Mounting bar structure for electrical signalling and indicating devices
First Claim
1. An indicator light assembly comprising:
- an elongated mounting bar having planar wall means extending longitudinally thereof;
a plurality of apertures extending through said wall means at predetermined locations along the length of said bar;
a plurality of indicator lights supported on said mounting bar at predetermined, spaced-apart locations thereon as defined by said apertures, each of said indicator lights having a plurality of electrical connector leads attached thereto and extending therefrom in the same direction whereby each indicator light is freely suspended along one end of a pair of said leads, and said apertures being arranged in laterally adjacent sets, with the rest of leads for each indicator light being contained within a set of said apertures to extend in a direction generally perpendicular to the longitudinal direction of extent of said wall means at a desired position of adjustment along said lead direction, with each of said indicator light being freely supported at a desired height a predetermined displacement distance from said planar wall means only along said one end of a pair of said leads;
means securing each of said connector leads within said apertures and affixing said leads to said mounting bar only along the opposite ends thereof from said one end, with a predetermined lead portion opposite said one end thereof being exposed for connection to an electrical contact means; and
each of said connector leads being made of conductive metal which is malleable and bendable, yet rigid enough to be self-supporting and to hold any position to which it is bent, whereby the lengths of said leads projecting outwardly from said mounting bar between said mounting bar and said indicator lights may be bent to any desired angle or configuration so as to orient each of said indicator lights in a predetermined, desired position.
6 Assignments
0 Petitions

Accused Products

Abstract
A mounting bar assembly for versatile positioning and orientation of indicator lights such as light emitting diodes (LED'"'"'s). The mounting bars are cut to a desired length to accommodate a desired number of LED'"'"'s and are cut to provide a plurality of slots at predetermined, spaced LED locations. The connector leads of the LED'"'"'s are inserted within the slots and adjusted in a direction generally perpendicular to the longitudinal direction of extent of the mounting bar so as to position each LED at a desired height with respect to a printed circuit board or other electrical circuit device to which the leads are connected. The connector leads are malleable, and after being secured to the mounting bar, are bent to any desired configuration so as to support each LED in a particular orientation as required.
220 Citations
Vehicle rearview mirror system | ||
Patent #
US 7,906,756 B2
Filed 04/23/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 7,898,719 B2
Filed 10/16/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
VEHICULAR ELECTROCHROMIC INTERIOR REARVIEW MIRROR ASSEMBLY | ||
Patent #
US 20110019260A1
Filed 10/07/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Reflective mirror assembly | ||
Patent #
US 7,864,399 B2
Filed 03/19/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 7,914,188 B2
Filed 12/11/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Electro-optical element including metallic films and methods for applying the same | ||
Patent #
US 7,864,398 B2
Filed 03/05/2007
|
Current Assignee
Gentex C
|
Original Assignee
Gentex Corporation
|
Interior mirror system | ||
Patent #
US 7,898,398 B2
Filed 01/19/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
VEHICULAR WIRELESS COMMUNICATION SYSTEM | ||
Patent #
US 20110035120A1
Filed 10/20/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular accessory mounting system with a forwardly-viewing camera | ||
Patent #
US 7,888,629 B2
Filed 05/18/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Accessory mounting system suitable for use in a vehicle | ||
Patent #
US 7,916,009 B2
Filed 04/21/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Thin-Film Coatings, Electro-Optic Elements and Assemblies Incorporating These Elements | ||
Patent #
US 20110002028A1
Filed 06/21/2010
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular interior rearview information mirror system | ||
Patent #
US 7,918,570 B2
Filed 11/15/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for vehicle | ||
Patent #
US 7,926,960 B2
Filed 12/07/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Cutting tools having lighting devices | ||
Patent #
US 7,918,030 B2
Filed 08/01/2002
|
Current Assignee
Makita Corporation
|
Original Assignee
Makita Corporation
|
ELECTRO-OPTICAL ELEMENT INCLUDING IMI COATINGS | ||
Patent #
US 20110080629A1
Filed 11/08/2010
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular wireless communication system | ||
Patent #
US 8,000,894 B2
Filed 10/20/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle information display | ||
Patent #
US 8,019,505 B2
Filed 01/14/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system with forwardly-viewing camera | ||
Patent #
US 7,994,471 B2
Filed 02/14/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Mirror assembly for vehicle | ||
Patent #
US 8,049,640 B2
Filed 02/25/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Multi-zone mirrors | ||
Patent #
US 8,035,881 B2
Filed 02/13/2009
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rear vision system for vehicle | ||
Patent #
US 8,044,776 B2
Filed 08/06/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular interior rearview mirror system | ||
Patent #
US 8,047,667 B2
Filed 03/28/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,063,753 B2
Filed 02/24/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Thin-Film Coatings, Electro-Optic Elements and Assemblies Incorporating These Elements | ||
Patent #
US 20100215903A1
Filed 01/22/2010
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
ACCESSORY SYSTEM SUITABLE FOR USE IN A VEHICLE | ||
Patent #
US 20100195226A1
Filed 04/13/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
INTERIOR MIRROR SYSTEM | ||
Patent #
US 20100117815A1
Filed 01/19/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
ACCESSORY SYSTEM SUITABLE FOR USE IN A VEHICLE | ||
Patent #
US 20100219985A1
Filed 04/21/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
BOOT ALGORITHM | ||
Patent #
US 20100095106A1
Filed 10/15/2009
|
Current Assignee
Icera Inc.
|
Original Assignee
Icera Inc.
|
Thin-film coatings, electro-optic elements and assemblies incorporating these elements | ||
Patent #
US 7,688,495 B2
Filed 03/05/2007
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
VIDEO MIRROR SYSTEM FOR VEHICLE | ||
Patent #
US 20100045790A1
Filed 10/30/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Electro-optical element including IMI coatings | ||
Patent #
US 7,830,583 B2
Filed 03/05/2007
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rearview mirror element having a circuit mounted to the rear surface of the element | ||
Patent #
US 7,706,046 B2
Filed 06/08/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Thin-film coatings, electro-optic elements and assemblies incorporating these elements | ||
Patent #
US 7,746,534 B2
Filed 08/03/2007
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
MIRROR REFLECTIVE ELEMENT ASSEMBLY | ||
Patent #
US 20100033797A1
Filed 10/16/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
VIDEO MIRROR SYSTEM SUITABLE FOR USE IN A VEHICLE | ||
Patent #
US 20100194890A1
Filed 04/13/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 7,859,737 B2
Filed 09/08/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
MIRROR REFLECTIVE ELEMENT ASSEMBLY | ||
Patent #
US 20090052003A1
Filed 10/29/2008
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror light | ||
Patent #
US 7,488,099 B2
Filed 04/16/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Multi-Zone Mirrors | ||
Patent #
US 20090207513A1
Filed 02/13/2009
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
REARVIEW ASSEMBLY WITH DISPLAY | ||
Patent #
US 20090201137A1
Filed 03/17/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
ACCESSORY MOUNTING SYSTEM SUITABLE FOR USE IN A VEHICLE | ||
Patent #
US 20090219394A1
Filed 05/18/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
VEHICULAR VISION SYSTEM | ||
Patent #
US 20090262192A1
Filed 07/01/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
INTERIOR REARVIEW MIRROR SYSTEM | ||
Patent #
US 20090243824A1
Filed 03/30/2009
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
INFORMATION DISPLAY SYSTEM FOR A VEHICLE | ||
Patent #
US 20090290369A1
Filed 08/06/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Thin-film coatings, electro-optic elements and assemblies incorporating these elements | ||
Patent #
US 20080030836A1
Filed 03/05/2007
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rearview mirror assembly construction | ||
Patent #
US 7,334,922 B2
Filed 11/06/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Fixation Structure for Fixing a Lamp on a Printed Circuit Board | ||
Patent #
US 20080102694A1
Filed 10/31/2006
|
Current Assignee
Logah Technology Corp.
|
Original Assignee
Logah Technology Corp.
|
VIDEO MIRROR SYSTEM FOR A VEHICLE | ||
Patent #
US 20080180529A1
Filed 04/02/2008
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Fixation structure for fixing a lamp on a printed circuit board | ||
Patent #
US 7,425,139 B2
Filed 10/31/2006
|
Current Assignee
Logah Technology Corp.
|
Original Assignee
Logah Technology Corp.
|
VEHICULAR VIDEO MIRROR SYSTEM | ||
Patent #
US 20080266389A1
Filed 05/09/2008
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Mirror reflective element assembly including electronic component | ||
Patent #
US 7,446,924 B2
Filed 10/01/2004
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Thin-Film Coatings, Electro-Optic Elements and Assemblies Incorporating These Elements | ||
Patent #
US 20080310005A1
Filed 08/03/2007
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Method and Apparatus for Ion Milling | ||
Patent #
US 20080302657A1
Filed 06/12/2008
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rearview assembly having an integral crush zone | ||
Patent #
US 7,196,836 B2
Filed 11/10/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Electro-Optical Element Including IMI Coatings | ||
Patent #
US 20070206263A1
Filed 03/05/2007
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rearview mirror with display | ||
Patent #
US 6,870,655 B1
Filed 06/05/2000
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rearview mirror constructed for efficient assembly | ||
Patent #
US 6,963,438 B2
Filed 11/14/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rearview mirror assembly construction | ||
Patent #
US 6,657,767 B2
Filed 03/25/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Small package high efficiency illuminator design | ||
Patent #
US 20060092644A1
Filed 10/28/2004
|
Current Assignee
Avago Technologies ECBU IP Singapore Pte Limited
|
Original Assignee
Avago Technologies ECBU IP Singapore Pte Limited
|
Cooling device for light emitting diode lamp | ||
Patent #
US 20060139935A1
Filed 12/28/2004
|
Current Assignee
Chaun-Choung Technology Corp.
|
Original Assignee
Chaun-Choung Technology Corp.
|
Mirror reflective element assembly including electronic component | ||
Patent #
US 20050099693A1
Filed 10/01/2004
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror light | ||
Patent #
US 20050231969A1
Filed 04/16/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rearview assembly having an integral crush zone | ||
Patent #
US 20050270621A1
Filed 11/10/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rearview mirror element having a circuit mounted to the rear surface of the element | ||
Patent #
US 20050270620A1
Filed 06/08/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Illuminated message sign with angled light emitting device array | ||
Patent #
US 20040004844A1
Filed 07/02/2002
|
Current Assignee
American Signal Company
|
Original Assignee
American Signal Company
|
Rearview mirror assembly construction | ||
Patent #
US 20040070857A1
Filed 11/06/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rearview mirror constructed for efficient assembly | ||
Patent #
US 20040095632A1
Filed 11/14/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
LED products: flashing LED display and decorative LEDs for autos and trucks | ||
Patent #
US 20040085781A1
Filed 04/07/2003
|
Current Assignee
Jam Strait Incorporated
|
Original Assignee
Bruce Wesson
|
Illuminated message sign with angled light emitting device array | ||
Patent #
US 6,783,258 B2
Filed 07/02/2002
|
Current Assignee
American Signal Company
|
Original Assignee
American Signal Company
|
Cutting tools having lighting devices | ||
Patent #
US 20030024368A1
Filed 08/01/2002
|
Current Assignee
Makita Corporation
|
Original Assignee
Makita Corporation
|
System and method for therapeutic application of energy | ||
Patent #
US 20020143373A1
Filed 01/25/2002
|
Current Assignee
Peter A. Courtnage, Robin E. Schaffer
|
Original Assignee
Peter A. Courtnage, Robin E. Schaffer
|
Display apparatus | ||
Patent #
US 6,174,063 B1
Filed 07/30/1998
|
Current Assignee
SAFRAN ELECTRONICS DEFENSE AVIONICS USA LLC
|
Original Assignee
Eaton Corp. Wisconsin
|
Mounting bar for spacing indicator lights used in electronic equipment | ||
Patent #
US 5,975,716 A
Filed 05/12/1998
|
Current Assignee
WILBRECHT ELECTRONICS INC.
|
Original Assignee
WILBRECHT ELECTRONICS INC.
|
Hinged LED holder | ||
Patent #
US 5,121,311 A
Filed 01/09/1991
|
Current Assignee
R D MOLDED PRODUCTS INC. A CORP OF CA
|
Original Assignee
R D MOLDED PRODUCTS INC.
|
Video mirror system for a vehicle | ||
Patent #
US 8,095,310 B2
Filed 04/02/2008
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle rearview mirror system | ||
Patent #
US 8,106,347 B2
Filed 03/01/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 8,100,568 B2
Filed 03/24/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,094,002 B2
Filed 03/03/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror assembly with display device | ||
Patent #
US 8,083,386 B2
Filed 08/28/2009
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle information display | ||
Patent #
US 8,095,260 B1
Filed 09/12/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Video mirror system for vehicle | ||
Patent #
US 8,072,318 B2
Filed 10/30/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 8,121,787 B2
Filed 08/15/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular having a camera, a rain sensor and a single-ball interior electrochromic mirror assembly attached at an attachment element | ||
Patent #
US 8,134,117 B2
Filed 07/27/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,154,418 B2
Filed 03/30/2009
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Interior rearview mirror assembly for vehicle | ||
Patent #
US 8,162,493 B2
Filed 03/30/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Method of forming a mirrored bent cut glass shape for vehicular exterior rearview mirror assembly | ||
Patent #
US 8,164,817 B2
Filed 10/22/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Thin-film coatings, electro-optic elements and assemblies incorporating these elements | ||
Patent #
US 8,169,681 B2
Filed 01/22/2010
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicle information display system | ||
Patent #
US 8,170,748 B1
Filed 01/06/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular interior rearview mirror system | ||
Patent #
US 8,177,376 B2
Filed 10/28/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Video mirror system suitable for use in a vehicle | ||
Patent #
US 8,179,236 B2
Filed 04/13/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,179,586 B2
Filed 02/24/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 8,194,133 B2
Filed 05/09/2008
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror information display system for a vehicle | ||
Patent #
US 8,228,588 B2
Filed 12/10/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror assembly for a vehicle | ||
Patent #
US 8,267,559 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 8,271,187 B2
Filed 02/17/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Thin-film coatings, electro-optic elements and assemblies incorporating these elements | ||
Patent #
US 8,274,729 B2
Filed 06/21/2010
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular electrochromic interior rearview mirror assembly | ||
Patent #
US 8,277,059 B2
Filed 10/07/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,282,226 B2
Filed 10/18/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 8,282,253 B2
Filed 12/22/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system with forwardly-viewing camera and a control | ||
Patent #
US 8,288,711 B2
Filed 03/02/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automotive rearview mirror assembly | ||
Patent #
US 8,294,975 B2
Filed 01/11/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle rearview mirror system | ||
Patent #
US 8,304,711 B2
Filed 01/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Accessory system suitable for use in a vehicle and accommodating a rain sensor | ||
Patent #
US 8,309,907 B2
Filed 04/13/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Mirror assembly for vehicle | ||
Patent #
US 8,325,055 B2
Filed 10/28/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,325,028 B2
Filed 01/06/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Reflective mirror assembly | ||
Patent #
US 8,335,032 B2
Filed 12/28/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system with night vision function | ||
Patent #
US 8,355,839 B2
Filed 04/24/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Electro-optical element including IMI coatings | ||
Patent #
US 8,368,992 B2
Filed 11/08/2010
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,379,289 B2
Filed 05/14/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
LIGHT SOURCE HEAT-DISSIPATION STRUCTURE OF BACKLIGHT MODULE | ||
Patent #
US 20120250288A1
Filed 11/26/2010
|
Current Assignee
Shenzhen China Star Optoelectronics Technology Co. Ltd.
|
Original Assignee
Shenzhen China Star Optoelectronics Technology Co. Ltd.
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 8,400,704 B2
Filed 07/23/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rear vision system for a vehicle | ||
Patent #
US 8,427,288 B2
Filed 10/21/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 8,462,204 B2
Filed 07/01/2009
|
Current Assignee
Kenneth Schofield, Keith J. Vadas, Mark L. Larson, Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular interior rearview mirror system | ||
Patent #
US 8,465,162 B2
Filed 05/14/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,465,163 B2
Filed 10/08/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle exterior rearview mirror system with a highly viewable display indicator for the driver | ||
Patent #
US 8,466,779 B2
Filed 08/10/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle exterior rearview mirror system with indicator module | ||
Patent #
US 8,466,780 B2
Filed 04/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror element assembly for vehicle | ||
Patent #
US 8,503,062 B2
Filed 08/27/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 8,506,096 B2
Filed 10/01/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,508,383 B2
Filed 03/26/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,508,384 B2
Filed 11/30/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular blind spot indicator mirror | ||
Patent #
US 8,511,841 B2
Filed 01/13/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,525,703 B2
Filed 03/17/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Exterior mirror reflective element sub-assembly with signal indicator | ||
Patent #
US 8,525,697 B2
Filed 10/25/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 8,543,330 B2
Filed 09/17/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Thin-film coatings, electro-optic elements and assemblies incorporating these elements | ||
Patent #
US 8,547,622 B2
Filed 03/29/2012
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Electrochromic mirror reflective element for vehicular rearview mirror assembly | ||
Patent #
US 8,559,093 B2
Filed 04/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Information display system for a vehicle | ||
Patent #
US 8,577,549 B2
Filed 01/14/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Automatic compass system for vehicle | ||
Patent #
US 8,608,327 B2
Filed 06/17/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Variable transmission window | ||
Patent #
US 8,610,992 B2
Filed 10/22/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Multi-zone mirrors | ||
Patent #
US 8,649,083 B2
Filed 10/07/2011
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Video mirror system for a vehicle | ||
Patent #
US 8,653,959 B2
Filed 12/02/2011
|
Current Assignee
Niall R. Lynam, John O. Lindahl, Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,654,433 B2
Filed 08/05/2013
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 8,676,491 B2
Filed 09/23/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of manufacturing a reflective element for a vehicular rearview mirror assembly | ||
Patent #
US 8,705,161 B2
Filed 02/14/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 8,727,547 B2
Filed 08/12/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,779,910 B2
Filed 11/07/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Exterior mirror reflective element sub-assembly | ||
Patent #
US 8,779,937 B2
Filed 08/30/2013
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Exterior rearview mirror assembly | ||
Patent #
US 8,797,627 B2
Filed 12/17/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Illumination module for vehicle | ||
Patent #
US 8,801,245 B2
Filed 11/12/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 8,833,987 B2
Filed 10/08/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Thin-film coatings, electro-optic elements and assemblies incorporating these elements | ||
Patent #
US 8,873,127 B2
Filed 09/10/2013
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Automotive communication system | ||
Patent #
US 8,884,788 B2
Filed 08/30/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 8,908,039 B2
Filed 06/04/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Exterior mirror reflective element sub-assembly | ||
Patent #
US 9,013,288 B2
Filed 07/14/2014
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,014,966 B2
Filed 03/14/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,019,090 B2
Filed 03/17/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Interior rearview mirror system | ||
Patent #
US 9,019,091 B2
Filed 03/17/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle exterior rearview mirror system having an indicator at a back plate of an exterior rearview mirror assembly | ||
Patent #
US 9,035,754 B2
Filed 06/17/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 9,045,091 B2
Filed 09/15/2014
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Exterior rearview mirror assembly | ||
Patent #
US 9,073,491 B2
Filed 08/04/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 9,090,211 B2
Filed 05/19/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Exterior mirror reflective element sub-assembly | ||
Patent #
US 9,162,624 B2
Filed 04/20/2015
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Automotive communication system | ||
Patent #
US 9,221,399 B2
Filed 11/07/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Magna Mirrors of America Incorporated
|
BACKLIGHT MODULE AND DISPLAY DEVICE | ||
Patent #
US 20160011357A1
Filed 07/25/2014
|
Current Assignee
BOE Technology Group Company Limited, Beijing BOE Display Technology Co Ltd
|
Original Assignee
BOE Technology Group Company Limited, Beijing BOE Display Technology Co Ltd
|
Multi-zone mirrors | ||
Patent #
US 9,274,394 B2
Filed 01/15/2014
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Interior rearview mirror system for vehicle | ||
Patent #
US 9,278,654 B2
Filed 04/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Door handle system for vehicle | ||
Patent #
US 9,290,970 B2
Filed 08/11/2014
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicle exterior rearview mirror system having an indicator at a back plate of an exterior rearview mirror assembly | ||
Patent #
US 9,302,624 B2
Filed 05/18/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
OPTICAL SPECTROSCOPY DEVICE INCLUDING A PLURALITY OF EMISSION SOURCES | ||
Patent #
US 20160103019A1
Filed 08/24/2015
|
Current Assignee
Silios Technologies
|
Original Assignee
Silios Technologies
|
Driver assist system for vehicle | ||
Patent #
US 9,315,151 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Exterior mirror reflective element sub-assembly | ||
Patent #
US 9,333,909 B2
Filed 10/19/2015
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 9,341,914 B2
Filed 07/27/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly | ||
Patent #
US 9,346,403 B2
Filed 11/09/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Trailer hitching aid system for vehicle | ||
Patent #
US 9,352,623 B2
Filed 02/17/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Accessory system of a vehicle | ||
Patent #
US 9,376,061 B2
Filed 04/23/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 9,469,252 B2
Filed 02/17/2014
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly | ||
Patent #
US 9,475,431 B2
Filed 10/04/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Automotive communication system | ||
Patent #
US 9,481,306 B2
Filed 12/16/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Exterior mirror reflective element sub-assembly | ||
Patent #
US 9,505,350 B2
Filed 05/09/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Thin-film coatings, electro-optic elements and assemblies incorporating these elements | ||
Patent #
US 9,529,214 B2
Filed 10/10/2014
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Exterior rearview mirror assembly | ||
Patent #
US 9,545,883 B2
Filed 07/06/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 9,557,584 B2
Filed 08/12/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Ground illumination system for vehicle | ||
Patent #
US 9,616,808 B2
Filed 03/17/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Trailer hitching aid system for vehicle | ||
Patent #
US 9,694,749 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 9,694,753 B2
Filed 06/01/2015
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Exterior mirror reflective element sub-assembly | ||
Patent #
US 9,713,986 B2
Filed 11/28/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 9,758,102 B1
Filed 06/30/2017
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Exterior mirror with blind zone indicator | ||
Patent #
US 9,761,144 B2
Filed 09/10/2015
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 9,783,115 B2
Filed 01/24/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 9,783,114 B2
Filed 12/05/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assist system for vehicle | ||
Patent #
US 9,809,168 B2
Filed 04/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,809,171 B2
Filed 04/23/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Bed/room/patient association systems and methods | ||
Patent #
US 9,830,424 B2
Filed 09/16/2014
|
Current Assignee
Hill-Rom Services Incorporated
|
Original Assignee
Hill-Rom Services Incorporated
|
Variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 9,878,670 B2
Filed 05/16/2016
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Method and apparatus for ion milling | ||
Patent #
US 10,017,847 B2
Filed 06/12/2008
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Backlight module and display device | ||
Patent #
US 10,018,775 B2
Filed 07/25/2014
|
Current Assignee
BOE Technology Group Company Limited, Beijing BOE Display Technology Co Ltd
|
Original Assignee
BOE Technology Group Company Limited, Beijing BOE Display Technology Co Ltd
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,029,616 B2
Filed 01/16/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 10,053,013 B2
Filed 11/06/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for manufacturing a blind spot indicator for a vehicular exterior rearview mirror assembly | ||
Patent #
US 10,086,765 B2
Filed 07/24/2017
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,124,733 B2
Filed 10/17/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 10,131,280 B2
Filed 10/09/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for vehicle | ||
Patent #
US 10,144,355 B2
Filed 03/07/2016
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 10,150,417 B2
Filed 09/11/2017
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,166,927 B2
Filed 10/09/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Display system for vehicle | ||
Patent #
US 10,175,477 B2
Filed 08/12/2013
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Park-aid system for vehicle | ||
Patent #
US 10,179,545 B2
Filed 11/06/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,239,457 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Exterior rearview mirror assembly | ||
Patent #
US 10,261,648 B2
Filed 05/23/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Method for unlocking a vehicle door for an authorized user | ||
Patent #
US 10,266,151 B2
Filed 04/10/2017
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Rear seat occupant monitoring system for vehicle | ||
Patent #
US 10,272,839 B2
Filed 06/30/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular exterior rearview mirror assembly with blind spot indicator | ||
Patent #
US 10,308,186 B2
Filed 12/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular exterior electrically variable reflectance mirror reflective element assembly | ||
Patent #
US 10,363,875 B2
Filed 07/23/2018
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Mirror reflective element sub-assembly for vehicular exterior rearview mirror assembly | ||
Patent #
US 10,369,932 B2
Filed 10/01/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,449,903 B2
Filed 12/20/2018
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Method of manufacturing variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 10,538,202 B2
Filed 01/24/2018
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle exterior rearview mirror system having an indicator | ||
Patent #
US 10,589,686 B2
Filed 03/29/2016
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Exterior mirror with blind zone indicator | ||
Patent #
US 10,614,719 B2
Filed 09/11/2017
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular door handle assembly with illumination module | ||
Patent #
US 10,632,968 B2
Filed 04/22/2019
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Mirror reflective element sub-assembly for vehicular exterior rearview mirror assembly | ||
Patent #
US 10,640,047 B2
Filed 08/05/2019
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular exterior electrically variable reflectance mirror reflective element assembly | ||
Patent #
US 10,661,716 B2
Filed 07/29/2019
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,766,421 B2
Filed 11/12/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,829,052 B2
Filed 10/21/2019
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Circuit component mount and assembly | ||
Patent #
US 4,727,648 A
Filed 06/01/1987
|
Current Assignee
Savage Charitable Foundation
|
Original Assignee
John M. Savage Jr
|
Visual indicator support on a printed circuit | ||
Patent #
US 4,575,785 A
Filed 08/01/1984
|
Current Assignee
La Telemecanique Electrique
|
Original Assignee
La Telemecanique Electrique
|
Mounting bar for spacing indicator lights | ||
Patent #
US 4,471,415 A
Filed 06/20/1983
|
Current Assignee
MIDWAY NATIONAL BANK OF ST. PAUL THE
|
Original Assignee
WILBRECHT ELECTRONICS INC.
|
Strip lights and method of making same | ||
Patent #
US 4,376,966 A
Filed 04/07/1980
|
Current Assignee
Vista Manufacturing Incorporated
|
Original Assignee
Vista Manufacturing Incorporated
|
Lens cap holder for attachment to circuit boards | ||
Patent #
US 4,398,240 A
Filed 07/16/1979
|
Current Assignee
Savage Charitable Foundation
|
Original Assignee
John M. Savage Jr
|
Lens clip and cap for led or light unit assembly | ||
Patent #
US 4,195,330 A
Filed 05/19/1978
|
Current Assignee
Savage Charitable Foundation
|
Original Assignee
John M. Savage Jr
|
Multiple fault indicator light package | ||
Patent #
US 4,206,493 A
Filed 10/10/1978
|
Current Assignee
North American Philips Corp.
|
Original Assignee
North American Philips Corp.
|
13 Claims
-
1. An indicator light assembly comprising:
-
an elongated mounting bar having planar wall means extending longitudinally thereof; a plurality of apertures extending through said wall means at predetermined locations along the length of said bar; a plurality of indicator lights supported on said mounting bar at predetermined, spaced-apart locations thereon as defined by said apertures, each of said indicator lights having a plurality of electrical connector leads attached thereto and extending therefrom in the same direction whereby each indicator light is freely suspended along one end of a pair of said leads, and said apertures being arranged in laterally adjacent sets, with the rest of leads for each indicator light being contained within a set of said apertures to extend in a direction generally perpendicular to the longitudinal direction of extent of said wall means at a desired position of adjustment along said lead direction, with each of said indicator light being freely supported at a desired height a predetermined displacement distance from said planar wall means only along said one end of a pair of said leads; means securing each of said connector leads within said apertures and affixing said leads to said mounting bar only along the opposite ends thereof from said one end, with a predetermined lead portion opposite said one end thereof being exposed for connection to an electrical contact means; and each of said connector leads being made of conductive metal which is malleable and bendable, yet rigid enough to be self-supporting and to hold any position to which it is bent, whereby the lengths of said leads projecting outwardly from said mounting bar between said mounting bar and said indicator lights may be bent to any desired angle or configuration so as to orient each of said indicator lights in a predetermined, desired position. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
-
1 Specification
This invention relates to a mounting structure for supporting an assembly of indicator lights, particularly of the light-emitting diode (LED) type.
Manufacturers of electronic equipment of various types, including computers, copying machines, television sets and microwave ovens, as well as an infinite variety of electrical instruments, have used indicator lights or LED devices to serve as function indicators. The requirements of the particular electrical apparatus or appliance with which the LED indicators are used often dictate that the LED indicators should be spaced and oriented in a particular arrangement. Holders and mounting devices of various kinds have been devised and used for supporting a plurality of indicator lights, such as LED'"'"'s in a desired array. Most of such LED holders do not provide any means for selectively spacing the LED'"'"'s along the length of the holder with respect to each other, much less any way for selectively locating each LED at a desired vertical disposition or height location with respect to the elongated holder.
U.S. Pat. No. 4,471,415 discloses a mounting bar for indicator lights which does provide a means for supporting a plurality of LED indicators at predetermined locations with respect to each other along the length of the mounting bar. That patent is owned by a common assignee herewith. The mounting bar disclosed in the aforesaid patent does not provide any means for selectively positioning each LED at a desired vertical location or height with respect to the elongated mounting bar.
There is a definite need for some means for mounting LED indicators at predetermined heights with respect to electrical circuit connectors, particularly including printed circuit boards. For applications where the LED indicator must be displaced above a printed circuit board at an exact height, spacers have been used, either as separate spacer elements or formed integrally with the LED units. Such spacers must be manufactured to predetermined lengths, and specified by the manufacturer when ordering in order to achieve the particular height location desired for each LED on a printed circuit board. The spacers necessarily increase the cost of the LED assembly.
Having in mind the need for some means of mounting a plurality of LED indicators at predetermined lateral spacings with respect to each other, as well as at predetermined height locations with respect to the mounting device, for installation and connection to an electrical circuit in a quick and easy manner, we have developed a mounting bar which permits a plurality of LED indicators to be secured thereon at a predetermined, lateral spacing, as well as at a predetermined height with respect to the mounting bar according to particular user requirements. Adjustability of each LED to a particular angular orientation is also achieved so as to be able to meet special requirements of certain electrical apparatus calling for selective orientation of each LED in an array.
This invention has as its primary objective the provision of an indicator light assembly comprised of a plurality of indicator lights, e.g. LED units, supported not only at predetermined, spaced locations with respect to each other along the length of a mounting device, but also secured at predetermined height locations.
A further objective is to provide such an assembly of indicator lights wherein each separate indicator light may be angularly oriented as desired so as to extend in a particularly desired direction for certain electrical applications.
The foregoing objectives are coupled with the need to provide indicator lights at such predetermined space locations with respect to each other on a mounting device which permits the efficient and economical assembly of the indicator lights, as well as the ultimate connection of each indicator light to the electrical contacts of a connecting circuit, such as that of a printed circuit board.
The aforesaid objects have been effectively met by the use of an elongated mounting bar having slots formed therein at predetermined, spaced locations along the length of the mounting bar, the slots defining in combination with the mounting bar a connector lead containment area within which the pairs of connector leads of each LED may be readily inserted and adjusted in a direction generally perpendicular to the longitudinal direction of extent of the mounting bar so as to position each LED indicator light at a predetermined height with respect to the mounting bar. The connector leads are secured in place within the slots and affixed to the mounting bar, as by glue, such as an epoxy resin, with a predetermined lead length projecting from the mounting bar on the side thereof opposite the indicator light for connection to an electrical contact means, such as a printed circuit board.
As a particularly advantageous feature of the indicator light mounting assembly, each of the connector leads is made of a conductive metal which is malleable and bendable, yet rigid enough to be self-supporting and to hold any position to which it is bent. Thus, after the conductor leads of each indicator light are affixed to the mounting bar, the portions of the leads projecting outwardly from the mounting bar between the bar and the indicator lights may be bent to any desired angle or configuration so as to orient each indicator light in a predetermined, desired position for a particular end use.
In a preferred embodiment of the invention, the aforesaid mounting bar preferably is in the form of a C-shaped, elongated member, preferably molded from plastic, so as to define top and bottom walls projecting from a back wall, with the top and bottom walls vertically spaced apart so as to define an open channel therebetween. The aforesaid slots are formed in the top and bottom walls of the bar, with the connector leads extending through vertically aligned pairs of slots, as well as through the open channel of the bar. The leads are advantageously secured in place to the bar by filling the channel with glue so that the glue flows around the leads and hardens to the leads as well as to the inside surface of the mounting bar channel.
The indicator light assembly described above is basically of the type in which the freely projecting ends of the connector leads are extended through a printed circuit board for soldering thereto. However, as a particular benefit of the LED mounting structure set forth above, the malleable and bendable leads may be bent to a generally horizontal configuration in a common plane so as to permit the leads to be positioned to lie along the surface of a printed circuit board for surface mount attachment thereto.
As a further advantageous feature, a removable support member is provided for sliding attachment to at least one end of the open-ended channel bar, with the support member having depending feet which project below the bar to rest on a circuit attachment surface, such as that of a printed circuit board. In this manner, the mounting bar with a plurality of indicator lights secured thereto may be held in a stable position by one or more of such support members while the connector leads are soldered to a printed circuit board or other electrical circuit device.
FIG. 1 is a perspective view of the mounting bar device of this invention as originally formed;
FIG. 2 is a perspective view of the mounting bar after being cut to the desired length and having the connector lead receiving slots cut therein;
FIG. 3 is a vertical section view taken along lines 3--3 of FIG. 2 and showing the mounting bar with a light-indicating device and its leads secured thereto;
FIG. 4 is an end elevation view of the mounting bar and indicator light assembly of this invention with the connector leads of an LED bent to a horizontal configuration for surface mounting on a printed circuit board;
FIG. 5 is a perspective view showing separate LED units affixed to the mounting bar of this invention with the leads bent so as to position the indicator lights at particular desired positions and orientations;
FIG. 6 is a perspective view of the cut and formed mounting bar of this invention with a stabilizing support member shown in exploded position with respect to its attachment location on one end of the bar;
FIG. 7 is an end elevation view showing the stabilizing support member of FIG. 6 attached to the mounting bar and being utilized in conjunction with a printed circuit board; and
FIG. 8 is a side elevation view, partially in section, showing a modified version of a stabilizing support member utilized in conjunction with the mounting bar and indicator light assembly of this invention.
As shown in FIG. 1, the mounting bar utilized to provide the versatile, infinitely variable mounting locations of indicator lights, is initially formed as an elongated channel member having planar top and bottom walls 2 and 4 extending longitudinally thereof and terminating at closed end walls 1a and 1b. Top and bottom walls 2 and 4 are connected by an upright back wall 6 from which they extend in vertically spaced-apart relation so as to define an open channel therebetween. Top wall 2 has a free front edge 2a, and bottom wall 4 has a free front edge 4a. Transversely extending ribs 7 are provided at spaced apart locations along bottom wall 4 in order to support the mounting bar at a slightly elevated position above the surface with which it is used.
Although mounting bar 1 may be formed in various ways from different materials, it is preferably molded as a unitary structure from a high temperature, thermo-plastic resin such as a polyester or polyphenolene sulfide.
After initially being molded in the form shown in FIG. 1, the mounting bar 1 is cut to a desired length to meet particular specifications, thus leaving the ends of the generally C-shaped mounting bar open as is shown in FIGS. 2 and 4. A gang saw or other appropriate cutting tool is then utilized to cut a plurality of slots through top and bottom walls 2 and 4 at predetermined spaced-apart locations along the length of the mounting bar 1. Such slots are cut in laterally spaced pairs in order to accommodate the pair of connector leads attached to each LED or other form of indicating light. Thus, as is most clearly shown in FIGS. 2 and 6, a first pair of slots 8 is cut through top wall 2, with vertically aligned slots 9 being cut through bottom wall 4. A second pair of top and bottom slots 10 and 11 is formed a predetermined distance away from slots 8 and 9 along the length of planar, top and bottom walls 2 and 4. It is to be understood that any number of slots may be utilized, at predetermined lateral spacings from each other along the mounting bar to accommodate the LED mounting requirements for particular applications. It is to be noted that each of the slots 8, 9, 10, and 11 extend through the tree edges 2a and 4a of the top and bottom walls 2 and 4 so as to provide exposed slot access openings through which the leads of indicator lights may be inserted for proper placement and positioning.
In FIG. 2 there is shown two indicator lights in the form of LED units 12 and 14 of cylindrical, domed shape configuration as are commonly employed on various types of electrical equipment. LED'"'"'s 12 and 14 have connector leads 16 and 18 connected thereto for electrical connection with an electrical contact on a circuit device, such as a printed circuit board. Leads 16 and 18 are initially inserted through the exposed access openings 8a, 9a, 10a, and 12a of the slots 8, 9, and 10, 11, with the leads passing through aligned, vertically spaced pairs of slots 8, 9, and 10, 11 as is indicated with respect to leads 16 in FIG. 3. Also, each lead will pass through the channel defined between top and bottom walls 2 and 4, as shown. At this point in the assembly process, the connector leads 16, 18 are adjusted vertically upwardly and downwardly within the slots in a direction generally perpendicular to the longitudinal direction of extent of top and bottom walls 2 and 4 so as to locate each of the indicator lights or LED'"'"'s 12 and 14 at a desired height a predetermined displacement distance from top wall 2 of the mounting bar 1. The mounting bar 1 will normally be held in a fixture while the connector leads are placed and positioned within the slots 8, 9 and 10, 11.
After being thus vertically positioned along their vertical direction of extent, leads 16 and 18 are secured to mounting bar 1. This may be accomplished in various ways. As a preferred method and procedure, a glue is introduced into the channel formed between top and bottom walls 2 and 4, along back wall 6, with the glue flowing around the connector leads. When the glue hardens to the inside surfaces of the channel walls 2, 4, and 6, as well as to the leads, it will have secured the leads firmly in place on the bar 1. The glue 20 is shown within the channel in its hardened state in FIGS. 3, 4, and 5. The glue will preferably be a thermoset, epoxy resin of the type commercially available.
Heat staking may also be used to secure the connector leads within the mounting bar slots, preferably as an intermediate step for supporting leads in their desired positions of vertical adjustment within the slots prior to applying glue within the mounting bar channel. In such a heat staking operation, a tool with a heated tip is applied to the thermoplastic resin material of mounting bar 1 around slots 8, 9 and 10, 11. This causes melting of the plastic material of the bar, which is rolled over into the slots around the leads.
After the LED leads are set in place in the elongated channel, within the slots of mounting bar 1, they are either left in the straight, upright position as shown with respect to leads 18 in FIG. 2 and in FIG. 8, or they are bent to the desired configuration for the specified indicator light orientation of the particular electrical equipment manufacturer for whom the particular indicator light assembly is being made. For this purpose, the connector leads are made out of a conductive metal, such as tin-plated copper or nickel, which is sufficiently bendable and malleable to be able to be bent and formed to various shapes, yet rigid enough to be self-supporting so as to hold any position to which the leads are bent. Thus, as is illustrated with respect to LED 14 in FIGS. 2 and 3, leads 16 may be bent to a right angle configuration between the top wall 2 of mounting bar 1 and the base of LED 14 so as to orient the elongated LED 14 in a generally horizontal position as shown for particular applications. Alternatively, the connector leads may be inclined at an angle from mounting bar top wall 2 so as to dispose the LED at an angle, as is illustrated with respect to generally cylindrical-shaped LED 28 in FIG. 4.
In FIG. 5 there is illustrated a further variation of the forming of the indicator light leads so as to position LED'"'"'s of flat, rectangular configuration as shown at 30 and 32 in particular, desired locations and orientations. Thus, the leads 34 of LED 30 are bent and formed as shown in FIG. 5 so as to position flat LED 30 in a generally vertical plane extending substantially at right angles to the longitudinal direction of mounting bar 1. Elongated, generally rectangular LED 30 is oriented in a generally horizontally extending position, whereas the leads 36 of LED 32 are twisted as shown so that LED 32 is oriented generally vertically, but also in a plane perpendicular to the longitudinal direction of extent of mounting bar 1. In this way, the LED'"'"'s can be located at a particular height and oriented as desired for proper viewing in the particular electrical apparatus in which they are mounted.
The connector leads of each of the LED'"'"'s will initially be longer than required, and will be trimmed to the desired length after being secured within the mounting bar 1. For conventional connection to a printed circuit board, in a vertical mount type of application, the bottom of the connector leads extending below the bottom wall 4 of mounting bar 1 will be trimmed only short enough to be inserted through the apertures normally provided in a printed circuit board for soldering of the leads in place. Such an application is illustrated in FIG. 3 wherein the leads 16 of LED 14 are shown inserted within aperture 22 of printed circuit board 24 for electrical connection therewith. The soldered joint of the leads to the printed circuit board 24 is indicated at 26.
In certain printed circuit board applications, it is necessary for the leads of LED'"'"'s or other forms of indicators to be secured flush to the top surface of a printed circuit board in a so-called surface mount arrangement. In the past there has been no way to adapt conventional LED mounting bar assemblies with the LED'"'"'s supported in a generally upright or vertical mount position to permit such a surface mounting of the LED leads. The mounting bar assembly disclosed herein overcomes that problem. As is illustrated with respect to leads 18 of LED 12 in FIG. 4, the leads are trimmed to extend for a greater length beyond the underside of mounting bar bottom wall 4 than in the mounting arrangement of FIG. 3. After being secured in place on mounting bar 1 by glue 20, the depending, free ends of leads 18 are bent to a generally horizontal configuration to lie in a common horizontal plane as shown. This permits them to be positioned flat against the top surface of printed circuit board 24 for surface mount soldering thereto.
In the process of soldering the connector leads of light-indicating devices mounted on bar 1 to a printed circuit board, there is sometimes a tendency for the mounting bar to tip over or otherwise dislodge during the soldering process. This would be especially true, for example, with the embodiment of FIG. 3 if a plurality of LED devices 14 are oriented in a right angle configuration with the indicator lights extending horizontally to one side of the mounting bar. The weight of the indicator lights so positioned at an offset location with respect to the bar would tend to tip the bar over. Accordingly, in order to stabilize the mounting bar during attachment operations for the leads, a stabilizing support member as generally indicated by reference numeral 38 in FIGS. 6 and 7 may be utilized. Support member 38 is preferably of inverted, U-shape and comprises a pair of legs 42 and 44 connected at their upper ends by a cross-member 40. The support member 38 is slidably attached to one end of mounting bar 1. In its position of attachment, support member 38 is slidably supported over one end of the mounting bar so that cross-member 40 overlies top wall 2 of the mounting bar with legs 42 and 44 depending downwardly on opposite sides of the mounting bar as shown in FIG. 7. Support member legs 42 and 44 are of such a length that they will depend downwardly below bottom wall 4 of the mounting bar so as to engage the top surface of a printed circuit board 24. In order to removably secure support member 38 to one end of the mounting bar 1, a shoulder 46 is provided on the inside surface of one of the mounting bar legs 42. Shoulder 46 frictionally engages under the inside, lower surface of top wall 2 of the mounting bar in a friction fit therewith, at one end of the mounting bar. For this purpose, the end of the mounting bar to which support member is attached must be open, and not filled with glue. This may be accomplished by using separator plates or baffles during the application of the glue to leave a clearance space either at one end of the mounting bar channel, or along the whole length of the mounting bar channel towards the front end of the top and bottom walls 2 and 4. Alternatively, support member 38 may be mounted on one end of the bar 1 when the glue is still in a fluid state so as to be able to force shoulder 46 inside of the mounting bar channel. It is also contemplated that a shoulder such as that shown at 46 could be formed on the lower, inside surface of one of the support member legs 42 so as to engage under bottom wall 4 of the mounting bar in frictional contact therewith.
It will be appreciated that with one or more support members 38 affixed to mounting bar 1 at opposite ends thereof, the bar will be securely supported during the soldering attachment of the connector leads to the printed circuit board.
In FIG. 8 there is illustrated an alternative form of a stabilizing support member for the mounting bar, with the support member being generally indicated by reference numeral 48. This form of the support member 48 has a top wall or cross-member 50 which extends across the top of bar top wall 2. It also has depending side legs which embrace the opposite sides of the mounting bar, one of which is indicated at 52. An end wall 54 is formed on support member 48 to fit snuggly against the end of mounting bar 1 as shown. One or more pins 56 depend downwardly from end wall 54 and are inserted into apertures 58 provided in the printed circuit board 24 for that purpose. In this way, the mounting bar assembly is even more securely attached to a printed circuit board to stabilize it while the exposed bottom ends of the connector leads 16 and 18 are being soldered to the contacts of the printed circuit board.
Those skilled in the art will appreciate that the mounting bar assembly disclosed herein may be utilized for the versatile mounting of different types of indicator components, in addition to LED'"'"'s . Any type of signal or indicator device having connector leads can be utilized with the mounting bar disclosed herein. As described and shown herein, the conventional LED'"'"'s would normally have two connector leads attached thereto. However, in the case of bicolor LED'"'"'s , three connector leads are used, and are color-coded for connection to two different colored indicator lights within a single LED housing. For LED'"'"'s having three leads, the mounting bar 1 would of course be formed and cut with slots so that the slots are in sets of three laterally spaced adjacent to each other to receive each set of three leads on an LED.
It is anticipated that various other changes may be made in the size, shape, construction, and manner of assembly of the mounting bar and indicator light arrangement disclosed herein without departing from the spirit and scope of the invention as defined in the following claims.