Automatic headlight system
First Claim
1. An automatic light system for controlling the light emission of a vehicle headlight, comprising:
- light sensor means disposed within the darkened engine compartment of said vehicle to receive ambient light,control means for automatically turning on or off the headlight in response to detected light level signals from said light sensor means when said light level signals are within predetermined light level ranges,delay means for preventing the turning on or off of the headlight if the detected light level signals do not stay within the predetermined light level ranges for a predetermined period of time,polarity switching means connected between said vehicle headlight and the poles of an electric power source, for selectively switching the polarity of the voltage applied by said power source to said headlight,whereby on and off control of the headlight is accomplished without being affected by momentary, sudden darkness or light and additional battery drain during vehicle starting is prevented.
0 Assignments
0 Petitions

Accused Products

Abstract
There is disclosed an automatic light system for a moving vehicle wherein there is provided an on/off control feature responsive to ambient light conditions and responsive to the activation of windshield wipers. Included in the on/off control feature is electronics for a built in delay to delay changes in the on/off condition of the headlights caused by sudden or gradual darkness, sudden or gradual light, and the starting of the vehicle. The automatic light system includes a high/low beam control feature which is responsive to oncoming or passing cars.
317 Citations
Driver assistance system for vehicle | ||
Patent #
US 7,873,187 B2
Filed 08/16/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 7,881,496 B2
Filed 09/30/2005
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image acquisition and processing systems for vehicle equipment control | ||
Patent #
US 7,881,839 B2
Filed 11/14/2005
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 7,949,152 B2
Filed 12/28/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
IMAGE ACQUISITION AND PROCESSING SYSTEMS FOR VEHICLE EQUIPMENT CONTROL | ||
Patent #
US 20110125374A1
Filed 01/31/2011
|
Current Assignee
Gentex Corporation
|
Original Assignee
Eric J. Walstra, Timothy S. Debruine, Gregory S. Bush, Joseph S. Stam
|
Methods and apparatus for generating and modulating white light illumination conditions | ||
Patent #
US 7,959,320 B2
Filed 01/22/2007
|
Current Assignee
Signify North America Corporation
|
Original Assignee
Philips Solid-State Lighting Solutions
|
Vehicular image sensing system | ||
Patent #
US 7,994,462 B2
Filed 12/17/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
METHOD FOR CAPTURE, AGGREGATION, AND TRANSFER OF DATA TO DETERMINE WINDSHIELD WIPER MOTION IN A MOTOR VEHICLE | ||
Patent #
US 20110231119A1
Filed 03/18/2011
|
Current Assignee
Arthur L. Cohen, John R. Haggis
|
Original Assignee
Arthur L. Cohen, John R. Haggis
|
Method and device for automatically switching to main beam | ||
Patent #
US 7,973,484 B2
Filed 07/28/2006
|
Current Assignee
Daimler AG
|
Original Assignee
Daimler AG
|
Vehicular imaging system in an automatic headlamp control system | ||
Patent #
US 8,017,898 B2
Filed 08/13/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic headlamp control system | ||
Patent #
US 7,972,045 B2
Filed 08/10/2007
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic vehicle exterior light control systems | ||
Patent #
US 8,045,760 B2
Filed 02/12/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicle vision system | ||
Patent #
US 8,063,759 B2
Filed 06/05/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Image acquisition and processing systems for vehicle equipment control | ||
Patent #
US 8,065,053 B2
Filed 01/31/2011
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular image sensing system | ||
Patent #
US 7,655,894 B2
Filed 11/19/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
System for controlling exterior vehicle lights | ||
Patent #
US 7,653,215 B2
Filed 10/14/2005
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Imaging system for vehicle | ||
Patent #
US 7,792,329 B2
Filed 10/27/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system with high dynamic range | ||
Patent #
US 7,683,326 B2
Filed 07/08/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
MICRO-ELECTROMECHANICAL SWITCH PROTECTION IN SERIES PARALLEL TOPOLOGY | ||
Patent #
US 20100061024A1
Filed 09/11/2008
|
Current Assignee
General Electric Company
|
Original Assignee
General Electric Company
|
ILLUMINATION SYSTEM | ||
Patent #
US 20100164384A1
Filed 05/08/2009
|
Current Assignee
Fuzhun Precision Industry Company Limited, Foxconn Technology Co. Ltd.
|
Original Assignee
Fuzhun Precision Industry Company Limited, Foxconn Technology Co. Ltd.
|
System for controlling vehicle equipment | ||
Patent #
US 7,825,600 B2
Filed 10/29/2007
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vision system for a vehicle including image processor | ||
Patent #
US 7,859,565 B2
Filed 08/19/2003
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
SYSTEM FOR CONTROLLING VEHICLE EQUIPMENT | ||
Patent #
US 20090010494A1
Filed 09/16/2008
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Method and Device for Automatically Switching to Main Beam | ||
Patent #
US 20090015164A1
Filed 07/28/2006
|
Current Assignee
Daimler AG
|
Original Assignee
Daimler AG
|
Imaging system for vehicle | ||
Patent #
US 7,526,103 B2
Filed 04/14/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Image acquisition and processing methods for automatic vehicular exterior lighting control | ||
Patent #
US 7,565,006 B2
Filed 08/20/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Methods and apparatus for generating and modulating white light illumination conditions | ||
Patent #
US 7,572,028 B2
Filed 01/22/2007
|
Current Assignee
Signify North America Corporation
|
Original Assignee
Philips Solid-State Lighting Solutions
|
Driver assistance system for vehicle | ||
Patent #
US 7,616,781 B2
Filed 04/24/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle automatic exterior light control | ||
Patent #
US 7,613,327 B2
Filed 10/25/2007
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Method for actuating headlights of a motor vehicle | ||
Patent #
US 7,625,107 B2
Filed 08/10/2007
|
Current Assignee
BMW AG
|
Original Assignee
BMW AG
|
VEHICLE AUTOMATIC EXTERIOR LIGHT CONTROL | ||
Patent #
US 20080044062A1
Filed 10/25/2007
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,325,935 B2
Filed 01/08/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,325,934 B2
Filed 01/08/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 7,344,261 B2
Filed 10/06/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle headlight control using imaging sensor | ||
Patent #
US 7,339,149 B1
Filed 11/16/1999
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
VISION SYSTEM FOR A VEHICLE | ||
Patent #
US 20080094715A1
Filed 12/18/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
System for Controlling Vehicle Equipment | ||
Patent #
US 20080129206A1
Filed 10/29/2007
|
Current Assignee
Gentex Corporation
|
Original Assignee
John K. Roberts, William L. Tonar, Joseph S. Stam, Poe G. Bruce, Spencer D. Reese, Douglas J. Newhouse, Jon H. Bechtel
|
Image sensing system for a vehicle | ||
Patent #
US 7,380,948 B2
Filed 01/04/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for controlling an accessory or headlight of a vehicle | ||
Patent #
US 7,388,182 B2
Filed 01/09/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle headlight control using imaging sensor with spectral filtering | ||
Patent #
US 7,402,786 B2
Filed 10/06/2006
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic exterior light control for a vehicle | ||
Patent #
US 7,423,248 B2
Filed 11/07/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vision system for a vehicle | ||
Patent #
US 7,425,076 B2
Filed 12/18/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Marketplace illumination methods and apparatus | ||
Patent #
US 7,453,217 B2
Filed 11/16/2004
|
Current Assignee
Philips Lighting North America Corporation
|
Original Assignee
Philips Solid-State Lighting Solutions
|
Auto light system | ||
Patent #
US 7,449,997 B2
Filed 06/24/2004
|
Current Assignee
Hitachi America Limited, Honda Motor Company
|
Original Assignee
Hitachi America Limited, Honda Motor Company
|
Image sensing system for a vehicle | ||
Patent #
US 7,459,664 B2
Filed 01/24/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle imaging system | ||
Patent #
US 7,227,459 B2
Filed 11/09/2004
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Image processing system to control vehicle headlamps or other vehicle equipment | ||
Patent #
US 7,302,326 B2
Filed 12/11/2006
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Method for Actuating Headlights of a Motor Vehicle | ||
Patent #
US 20070276551A1
Filed 08/10/2007
|
Current Assignee
BMW AG
|
Original Assignee
BMW AG
|
Vehicle night vision system | ||
Patent #
US 7,304,568 B2
Filed 09/16/2005
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Image sensing system for a vehicle | ||
Patent #
US 7,311,406 B2
Filed 01/10/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Automatic headlamp control | ||
Patent #
US 7,004,606 B2
Filed 04/23/2003
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Method and device for automatic control of illumination devices | ||
Patent #
US 7,049,950 B2
Filed 12/29/2001
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Image acquisition and processing systems for vehicle equipment control | ||
Patent #
US 20060106518A1
Filed 11/14/2005
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vision system for vehicle | ||
Patent #
US 20060125919A1
Filed 09/30/2005
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle night vision system | ||
Patent #
US 20060186347A1
Filed 09/16/2005
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Automatic headlamp control | ||
Patent #
US 7,131,754 B2
Filed 02/27/2006
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image processing system to control vehicle headlamps or other vehicle equipment | ||
Patent #
US 7,149,613 B2
Filed 03/15/2005
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Light source detection and categorization system for automatic vehicle exterior light control and method of manufacturing | ||
Patent #
US 20050007579A1
Filed 08/09/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Darin D. Tuttle, Gregory S. Bush, Joseph S. Stam, Harold C. Ockerse, Spencer D. Reese, Jon H. Bechtel
|
Auto light system | ||
Patent #
US 20050036325A1
Filed 06/24/2004
|
Current Assignee
Hitachi America Limited, Honda Motor Company
|
Original Assignee
Hitachi America Limited, Honda Motor Company
|
Image processing system to control vehicle headlamps or other vehicle equipment | ||
Patent #
US 6,868,322 B2
Filed 08/12/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Headlamp control to prevent glare | ||
Patent #
US 6,861,809 B2
Filed 09/05/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Auto-operated dip switching mechanism | ||
Patent #
US 20050057937A1
Filed 09/12/2003
|
Current Assignee
Jui-Heng Tsai
|
Original Assignee
Jui-Heng Tsai
|
Vehicle imaging system with stereo imaging | ||
Patent #
US 20050083184A1
Filed 11/09/2004
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
System for visually aiding a vehicle driver's depth perception | ||
Patent #
US 20050099821A1
Filed 11/24/2004
|
Current Assignee
Valeo-Sylvania LLC
|
Original Assignee
Valeo-Sylvania LLC
|
Continuously variable headlamp control | ||
Patent #
US 6,906,467 B2
Filed 07/10/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
control system to automatically control vehicle headlamps | ||
Patent #
US 6,919,548 B2
Filed 10/02/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
GENTAX CORPORATION
|
Image processing system to control vehicle headlamps or other vehicle equipment | ||
Patent #
US 20050165526A1
Filed 03/15/2005
|
Current Assignee
Gentex Corporation
|
Original Assignee
Mark W. Pierce, Joseph S. Stam, Harold C. Ockerse
|
System for controlling exterior vehicle lights | ||
Patent #
US 6,928,180 B2
Filed 12/11/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicle vision system | ||
Patent #
US 6,924,470 B2
Filed 08/14/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicle lamp control | ||
Patent #
US 6,947,577 B2
Filed 12/19/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
System for controlling exterior vehicle lights | ||
Patent #
US 6,947,576 B2
Filed 12/11/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Auto-operated dip switching mechanism | ||
Patent #
US 6,979,953 B2
Filed 09/12/2003
|
Current Assignee
Jui-Heng Tsai
|
Original Assignee
Jui-Heng Tsai
|
Vehicle vision system with high dynamic range | ||
Patent #
US 20040008410A1
Filed 07/08/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Continuously variable headlamp control | ||
Patent #
US 20040008110A1
Filed 07/10/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
Frederick T. Bauer, Joseph S. Stam, Jon H. Bechtel
|
Light source detection and categorization system for automatic vehicle exterior light control and method of manufacturing | ||
Patent #
US 20040021853A1
Filed 07/30/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Image processing system to control vehicle headlamps or other vehicle equipment | ||
Patent #
US 20040034457A1
Filed 08/12/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
Mark W. Pierce, Joseph S. Stam, Harold C. Ockerse
|
Imaging system for vehicle headlamp control | ||
Patent #
US 20040031907A1
Filed 08/14/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
John K. Roberts, Joseph S. Stam, Jon H. Bechtel
|
Vehicle lamp control | ||
Patent #
US 6,728,393 B2
Filed 12/19/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Control system to automatically control vehicle headlamps | ||
Patent #
US 20040069931A1
Filed 10/02/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
John K. Roberts, Joseph S. Stam, Jon H. Bechtel
|
Method and device for automatic control of illumination devices | ||
Patent #
US 20040114380A1
Filed 10/01/2003
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Device for automatically switching lighting devices in vehicles | ||
Patent #
US 6,759,761 B1
Filed 02/06/2002
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Image acquisition and processing methods for automatic vehicular exterior lighting control | ||
Patent #
US 20040143380A1
Filed 08/20/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Precipitation sensor | ||
Patent #
US 6,768,422 B2
Filed 01/29/2002
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Light source detection and categorization system for automatic vehicle exterior light control and method of manufacturing | ||
Patent #
US 6,774,988 B2
Filed 07/30/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Automatic vehicle exterior light control systems | ||
Patent #
US 20040201483A1
Filed 02/12/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Control system including an imaging sensor | ||
Patent #
US 20040200948A1
Filed 04/13/2004
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system including a forward facing video device | ||
Patent #
US 6,806,452 B2
Filed 11/05/2001
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Monitoring and automatic equipment control systems | ||
Patent #
US 20040230358A1
Filed 02/20/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicle headlight control using imaging sensor | ||
Patent #
US 6,831,261 B2
Filed 04/30/2003
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Optical sensor with directivity controlled | ||
Patent #
US 6,521,882 B1
Filed 03/10/2000
|
Current Assignee
DENSO Corporation
|
Original Assignee
DENSO Corporation
|
Vehicle headlight control using imaging sensor identifying objects by geometric configuration | ||
Patent #
US 6,559,435 B2
Filed 11/16/2001
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Headlamp control to prevent glare | ||
Patent #
US 20030107323A1
Filed 09/05/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
System for controlling exterior vehicle lights | ||
Patent #
US 20030123706A1
Filed 12/11/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
John K. Roberts, William L. Tonar, Joseph S. Stam, Poe G. Bruce, Spencer D. Reese, Douglas J. Newhouse, Jon H. Bechtel
|
Vehicle lamp control | ||
Patent #
US 20030138132A1
Filed 12/19/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
John K. Roberts, William L. Tonar, Joseph S. Stam, Poe G. Bruce, Spencer D. Reese, Jon H. Bechtel
|
System for controlling exterior vehicle lights | ||
Patent #
US 20030123705A1
Filed 12/11/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
John K. Roberts, William L. Tonar, Joseph S. Stam, Poe G. Bruce, Spencer D. Reese, Douglas J. Newhouse, Jon H. Bechtel
|
Vehicle lamp control | ||
Patent #
US 20030138131A1
Filed 12/19/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
John K. Roberts, William L. Tonar, Joseph S. Stam, Poe G. Bruce, Spencer D. Reese, Jon H. Bechtel
|
System for controlling exterior vehicle lights | ||
Patent #
US 6,587,573 B1
Filed 03/05/2001
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Continuously variable headlamp control | ||
Patent #
US 6,593,698 B2
Filed 07/18/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicle lamp control | ||
Patent #
US 6,611,610 B1
Filed 03/20/2000
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Combined headlight/wiper switch | ||
Patent #
US 6,614,127 B1
Filed 04/11/2000
|
Current Assignee
Daniels A. Barron
|
Original Assignee
Daniels A. Barron
|
Vehicle headlight control using imaging sensor | ||
Patent #
US 20030205661A1
Filed 04/30/2003
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle headlamp control | ||
Patent #
US 6,653,615 B2
Filed 09/12/2001
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Control system to automatically control vehicle headlamps | ||
Patent #
US 6,653,614 B2
Filed 06/05/2001
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Automatic headlamp control | ||
Patent #
US 20030227777A1
Filed 04/23/2003
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Continuously variable headlamp control | ||
Patent #
US 6,429,594 B1
Filed 08/24/2001
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicle rain sensor using imaging sensor | ||
Patent #
US 6,320,176 B1
Filed 06/22/2000
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rain sensor | ||
Patent #
US 6,313,454 B1
Filed 07/02/1999
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle headlight control using imaging sensor | ||
Patent #
US 6,097,023 A
Filed 08/17/1998
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic rearview mirror system with automatic headlight activation | ||
Patent #
US 5,715,093 A
Filed 12/17/1996
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle windshield wiper-light control system incorporating daytime running light mode | ||
Patent #
US 5,780,973 A
Filed 06/28/1996
|
Current Assignee
Edwin Kirchmeier, Joseph M. Lively, Ronald Koppel
|
Original Assignee
Edwin Kirchmeier, Joseph M. Lively, Ronald Koppel
|
Vehicle headlight control using imaging sensor | ||
Patent #
US 5,796,094 A
Filed 03/25/1996
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic vehicle power and headlight controlling device with detecting function of a generator and delayed effect | ||
Patent #
US 5,811,888 A
Filed 11/12/1996
|
Current Assignee
Cheng-Tien Hsieh
|
Original Assignee
Cheng-Tien Hsieh
|
Automatic sensitivity adjustment for electro-optic mirror and headlight activation control | ||
Patent #
US 5,812,321 A
Filed 04/25/1996
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Automobile safety device | ||
Patent #
US 5,621,253 A
Filed 02/02/1996
|
Current Assignee
Alice M. Melnytschuk
|
Original Assignee
Alice M. Melnytschuk
|
Automatic defensive driving illumination system | ||
Patent #
US 5,483,107 A
Filed 07/23/1993
|
Current Assignee
Wilmer R. Xander
|
Original Assignee
Wilmer R. Xander
|
Wiper and headlight control circuit | ||
Patent #
US 5,523,630 A
Filed 08/04/1994
|
Current Assignee
Rodney Mcwhorter, Thelma Smelley
|
Original Assignee
Rodney Mcwhorter, Thelma Smelley
|
Light-governed windshield wiper and headlight control system with provision for maintaining the headlights on with insufficient ambient light | ||
Patent #
US 5,589,716 A
Filed 09/20/1995
|
Current Assignee
Gyles B. Dailey
|
Original Assignee
Gyles B. Dailey
|
Photocell system for automatic headlight controller with light tube | ||
Patent #
US 5,453,662 A
Filed 08/10/1994
|
Current Assignee
Hopkins Manufacturing Corporation
|
Original Assignee
DesignTech International Incorporated
|
Headlights "ON" control for motor vehicles | ||
Patent #
US 5,457,347 A
Filed 03/10/1994
|
Current Assignee
Lewis L. Ruter
|
Original Assignee
Lewis L. Ruter
|
Lighting apparatus for vehicular discharge lamp | ||
Patent #
US 5,278,452 A
Filed 02/11/1992
|
Current Assignee
Koito Manufacturing Company Limited
|
Original Assignee
Koito Manufacturing Company Limited
|
Automatic headlamp dimmer | ||
Patent #
US 5,182,502 A
Filed 05/06/1991
|
Current Assignee
Delphi Technologies Inc.
|
Original Assignee
Ford Motor Company, Lectron Products Incorporated
|
Headlight actuator associated with windsheild wiper actuation having delay circuits and daylight detection | ||
Patent #
US 5,187,383 A
Filed 11/06/1990
|
Current Assignee
BUYGROUP LTD
|
Original Assignee
BUYGROUP LTD
|
Vehicle light, windshield wiper control system | ||
Patent #
US 5,185,558 A
Filed 08/08/1991
|
Current Assignee
Charles E. Benedict
|
Original Assignee
Benedict Engineering Company Inc.
|
Combined headlight and windshield wiper control | ||
Patent #
US 5,205,634 A
Filed 02/10/1992
|
Current Assignee
Lewis L. Ruter
|
Original Assignee
Lewis L. Ruter
|
Automotive light and wiper control circuit | ||
Patent #
US 5,250,850 A
Filed 01/14/1991
|
Current Assignee
Albert Pace, Alan S. Lipman, William R. Neuhaus
|
Original Assignee
Albert Pace, Alan S. Lipman, William R. Neuhaus
|
Combined headlight and windshield wiper control | ||
Patent #
US 5,130,905 A
Filed 09/20/1991
|
Current Assignee
Lewis L. Ruter
|
Original Assignee
Lewis L. Ruter
|
Vehicle light, windshield wiper control system | ||
Patent #
US 5,136,209 A
Filed 09/07/1990
|
Current Assignee
Charles E. Benedict
|
Original Assignee
Benedict Engineering Company Inc.
|
Intermittent windshield wiper and headlight control | ||
Patent #
US 5,170,097 A
Filed 03/20/1991
|
Current Assignee
Vincent Montemurro
|
Original Assignee
Vincent Montemurro
|
Headlight, windshield wiper control system | ||
Patent #
US 4,956,562 A
Filed 09/15/1989
|
Current Assignee
Charles E. Benedict
|
Original Assignee
Benedict Engineering Company Inc.
|
Automatic headlamp dimming system | ||
Patent #
US 4,862,037 A
Filed 12/24/1987
|
Current Assignee
FORD MOTOR COMPANY THE DEARBORN COUNTY OF WAYNE AND STATE OF MI. A CORP. OF DE.
|
Original Assignee
Ford Motor Company
|
Composite light pickup device | ||
Patent #
US 4,645,975 A
Filed 09/04/1984
|
Current Assignee
Ford Motor Company
|
Original Assignee
Ford Motor Company
|
Automatic light control for automotive vehicles | ||
Patent #
US 4,376,909 A
Filed 04/09/1980
|
Current Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Imaging system for vehicle | ||
Patent #
US 8,090,153 B2
Filed 05/13/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic lighting system with adaptive function | ||
Patent #
US 8,070,332 B2
Filed 03/29/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System for controlling vehicle equipment | ||
Patent #
US 8,120,652 B2
Filed 09/16/2008
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Automatic lighting system | ||
Patent #
US 8,142,059 B2
Filed 11/09/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Illumination system | ||
Patent #
US 8,143,789 B2
Filed 05/08/2009
|
Current Assignee
Fuzhun Precision Industry Company Limited, Foxconn Technology Co. Ltd.
|
Original Assignee
Fuzhun Precision Industry Company Limited, Foxconn Technology Co. Ltd.
|
Adaptive forward lighting system for vehicle | ||
Patent #
US 8,162,518 B2
Filed 06/30/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 8,189,871 B2
Filed 01/31/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for a vehicle | ||
Patent #
US 8,217,830 B2
Filed 07/28/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular image sensing system | ||
Patent #
US 8,222,588 B2
Filed 08/05/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for vehicle | ||
Patent #
US 8,294,608 B1
Filed 07/03/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,314,689 B2
Filed 06/18/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Monitoring and automatic equipment control systems | ||
Patent #
US 8,326,483 B2
Filed 02/20/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,325,986 B2
Filed 12/22/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular image sensing system | ||
Patent #
US 8,324,552 B2
Filed 07/16/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Adaptive forward lighting system for vehicle | ||
Patent #
US 8,434,919 B2
Filed 04/20/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
VEHICLE LIGHT CONTROLLER | ||
Patent #
US 20130124037A1
Filed 11/15/2011
|
Current Assignee
Seng Toh Goh, Seng Kiat Goh
|
Original Assignee
Seng Toh Goh, Seng Kiat Goh
|
Combined RGB and IR imaging sensor | ||
Patent #
US 8,446,470 B2
Filed 10/03/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 8,451,107 B2
Filed 09/11/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular image sensing system | ||
Patent #
US 8,481,910 B2
Filed 11/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 8,483,439 B2
Filed 05/25/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,492,698 B2
Filed 01/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Monitoring and automatic equipment control systems | ||
Patent #
US 8,583,331 B2
Filed 12/03/2012
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,593,521 B2
Filed 11/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,599,001 B2
Filed 11/19/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 8,614,640 B2
Filed 10/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 8,203,443 B2
Filed 11/09/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 8,203,440 B2
Filed 01/16/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system | ||
Patent #
US 8,629,768 B2
Filed 06/18/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 8,636,393 B2
Filed 05/06/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 8,637,801 B2
Filed 07/08/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 8,643,724 B2
Filed 03/13/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for capture, aggregation, and transfer of data to determine windshield wiper motion in a motor vehicle | ||
Patent #
US 8,645,103 B2
Filed 03/18/2011
|
Current Assignee
Arthur L. Cohen, John R. Haggis
|
Original Assignee
Arthur L. Cohen, John R. Haggis
|
Vision system for vehicle | ||
Patent #
US 8,665,079 B2
Filed 10/15/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Micro-electromechanical switch protection in series parallel topology | ||
Patent #
US 8,687,325 B2
Filed 09/11/2008
|
Current Assignee
General Electric Company
|
Original Assignee
General Electric Company
|
Vehicular vision system | ||
Patent #
US 8,814,401 B2
Filed 03/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 8,818,042 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic vehicle exterior light control | ||
Patent #
US 8,842,176 B2
Filed 01/15/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Method for event-based override strategy for automatic high-beam control | ||
Patent #
US 8,853,946 B2
Filed 12/16/2011
|
Current Assignee
Ford Global Technologies LLC
|
Original Assignee
Ford Global Technologies LLC
|
Parking assist system | ||
Patent #
US 8,874,317 B2
Filed 07/27/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display mirror assembly | ||
Patent #
US 8,879,139 B2
Filed 03/14/2013
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,886,401 B2
Filed 11/04/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Adaptable wireless vehicle vision system based on wireless communication error | ||
Patent #
US 8,890,955 B2
Filed 02/09/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Imaging system for vehicle | ||
Patent #
US 8,908,040 B2
Filed 05/17/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic vehicle exterior light control system assemblies | ||
Patent #
US 8,912,476 B2
Filed 04/03/2013
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular vision system | ||
Patent #
US 8,917,169 B2
Filed 12/02/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Image acquisition and processing system for vehicle equipment control | ||
Patent #
US 8,924,078 B2
Filed 10/17/2011
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
System and method for controlling exterior vehicle lights responsive to detection of a semi-truck | ||
Patent #
US 8,964,024 B2
Filed 08/01/2013
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 8,977,008 B2
Filed 07/08/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle imaging system providing multi-stage aiming stability indication | ||
Patent #
US 8,977,439 B2
Filed 06/12/2013
|
Current Assignee
Gentex Corporation
|
Original Assignee
GENETEX CORPORATION
|
System and method for controlling vehicle equipment responsive to a multi-stage village detection | ||
Patent #
US 8,983,135 B2
Filed 06/01/2012
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,993,951 B2
Filed 07/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,008,369 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,014,904 B2
Filed 09/23/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system with camera misalignment correction and capturing image data at different resolution levels dependent on distance to object in field of view | ||
Patent #
US 9,018,577 B2
Filed 02/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 9,041,806 B2
Filed 08/31/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display mirror assembly | ||
Patent #
US 9,057,875 B2
Filed 11/03/2014
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rear vision system with trailer angle detection | ||
Patent #
US 9,085,261 B2
Filed 01/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear view camera display system with lifecheck function | ||
Patent #
US 9,117,123 B2
Filed 07/05/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Alert system for vehicle | ||
Patent #
US 9,126,525 B2
Filed 02/25/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 9,131,120 B2
Filed 05/15/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,140,789 B2
Filed 12/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,171,217 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for controlling exterior vehicle lights on motorways | ||
Patent #
US 9,187,029 B2
Filed 10/01/2014
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular vision system | ||
Patent #
US 9,191,574 B2
Filed 03/13/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,191,634 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,193,303 B2
Filed 04/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 9,245,448 B2
Filed 06/17/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,244,165 B1
Filed 09/21/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,264,672 B2
Filed 12/21/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Self-dimming vehicle headlights | ||
Patent #
US 9,313,862 B1
Filed 09/27/2012
|
Current Assignee
Levi G. Helton
|
Original Assignee
Levi G. Helton
|
Vehicle imaging system and method for distinguishing reflective objects from lights of another vehicle | ||
Patent #
US 9,317,758 B2
Filed 08/19/2014
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Driver assist system for vehicle | ||
Patent #
US 9,376,060 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,428,192 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 9,436,880 B2
Filed 01/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system including dynamic compensation for color attenuation for vehicle windscreens | ||
Patent #
US 9,434,327 B2
Filed 11/14/2014
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vision system for vehicle | ||
Patent #
US 9,440,535 B2
Filed 01/27/2014
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer angle detection system | ||
Patent #
US 9,446,713 B2
Filed 09/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 9,457,717 B2
Filed 10/27/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 9,463,744 B2
Filed 01/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,469,250 B2
Filed 02/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular camera with on-board microcontroller | ||
Patent #
US 9,495,876 B2
Filed 07/27/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle imaging system | ||
Patent #
US 9,509,957 B2
Filed 04/19/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display mirror assembly | ||
Patent #
US 9,505,349 B2
Filed 06/15/2015
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Backlighting assembly for display for reducing cross-hatching | ||
Patent #
US 9,511,715 B2
Filed 01/30/2015
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicle vision system with trailer angle detection | ||
Patent #
US 9,558,409 B2
Filed 12/11/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,555,803 B2
Filed 05/16/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display mirror assembly | ||
Patent #
US 9,575,315 B2
Filed 09/24/2014
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vision display system for vehicle | ||
Patent #
US 9,598,014 B2
Filed 10/17/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,609,289 B2
Filed 08/29/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle imaging system and method for distinguishing between vehicle tail lights and flashing red stop lights | ||
Patent #
US 9,619,720 B2
Filed 08/19/2014
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rearview device | ||
Patent #
US D783,480 S1
Filed 12/30/2015
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vision system for vehicle | ||
Patent #
US 9,643,605 B2
Filed 10/26/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,656,608 B2
Filed 06/13/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview assembly | ||
Patent #
US 9,694,751 B2
Filed 09/18/2015
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Full display mirror actuator | ||
Patent #
US 9,694,752 B2
Filed 11/06/2015
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Low cost optical film stack | ||
Patent #
US 9,720,278 B2
Filed 01/21/2016
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vision display system for vehicle | ||
Patent #
US 9,731,653 B2
Filed 03/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,736,435 B2
Filed 03/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system having adjustable displayed field of view | ||
Patent #
US 9,744,907 B2
Filed 12/22/2015
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rearview mirror device | ||
Patent #
US D797,627 S1
Filed 10/30/2015
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rearview mirror assembly | ||
Patent #
US D798,207 S1
Filed 10/30/2015
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicle vision system with trailer angle detection | ||
Patent #
US 9,779,313 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 9,789,821 B2
Filed 05/22/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 9,796,332 B2
Filed 05/24/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Toggle paddle for a rear view device | ||
Patent #
US D800,618 S1
Filed 11/02/2015
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Trailer angle detection system calibration | ||
Patent #
US 9,802,542 B2
Filed 09/19/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic display mirror assembly | ||
Patent #
US 9,834,146 B2
Filed 04/01/2015
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Driving assist system for vehicle | ||
Patent #
US 9,834,142 B2
Filed 05/19/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 9,834,216 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 9,868,463 B2
Filed 09/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview assembly | ||
Patent #
US D809,984 S1
Filed 12/07/2016
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
System and method of establishing a multi-camera image using pixel remapping | ||
Patent #
US 9,900,522 B2
Filed 12/01/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver active safety control system for vehicle | ||
Patent #
US 9,911,050 B2
Filed 09/04/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,940,528 B2
Filed 11/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,948,904 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailering assist system with trailer angle detection | ||
Patent #
US 9,950,738 B2
Filed 07/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview device | ||
Patent #
US D817,238 S1
Filed 04/29/2016
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular imaging system comprising an imaging device with a single image sensor and image processor for determining a totally blocked state or partially blocked state of the single image sensor as well as an automatic correction for misalignment of the imaging device | ||
Patent #
US 9,972,100 B2
Filed 04/23/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview device | ||
Patent #
US 9,994,156 B2
Filed 10/28/2016
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rearview assembly with applique | ||
Patent #
US 9,995,854 B2
Filed 04/19/2016
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Imaging system for vehicle | ||
Patent #
US 10,003,755 B2
Filed 12/08/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,015,452 B1
Filed 04/16/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display mirror assembly | ||
Patent #
US 10,018,843 B2
Filed 02/20/2017
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Illuminating display with light gathering structure | ||
Patent #
US 10,025,138 B2
Filed 06/06/2017
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Control system for vehicle | ||
Patent #
US 10,046,702 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 10,053,012 B2
Filed 10/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,676 B2
Filed 09/12/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview mirror system with a display | ||
Patent #
US 10,071,689 B2
Filed 11/12/2015
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 10,086,747 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with trailering assist function | ||
Patent #
US 10,089,541 B2
Filed 10/02/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 10,099,610 B2
Filed 10/10/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular camera with on-board microcontroller | ||
Patent #
US 10,106,155 B2
Filed 11/11/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,110,860 B1
Filed 07/02/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Full display rearview device | ||
Patent #
US 10,112,540 B2
Filed 05/17/2016
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,118,618 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display mirror assembly with an RF shield bezel | ||
Patent #
US 10,131,279 B2
Filed 12/03/2015
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicle camera with multiple spectral filters | ||
Patent #
US 10,132,971 B2
Filed 03/01/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 10,144,352 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer backup assist system | ||
Patent #
US 10,160,382 B2
Filed 02/04/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,187,615 B1
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system having adjustable displayed field of view | ||
Patent #
US 10,195,995 B2
Filed 08/25/2017
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rearview device | ||
Patent #
US D845,851 S1
Filed 03/31/2016
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Trailer driving assist system | ||
Patent #
US 10,300,855 B2
Filed 10/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular display system | ||
Patent #
US 10,300,856 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,306,190 B1
Filed 01/21/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system with rear backup video display | ||
Patent #
US 10,336,255 B2
Filed 11/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview assembly | ||
Patent #
US 10,343,608 B2
Filed 06/28/2017
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,351,135 B2
Filed 11/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview assembly | ||
Patent #
US D854,473 S1
Filed 12/16/2016
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular lane change system | ||
Patent #
US 10,406,980 B2
Filed 10/11/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,462,426 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system with rear backup video display | ||
Patent #
US 10,486,597 B1
Filed 07/01/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular trailer backup assist system | ||
Patent #
US 10,493,917 B2
Filed 12/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,509,972 B2
Filed 04/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 10,569,804 B2
Filed 01/15/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with trailering assist function | ||
Patent #
US 10,586,119 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear backup vision system with video display | ||
Patent #
US 10,589,678 B1
Filed 11/25/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Video processor module for vehicle | ||
Patent #
US 10,611,306 B2
Filed 08/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,616,507 B2
Filed 06/18/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,623,704 B2
Filed 03/09/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular driving assist system using forward-viewing camera | ||
Patent #
US 10,683,008 B2
Filed 07/15/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Toggle paddle | ||
Patent #
US 10,685,623 B2
Filed 10/28/2016
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Tri-modal display mirror assembly | ||
Patent #
US 10,705,332 B2
Filed 03/20/2015
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular imaging system with blockage determination and misalignment correction | ||
Patent #
US 10,726,578 B2
Filed 05/14/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Dual display reverse camera system | ||
Patent #
US 10,735,638 B2
Filed 03/16/2018
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular control system with traffic lane detection | ||
Patent #
US 10,735,695 B2
Filed 10/28/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display mirror assembly | ||
Patent #
US 10,739,591 B2
Filed 07/09/2018
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Imaging system for vehicle | ||
Patent #
US 10,766,417 B2
Filed 10/23/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera | ||
Patent #
US 10,787,116 B2
Filed 09/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer driving assist system | ||
Patent #
US 10,800,332 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular adaptive headlighting system | ||
Patent #
US 10,807,515 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Full display rearview device | ||
Patent #
US 10,807,535 B2
Filed 09/26/2018
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular rear backup vision system with video display | ||
Patent #
US 10,814,785 B2
Filed 03/16/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview assembly with applique | ||
Patent #
US 10,823,882 B2
Filed 06/11/2018
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular control system | ||
Patent #
US 10,839,233 B2
Filed 03/05/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailering assist system with trailer angle detection | ||
Patent #
US 10,858,042 B2
Filed 04/23/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining alignment of vehicular cameras | ||
Patent #
US 10,868,974 B2
Filed 02/19/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,875,455 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with enhanced night vision | ||
Patent #
US 10,875,403 B2
Filed 10/26/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,875,526 B2
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic automobile light control system | ||
Patent #
US 4,139,801 A
Filed 01/26/1977
|
Current Assignee
Raul F. Linares
|
Original Assignee
Raul F. Linares
|
Automatic headlight control system | ||
Patent #
US 3,273,012 A
Filed 11/13/1963
|
Current Assignee
Irving Rosenblum
|
Original Assignee
Irving Rosenblum
|
Light sensitive control system for automobile lighting circuits | ||
Patent #
US 3,349,281 A
Filed 12/29/1964
|
Current Assignee
Larry L. Collins
|
Original Assignee
Larry L. Collins
|
Control for activating motor vehicle electrical load | ||
Patent #
US 3,909,619 A
Filed 05/17/1974
|
Current Assignee
Ko An Inc. Kokomo IN
|
Original Assignee
Ko An Inc. Kokomo IN
|
HEAD LAMP SYSTEM WITH PHOTOELECTRIC SWITCHING AND TIME DELAY EXTINGUISHING | ||
Patent #
US 3,423,633 A
Filed 05/27/1966
|
Current Assignee
Elgar Electronics Corp.
|
Original Assignee
Okada Masashi, Kawai Eiichi
|
6 Claims
-
1. An automatic light system for controlling the light emission of a vehicle headlight, comprising:
-
light sensor means disposed within the darkened engine compartment of said vehicle to receive ambient light, control means for automatically turning on or off the headlight in response to detected light level signals from said light sensor means when said light level signals are within predetermined light level ranges, delay means for preventing the turning on or off of the headlight if the detected light level signals do not stay within the predetermined light level ranges for a predetermined period of time, polarity switching means connected between said vehicle headlight and the poles of an electric power source, for selectively switching the polarity of the voltage applied by said power source to said headlight, whereby on and off control of the headlight is accomplished without being affected by momentary, sudden darkness or light and additional battery drain during vehicle starting is prevented. - View Dependent Claims (2, 3, 4, 5, 6)
-
1 Specification
The present invention relates to an automatic light control system for controlling the on/off state and the intensity of light of headlights of moving vehicles.
Controls for high/low beams for automobile lights are known as illustrated in U.S. Pat. No. 3,273,012 to I. Rosenblum.
The present invention relates to an automatic light system for controlling the on/off state and the intensity of light emanating from the headlights of a moving vehicle. A light sensor means is disposed in the engine compartment to receive ambient light, so that during daytime operation, the automatic light system will keep all lights off until dusk approaches, or until a heavy overcast sky sufficiently reduces ambient light. During the approach of early morning hours and daylight, the headlights are automatically turned off by the automatic light system. Moreover, delay means are incorporated into the automatic on/off control of the headlights so that brief interruptions of the ambient light condition, such as sudden darkness or sudden light, does not affect the overall operation of the on/off control feature of the headlights. Moreover, delay in activating the headlights upon starting the car with the ignition, avoids additional battery drain during starting. Means are provided for automatically turning on the headlights when the windshield wipers are activated. The headlights will turn off when the wipers are turned off, provided there is sufficient ambient light and the sky is not extremely cloudy. A main power switch to the automatic light system has two modes of operation. In the first mode, the headlights will be shut off immediately upon the ignition key being turned off. In the alternative mode, the lights continue to stay on for a predetermined period of time after the ignition key is turned off. A manual override is provided, where the manually operated headlights can be utilized entirely independent of the automatic light system. Combined with the above features, an automatic dimmer system for automatically switching the headlights to and from their high beam state, in response to prevailing driving conditions, is provided in the automatic light system.
A primary object of the present invention is to provide an automatic on/off control feature which is responsive to ambient light conditions of day, night, overcast skys, storms, and like environmental conditions. A related object is to prevent the headlights from being left on during daytime driving, preventing battery run down by leaving headlights on, preventing the vehicle operator from forgetting to turn the headlights on when starting the vehicle at night.
Another object of the present invention is to provide an on/off control feature to the headlights which is responsive to the activation and deactivation of the windshield wipers.
Yet another object of the present invention is to provide a high/low beam control feature for the headlights which is responsive to oncoming or passing cars, such feature being incorporated into the overall operation of the automatic light system. A related object of the present invention is to reduce inadvertant blinding of drivers in approaching vehicles, thereby possibly preventing an unforeseen accident. Another related object is the use of the headlights so that they remain on low beam during heavy fog conditions at night, preventing an excessively blinding condition.
Yet another object of the present invention is to provide means for delaying the turn off of the headlights so that the facility of lighting an area for a given time is provided, when the driver leaves the vehicle.
Yet another object of the present invention is to provide built in delay means for delaying the change of the on/off state of the headlights so as to account for brief periods of sudden darkness, sudden light, and to avoid battery drain while starting.
Yet another object of the present invention is to provide a manual override feature whereby manual operation of the headlights is accomplished independent of the automatic light system.
Yet another object of the present invention is to provide an automatic light system so as to allow driving with the proper beam of light for all driving conditions, relieve the driver of possible strain and annoyance of light switching, and permit the driver to concentrate more on safe driving.
A related object of the present invention is to provide all the above described features, in a system which is simple, easily controlled, relatively cheap to install, rugged and economical to control and operate. A related object of the present invention is to provide an automatic light system wherein the overall system is constantly working, without bells or buzzers needed as reminders to shut headlights off.
Further objects and advantages of the present invention will become apparent as the following description proceeds, taken in conjunction with the accompanying drawings in which:
FIG. 1 is a block diagram of the present invention.
FIG. 2 is a cross-sectional view of the headlight of the present invention.
FIG. 3 is an electronic schematic of the circuitry of the present invention.
An automatic light system, generally indicated and designated by numeral 10, is disclosed for controlling the on/off state and intensity of light emission from a conventional headlight of a moving vehicle, such as an automobile or truck. Referring to FIG. 1, each headlight 12, normally of a pair of headlights of the moving vehicle, is controlled by an on/off switch 14. Normally, the on/off switch 14 is controlled by a conventional manual headlight control 16, which normally takes the form of a conventional hand manipulated in-out adjustable knob. The present invention includes a light sensor means 18, preferrably in the form of a photocell located under the hood of the moving vehicle in the engine compartment area. The light sensor means 18 is responsive to ambient light conditions. A logic means 20 receives detected light level signals from the light sensor beams 18, and if such signals are within predetermined ranges, the on/off switch 14 is activitated by logic means 20 to move into an on position or an off position. Such position is maintained until the logic means, in response to a change in light signals from light sensor means 18, implements a change in the condition of the switch 14. By virtue of this arrangement, the circuitry elements, to be described hereinafter, are adjusted, for daylight operation, so that the headlights 12 are maintained off until dusk approaches. Upon reaching a low enough ambient light level, such as dusk or a heavily overcast sky, the headlights 12 will be activated. Under daytime foggy conditions, the automatic light system 10 may not turn on, due to the bright ambient conditions that exist in a fog like environment. Hence, the headlights 12 can be manually activated by the manual headlight control 16. In the above described situations, the switch 14 is not activated. For night time operation, the switch 14 is normally in its on position. When driving in the early morning hours and daylight approaches, the headlights will be automatically turned off by the switch 14.
Delay means 22 are incorporated into the circuitry of the present invention so as to delay the logic means 20 in switching positions of the switch 14. More specifically, when there is a sufficient change in received light signals from the light sensor beams 18, the logic means 20 activates a change in positions of the switch 14. The delay means delays the state changing, triggering signal from the logic means 20 for a predetermined time period. If the conditions do not maintain the changed light conditions for a sufficient duration equal to this time period, the triggering signal is not provided to the switch 14. In daytime operation, where the headlights 12 are initially off, a drop in detected light levels will not activate the switch 14 to its on state unless the lower light levels exist for preferrably, five to eight seconds. Hence, the automatic light system 10 is not activated for such situations as driving under an overpass. Likewise, when the moving vehicle is initially started, the headlights 12 will initially be off. Assuming the vehicle is started at night, the lights will not be activated for, preferrably five to eight seconds thus eliminating any additional drain on the battery while starting the vehicle. For nighttime operation, where the normal mode of the switch 14 is in its on position, the delay means 22 is set so as to require a constant light source on the light sensor means 18 for approximately 25 to 30 seconds, before the logic means 20 will shut off the headlights 12. For instance, if during nighttime operation the hood required opening at night and the vehicle was parked under a street lamp, the headlights 12 would go off in 25 to 30 seconds. Upon closing the hood, the headlight 12 would come back on. It should be appreciated, that the manual headlight control 16 can always be used to manually activate the headlights 12. The manual headlight control 16 can be used entirely independently of the automatic light system 10, in that it is designed to override such system.
The logic means 20 is electrically coupled to the windshield wipers 24 and is operative in response to an enabling signal from the windshield wipers to control the position of the switch 14, as illustrated in FIG. 1. In operation, the headlights 12 will come on automatically when the windshield wipers are activated. In other words, the windshield wipers 24, when on, send the enabling signal to the logic means 20, which in turn activates the switch 14 to an on position, thereby turning on the headlight 12. Upon turning off the windshield wipers 24, the switch 14 is triggered to its off state, thereby turning off the headlights 12. By virtue of this arrangement, in event of rain, the headlights 12 come on automatically when the windshield wipers 24 are activated. The headlights 12 will turn off when the wipers are turned off provided there is ample ambient light being detected by the light sensor means 18, which would be the case if the sky is not extremely cloudly.
As depicted in FIG. 1, a main power switch 26 is provided for activating and deactivating the automatic light system 10. The power switch 24 can be triggered conductive by a manually operated control means 28. If the automatic light system 10 is deactivated by the main power switch 26, the headlights 12 can be operated in a conventional manner by utilization of the manual headlight control 16. If the main power switch 26 is activated in an on position then the automatic light system 10 is fully incorporated into the operation of the headlights 12. The main power switch 26 has two operating modes. First, in one mode, when an ignition 30 of the vehicle is turned off, the headlights 12 will shut off immediately. In the other mode, a second delay means 32 is utilized to keep the headlights 12 on for approximately 90 to 120 seconds after the ignition 30 is turned off. After this delayed period of time, the lights will turn off automatically. In the event of any malfunction of the automatic system, the main power switch 26 may be turned off, disengaging the automatic light system 10 entirely. It should be understood that the automatic light system 10 does not turn off the headlights 12 when they are manually turned on by the manual headlight control 16, even though the ignition has been turned off.
As illustrated in FIG. 1, the headlights 12, in a conventional manner can be controlled by a standard manual dimmer control 34, such control 34 typically taking the form of a foot operated, floor mounted switch. In the present invention, an automatic headlight dimmer 36 is incorporated to automatically dim the headlight 12 in response to the varying intensity of light from on-coming and/or passing vehicles. The specific structure of the automatic headlight dimmer 36 is not part of the present invention, in that a similar structure is disclosed in U.S. Pat. No. 3,273,012 by I. Rosenblum. However, the specific circuitry to accomplish the dimming function is intertwined in the overall circuitry so that the description of the circuitry necessary to accomplish the dimming function must be described. Furthermore, the incorporation of the dimming function in the overall automatic light system 10 adds novelty to the present invention in that a complete automatic system is provided. The automatic headlight dimmer 36 is electrically coupled to a dimmer sensor 38 and is operative in response to light intensity signals received from the dimmer sensor 38. Hence, the headlights 12 will be switched to their low beams when an oncoming car approaches the vehicle. It should be appreciated that the dimmer sensor 38 can be positioned at any location in which incoming light is received. As illustrated in FIG. 2, the dimmer sensor 38 may be exterioraly mounted relative to the glass plate 40 of a conventional headlight 12.
Referring to FIG. 1, the manual headlight dimmer control 34 must be kept in low beam position for automatic operation of the headlight dimmer 36. In this position the headlight 12 will switch from low to high beam and vice versa automatically. Placing the manual dimmer control 34 in the high beam position, oncoming lights will not lower the beam automatically. The automatic dimmer section is in an override condition. The manual dimmer control 34 must be returned to low beam position after attempting to pass a vehicle by signaling with headlights 12.
Now proceeding with the circuitry, there is illustrated, in FIG. 3, the circuitry 42 for developing signals in accordance with light intensity applied to photocell 44 of the light sensor means 18 from sunrise to sunset is by the sensor means 18 from sunrise to sunset is sufficient to keep the entire circuit in an off state, preventing activation of the power relay 46 until the ambient light has decreased sufficiently, whereby the sensor means 18 will cause current to flow through the amplifier, activating the power relay 46 and supplying the necessary voltages to the respective points in the circuit. At the proper threshold voltage the headlights 12 will turn on in the vehicle. For the circuitry to receive the proper threshold voltage, the surrounding ambient light that the sensor means 18 receives, must occur in a steady gradual decreasing rate, causing a steady increasing current flow respectively. The circuits sense this slow decrease in ambient light which satisfies one mode of the four modes to be explained. At the approach of sunrise, the sensor means 18 begins to receive the ambient light, thereby decreasing the current flow in the amplifying circuit, causing the power relay 46 to disengage, afterwhich the automobile lights will shut down. With the sensor means 18 in total darkness, and the switch of the vehicle ignition 30 activated, there is a time delay of an adjustable amount of seconds before the headlights 12 in the vehicle turn on. With the sensor means 18 in total darkness and the headlights 12 activated in the vehicle, in the event extranneous light were to enter the engine compartment and strike the sensor means 18, the automatic light system 10 would not shut down immediately, causing the vehicle headlights 12 to turn off. The light which entered the engine compartment would have to constantly strike the photocell for approximately 20-25 seconds before the system would shut down.
Referring to FIG. 3, a first mode of operation wherein sensing of ambient light at sundown occurs, the following circuitry used: a transistorized amplifier and trigger circuit is composed of transistors 48, 50, 52, and 54, each having respectively the usual base 56, emitter 58, and collector 60. Connected from a voltage source of 12 volts to the base 56 of 48 is a light sensitive resistance element 62 of photocell 44 which is variable in accordance with changes in light intensity impinging it. As the resistance of element 62 increases, so does the current flowing through the transistor 48, removing the cut-off state of 50. Current flows through 52 and 54 until a threshold voltage is reached across the coil impendance of the relay 46, resulting in activating same. The relay 46 has a moving arm 64 which engages a pair of contacts supplying the necessary voltages to the headlights 12 and accessory lights, along with also supplying the required voltages to the automatic dimmer circuitry 66. A potentiometer 68 is a coarse resistive adjustment for setting the required threshold voltage while a potentiometer 70 is an adjustable setting for different levels of threshold. Current flows, from the transistor 52 through a diode 72 to the transistor 54 and through a diode 74 to the coil impedance of relay 46. The automobile switch must be turned on so that the necessary 12 volts flows through a diode 76 and a diode 78 to the collector 60 of the transistor 52. The voltage source of 12 volts also flows through the diode 76 through a time-delay switch 80 to the collector 60 of the transistor 54. With the time-delay switch 80 left in this position, removing the ignition voltage will immediately remove the voltage present at the coil impedance of the relay 46, closing down the entire circuit and turning off all the vehicles'"'"' lights. With the time-delay switch 80 in the time-delay position, turning off the ignition will permit a slow discharge of voltage through a resistor 82 that had been stored in a capacitor 84 approximating 75 seconds. After discharging the capacitor 84, the voltage present at the relay 46 is removed, deactivating the relay 46, which in turn removes the voltage from all the lights in the vehicle. The power switch 80 serves to remove the ground return from both relays 46 and 86, necessary for activating the relay 46 and 86, thereby providing a complete shut-down of the entire system. The diode 78 serves to isolate the discharging circuit, composed of the capacitor 84 and the resistor 82, from any grounding condition existing in the vehicle. The diode 76 serves to protect the ignition system of the vehicle from any feedback voltage that may exist. The diodes 74 and 88 protect the transistor 54 from any spike voltages that may exist in the relay 46. Temperature compensation is made up of a diode 90 and a diode 92, including the transistors 52 and 54, connected in a complimentary configuration, may be called an inverted Schmitt trigger type circuit.
Referring to FIG. 3, a second mode of operating wherein ambient light is sensed at sunrise, operates in the manner described hereinafter. With the entire system activated, and all light in the vehicle on, with the approach of sunrise, ambient light will begin to impinge on the photocell 44, causing a reduction in its resistance and thereby causing an increase in voltage applied to base 56 of the transistor 48, afterwhich the transistor 50 will cease to conduct, closing down the transistors 52 and 54 and returning the relay 46 to its normally open condition, turning off all lights.
Referring to FIG. 3, a third mode of operation consists of having the ignition off, with the vehicle in total darkness. The photocell 44 is at its highest resistance, permitting the transistor 50 to be in an advanced state of conduction. The transistors 52 and 54 have to be activated to bring the entire circuit into operation. With the ignition 30 turned on, voltage flows through the diodes 76 and 78, a potentiometer 94 and a resistor 96 to the collector 60 of the transistor 52, bringing the transistor 52 to a state of readiness, while a portion of this same voltage flows through the diode 72, a resistor 98 and a resistor 100, bringing capacitor 84 to a charged condition of having the required threshold voltage to activate the relay 46. The time required to reach the proper threshold voltage is adjustable by the potentiometer 94, a typical value being approximately 5-10 seconds. This arrangement permits the starting of the vehicle engine prior to the activation of the vehicle lighting system. In this manner the drain on the vehicle battery is kept to a minimum while starting the engine. In the event of severe difficulty in starting the engine, whereby the headlights 12 activate prior to starting the engine, the power switch can be switched to turn the headlights 12 off, preventing excessive battery drain.
As illustrated in FIG. 3, a fourth mode of operation has the conditions of having the ignition on, the relay 46 activated, the headlights 12 on, and an immediate source of ambient light impinging upon photocell 44. With the photocell 44 in total darkness and its resistance being at its highest level and the transistors 50, 52, and 54 being in a fully conductive state, ambient light immediately applied to photocell 44 reduces its resistance causing the transistor 50 to saturate, thereby blocking conduction of the transistors 50 and 52. With the ignition voltage still applied to the transistor 52, capacitor 84 discharges through the resistor 96, a resistor 102, the transistor 52, the diode 74, the relay 46 in 20 to 25 seconds, thereby reducing the holding voltage of the capacitor 84 and causing the relay 46 to deactivate and open its contacts, shutting off the entire system. This mode acts as a safety feature to prevent an immediate shut down of the system in the event the photocell 44 was to accidentally receive some source of extraneous ambient light which impinged upon it. It would require a constant light source of 20 to 25 seconds before the entire system would deactivate.
For the activation of the headlights 12 at the same time the windshield wipers 24 are activated, we have a transistor 104 accomplishing the task of differentiating the systems being used in todays automobiles. Essentially, when a voltage of positive source is applied to a diode 110, the power relay 46 will activate and the headlights 12 will be turned on. This condition would be applicable to a grounded motor configuration. In the event of an ungrounded motor system, one side of a resistor 108 would return to ground by connecting it to the windshield wiper 24 switch on the vehicle causing the transistor 104 to conduct, transferring a source of positive voltage from the emitter 58 of the transistor 104 to the collector 60 through the diodes 106 and 110 to the power relay 46, turning on the headlights 12. When the resistor 108 is in an ungrounded condition, there is no voltage on the collector 60 of the transistor 104. Therefore, the transistor 104 has the distinct ability to make compatable a grounded or ungrounded windshield wiper motor to the existing system. The diode 106 prevents the transistor 104 from receiving a voltage from any source other than its own emitter 58. In the event it begins to rain at sundown and the windshield wipers 24 are activated, the headlights 12 will be turned on. As nighttime approaches and it necessitates turning off the windshield wipers 24, the headlights 12 would not be turned off at the same time because the photocell 44 has been sensing the ambient light changes and has placed the threshold circuit in a state of activation, keeping all lights on.
Referring to FIG. 3, for the automatic dimmer circuit 66 to begin operating, the power relay 46 has to be activated by the power control circuitry. Upon activation the relay 46 contacts are moved, permitting 12 volts to be applied to a diode 112, afterwhich the proper operating voltages flow throughout the automatic dimmer circuit 66.
As depicted in FIG. 3, a first mode of operation of the dimmer circuit 66 is in the daytime when the windshield wipers are activated. Upon activation of wipers 24, the power relay 46 is placed in operating condition so as to apply voltages to the dimmer circuits respectively. A photocell 114 resistance is low due to high ambient light conditions in the daytime. With a low resistance at the base 56 of a transistor 116, current does not flow through the transistor 116 to a transistor 118, keeping the threshold level low thus preventing the power relay 46 from activating. At this level the headlights 12 will remain in the low beam position.
With reference to FIG. 3, a second mode of operation of the dimmer circuit 66 is engaged during nighttime operation. With the power relay 46 activated, the necessary operating voltages are supplied to the automatic dimmer circuit 66. The photocell 114 resistance will vary with the light intensity impinging upon it. As the resistance of the photocell 114 increases, the current is permitted to flow through the transistor 116, charging a capacator 120 to the threshold level needed to activate the relay 86. The contact points of the relay 86 are moved to the opposite set of points, thereby applying the necessary voltage to the high beam section of the headlights 12. With light impinging on the photocell 114 by the approach of oncoming vehicles, the resistance of the photocell 114 is reduced, causing the transistor 116 to reduce its current output to the transistor 118 and thereby reducing the threshold level of voltage necessary to sustain the dimmer relay 86, so as to return the automatic dimmer relay contacts to the low beam position on the headlights 12. A transistor 122, a capacitor 124, and a diode 126 serve to apply a constant base voltage to the transistor 116 due to the changes in environmental temperature that exist in the engine compartment of an automobile.
Referring to FIG. 3, the polarity link is physically changeable to compensate for the variations in the polarity of switching employed at the headlights 12. As shown by the full lines in FIG. 3, in a first configuration the polarity link 144 connects terminal 150 to the positive voltage and terminal 152 is connected to ground. In a second configuration shown by the dotted lines in FIG. 3, polarity link 144 connects terminal 150 to ground potential via the dotted line 154 shown and terminal 152 is disconnected from ground (as indicated by the dotted X shown) and is connected to the positive voltage via the dotted line 156 shown. Diodes 128 and 130 in conjunction with a resistor 132, and a capacitor 134, reduce the arcing present at the contacts of the automatic dimmer relay 86.
Referring to FIG. 2, the dimmer sensor 38 may be exteriorally mounted relative to the transparent plate 40 of the conventional headlight 12. The transparent plate 40 can take the form of a glass or plastic plate which is secured over the standard headlight 12 by a retaining ring 136. The dimmer sensor 38 is secured to the plate 40, which allows the sensor 38 to be readily mounted to a preexisting headlight arrangement, without the replacement or substitution of headlights. Typically, a pair of leads 138 and 140, which electrically interconnect the sensor 38 and contacts 142, are imbedded in the transparent plate 40. The transparent plate 40 also provides the further advantage of preventing the breakage of the headlights 12 by thrown up rocks or like material commonly encountered during operation of the vehicle.
Although particular embodiments of the invention have been shown and described here, there is no intention to thereby limit the invention to the details of such embodiments. On the contrary, the intention is to cover all modifications, alternatives, embodiments, usages and equivalents of the subject invention as fall within the spirit and scope of the invention, specification and the appended claims.