656,162 B2
Filed 07/22/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
SCAN TOOL FOR ELECTRONIC BATTERY TESTER | ||
Patent #
US 20100295549A1
Filed 05/06/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Kevin I. Bertness
|
Electronic battery tester with databus | ||
Patent #
US 7,728,597 B2
Filed 11/03/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
BATTERY TESTER WITH PROMOTION FEATURE | ||
Patent #
US 20100289498A1
Filed 05/25/2010
|
Current Assignee
Interstate Battery Systems Of America Incorporated
|
Original Assignee
Kevin I. Bertness, Stephen J. Mcshane, Michael E. Troy, Dennis V. Brown, William G. Sampson
|
Battery tester that calculates its own reference values | ||
Patent #
US 7,710,119 B2
Filed 12/14/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 7,642,787 B2
Filed 10/24/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 7,705,602 B2
Filed 08/29/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester capable of identifying faulty battery post adapters | ||
Patent #
US 7,642,786 B2
Filed 05/31/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester | ||
Patent #
US 7,706,991 B2
Filed 06/11/2007
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester configured to predict a load test result based on open circuit voltage, temperature, cranking size rating, and a dynamic parameter | ||
Patent #
US 7,723,993 B2
Filed 09/02/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Wireless battery monitor | ||
Patent #
US 7,774,151 B2
Filed 12/21/2004
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Theft prevention device for automotive vehicle service centers | ||
Patent #
US 7,777,612 B2
Filed 08/03/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery run down indicator | ||
Patent #
US 7,808,375 B2
Filed 04/09/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for counteracting self discharge in a storage battery | ||
Patent #
US 7,479,763 B2
Filed 03/18/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
METHOD AND APPARATUS FOR MEASURING A PARAMETER OF A VEHICLE ELECTRICAL SYSTEM | ||
Patent #
US 20090051365A1
Filed 10/30/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery charger with booster pack | ||
Patent #
US 7,501,795 B2
Filed 06/03/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Centralized data storage of condition of a storage battery at its point of sale | ||
Patent #
US 7,498,767 B2
Filed 02/16/2006
|
Current Assignee
Interstate Battery Systems International Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test module | ||
Patent #
US 7,505,856 B2
Filed 06/02/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for predicting battery capacity and fitness for service from a battery dynamic parameter and a recovery voltage differential | ||
Patent #
US 7,545,146 B2
Filed 12/09/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
SCAN TOOL FOR ELECTRONIC BATTERY TESTER | ||
Patent #
US 20090160451A1
Filed 11/03/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 7,557,586 B1
Filed 05/19/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for simulating a battery tester with a fixed resistance load | ||
Patent #
US 7,595,643 B2
Filed 08/21/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Replaceable clamp for electronic battery tester | ||
Patent #
US 7,598,699 B2
Filed 02/20/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Scan tool for electronic battery tester | ||
Patent #
US 7,598,744 B2
Filed 06/07/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery maintenance device having databus connection | ||
Patent #
US 7,598,743 B2
Filed 02/22/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery monitoring system | ||
Patent #
US 7,619,417 B2
Filed 12/14/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Clamp for Electrically Coupling to a Battery Contact | ||
Patent #
US 20090311919A1
Filed 06/16/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Shunt connection to a PCB of an energy management system employed in an automotive vehicle | ||
Patent #
US 7,319,304 B2
Filed 07/23/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Query based electronic battery tester | ||
Patent #
US 7,363,175 B2
Filed 04/24/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery testers with secondary functionality | ||
Patent #
US 7,398,176 B2
Filed 02/13/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester having a user interface to configure a printer | ||
Patent #
US 7,408,358 B2
Filed 06/16/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester with promotion feature | ||
Patent #
US 20080204030A1
Filed 02/27/2007
|
Current Assignee
Interstate Battery Systems Of America Incorporated, Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Broad-band low-inductance cables for making Kelvin connections to electrochemical cells and batteries | ||
Patent #
US 7,425,833 B2
Filed 09/12/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Scan tool for electronic battery tester | ||
Patent #
US 7,446,536 B2
Filed 10/05/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Broad-band low-inductance cables for making Kelvin connections to electrochemical cells and batteries | ||
Patent #
US 20070018651A1
Filed 09/12/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Kevin Bertness, Keith Champlin
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 20070069734A1
Filed 08/29/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Kelvin connector for a battery post | ||
Patent #
US 7,198,510 B2
Filed 11/14/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for predicting the remaining discharge time of a battery | ||
Patent #
US 7,208,914 B2
Filed 12/30/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery monitoring system | ||
Patent #
US 20070090844A1
Filed 12/14/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 20070159177A1
Filed 10/24/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester | ||
Patent #
US 7,246,015 B2
Filed 06/09/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester | ||
Patent #
US 20070244660A1
Filed 06/11/2007
|
Current Assignee
Alan Melton, Kevin Bertness
|
Original Assignee
Alan Melton, Kevin Bertness
|
Electronic battery tester with relative test output | ||
Patent #
US 7,295,936 B2
Filed 02/16/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Testing parallel strings of storage batteries | ||
Patent #
US 6,316,914 B1
Filed 09/14/2000
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Test counter for electronic battery tester | ||
Patent #
US 6,225,808 B1
Filed 02/25/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester upgrade using software key | ||
Patent #
US 7,012,433 B2
Filed 09/18/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 7,126,341 B2
Filed 07/19/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus for calibrating electronic battery tester | ||
Patent #
US 6,304,087 B1
Filed 09/05/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Cable for electronic battery tester | ||
Patent #
US 6,913,483 B2
Filed 06/23/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Theft prevention device for automotive vehicle service centers | ||
Patent #
US 7,119,686 B2
Filed 04/13/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,172,505 B1
Filed 03/09/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Query based electronic battery tester | ||
Patent #
US 7,034,541 B2
Filed 05/17/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,332,113 B1
Filed 05/03/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Programmable current exciter for measuring AC immittance of cells and batteries | ||
Patent #
US 6,466,026 B1
Filed 10/12/2001
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Method and apparatus for evaluating stored charge in an electrochemical cell or battery | ||
Patent #
US 6,495,990 B2
Filed 08/27/2001
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Method and apparatus for auditing a battery test | ||
Patent #
US 6,885,195 B2
Filed 03/14/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electrical connection for electronic battery tester | ||
Patent #
US 6,163,156 A
Filed 11/01/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for auditing a battery test | ||
Patent #
US 6,091,245 A
Filed 10/25/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester cable | ||
Patent #
US 6,933,727 B2
Filed 06/23/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive battery charging system tester | ||
Patent #
US 6,351,102 B1
Filed 04/16/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test module | ||
Patent #
US 7,058,525 B2
Filed 08/13/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for charging a battery | ||
Patent #
US 6,313,608 B1
Filed 05/22/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 6,850,037 B2
Filed 10/15/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with automotive scan tool communication | ||
Patent #
US 6,967,484 B2
Filed 06/12/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester/charger with integrated battery cell temperature measurement device | ||
Patent #
US 6,919,725 B2
Filed 10/03/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Integrated conductance and load test based electronic battery tester | ||
Patent #
US 6,456,045 B1
Filed 05/30/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester with encoded output | ||
Patent #
US 6,914,413 B2
Filed 09/05/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for protecting a battery from overdischarge | ||
Patent #
US 6,888,468 B2
Filed 01/22/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery clamp with integrated current sensor | ||
Patent #
US 6,544,078 B2
Filed 07/18/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,781,382 B2
Filed 12/05/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring complex admittance of cells and batteries | ||
Patent #
US 6,262,563 B1
Filed 02/11/2000
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Electronic battery tester with internal battery | ||
Patent #
US 6,249,124 B1
Filed 11/01/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester with databus | ||
Patent #
US 6,586,941 B2
Filed 03/23/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with data bus for removable module | ||
Patent #
US 6,998,847 B2
Filed 07/01/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for charging a battery | ||
Patent #
US 6,104,167 A
Filed 10/08/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for determining battery properties from complex impedance/admittance | ||
Patent #
US 6,222,369 B1
Filed 01/26/2000
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Vehicle electrical system tester with encoded output | ||
Patent #
US 6,445,158 B1
Filed 05/22/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester configured to receive a removable digital module | ||
Patent #
US 6,759,849 B2
Filed 10/25/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for electronically evaluating the internal temperature of an electrochemical cell or battery | ||
Patent #
US 6,294,897 B1
Filed 10/18/2000
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 7,154,276 B2
Filed 09/05/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Energy management system for automotive vehicle | ||
Patent #
US 6,909,287 B2
Filed 10/29/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery clamp with embedded environment sensor | ||
Patent #
US 6,469,511 B1
Filed 07/18/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,359,441 B1
Filed 04/28/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with network communication | ||
Patent #
US 6,871,151 B2
Filed 03/07/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,556,019 B2
Filed 03/19/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for evaluating stored charge in an electrochemical cell or battery | ||
Patent #
US 6,313,607 B1
Filed 09/01/1999
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Booster pack with storage capacitor | ||
Patent #
US 7,015,674 B2
Filed 03/28/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring complex impedance of cells and batteries | ||
Patent #
US 6,172,483 B1
Filed 12/03/1999
|
Current Assignee
Emerson Electric Company
|
Original Assignee
Emerson Electric Company
|
Programmable current exciter for measuring AC immittance of cells and batteries | ||
Patent #
US 6,621,272 B2
Filed 10/15/2002
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Apparatus and method for testing rechargeable energy storage batteries | ||
Patent #
US 6,441,585 B1
Filed 06/15/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,707,303 B2
Filed 11/26/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,806,716 B2
Filed 01/29/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Jamey Butteris, Kevin I. Bertness
|
Energy management system for automotive vehicle | ||
Patent #
US 6,331,762 B1
Filed 05/04/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,310,481 B2
Filed 03/26/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus using a circuit model to evaluate cell/battery parameters | ||
Patent #
US 6,737,831 B2
Filed 02/08/2002
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Battery test module | ||
Patent #
US 7,039,533 B2
Filed 12/05/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator diagnostic system | ||
Patent #
US 6,363,303 B1
Filed 11/01/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring complex self-immitance of a general electrical element | ||
Patent #
US 6,294,896 B1
Filed 11/10/2000
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Apparatus and method for simulating a battery tester with a fixed resistance load | ||
Patent #
US 7,116,109 B2
Filed 11/11/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester with battery replacement output | ||
Patent #
US 6,906,522 B2
Filed 03/29/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 6,633,165 B2
Filed 09/20/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery charger with booster pack | ||
Patent #
US 6,788,025 B2
Filed 06/21/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,891,378 B2
Filed 03/25/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Broad-band low-inductance cables for making Kelvin connections to electrochemical cells and batteries | ||
Patent #
US 7,106,070 B2
Filed 07/22/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,566,883 B1
Filed 10/31/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test module | ||
Patent #
US 6,795,782 B2
Filed 12/05/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for testing cells and batteries embedded in series/parallel systems | ||
Patent #
US 6,906,523 B2
Filed 04/09/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with battery failure temperature determination | ||
Patent #
US 6,930,485 B2
Filed 03/14/2003
|
Current Assignee
Interstate Battery Systems International Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with network communication | ||
Patent #
US 7,003,411 B2
Filed 08/09/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for carrying out diagnostic tests on batteries and for rapidly charging batteries | ||
Patent #
US 6,424,158 B2
Filed 07/10/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with relative test output | ||
Patent #
US 7,003,410 B2
Filed 06/17/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester capable of predicting a discharge voltage/discharge current of a battery | ||
Patent #
US 7,081,755 B2
Filed 09/03/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Device for automatically detecting a generator type of a motor vehicle | ||
Patent #
US 6,555,930 B1
Filed 08/09/2001
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Method and apparatus for charging a battery | ||
Patent #
US 6,329,793 B1
Filed 05/22/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,392,414 B2
Filed 06/07/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Query based electronic battery tester | ||
Patent #
US 6,941,234 B2
Filed 09/30/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Suppressing interference in AC measurements of cells, batteries and other electrical elements | ||
Patent #
US 6,417,669 B1
Filed 06/11/2001
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Electronic battery tester | ||
Patent #
US 6,323,650 B1
Filed 04/07/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery charge control device | ||
Patent #
US 6,696,819 B2
Filed 01/08/2002
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for electronically evaluating the internal temperature of an electrochemical cell or battery | ||
Patent #
US 6,137,269 A
Filed 09/01/1999
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Alternator tester | ||
Patent #
US 6,466,025 B1
Filed 01/13/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Broad-band low-inductance cables for making kelvin connections to electrochemical cells and batteries | ||
Patent #
US 20060017447A1
Filed 07/22/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Wireless battery tester/charger | ||
Patent #
US 20060006876A1
Filed 07/11/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
System for automatically gathering battery information for use during battery testing/charging | ||
Patent #
US 20060038572A1
Filed 08/19/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester that calculates its own reference values | ||
Patent #
US 20060125483A1
Filed 12/14/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Centrally monitored sales of storage batteries | ||
Patent #
US 20060192564A1
Filed 02/16/2006
|
Current Assignee
Interstate Battery Systems International Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery testers with secondary functionality | ||
Patent #
US 20060217914A1
Filed 02/13/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Theft prevention device for automotive vehicle service centers | ||
Patent #
US 20060267575A1
Filed 08/03/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for simulating a battery tester with a fixed resistance load | ||
Patent #
US 20060279288A1
Filed 08/21/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Query based electronic battery tester | ||
Patent #
US 20060279287A1
Filed 04/24/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Wilhelmus H.J. Koster, Kevin I. Bertness, Stephen J. Mcshane
|
Electronic battery tester with network communication | ||
Patent #
US 20060282227A1
Filed 02/16/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Kevin I. Bertness
|
Electronic battery tester with relative test output | ||
Patent #
US 20060282226A1
Filed 02/16/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Kevin I. Bertness, Vonderhaar J. David
|
Electronic battery tester with relative test output | ||
Patent #
US 20050021475A1
Filed 06/17/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester | ||
Patent #
US 20050035752A1
Filed 06/09/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Energy management system for automotive vehicle | ||
Patent #
US 20050024061A1
Filed 06/14/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 20050068039A1
Filed 10/05/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Shunt connection to a PCB of an energy management system employed in an automotive vehicle | ||
Patent #
US 20050057865A1
Filed 07/23/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 20050052187A1
Filed 09/05/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Scan tool for electronic battery tester | ||
Patent #
US 20050057256A1
Filed 10/05/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with probe light | ||
Patent #
US 20050077904A1
Filed 10/08/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester/charger with integrated battery cell temperature measurement device | ||
Patent #
US 20050073314A1
Filed 10/03/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with network communication | ||
Patent #
US 20050075807A1
Filed 08/09/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for simulating a battery tester with a fixed resistance load | ||
Patent #
US 20050099185A1
Filed 11/11/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Wireless battery monitor | ||
Patent #
US 20050162172A1
Filed 12/21/2004
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Battery charger with booster pack | ||
Patent #
US 20050162124A1
Filed 06/03/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Replaceable clamp for electronic battery tester | ||
Patent #
US 20050184732A1
Filed 02/20/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester or charger with databus connection | ||
Patent #
US 20050212521A1
Filed 02/22/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery charger with automatic customer notification system | ||
Patent #
US 20050206346A1
Filed 03/18/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test module | ||
Patent #
US 20050218902A1
Filed 06/02/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Theft prevention device for automotive vehicle service centers | ||
Patent #
US 20050225446A1
Filed 04/13/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Scan tool for electronic battery tester | ||
Patent #
US 20050231205A1
Filed 06/07/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Modular battery tester for scan tool | ||
Patent #
US 20040036443A1
Filed 06/12/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester configured to predict a load test result | ||
Patent #
US 20040046566A1
Filed 09/02/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test outputs adjusted based upon battery temperature and the state of discharge of the battery | ||
Patent #
US 20040046564A1
Filed 09/03/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester with encoded output | ||
Patent #
US 20040104728A1
Filed 09/05/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for protecting a battery from overdischarge | ||
Patent #
US 20040140904A1
Filed 01/22/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Query based electronic battery tester | ||
Patent #
US 20040145371A1
Filed 09/30/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for predicting the remaining discharge time of a battery | ||
Patent #
US 20040157113A1
Filed 12/30/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester cable | ||
Patent #
US 20040189309A1
Filed 06/23/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Kevin I. Bertness, Krzysztof Jeziorczak
|
Electronic battery tester | ||
Patent #
US 20040189308A1
Filed 03/25/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive battery charging system tester | ||
Patent #
US 20040232918A1
Filed 03/02/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 20040263176A1
Filed 07/22/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Kevin I. Bertness, Vonderhaar J. David
|
Cable for electronic battery tester | ||
Patent #
US 20040257084A1
Filed 06/23/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for counteracting self discharge in a storage battery | ||
Patent #
US 20040251876A1
Filed 03/18/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester having a user interface to configure a printer | ||
Patent #
US 20040251908A1
Filed 06/16/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for auditing a battery test | ||
Patent #
US 20030001579A1
Filed 03/14/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 20030038637A1
Filed 07/19/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with relative test output | ||
Patent #
US 20030088375A1
Filed 10/02/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test module | ||
Patent #
US 20030124417A1
Filed 12/05/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with battery failure temperature determination | ||
Patent #
US 20030173971A1
Filed 03/14/2003
|
Current Assignee
Interstate Battery Systems International Incorporated
|
Original Assignee
Interstate Battery Systems Of America Incorporated
|
Battery tester with battery replacement output | ||
Patent #
US 20030184306A1
Filed 03/29/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Booster pack with storage capacitor | ||
Patent #
US 20030184258A1
Filed 03/28/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with network communication | ||
Patent #
US 20020171428A1
Filed 03/07/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for testing cells and batteries embedded in series/parallel systems | ||
Patent #
US 20020180445A1
Filed 04/09/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test module | ||
Patent #
US 20020193955A1
Filed 08/13/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for charging a battery | ||
Patent #
US 6,081,098 A
Filed 11/03/1997
|
Current Assignee
Bridge Semiconductor Corporation
|
Original Assignee
Midtronics Incorporated
|
Voltage regulator test set for the power distribution industry | ||
Patent #
US 5,537,030 A
Filed 07/21/1994
|
Current Assignee
Union Electric Company
|
Original Assignee
Union Electric Company
|
Testing device for generator output voltage regulators | ||
Patent #
US 4,222,005 A
Filed 03/16/1978
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 8,164,343 B2
Filed 10/30/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive battery charging system tester | ||
Patent #
US 8,198,900 B2
Filed 03/02/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery testers with secondary functionality | ||
Patent #
US 8,237,448 B2
Filed 07/07/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester for electric vehicle | ||
Patent #
US 8,306,690 B2
Filed 07/17/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
System for automatically gathering battery information | ||
Patent #
US 8,344,685 B2
Filed 04/01/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Integrated tag reader and environment sensor | ||
Patent #
US 8,436,619 B2
Filed 04/01/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Simplification of inventory management | ||
Patent #
US 8,442,877 B2
Filed 04/01/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 8,493,022 B2
Filed 04/22/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester or charger with databus connection | ||
Patent #
US 8,513,949 B2
Filed 09/04/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 8,674,654 B2
Filed 08/09/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 8,674,711 B2
Filed 12/19/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
High Speed, High Current, Closed Loop Load Transient Tester | ||
Patent #
US 20140077830A1
Filed 09/20/2012
|
Current Assignee
Dialog Semiconductor Incorporated
|
Original Assignee
Dialog Semiconductor Incorporated
|
System for automatically gathering battery information | ||
Patent #
US 8,704,483 B2
Filed 11/28/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Storage battery and battery tester | ||
Patent #
US 8,203,345 B2
Filed 12/04/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery pack maintenance for electric vehicles | ||
Patent #
US 8,738,309 B2
Filed 09/30/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 8,754,653 B2
Filed 07/07/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester mounted in a vehicle | ||
Patent #
US 8,872,516 B2
Filed 02/28/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with battery age input | ||
Patent #
US 8,872,517 B2
Filed 03/15/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with network communication | ||
Patent #
US 8,958,998 B2
Filed 04/12/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
System for automatically gathering battery information | ||
Patent #
US 8,963,550 B2
Filed 10/11/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 9,018,958 B2
Filed 10/19/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery testers with secondary functionality | ||
Patent #
US 9,052,366 B2
Filed 08/06/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester for testing storage battery | ||
Patent #
US 9,201,120 B2
Filed 08/09/2011
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Electronic storage battery diagnostic system | ||
Patent #
US 9,229,062 B2
Filed 05/23/2011
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Current clamp with jaw closure detection | ||
Patent #
US 9,244,100 B2
Filed 03/11/2014
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 9,255,955 B2
Filed 05/02/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester for electric vehicle | ||
Patent #
US 9,274,157 B2
Filed 09/23/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
High speed, high current, closed loop load transient tester | ||
Patent #
US 9,285,412 B2
Filed 09/20/2012
|
Current Assignee
Dialog Semiconductor Incorporated
|
Original Assignee
Dialog Semiconductor Incorporated
|
Battery testing system and method | ||
Patent #
US 9,312,575 B2
Filed 05/13/2014
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Battery tester for electric vehicle | ||
Patent #
US 9,335,362 B2
Filed 11/05/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery maintenance device with thermal buffer | ||
Patent #
US 9,419,311 B2
Filed 06/18/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Monitor for front terminal batteries | ||
Patent #
US 9,425,487 B2
Filed 03/01/2011
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
System for automatically gathering battery information | ||
Patent #
US 9,496,720 B2
Filed 01/24/2012
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for detecting cell deterioration in an electrochemical cell or battery | ||
Patent #
US 9,588,185 B2
Filed 02/25/2010
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Suppressing HF cable oscillations during dynamic measurements of cells and batteries | ||
Patent #
US 9,851,411 B2
Filed 03/12/2013
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Battery clamp with endoskeleton design | ||
Patent #
US 9,923,289 B2
Filed 01/16/2015
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Kelvin connector adapter for storage battery | ||
Patent #
US 9,966,676 B2
Filed 09/27/2016
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Hybrid and electric vehicle battery pack maintenance device | ||
Patent #
US 10,046,649 B2
Filed 03/14/2013
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Cable connector for electronic battery tester | ||
Patent #
US 10,222,397 B2
Filed 09/22/2015
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester | ||
Patent #
US 10,317,468 B2
Filed 01/26/2016
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery pack tester | ||
Patent #
US 10,429,449 B2
Filed 11/08/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive maintenance system | ||
Patent #
US 10,473,555 B2
Filed 07/14/2015
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery clamp | ||
Patent #
US 10,608,353 B2
Filed 06/27/2017
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Calibration and programming of in-vehicle battery sensors | ||
Patent #
US 10,843,574 B2
Filed 04/28/2016
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Test apparatus for automobile generators, alternators and voltage regulators | ||
Patent #
US 3,142,797 A
Filed 04/20/1961
|
Current Assignee
George W. Grant
|
Original Assignee
George W. Grant
|
THREE LIGHT TESTING ARRANGEMENT FOR TESTING THE VOLTAGE OUTPUT OF AUTOMOBILE VOLTAGE REGULATORS | ||
Patent #
US 3,437,916 A
Filed 10/23/1965
|
Current Assignee
ALLEN ELECTRIC AND EQUIPMENT COMPANY A DE CORPORATION
|
Original Assignee
Mazurkevics Anatolijs
|
11 Claims
-
1. A voltage regulator tester for testing automotive voltage regulators comprising:
-
a. an adjustable direct current power source; b. a circuit connected to the power source and including a volt-meter for monitoring the adjusted voltage output level of said power source, said circuit having terminals connecting a voltage regulator to be tested thereto; c. a test load in the circuit for simulating the field coil of an automotive alternator with which a voltage regulator to be tested is normally used; d. a lamp in the circuit for indicating the presence of electrical current in said test load when energized; and e. automatic switching means in the circuit to connect said volt-meter to said test load when said regulator is supplying electrical current thereto and to disconnect said volt-meter when the supply of current to said test load is interrupted by the voltage regulator. - View Dependent Claims (2, 3, 4, 5)
-
-
6. A voltage regulator tester adapted for testing automotive voltage regulators, said regulators including, at least, a means for selectively connecting and disconnecting an automotive battery to the field coil of an automotive self-rectifying generator in response to sensing the voltage level of said battery to thereby increase or decrease the voltage output of said generator, a positive battery terminal, a negative battery terminal, a positive field terminal, and a negative field terminal, said tester comprising substantially:
-
a. a direct current power source; b. a rheostat having one side connected to the positive side of said power source, the other side of said rheostat being connected to a first tester terminal, and having the negative side of said power source connected to a second tester terminal, said rheostat being operative to adjust the voltage level as measured at said first and said second tester terminals; c. a volt-meter operatively connected for monitoring the adjusted voltage output of said power source; d. a test load adapted to simultate the field coil of an alternator and comprising substantially a resistor of selected resistance, said test load having one side thereof connected to a third tester terminal and having the other side thereof connected to a fourth tester terminal; e. an incandescent lamp in conjunction with said test load, said lamp being adapted to glow when said test load is conducting electrical current; f. electrical conductors for connecting said first and said second tester terminals respectively to said positive and said negative battery terminals of said regulator and for connecting said third and said fourth tester terminals respectively to said positive and said negative field terminals of said regulator; g. a first switching means adapted to automatically connect said volt-meter to said power source when said test load is conducting electrical current and adapted to automatically disconnect said volt-meter when said test load is not conducting current. - View Dependent Claims (7, 8, 9, 10)
-
-
11. In a voltage regulator tester adapted for testing automotive voltage regulators, said tester comprising an adjustable direct current power source having a positive and a negative terminal, a test load simulating an automotive alternator field coil and having, when conducting electrical current, a positive and a negative terminal, and a volt-meter having a positive and a negative terminal, said positive volt-meter terminal connected to said power source positive terminal:
-
a. an NPN transistor having the base thereof connected through a resistor of selected resistance to said test load positive terminal; b. said transistor having the emitter thereof connected to said test load negative terminal; and c. said transistor having the collector thereof connected to said volt-meter negative terminal.
-
1 Specification
The present invention relates to improvements in instruments used for testing automotive voltage regulators. In modern automotive vehicles, self-rectifying A.C. generators, called alternators, are used to replenish the potential of batteries exhausted or reduced by the use of the electrical components of the vehicle. The alternator is equipped with a field coil on its rotor which increases or decreases the voltage output of the alternator depending on the manner in which it is energized. Also, the voltage output of the alternator is affected by the speed at which it is rotated. The voltage regulator is designed to maintain a substantially constant battery voltage output by energizing the alternator field when the battery voltage drops below a desired level and by de-energizing the alternator field when the battery is recharged.
When there is a malfunction in the electrical system of an automobile, the faulty component must be determined and subsequently repaired or replaced. Voltage regulators are generally sealed, self-contained units that cannot be repaired, but must be replaced if defective. Various instruments have been devised to test voltage regulators, however, most fall short of optimum performance.
In testing a voltage regulator, it is desirable to determine first, if the regulator is switching on and off and second, if the regulator is switching in the voltage range for which it is designed. The regulator tester of the present invention, employs a test load which includes an indicator light; so it is a simple matter to determine if the regulator is switching. Past testers employed a volt-meter across the output of the power supply and a rheostat in series with one side of the power supply and when the regulator interrupts the current to the load, the meter than reads the full power supply voltage, there being no current drawn by the regulator and, therefore, substantially no voltage drop across the rheostat. This arrangement not only puts a strain on the volt-meter, but also makes it difficult to take accurate readings, since it is necessary to notice the voltage reading just before the needle jumps from the voltage at cutoff to the pole at the maximum reading of the meter.
In addition, past voltage regulator testers have supplied regulators with currents substantially lower than their designed capabilities, which did not give a true indication of the regulator'"'"'s ability to perform under operational conditions. Further, some regulators will not operate when out of their normal circuits, and past inventions had no means of supplying the missing conditions, making tests of these regulators impossible.
The principal objects of the present invention are: to provide a voltage regulator tester which overcomes the aforementioned difficulties; to provide such a tester having a circuit for testing automotive voltage regulators which includes a test load that draws an amount of electrical current comparable to the amount drawn by the alternator field coil with which the regulator is normally used, thereby giving a true indication of the regulator'"'"'s performance; to provide a circuit of such configuration that accurate voltage readings and the cut-off voltage are easily taken or observed; to provide such a circuit of which the components thereof are not subjected to severe strain; to provide a circuit capable of testing a great variety of automotive voltage regulators; to provide a voltage regulator tester which is economical to manufacture, accurate, versatile, and durable in use, and which is particularly well adapted for its intended use.
Other objects and advantages of the present invention will become apparent from the following description taken in connection with the accompanying drawings wherein are set forth by way of illustration and example certain embodiments of this invention.
The drawings constitute a part of this specification and includes an exemplary embodiment of the present invention and illustrate various objects and features of the voltage regulator tester.
FIG. 1 is a perspective view of a voltage regulator test instrument employing the present invention.
FIG. 2 is a simplified block diagram of an automotive electrical system.
FIG. 3 is a circuit diagram of the voltage regulator tester connected to a typical automotive voltage regulator.
FIG. 4 is a circuit diagram of a conventional voltage regulator tester of which the present invention is an improvement.
FIG. 5 is a circuit diagram of a modified form of the voltage regulator tester.
Referring more in detail to the drawings:
As required, detailed embodiments of the present invention are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary of the invention which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.
In the disclosed embodiment of the present invention, the reference numeral 1 generally designates a voltage regulator tester adapted to ascertain the operability of automotive voltage regulators 2. In an automotive electrical system, a battery 3 supplies current to the electrical accessories of a vehicle. Use of accessories, including the starter, spark plugs, lights, signals, etc., drains away the electrical potential of battery 3; therefore, an alternator 6, driven by the engine crank shaft, is employed to replenish the lost potential.
In the alternator 6, alternating current is generated by the interaction between the stator windings and the magnetism created by current flowing in the field winding 8 of the rotor. Direct current for the field winding 8 is supplied by the battery 3 through the voltage regulator 2 when the voltage regulator 2 senses that the battery potential has dropped below a selected level. The alternator 6 contains rectifiers (not shown) which convert its A.C. output to D.C. which is fed to the battery 3.
A typical voltage regulator 2, see FIG. 3, comprises a relay 11 and a transistor 12, illustrated as a PNP type transistor. In normal operation, the positive side of battery 3 is connected to regulator terminal 14, with the negative side of battery 3 connected to the ground 16 of regulator 2 through the frame of the vehicle. The alternator field coil 8 is connected to regulator terminals 14 and 15; therefore, in the illustrated regulator 2, one side of the alternator field 8 is connected to the positive battery potential at regulator terminal 14. The alternator field circuit is completed through the emitter 17 and collector 18 of the transistor 12 when the base-emitter bias is accomplished through normally closed relay contacts 20 to ground 16. In this condition, the battery 3 is supplying current to the alternator field 8.
As battery potential builds up, a level is reached at which the magnetic pull exerted by relay windings 21 on relay armature 22 overcomes the tension of spring 23 whereupon contacts 20 separate. When this happens the base-emitter junction 19 is no longer forward biased, therefore, the emitter-collector circuit of transistor 12 is open and, with it, current to the alternator field 8 is interrupted.
As with all electromechanical devices, voltage regulators 2 are likely to develop malfunctions after a period of use. Since voltage regulators are not generally repairable, a means is necessary to test them when malfunctions are suspected. FIG. 3 is a circuit diagram of an improved voltage regulator tester. In general, the test circuit 1 is adapted to simulate the normal environment of a voltage regulator 2 with D.C. power supply 25 substituting for the battery 3 and with a test load 26 replacing the alternator field 8.
The power supply 25 is a conventional D.C. power supply adapted to convert 110 volt alternating current to lower voltage direct current. The power supply 25 includes power transformer 27 operative to convert 110 volts A.C. received at the primary winding 28 to 24 volts A.C. at the secondary winding 29. Also included in the primary circuit are series connected circuit breaker 30 and on-off switch 31, parallel connected pilot light 32, and series connected, normally closed, push button reset switch 33. The secondary winding 29 is connected to a full-wave bridge rectifier 34 whose output is then fed to a pi-network filter containing a resistor 35 and electrolytic capacitors 36 and 37. A bleeder resistor 38 is connected in parallel with capacitor 37. The voltage measured at respective positive and negative terminals 39 and 40 of power supply 25 is approximately 24 volts direct current.
In the tester, a rheostat 41 is connected between positive supply terminal 39 and tester terminal 42. In the illustrated embodiment, rheostat 41 has a value of 50 ohms and a power capacity of 50 watts. Rheostat 41 is operative to vary the voltage measured at respective positive and negative tester terminals 42 and 43.
The voltage regulator tester 1 includes a test load 26 adapted to simulate an alternator field coil for the purpose of testing voltage regulators. The test load 26 includes a resistor 44 and an incandescent lamp 45 connected in parallel with resistor 44. In the illustrated circuit, resistor 44 has a value of 25 ohms and a power capacity of 12 watts. The lamp 45 is adapted to light up when test load 26 is energized and to extinguish when the test load 26 is no longer supplied with current. The test load 26 is connected to tester terminals 46 and 47.
In order to monitor the voltage output of power supply 25 as adjusted by rheostat 41, a D.C. volt meter 50 is employed with the positive side thereof connected to tester terminal 42 and with the negative side thereof connected to the collector 51 of an NPN transistor 52. The base 53 of transistor 52 is connected through a resistor 54 to tester terminal 46. In the illustrated circuit, resistor 54 has a value of 10,000 ohms and a power capacity of 1/4 watt. The emitter 55 of transistor 52 is connected to tester terminal 47. When the test load 26 is carrying current, the base emitter junction 56 of transistor 52 is forward biased, and a voltage appears at the collector 51 of transistor 52, as will be explained later. When the test load 26 is not carrying current, the base emitter junction 56 is not forward biased, and no voltage appears at the collector 51. With this arrangement, voltage readings may be taken only when the test load 26 is energized.
In order to use voltage regulator tester 1 to test a voltage regulator 2, the regulator is removed from the automotive circuit and tester terminal 42 is connected to regulator terminal 14 and tester terminal 43 is connected to regulator ground terminal 16. Tester terminal 46 is also connected to regulator terminal 14 and tester terminal 47 is connected to regulator terminal 15. Rheostat 41 is adjusted to maximum resistance to start with, and switch 31 is closed. If the regulator 2 is operating properly, as soon as switch 31 is closed, lamp 45 should light up, indicating that regulator 2 is supplying current to test load 26.
The resistance of rheostat 41 is then decreased slowly until the meter 50 reads approximately 14 volts, at which level, the magnetism created by windings 21 of relay 11 acting on the armature 22 thereof overcomes the tension of spring 23 thereby opening contacts 20. With contacts 20 open, there is no forward bias on the base-emitter junction 19 of transistor 12, and consequently, no current can flow through the collector 17 and the emitter 18 of transistor 12, and the test load 26 is thereby de-energized.
When the test load 26 is energized, the negative connection to volt meter 50 is completed through the collector 51 and the emitter 55 of transistor 52 and through the emitter 17 and the collector 18 of transistor 12 to the ground connection 16 of regulator 2 and thereby to the negative terminal 40 of the power supply 25. However, when contacts 20 open, transistor 12 is shut off thereby de-energizing the test load 26, whereupon transistor 52 is shut off and the needle of meter 50 drops to zero. In practice the regulator is connected in circuit with the tester and the rheostat gradually moved to increase the voltage until the regulator cuts off the charge and thereupon the voltage meter indicator or hand that has been gradually advancing on the dial drops back to zero. This stopping and reversal of direction of the indicator is easily observable.
If lamp 45 does not light up when switch 31 is closed, or if the lamp 45 does not go out at the proper voltage, the regulator is judged defective.
In a certain type of voltage regulator, excluding the illustrated regulator 2, certain circuits require completion before the regulator can function. Therefore, a push button, normally open switch 57 is connected between tester terminals 47 and 43 to thereby render this type of regulator operable.
In order to facilitate the use of tester 1 as a shop instrument, the components of the tester 1 are enclosed in a protective cabinet 58.
The voltage regulator 1 described above is an improvement over a prior tester 60, see FIG. 4. In the prior tester, a volt meter 61 is connected between terminals 62 and 63. As the cut-off voltage of the regulator 2 is reached, by adjusting the rheostat 64, the meter 61 reads the voltage across terminals 62 and 63, as current is supplied to the test load 65. The meter indicator gradually advances and when the regulator 2 turns off, thereby shutting off current to the test load 65, the indicator continues in a quick advance to a limit. Since there is no current drawn through rheostat 64, there is no voltage drop thereacross, and the meter immediately reads the full voltage output of the power supply 60. This sudden increase in the meter reading greatly hinders the determination of the cut-off voltage of the regulator 2 and also puts a strain on the movement of the meter 61.
The test load 65 is a series connection of a resistor 67 of 10 ohms and incandescent lamp 68. The current drawn by the test load 65 is, therefore, substantially less than the current drawn by the parallel connection of resistor 44 and lamp 45 of the tester 1. With the greater current drawn by the test load 26 of tester 1, the regulator 2 is more rigorously tested. The improved voltage regulator tester 1 is, therefore, a more reliable instrument for testing automotive voltage regulators.
Most modern automobile electrical systems incorporate 12 volt batteries along with electrical components designed for use therewith. However, there exist systems which operate at voltages other than 12 volts, including various trucks, aircraft and auxiliary power and refrigeration units, etc. It is desirable to have a tester for testing voltage regulators used in these systems.
FIG. 5 illustrates a modified voltage regulator test circuit 71 adapted to test voltage regulators which operate at 12, 24, 30 and 32 volts. Tester 71 is substantially similar to tester 1 in construction and operation. Modifications include means for selecting appropriate test voltages and test load components and a selectable range, dual scale volt-meter for monitoring test operations.
In the power supply 72 of tester 71, identical transformers 73 and 74 each have a secondary voltage of 25 volts when supplied with 110 volts A.C. at their respective primaries. The primary windings of transformers 73 and 74 are connected in parallel while their secondary windings are connected in series. When switch 75 is in the upper position, as illustrated in FIG. 5, transformer 73 only is used, with its 25 volt output available for testing 12 volt regulators. When switch 75 is in the other positions, illustrated as a middle and a lower position, the combined outputs of transformers 73 and 74 result in a total of 50 volts available for testing 24, 30, and 32 volt regulators. Transformers 73 and 74 are each similar to transformer 27 of tester 1. Circuit breaker 76 has twice the current capacity of circuit breaker 30 of tester 1 to thereby handle greater currents required in testing larger regulators. The remaining components of power supply 72 are substantially similar to corresponding components in tester 1.
Test load 77 includes resistors 78 and 79 which are connected in series. Resistors 78 and 79 are each identical to resistor 44 of tester 1. When switch 80 is in the upper position, as illustrated in FIG. 5, resistor 78 only is selected for testing 12 volt regulators. When switch 80 is in the positions illustrated as a middle and a lower position, both resistors 78 and 79 are selected for testing 24, 30 and 32 volt regulators. The illustrated upper position of switch 81 selects test lamp 82 only for determining when a 12 volt regulator is supplying current to the test load 77. The illustrated middle and lower positions of switch 81 connect a 75 ohm, 12 watt resistor 83 in series with lamp 82 to thereby protect lamp 82 from excessive voltages when testing 24, 30 and 32 volt regulators.
Volt-meter 84 is a dual scale volt-meter for monitoring the adjustable output voltage of power supply 72. The illustrated upper position of switch 85 selects a 0-20 volt scale of meter 84 while the illustrated middle and lower positions of switch 85 select a 0-50 volt scale thereof. Potentiometers 86 are operative to correct the indicator of meter 84 at zero voltage as is sometimes necessary when using multi-scaled meters. The connection of meter 84 in the circuit is substantially similar to the connection of volt-meter 50 of tester, with the negative connection of meter 84 through transistor 87 allowing the indicator of meter 87 to return to zero when the regulator being tested interrupts the current to test load 77.
It can be obxerved from FIG. 5 that the illustrated middle and lower positions of respective switches 75, 80, 81, and 85 are electrically identical. The illustrated middle positions are selected for testing 24 bolt regulators while the illustrated lower positions are used for testing 30 and 32 volt regulators. The purpose for using different switch positions that are electrically the same is to alert the test operator to the different operating and cutoff voltages involved to thereby insure accurate testing of the respective regulators. In practice, switches 75, 80, 81, and 85 are combined in a single 4-pole, 3-position rotary switch 88.
The connection of tester 71 to a typical regulator 2 is similar to the connection of tester 1 thereto. Terminal 89 is connected to regulator ground 16; tester terminal 90 is connected to regulator field terminal 15; and tester terminals 91 and 92 are connected to regulator battery terminal 14.
Operation of tester 71 is substantially similar to the operation of tester 1 except that the illustrated upper position of rotary switch 88 must be selected for 12 volt regulators, the illustrated middle position for 24 volt regulators, and the illustrated lower position for 30 and 32 volt regulators.
It is to be understood that while we have illustrated and described certain forms of our invention, it is not to be limited to the specific form or arrangement of parts herein described and shown.