×

Drop volume measurement system

  • US 4,820,281 A
  • Filed: 05/21/1987
  • Issued: 04/11/1989
  • Est. Priority Date: 05/21/1987
  • Status: Expired due to Fees
First Claim
Patent Images

1. Intravenous fluid delivery apparatus of the type comprising a fluid container, a transpartent drip chamber connected to the outlet of said fluid container, a length of flexible tubing attached in fluid flow communication between the discharge side of said drip chamber and injection means for intravenous fluid introducing into a patient, wherein the improvement comprises:

  • flow regulating means operatively associated with said flexible tubing for regulating the flow of intravenous fluid through the delivery apparatus;

    drive means for said flow regulating means;

    a drop orifice at the top of said drip chamber opening freely into unobstructed interior space of said drip chamber, said drip chamber being a standard, commercially available device having a such a width between laterally spaced side walls separated by an uninterrupted space that drops sequentially formed on at a time at said drop orifice may freely fall through said drip chamber without contact with an confining wall surface;

    first sensor means positioned in proximity to said drip chamber for sensing drop presence and emitting a first signal in response thereto, said first sensor means comprising a first light emitting source generating a first sensing field projecting generally transversely across said drip chamber and an aligned light detector, said first light source and its generated sensor field being so positioned a predetermined distance below the outlet of said drop orifice that each separate drop does not enter the first sensing field until the drop is in free fall;

    second sensor means positioned in proximity to said drip chamber for sensing drop presence and emitting a second signal in response thereto, said second signal being utilized in cooperated with said first signal to determine a drop size dimension, and said second sensor means comprising a second light emitting source generating a second sensing field projecting generally transversely across said drop chamber and a second light detector in alignment therewith, said second light source being vertically spaced below said first light source a predetermined distance along the height of said drip chamber, whereby two vertically spaced sensor fields are established;

    timer means operatively associated with said first and second sensor means to receive signals therefrom to measure the elapsed time for each drop to pass through each of said two sensor fields and through a known vertical distance between the fields, as an indication of the vertical drop size dimension in the direction of drop free fall;

    circuit means incorporating said drive means and said first and second sensor means and said timer means, said circuit means further comprising electronic processor means programmed to calculate the actual volumetric flow rate of fluid, based on a multiplication function of drop rate as indicated by the number of drops sensed by either said first or second sensor means in a unit of time and drop volume as a function of said drop size dimension, and comparator means for comparing said actual volumetric flow rate to a predetermined, desired volumetric flow rate; and

    drive signal generating means in said circuit connected to said drive means for producing a drive signal based on the output of said comparator means to adjust said drive means as necessary to maintain a predetermined flow rate.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×