Control circuit for liquid crystal rear-vision mirror
First Claim
1. A control circuit of a rear-vision mirror including a liquid crystal mirror for use in automobiles, for automatically operating the liquid crystal mirror which reduces incident light during application of a driving voltage to the liquid crystal mirror, the circuit comprising:
- light sensing and comparing means for sensing incident light on a liquid crystal mirror, providing a sensor signal representing the amount of incident light, comparing the sensor signal with a predetermined reference signal to determine strength and weakness of the incident light, and providing a comparison signal indicating the amount of the incident light;
an Oscillator for receiving the comparison signal from said light sensing and comparing means and generating a square wave having a constant period;
pulse generating means for receiving the square wave from said oscillator and generating a pair of operating voltage driving pulses having amplitudes determined by a source voltage and having different phases; and
voltage driver means for buffering the driving pulses of said pulse generating means and providing the driving pulses to said liquid crystal rear-vision mirror.
1 Assignment
0 Petitions

Accused Products

Abstract
A circuit for controlling a liquid crystal rear-vision mirror is disclosed. The liquid crystal rear-vision mirror is equipped in an automobile to sense the amount of lights incident upon the mirror itself from a headlight of another automobile following behind. When the level of incident lights goes higher than a pre-determined level, the circuit generates a pulse signal of a fixed period to make the liquid crystal shutter properly function so that the amount of said incident light reflecting from the mirror to the driver will be decreased to a level adequate to secure driving safety.
328 Citations
Vehicle rearview mirror system | ||
Patent #
US 7,906,756 B2
Filed 04/23/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 7,873,187 B2
Filed 08/16/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular signal mirror | ||
Patent #
US 7,871,169 B2
Filed 11/10/2008
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 7,898,719 B2
Filed 10/16/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Reflective mirror assembly | ||
Patent #
US 7,864,399 B2
Filed 03/19/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 7,914,188 B2
Filed 12/11/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior mirror system | ||
Patent #
US 7,898,398 B2
Filed 01/19/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
VEHICULAR WIRELESS COMMUNICATION SYSTEM | ||
Patent #
US 20110035120A1
Filed 10/20/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular accessory mounting system with a forwardly-viewing camera | ||
Patent #
US 7,888,629 B2
Filed 05/18/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Accessory mounting system suitable for use in a vehicle | ||
Patent #
US 7,916,009 B2
Filed 04/21/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular interior rearview information mirror system | ||
Patent #
US 7,918,570 B2
Filed 11/15/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for vehicle | ||
Patent #
US 7,926,960 B2
Filed 12/07/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 7,949,152 B2
Filed 12/28/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
DRIVER ASSISTANCE SYSTEM FOR VEHICLE | ||
Patent #
US 20110093179A1
Filed 12/28/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular image sensing system | ||
Patent #
US 7,994,462 B2
Filed 12/17/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular wireless communication system | ||
Patent #
US 8,000,894 B2
Filed 10/20/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle information display | ||
Patent #
US 8,019,505 B2
Filed 01/14/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system with forwardly-viewing camera | ||
Patent #
US 7,994,471 B2
Filed 02/14/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
IMAGING SYSTEM FOR VEHICLE | ||
Patent #
US 20110216198A1
Filed 05/13/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular imaging system in an automatic headlamp control system | ||
Patent #
US 8,017,898 B2
Filed 08/13/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic headlamp control system | ||
Patent #
US 7,972,045 B2
Filed 08/10/2007
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Mirror assembly for vehicle | ||
Patent #
US 8,049,640 B2
Filed 02/25/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system | ||
Patent #
US 8,063,759 B2
Filed 06/05/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Rear vision system for vehicle | ||
Patent #
US 8,044,776 B2
Filed 08/06/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular interior rearview mirror system | ||
Patent #
US 8,047,667 B2
Filed 03/28/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,063,753 B2
Filed 02/24/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle Imaging System | ||
Patent #
US 20100020170A1
Filed 07/24/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
METHOD FOR PROCESSING DATA PERTAINING TO AN ACTIVITY OF PARTIAL ELECTRICAL DISCHARGES | ||
Patent #
US 20100114509A1
Filed 01/25/2008
|
Current Assignee
Techimp HQ S.r.L.
|
Original Assignee
Techimp Technologies S.r.l.
|
Vehicular image sensing system | ||
Patent #
US 7,655,894 B2
Filed 11/19/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
AUTOMATIC HEADLAMP CONTROL SYSTEM | ||
Patent #
US 20100214791A1
Filed 08/10/2007
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Capacitive sensing in an automotive mirror | ||
Patent #
US 7,806,002 B2
Filed 03/25/2008
|
Current Assignee
Lear Corporation
|
Original Assignee
Lear Corporation
|
Exterior reflective mirror element for a vehicular rearview mirror assembly | ||
Patent #
US 7,821,697 B2
Filed 11/09/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle | ||
Patent #
US 7,792,329 B2
Filed 10/27/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 7,859,737 B2
Filed 09/08/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vision system for a vehicle including image processor | ||
Patent #
US 7,859,565 B2
Filed 08/19/2003
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
DRIVER ASSISTANCE SYSTEM FOR VEHICLE | ||
Patent #
US 20100312446A1
Filed 08/16/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror assembly with display | ||
Patent #
US 7,855,755 B2
Filed 10/31/2006
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
INTERIOR REARVIEW MIRROR ASSEMBLY WITH DISPLAY | ||
Patent #
US 20090015736A1
Filed 10/31/2006
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Automatic Headlamp Control System | ||
Patent #
US 20090045323A1
Filed 08/13/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 7,526,103 B2
Filed 04/14/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
IMAGING SYSTEM FOR VEHICLE | ||
Patent #
US 20090208058A1
Filed 04/24/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
ACCESSORY MOUNTING SYSTEM SUITABLE FOR USE IN A VEHICLE | ||
Patent #
US 20090219394A1
Filed 05/18/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
CAPACITIVE SENSING IN AN AUTOMOTIVE MIRROR | ||
Patent #
US 20090243634A1
Filed 03/25/2008
|
Current Assignee
Lear Corporation
|
Original Assignee
Lear Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 7,616,781 B2
Filed 04/24/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,325,935 B2
Filed 01/08/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,325,934 B2
Filed 01/08/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
IMAGE SENSING SYSTEM FOR A VEHICLE | ||
Patent #
US 20080054161A1
Filed 11/07/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 7,344,261 B2
Filed 10/06/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle headlight control using imaging sensor | ||
Patent #
US 7,339,149 B1
Filed 11/16/1999
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,380,948 B2
Filed 01/04/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for controlling an accessory or headlight of a vehicle | ||
Patent #
US 7,388,182 B2
Filed 01/09/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle headlight control using imaging sensor with spectral filtering | ||
Patent #
US 7,402,786 B2
Filed 10/06/2006
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
VOLTAGE REGULATOR OUTPUTTING POSITIVE AND NEGATIVE VOLTAGES WITH THE SAME OFFSETS | ||
Patent #
US 20080218252A1
Filed 05/07/2008
|
Current Assignee
Ememory Technology Inc.
|
Original Assignee
Ememory Technology Inc.
|
Automatic exterior light control for a vehicle | ||
Patent #
US 7,423,248 B2
Filed 11/07/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Voltage regulator outputting positive and negative voltages with the same offsets | ||
Patent #
US 7,427,889 B2
Filed 04/28/2006
|
Current Assignee
Ememory Technology Inc.
|
Original Assignee
Ememory Technology Inc.
|
Vision system for a vehicle | ||
Patent #
US 7,425,076 B2
Filed 12/18/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Voltage regulator outputting positive and negative voltages with the same offsets | ||
Patent #
US 7,453,312 B2
Filed 05/07/2008
|
Current Assignee
Ememory Technology Inc.
|
Original Assignee
Ememory Technology Inc.
|
Image sensing system for a vehicle | ||
Patent #
US 7,459,664 B2
Filed 01/24/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle headlight control using imaging sensor | ||
Patent #
US 20070023613A1
Filed 10/06/2006
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 20070109651A1
Filed 01/04/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 20070109406A1
Filed 01/03/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 20070109654A1
Filed 01/10/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 20070109653A1
Filed 01/08/2007
|
Current Assignee
Mark Larson, Kenneth Schofield
|
Original Assignee
Mark Larson, Kenneth Schofield
|
Image sensing system for a vehicle | ||
Patent #
US 20070176080A1
Filed 01/09/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
VOLTAGE REGULATOR OUTPUTTING POSITIVE AND NEGATIVE VOLTAGES WITH THE SAME OFFSETS | ||
Patent #
US 20070252640A1
Filed 04/28/2006
|
Current Assignee
Ememory Technology Inc.
|
Original Assignee
Ememory Technology Inc.
|
Image sensing system for a vehicle | ||
Patent #
US 7,311,406 B2
Filed 01/10/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Trainable transmitter and receiver | ||
Patent #
US 5,583,485 A
Filed 06/05/1995
|
Current Assignee
Gentex Corporation
|
Original Assignee
Prince
|
Vehicular vision system | ||
Patent #
US 20060028731A1
Filed 10/06/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Monitoring system | ||
Patent #
US 20050146792A1
Filed 03/08/2005
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle photosensing control system | ||
Patent #
US 6,953,253 B2
Filed 09/14/2004
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle image capture system | ||
Patent #
US 6,802,617 B2
Filed 02/24/2003
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle control system and method | ||
Patent #
US 6,523,964 B2
Filed 10/11/2001
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle control system and method | ||
Patent #
US 6,302,545 B1
Filed 01/08/1999
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Automatic anti-glare rearview mirror system | ||
Patent #
US 5,768,020 A
Filed 11/07/1995
|
Current Assignee
Murakami Kaimeido Co. Ltd. Shizuoka-ken JP, Murakami Kaimeido Co. Ltd.
|
Original Assignee
MURAKAMI KAIMEIDO CO. LTD.
|
Automatic rearview mirror system using a photosensor array | ||
Patent #
US 5,760,962 A
Filed 04/01/1996
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Electrical control system for vehicle options | ||
Patent #
US 5,614,885 A
Filed 08/14/1990
|
Current Assignee
Gentex Corporation
|
Original Assignee
Prince
|
Electrical control system for vehicle options | ||
Patent #
US 5,661,455 A
Filed 01/31/1995
|
Current Assignee
Visteon Global Technologies Incorporated
|
Original Assignee
Prince
|
Electrical control system for vehicle options | ||
Patent #
US 5,691,848 A
Filed 01/31/1995
|
Current Assignee
Prince
|
Original Assignee
Prince
|
Electrical control system for vehicle options | ||
Patent #
US 5,699,044 A
Filed 01/31/1995
|
Current Assignee
Gentex Corporation
|
Original Assignee
Prince
|
Automatic rearview mirror system using a photosensor array | ||
Patent #
US 5,550,677 A
Filed 02/26/1993
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Sun visor lamp | ||
Patent #
US 5,564,813 A
Filed 03/30/1994
|
Current Assignee
Lear Automotive Dearborn Incorporated
|
Original Assignee
United Technologies Automotive Inc.
|
Single sensor adaptive drive circuit for rearview mirror system | ||
Patent #
US 5,193,029 A
Filed 11/19/1991
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Sensor for vehicle accessories | ||
Patent #
US 5,223,814 A
Filed 11/14/1991
|
Current Assignee
Gentex Corporation
|
Original Assignee
Prince
|
Frequency controllable optical device | ||
Patent #
US 5,267,067 A
Filed 02/03/1992
|
Current Assignee
Asulab SA
|
Original Assignee
Asulab SA
|
Automatic automobile rear view mirror assembly | ||
Patent #
US 5,064,274 A
Filed 03/30/1989
|
Current Assignee
Siegel-Robert Incorporated
|
Original Assignee
Siegel-Robert Incorporated
|
Imaging system for vehicle | ||
Patent #
US 8,090,153 B2
Filed 05/13/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Video mirror system for a vehicle | ||
Patent #
US 8,095,310 B2
Filed 04/02/2008
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle rearview mirror system | ||
Patent #
US 8,106,347 B2
Filed 03/01/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 8,100,568 B2
Filed 03/24/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,094,002 B2
Filed 03/03/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic lighting system with adaptive function | ||
Patent #
US 8,070,332 B2
Filed 03/29/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle monitoring system | ||
Patent #
US 8,098,142 B2
Filed 03/08/2005
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Interior rearview mirror assembly with display device | ||
Patent #
US 8,083,386 B2
Filed 08/28/2009
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle information display | ||
Patent #
US 8,095,260 B1
Filed 09/12/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Video mirror system for vehicle | ||
Patent #
US 8,072,318 B2
Filed 10/30/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 8,121,787 B2
Filed 08/15/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular having a camera, a rain sensor and a single-ball interior electrochromic mirror assembly attached at an attachment element | ||
Patent #
US 8,134,117 B2
Filed 07/27/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic lighting system | ||
Patent #
US 8,142,059 B2
Filed 11/09/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Interior rearview mirror system | ||
Patent #
US 8,154,418 B2
Filed 03/30/2009
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Interior rearview mirror assembly for vehicle | ||
Patent #
US 8,162,493 B2
Filed 03/30/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Adaptive forward lighting system for vehicle | ||
Patent #
US 8,162,518 B2
Filed 06/30/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Method of forming a mirrored bent cut glass shape for vehicular exterior rearview mirror assembly | ||
Patent #
US 8,164,817 B2
Filed 10/22/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle information display system | ||
Patent #
US 8,170,748 B1
Filed 01/06/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular interior rearview mirror system | ||
Patent #
US 8,177,376 B2
Filed 10/28/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Video mirror system suitable for use in a vehicle | ||
Patent #
US 8,179,236 B2
Filed 04/13/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,179,586 B2
Filed 02/24/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 8,189,871 B2
Filed 01/31/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 8,194,133 B2
Filed 05/09/2008
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for a vehicle | ||
Patent #
US 8,217,830 B2
Filed 07/28/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular image sensing system | ||
Patent #
US 8,222,588 B2
Filed 08/05/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror information display system for a vehicle | ||
Patent #
US 8,228,588 B2
Filed 12/10/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror assembly for a vehicle | ||
Patent #
US 8,267,559 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 8,271,187 B2
Filed 02/17/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular electrochromic interior rearview mirror assembly | ||
Patent #
US 8,277,059 B2
Filed 10/07/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,282,226 B2
Filed 10/18/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 8,282,253 B2
Filed 12/22/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system with forwardly-viewing camera and a control | ||
Patent #
US 8,288,711 B2
Filed 03/02/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for vehicle | ||
Patent #
US 8,294,608 B1
Filed 07/03/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automotive rearview mirror assembly | ||
Patent #
US 8,294,975 B2
Filed 01/11/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle rearview mirror system | ||
Patent #
US 8,304,711 B2
Filed 01/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Accessory system suitable for use in a vehicle and accommodating a rain sensor | ||
Patent #
US 8,309,907 B2
Filed 04/13/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 8,314,689 B2
Filed 06/18/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Mirror assembly for vehicle | ||
Patent #
US 8,325,055 B2
Filed 10/28/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,325,028 B2
Filed 01/06/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,325,986 B2
Filed 12/22/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular image sensing system | ||
Patent #
US 8,324,552 B2
Filed 07/16/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Reflective mirror assembly | ||
Patent #
US 8,335,032 B2
Filed 12/28/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system with night vision function | ||
Patent #
US 8,355,839 B2
Filed 04/24/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,379,289 B2
Filed 05/14/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 8,400,704 B2
Filed 07/23/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rear vision system for a vehicle | ||
Patent #
US 8,427,288 B2
Filed 10/21/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Adaptive forward lighting system for vehicle | ||
Patent #
US 8,434,919 B2
Filed 04/20/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Combined RGB and IR imaging sensor | ||
Patent #
US 8,446,470 B2
Filed 10/03/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 8,451,107 B2
Filed 09/11/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,462,204 B2
Filed 07/01/2009
|
Current Assignee
Kenneth Schofield, Keith J. Vadas, Mark L. Larson, Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular interior rearview mirror system | ||
Patent #
US 8,465,162 B2
Filed 05/14/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,465,163 B2
Filed 10/08/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular image sensing system | ||
Patent #
US 8,481,910 B2
Filed 11/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 8,483,439 B2
Filed 05/25/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,492,698 B2
Filed 01/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Rearview mirror element assembly for vehicle | ||
Patent #
US 8,503,062 B2
Filed 08/27/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 8,506,096 B2
Filed 10/01/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,508,383 B2
Filed 03/26/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,508,384 B2
Filed 11/30/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular blind spot indicator mirror | ||
Patent #
US 8,511,841 B2
Filed 01/13/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,525,703 B2
Filed 03/17/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assist system for vehicle | ||
Patent #
US 8,543,330 B2
Filed 09/17/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Electrochromic mirror reflective element for vehicular rearview mirror assembly | ||
Patent #
US 8,559,093 B2
Filed 04/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Information display system for a vehicle | ||
Patent #
US 8,577,549 B2
Filed 01/14/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,593,521 B2
Filed 11/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,599,001 B2
Filed 11/19/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic compass system for vehicle | ||
Patent #
US 8,608,327 B2
Filed 06/17/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Variable transmission window | ||
Patent #
US 8,610,992 B2
Filed 10/22/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for vehicle | ||
Patent #
US 8,614,640 B2
Filed 10/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 8,203,443 B2
Filed 11/09/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 8,203,440 B2
Filed 01/16/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system | ||
Patent #
US 8,629,768 B2
Filed 06/18/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 8,636,393 B2
Filed 05/06/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 8,637,801 B2
Filed 07/08/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 8,643,724 B2
Filed 03/13/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Video mirror system for a vehicle | ||
Patent #
US 8,653,959 B2
Filed 12/02/2011
|
Current Assignee
Niall R. Lynam, John O. Lindahl, Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,654,433 B2
Filed 08/05/2013
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vision system for vehicle | ||
Patent #
US 8,665,079 B2
Filed 10/15/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 8,676,491 B2
Filed 09/23/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of manufacturing a reflective element for a vehicular rearview mirror assembly | ||
Patent #
US 8,705,161 B2
Filed 02/14/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 8,727,547 B2
Filed 08/12/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,779,910 B2
Filed 11/07/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Exterior rearview mirror assembly | ||
Patent #
US 8,797,627 B2
Filed 12/17/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 8,814,401 B2
Filed 03/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 8,818,042 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 8,833,987 B2
Filed 10/08/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic vehicle exterior light control | ||
Patent #
US 8,842,176 B2
Filed 01/15/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Parking assist system | ||
Patent #
US 8,874,317 B2
Filed 07/27/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automotive communication system | ||
Patent #
US 8,884,788 B2
Filed 08/30/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,886,401 B2
Filed 11/04/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Adaptable wireless vehicle vision system based on wireless communication error | ||
Patent #
US 8,890,955 B2
Filed 02/09/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular video mirror system | ||
Patent #
US 8,908,039 B2
Filed 06/04/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,908,040 B2
Filed 05/17/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,917,169 B2
Filed 12/02/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 8,977,008 B2
Filed 07/08/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,993,951 B2
Filed 07/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,008,369 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,014,904 B2
Filed 09/23/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,014,966 B2
Filed 03/14/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,019,090 B2
Filed 03/17/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system with camera misalignment correction and capturing image data at different resolution levels dependent on distance to object in field of view | ||
Patent #
US 9,018,577 B2
Filed 02/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Interior rearview mirror system | ||
Patent #
US 9,019,091 B2
Filed 03/17/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Imaging and display system for vehicle | ||
Patent #
US 9,041,806 B2
Filed 08/31/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 9,045,091 B2
Filed 09/15/2014
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Exterior rearview mirror assembly | ||
Patent #
US 9,073,491 B2
Filed 08/04/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rear vision system with trailer angle detection | ||
Patent #
US 9,085,261 B2
Filed 01/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 9,090,211 B2
Filed 05/19/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular rear view camera display system with lifecheck function | ||
Patent #
US 9,117,123 B2
Filed 07/05/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Alert system for vehicle | ||
Patent #
US 9,126,525 B2
Filed 02/25/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 9,131,120 B2
Filed 05/15/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,140,789 B2
Filed 12/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,171,217 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,191,574 B2
Filed 03/13/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,191,634 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,193,303 B2
Filed 04/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automotive communication system | ||
Patent #
US 9,221,399 B2
Filed 11/07/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Magna Mirrors of America Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 9,245,448 B2
Filed 06/17/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,244,165 B1
Filed 09/21/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,264,672 B2
Filed 12/21/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Interior rearview mirror system for vehicle | ||
Patent #
US 9,278,654 B2
Filed 04/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assist system for vehicle | ||
Patent #
US 9,315,151 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,335,411 B1
Filed 01/25/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 9,341,914 B2
Filed 07/27/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Trailer hitching aid system for vehicle | ||
Patent #
US 9,352,623 B2
Filed 02/17/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,376,060 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Accessory system of a vehicle | ||
Patent #
US 9,376,061 B2
Filed 04/23/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Protective circuit | ||
Patent #
US 9,397,492 B2
Filed 08/01/2011
|
Current Assignee
Hottinger Baldwin Messtechnik GmbH
|
Original Assignee
Hottinger Baldwin Messtechnik GmbH
|
Vision system for vehicle | ||
Patent #
US 9,428,192 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 9,436,880 B2
Filed 01/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer angle detection system | ||
Patent #
US 9,446,713 B2
Filed 09/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 9,457,717 B2
Filed 10/27/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,469,250 B2
Filed 02/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automotive communication system | ||
Patent #
US 9,481,306 B2
Filed 12/16/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular camera with on-board microcontroller | ||
Patent #
US 9,495,876 B2
Filed 07/27/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle imaging system | ||
Patent #
US 9,509,957 B2
Filed 04/19/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,507,021 B2
Filed 05/09/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Exterior rearview mirror assembly | ||
Patent #
US 9,545,883 B2
Filed 07/06/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 9,557,584 B2
Filed 08/12/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system with trailer angle detection | ||
Patent #
US 9,558,409 B2
Filed 12/11/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,555,803 B2
Filed 05/16/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Applications for alliform carbon | ||
Patent #
US 9,576,694 B2
Filed 09/16/2011
|
Current Assignee
Universite Paul Sabatier Toulouse Iii
|
Original Assignee
Universite Paul Sabatier Toulouse Iii, Drexel University
|
Vision display system for vehicle | ||
Patent #
US 9,598,014 B2
Filed 10/17/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,609,289 B2
Filed 08/29/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,643,605 B2
Filed 10/26/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,656,608 B2
Filed 06/13/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer hitching aid system for vehicle | ||
Patent #
US 9,694,749 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 9,694,753 B2
Filed 06/01/2015
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,731,653 B2
Filed 03/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,736,435 B2
Filed 03/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Tunable electro-optic filter stack | ||
Patent #
US 9,752,932 B2
Filed 10/29/2011
|
Current Assignee
Drexel University
|
Original Assignee
Drexel University
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 9,758,102 B1
Filed 06/30/2017
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicle vision system with trailer angle detection | ||
Patent #
US 9,779,313 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 9,783,115 B2
Filed 01/24/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 9,783,114 B2
Filed 12/05/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Imaging and display system for vehicle | ||
Patent #
US 9,789,821 B2
Filed 05/22/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 9,796,332 B2
Filed 05/24/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer angle detection system calibration | ||
Patent #
US 9,802,542 B2
Filed 09/19/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,809,168 B2
Filed 04/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,809,171 B2
Filed 04/23/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driving assist system for vehicle | ||
Patent #
US 9,834,142 B2
Filed 05/19/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 9,834,216 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 9,868,463 B2
Filed 09/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 9,878,670 B2
Filed 05/16/2016
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
System and method of establishing a multi-camera image using pixel remapping | ||
Patent #
US 9,900,522 B2
Filed 12/01/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver active safety control system for vehicle | ||
Patent #
US 9,911,050 B2
Filed 09/04/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,940,528 B2
Filed 11/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,948,904 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailering assist system with trailer angle detection | ||
Patent #
US 9,950,738 B2
Filed 07/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system comprising an imaging device with a single image sensor and image processor for determining a totally blocked state or partially blocked state of the single image sensor as well as an automatic correction for misalignment of the imaging device | ||
Patent #
US 9,972,100 B2
Filed 04/23/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,003,755 B2
Filed 12/08/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,015,452 B1
Filed 04/16/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,029,616 B2
Filed 01/16/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Control system for vehicle | ||
Patent #
US 10,046,702 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,053,013 B2
Filed 11/06/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 10,053,012 B2
Filed 10/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,676 B2
Filed 09/12/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,086,747 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with trailering assist function | ||
Patent #
US 10,089,541 B2
Filed 10/02/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 10,099,610 B2
Filed 10/10/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular camera with on-board microcontroller | ||
Patent #
US 10,106,155 B2
Filed 11/11/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 10,107,905 B2
Filed 11/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,110,860 B1
Filed 07/02/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,118,618 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular video mirror system | ||
Patent #
US 10,131,280 B2
Filed 10/09/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle camera with multiple spectral filters | ||
Patent #
US 10,132,971 B2
Filed 03/01/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 10,144,352 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Interior rearview mirror system for vehicle | ||
Patent #
US 10,144,355 B2
Filed 03/07/2016
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 10,150,417 B2
Filed 09/11/2017
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Trailer backup assist system | ||
Patent #
US 10,160,382 B2
Filed 02/04/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,166,927 B2
Filed 10/09/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Tunable electro-optic filter stack | ||
Patent #
US 10,175,106 B2
Filed 08/01/2017
|
Current Assignee
Drexel University
|
Original Assignee
Drexel University
|
Display system for vehicle | ||
Patent #
US 10,175,477 B2
Filed 08/12/2013
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Park-aid system for vehicle | ||
Patent #
US 10,179,545 B2
Filed 11/06/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,187,615 B1
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,239,457 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear seat occupant monitoring system for vehicle | ||
Patent #
US 10,272,839 B2
Filed 06/30/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer driving assist system | ||
Patent #
US 10,300,855 B2
Filed 10/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular display system | ||
Patent #
US 10,300,856 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,306,190 B1
Filed 01/21/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular exterior rearview mirror assembly with blind spot indicator | ||
Patent #
US 10,308,186 B2
Filed 12/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular vision system with rear backup video display | ||
Patent #
US 10,336,255 B2
Filed 11/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,351,135 B2
Filed 11/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular exterior electrically variable reflectance mirror reflective element assembly | ||
Patent #
US 10,363,875 B2
Filed 07/23/2018
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular lane change system | ||
Patent #
US 10,406,980 B2
Filed 10/11/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,449,903 B2
Filed 12/20/2018
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular control system | ||
Patent #
US 10,462,426 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular trailer backup assist system | ||
Patent #
US 10,493,917 B2
Filed 12/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,509,972 B2
Filed 04/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of manufacturing variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 10,538,202 B2
Filed 01/24/2018
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Parking assist system | ||
Patent #
US 10,569,804 B2
Filed 01/15/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with trailering assist function | ||
Patent #
US 10,586,119 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Video processor module for vehicle | ||
Patent #
US 10,611,306 B2
Filed 08/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,616,507 B2
Filed 06/18/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,623,704 B2
Filed 03/09/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular exterior electrically variable reflectance mirror reflective element assembly | ||
Patent #
US 10,661,716 B2
Filed 07/29/2019
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Forward sensing system for vehicle | ||
Patent #
US 10,670,713 B2
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular driving assist system using forward-viewing camera | ||
Patent #
US 10,683,008 B2
Filed 07/15/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system with blockage determination and misalignment correction | ||
Patent #
US 10,726,578 B2
Filed 05/14/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with traffic lane detection | ||
Patent #
US 10,735,695 B2
Filed 10/28/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,766,417 B2
Filed 10/23/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera | ||
Patent #
US 10,787,116 B2
Filed 09/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,793,067 B2
Filed 07/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer driving assist system | ||
Patent #
US 10,800,332 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular adaptive headlighting system | ||
Patent #
US 10,807,515 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,829,052 B2
Filed 10/21/2019
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular control system | ||
Patent #
US 10,839,233 B2
Filed 03/05/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailering assist system with trailer angle detection | ||
Patent #
US 10,858,042 B2
Filed 04/23/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining alignment of vehicular cameras | ||
Patent #
US 10,868,974 B2
Filed 02/19/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,875,455 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with enhanced night vision | ||
Patent #
US 10,875,403 B2
Filed 10/26/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,875,526 B2
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward sensing system for vehicle | ||
Patent #
US 10,877,147 B2
Filed 06/01/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Control apparatus with delay circuit for antiglare mirror | ||
Patent #
US 4,669,825 A
Filed 12/03/1984
|
Current Assignee
Nippondenso Co. Ltd.
|
Original Assignee
Nippondenso Co. Ltd.
|
Circuit for the actuation of liquid crystal layers in mirrors | ||
Patent #
US 4,678,281 A
Filed 03/26/1985
|
Current Assignee
Rainer Bauer
|
Original Assignee
Rainer Bauer
|
Liquid crystal closed-loop controlled mirror systems | ||
Patent #
US 4,690,508 A
Filed 05/17/1985
|
Current Assignee
Gentex Corporation
|
Original Assignee
C-D MARKETING LTD.
|
Control apparatus for two section, glare shield mirror | ||
Patent #
US 4,697,883 A
Filed 08/22/1985
|
Current Assignee
Nippondenso Co. Ltd.
|
Original Assignee
Nippondenso Co. Ltd.
|
Day/night mirror | ||
Patent #
US 4,701,022 A
Filed 11/28/1984
|
Current Assignee
Gentex Corporation
|
Original Assignee
C-D MARKETING LTD.
|
Reflection controllable view mirror device for motor vehicle or the like | ||
Patent #
US 4,603,946 A
Filed 09/22/1983
|
Current Assignee
Kabushiki-Kaisha Tokai-Rika-Denki-Seisakusho
|
Original Assignee
Kabushiki Kaisha Tokai RIKA Denki Seisakusho
|
Electro-optic welding lens assembly | ||
Patent #
US 4,620,322 A
Filed 12/16/1982
|
Current Assignee
Andre M. Eggenschwiler
|
Original Assignee
Andre M. Eggenschwiler
|
Glare-shielding type reflector | ||
Patent #
US 4,632,509 A
Filed 11/15/1984
|
Current Assignee
Nippondenso Co. Ltd.
|
Original Assignee
Nippondenso Co. Ltd.
|
Liquid crystal active light shield | ||
Patent #
US 4,560,239 A
Filed 02/29/1984
|
Current Assignee
Amnon Katz
|
Original Assignee
Amnon Katz
|
Flight training method and apparatus | ||
Patent #
US 4,152,846 A
Filed 02/15/1977
|
Current Assignee
INSTRUMENT FLIGHT RESEARCH INC.
|
Original Assignee
Frank A. Witt
|
Flight training hood | ||
Patent #
US 4,021,935 A
Filed 02/20/1976
|
Current Assignee
INSTRUMENT FLIGHT RESEARCH INC.
|
Original Assignee
Frank Witt
|
11 Claims
-
1. A control circuit of a rear-vision mirror including a liquid crystal mirror for use in automobiles, for automatically operating the liquid crystal mirror which reduces incident light during application of a driving voltage to the liquid crystal mirror, the circuit comprising:
-
light sensing and comparing means for sensing incident light on a liquid crystal mirror, providing a sensor signal representing the amount of incident light, comparing the sensor signal with a predetermined reference signal to determine strength and weakness of the incident light, and providing a comparison signal indicating the amount of the incident light; an Oscillator for receiving the comparison signal from said light sensing and comparing means and generating a square wave having a constant period; pulse generating means for receiving the square wave from said oscillator and generating a pair of operating voltage driving pulses having amplitudes determined by a source voltage and having different phases; and voltage driver means for buffering the driving pulses of said pulse generating means and providing the driving pulses to said liquid crystal rear-vision mirror. - View Dependent Claims (3, 4)
-
-
2. A control circuit for a liquid crystal rear-vision mirror comprising:
-
light sensing and comparing means for sensing light incident on a liquid crystal mirror, providing a sensor signal representing the amount of incident light, comparing the sensor signal with a reference signal to determine strength and weakness of the incident light, and providing a comparison signal indicating the amount of the incident light; DC-AC inverting means for receiving the comparison signal from said light sensing and comparing means, for oscillating by a predetermined period to convert a DC signal into an AC signal and output the AC signal in sinusoidal waveform to an upper transparent electrode of the liquid crystal rear-vision mirror; and a DC power supply for supplying a predetermined DC voltage signal to a lower transparent electrode of the liquid crystal rear-vision mirror whereby the liquid crystal rear-vision mirror is alternately operated by the signals applied to both the upper and lower transparent electrodes. - View Dependent Claims (5)
-
-
6. A control circuit for a liquid crystal mirror, comprising:
-
light sensing and comparing means for sensing light incident on a liquid crystal mirror, for providing a sensor signal representing the amount of incident light, for comparing the sensor signal with a predetermined reference signal to determine strength of the incident light, and for providing a comparison signal indicating the strength of the incident light; and means arranged to receive said comparison signal from said light sensing and comparing means, for generating and alternately applying to a first of two oppositely disposed electrodes of the liquid crystal mirror a first driving pulse exhibiting a constant period, an amplitude and a first phase, and to a second driving pulse exhibiting said constant period and a second phase different from said first phase. - View Dependent Claims (7, 8, 9, 10, 11)
-
1 Specification
1. Field of the Invention
The present invention relates to a control circuit for liquid crystal rear-vision mirror and particularly to a control circuit for operating the liquid crystal rear-vision mirror having one-dotted display device for use in an automobile.
2. General Description of the Prior Art
A liquid crystal display device includes two pieces of glass-substrate coated with transparent electrodes and a liquid crystal material filled up between the two substrates. On the liquid crystal display cell a desired pattern to display is etched and a voltage is fed to said transparent electrodes to operate a liquid crystal shutter, thereby making the pattern be displayed. There is required a liquid crystal driving circuit for feeding a predetermined voltage to the liquid crystal cell to make the etched pattern be displayed as desired.
As the liquid crystal cell now becomes widely used in the field, a liquid crystal rear-view mirror is now being introduced into the automobile. The mirror comprises a singly formed one-dotted liquid crystal display cell having a reflecting film made by aluminium evaporation. But it is almost impossible in the conventional liquid crystal driving circuit to make the one-dotted liquid crystal rear-vision mirror installed in an automobile operate to promote the convenience of a driver by controlling the liquid crystal shutter in response to the incident light.
3. Object of the Invention
Thus the main object of the present invention is to provide a control circuit for a liquid crystal rear-vision mirror for use in an automobile. It is another object to provide a control circuit capable of automatically operating the liquid crystal rear-vision mirror to prevent the incident light from being reflected toward the driver whenever the amount of light reaches beyond a fixed reference level.
The other object of the present invention is to provide a voltage driving circuit being capable of quickly operating the liquid crystal rear-vision mirror by buffering the driving voltage of the liquid crystal at a sufficiently high level.
The above stated objects of the invention are achieved in a control circuit for sensing the intensity of lights of the headlight coming from the auto following behind, generating a signal voltage in response to the intensity, comparing the voltage with a fixed reference voltage, providing a pulse signal of a fixed period from an oscillator whenever the signal voltage becomes higher than the reference voltage, converting the pulse signal output into a pair of driving pulses of different phase having a fixed period and amplitude and thereby driving the liquid crystal rear-vision mirror.
These and other objects and advantages of the present invention will become clear from the following description with reference to the accompanying drawings, wherein:
FIGS. 1(A)(B)(C) are a schematic diagram showing the structure of the liquid crystal rear-vision mirror and plots showing the responsive characteristics of the liquid crystal in relation to voltages applied;
FIG. 2 is a block diagram of a control circuit for the liquid crystal rear vision-mirror according to the present invention;
FIG. 3 is an electrical schematic diagram of a preferred embodiment of FIG. 2 according to the invention;
FIG. 4 is an electrical schematic diagram of another embodiment of a voltage driver;
FIG. 5 are waveforms showing aspects of operation of the invention;
FIG. 6 is a block diagram of other embodiment of a control circuit for the liquid crystal rear-vision mirror according to the invention;
FIG. 7 is an electrical schematic diagram of the block diagram in FIG. 6; and
FIG. 8 are waveforms showing aspects of operation in FIG. 7.
FIGS. 1(A), (B), (C) show the structure of the liquid crystal rear-vision mirror and the response characteristic curve to the voltage applied thereto, respectively. The configuration of the liquid crystal rear vision mirror comprises upper and lower transparent electrodes 12A,12B formed by evaporation on each inner surface of upper and lower glass substrate 11A,11B to apply electric field upper and lower orientation control film 14A,14B for uniformly maintaining the orientation of the liquid crystal formed on each inner side of each upper and lower transparent electrodes 12A,12B seal material 13A,13B for injecting and sealing liquid crystal material 16 between the upper and lower orientation control film 14A,14B and a reflecting film 15 for reflecting the light formed by evaporation on the lower portion of the glass substrate 11B. Upon the liquid crystal 16, GH-typed liquid crystal is used in which the guest pigment is added to a mixture of Nematic liquid crystal and Colesteric liquid crystal. Such a GH-typed compound is treated to be oriented vertically so that it is arranged parallel to upper and lower grass substrate 11A,11B to prevent the incident light from passing there through when the voltage is applied thereto. Also if liquid crystal compound is arranged vertically to the direction of the electric field during application of the electrical field, the incident light is absorbed to reduce the amount of the reflecting light. On the contrary when the voltage is not applied thereto, the incident light is reflected by the reflecting plate 15, whereby the liquid crystal compound acts as a mirror. The response characteristics of such liquid crystal 16 shows that the initial rising time(Zr) is proportional to the gap of the viscosity Ni of the liquid crystal material 16 and the square of the liquid crystal cell d2, and in inverse proportion to the square of the applied voltage; and the falling time(Zf) is proportional to the viscosity Ni of the liquid crystal material and the square of the gap of the liquid crystal cell d2.
It is represented as the following expressions.
ZrαNi.d.sup.2 /V.sup.2 (1)
ZrαNi·d.sup.2 (2)
Thus to increase the response characteristics by reducing the rising time(Zr), the viscosity of the liquid crystal material should be lowered, or the cell gap of liquid crystal 16 should be made short as well as the applied voltage should be increased, but the lowering of the viscosity in the liquid crystal material is limited due to the property of the liquid crystal and the procedure for shortening the cell gap has various problems during manufacturing. Therefore it is conventional to reduce the rising time as shown in FIG. 1(C) by increasing the driving voltage of liquid crystal 16 as shown in FIG. 1(B).
FIG. 2 shows the block diagram in accordance with the present invention, the control circuit of the liquid crystal rear-vision mirror comprises light sensing and comparing means 1 for sensing the strength and weakness of the incident light, and converting it into the sensing voltage, and comparing the converted voltage with the predetermined reference level voltage, and outputting the comparing value of the amount of the incident light; oscillator 2 for receiving the comparing value of the amount of the incident light from said light sensing and comparing means 1 and oscillating/outputting a square wave having a constant period; pulse generating means 3 for receiving the square wave oscillating signal from said oscillator 2 and outputting the operating voltages at a predetermined level, the phases of which are different from each other; and voltage driver 4 for converting into the predetermined voltage level the liquid crystal operating voltages of said pulse generating means 3, the phases of which are different from each other and applying the operating voltages to liquid crystal rear-vision mirror 5.
Accordingly when the head light from the auto following behind is received at the light sensing and comparing means 1, the control circuit senses the amount of the incident light, converts it into the electric signal and the electric signal with the predetermined reference signal and outputs the comparing value of the amount of the incident light to the oscillator 2 when the incident light is larger than the predetermined reference signal. The oscillator 2 receiving the comparing value of the amount of the incident light from the light sensing and comparing means 1 begins to generate a square wave having the constant period and to output it to the pulse generating means 3. At this time the pulse generating means 3 receiving the square wave having the constant period from the oscillator 2, generates a predetermined level of the square wave having phases of which are inverted from each other, and outputs the operating voltage to the voltage driver 4. The voltage driver 4 buffers the operating voltage to a predetermined level and outputs to the upper and lower transparent electrode of liquid crystal rear-vision mirror 5. As a result, liquid crystal rear-vision mirror 5 is operated by the square wave voltage buffered and generated at the voltage driver 4 and scatteringly reflects the incident light.
On the other hand, FIG. 3 shows the detailed circuit of one embodiment of the block diagram of FIG. 2. This circuit comprises the light sensing and comparing means 1, in which source voltage(VDD) of the auto is applied to the voltage divide circuit including resistor R1 and R2 connected in series and the cathode of photo diode PD having the anode connected to load resistor R3 for bypassing the dark current; the divided voltage by resistor R1 and R2 is connected to the inverting terminal(-) of comparator OP1 and the light sensing signal is inputting to the non-inverting terminal(+) of comparator OP1; such comparator OP1 compares the divided voltage with the light sensing signal, Also its output terminal has the capacitor C1 connected in series to resistor R4 one end of which is coupled to source voltage VDD. Capacitor C1 compensates for the output of comparator OP1; and the oscillator 2, in which resistor R5 is connected in parallel to resistor R4 and controls the current of the source. Zener diodes ZD1, ZD2 are coupled in series with resistor R5 in order to clamp the source voltage at the predetermined level resistors R6, R7 are connected in parallel to resistor R5 to divide the source voltage clamped/outputted by the zener diodes and by the resistor; resistor R8 drops the output voltage of resistor R5 and outputs it as the predetermined voltage, the output of resistor R8 and comparator OP1 is applied to comparator OP2 as the operating voltage, the divided voltage by resistor R6, R7 is applied through resistor R9 to the non-inverting terminal of comparator OP2, thereby outputting the predetermined signal by comparator OP2, and capacitor C2 is connected in series to resistor R10 for feeding back the output of comparator OP2, thereby discharging the voltage charged through resistor R10; and liquid crystal operating voltage generating portion 3 including latch circuit 3A receiving the output of inverter IN1 for inverting the output of comparator OP2 to use as the clock signal and also receiving the output of resistor R8 as the source voltage, thereby thereby providing a liquid crystal operating voltage exhibiting a phase change "voltage the phase of which is charged"; and the source voltage being applied to voltage driver 4 including C-MOS buffer(4A),(4B) and latch circuit 3A, and each C-MOS buffer 4A,4B receiving the operating voltage from the latch circuit 3A, the phases of which are different from each other, then buffering it at the level of the source voltage and applying the buffered output to upper and lower transparent electrodes 12A,12B of liquid crystal rear-vision mirror 5. Reference number 6 is the circuit for practicing the other process of the present invention, it is a voltage booster circuit for increasing the source voltage to the maximum applicable allowance voltage of C-MOS buffer 4A, 4B connected to resistor R5 and its output is connected to source voltage terminal VDD of C-MOS 4A, 4B.
FIG. 4 shows another embodiment of the voltage driver circuit portion of FIG. 3. Output terminal Q of latch circuit 3A is connected to the inverting terminal(-) of inverting amplifier OP3 to which feedback resister R12 is coupled while, the non-inverting terminal(+) of inverting amplifier OP3 is coupled to a reference ground. The output amplified by inverting amplifier OP3 is supplied to the non-inverting terminal(+) of adding amplifier OP4 through resistor R13. Also output of latch circuit 3A is coupled through resistor R14 to the non-inverting terminal of adding amplifier OP4. Adding amplifier OP4 has the inverting terminal(-) coupled to feedback resistor R15 and the output terminal connected to lower transparent electrode 12B of liquid crystal rear-vision mirror 5 and the inverting terminal(-) of inverting amplifier OP5. Inverting amplifier(OP5) has the inverting terminal(-) connected to feedback resistor R16 and the output coupled to upper transparent electrode 12A of liquid crystal rear-vision mirror to operate liquid crystal rear-vision mirror 5. Both of the source terminal (Vcc,-Vcc) of amplifier OP3, OP4 and OP5 receive the positive and negative voltage output of a step-up voltage circuit, namely booster circuit 6.
FIG. 5 shows the operating waveforms of each portion of FIG. 3 and FIG. 4. The waveform A is a waveform to be outputted from comparator OP2 of the oscillator. The waveform B is a wave form of inverter IN1. The waveform C,D are waveform of the liquid crystal operating voltage from latch circuit 3A. The waveform E is the operating waveform that is operated by C-MOS buffer 4A, 4B and inputted into liquid crystal rear-vision mirror 5 to operate the liquid crystal. The waveform F, G, H are outputting waveform of amplifier OP3, OP4, OP5 of FIG. 4. The waveform I is the waveform that is inputted into liquid crystal rear-vision mirror 5.
Thus the detailed explanations of a preferred embodiment in accordance with the present invention are as follows. The divided voltage of a predetermined voltage(Vcc) by resistor R1, R2 is applied to the inverting terminal of comparator OP1 which outputs the low level signal. On the other hand, source voltage VDD applied through resistor R5 is clamped by zener diode ZD1, ZD2 to be a predetermined voltage. This predetermined voltage is divided by resistor R6, R7 and applied through resistor R9 to the non-inverting terminal of comparator OP2 while the clamped voltage is connected through resistor R8 to the source terminal Vcc2 of comparator OP2. At this time the voltage applied to the source terminal Vcc2 of the comparator is clamped below the operating voltage by zener diode ZD1,ZD2 so that the comparator OP2 may not be operated.
As described above, comparator OP1 normally outputs the low level signal. But when photodiode PD receives the head light of the auto at the back, photodiode PD is turned on and converts the light into the electric signal. Thus source voltage VDD is divided by the "on" resistance of photodiode PD and resistor R3, and light amount sensing voltage Vp is applied to the non-inverting terminal(+) of comparator OP1. After photodiode PD is saturated by receiving the sufficient amount of the light, the light amount sensing voltage(Vp) divided by the "on" resistance of photodiode PD and resistor R3 is higher than the reference voltage divided by resistor R1, R2 so that comparator OP1 may output the high level signal of the source voltage VDD between resistor R4 and capacitor C1. Then the high level signal outputted from comparator OP1 is inputted to comparator OP2 along with the voltage applied through resistor R8 to the source terminal Vcc2 of compurator OP2 to operate comparator OP2. Also the non-inverting terminal(+) of comparator OP2 receives the voltage that is clamped by zener diode ZD1, ZD2 and divided by resistor R6, R7. Comparator OP2 compares it with the signal to its inverting terminal(-) and outputs the high level signal as initially shown in FIG. 5(A). Then the signal from comparator OP2 is fed back by resistor R11 and charges capacitor C2. When the charging voltage of capacitor C2 is higher than the voltage inputted to the non-inventing terminal of comparator OP2, comparator OP2 is made low at its output as shown in FIG. 5(A), thereby causing continuous oscillation. Therefore it is known that the oscillation period of comparator OP2 is determined and controlled by the time constant value RC of resistor R11 and capacitor C2. Then as comparator OP2 continues to output the waveform signal of FIG. 5(A), inverter IN1 inverts the signal of FIG. 5(A) and applies the signal of FIG. 5(B) to clock terminal CK of latch circuit 3A. Latch circuit 3A outputs from its output terminals Q, Q to C-MOS buffer 4A, 4B the square wave signals at the 12 volt level of the source voltage(VDD) respectively, the phases of which are different from each other. For example, the output terminal Q of latch circuit 3A outputs the high level signal at the rising edge of the waveform shown in FIG. 5(B) as shown in FIG. 5(C) and other output terminal Q outputs the low level signal as shown in FIG. 5(D) so that C-MOS buffers 4A, 4B receive the operating voltages having the same period but different phases. On the other hand, C-MOS buffers 4A, 4B receiving the wavefrom signals of FIG. 5(C) and FIG. 5(D) from latch circuit 3A buffers signals having the voltage level of the source voltage VDD and outputs the signals to upper and lower transparent electrodes 12A,12B of liquid crystal rear-vision mirror 5, whereby liquid crystal rear-vision mirror 5 is operated by the voltage having the square wave of FIG. 5(E) and scatters the incident light. Hereupon it is noted that C-MOS buffers 4A, 4B are used to compensate for the dropping down of the operating voltage caused by the area of the liquid crystal rear-vision mirror when the operating voltage is applied the transparent electrode 12A,12B. On the other hand, the voltage boosting circuit 6 is used as the other embodiment of the present invention, it is connected to the source line to boost the source voltage to the maximum usable voltage (for example about 18 V) and to apply the boosted voltage to operating voltage terminal VDD of C-MOS buffer 4A, 4B. Thus C-MOS buffers 4A, 4B buffer the square wave voltages having different phases as shown in FIGS. 5(C),(D) by the voltage level (about 18 V) boosted in voltage boosting circuit 6 and applies the boosted voltage to upper and lower transparent electrodes TE1, TE2 of liquid crystal rear-vision mirror 5. Therefore the peak-to-peak voltage(Vpp) applied to both ends of liquid crystal rear-vision mirror 5 becomes 36 V, or two times the operating voltage of the C-MOS buffer. Due to this, the response speed of the liquid crystal is made rapid.
Hereupon it is well known that the maximum allowable voltage of the operational amplifier or the C-MOS integrated circuit is normally about 18 volts.
FIG. 4 is another embodiment of the voltage driver when voltage boosting circuit 6 in FIG. 3 is used. Its confiquration is described as above. Thus in the case that the light sensing voltage(Vp) is higher than the reference voltage(Vref), latch circuit 3A outputs the square wave signals of FIGS. 5(C),(D) from its output terminal Q, Q so that the output of FIG. 5(D) is applied to the inverting terminal(-) of inverting amplifier OP3 and the output of FIG. (C) is inputted through resistor R14 to the non-inverting terminal of adding amplifier OP4. Inverting amplifier OP3 receiving the operating signal from output terminal Q of latch circuit 3A applies the signal of FIG. 5(F) obtained through amplifying feedback via resistor R12 to the non-inverting terminal(+) of adding amplifier OP4. Additionally non-inverting add amplifier OP4 receives at its non-inverting terminal(+) the signal from the output terminal Q of latch circuit 3A through resistor R14. The non-inverting add amplifier OP4 adds and amplifies the signal through feed-back resistor R15 and outputs the signal of FIG. 5(G) to lower transparent electrode 12B of liquid crystal rear-vision mirror 5 as well as to the inverting terminal(-) of inverting amplifier OP5. Inverting amplifier OP5 receiving the signal of FIG. 5(G) from adding amplifier OP4 at its inverting terminal(-) inverts the signal from feedback resistor R16 into the signal of FIG. 5(H) which is applied to upper transparent electrode 12A of liquid crystal rear-vision mirror 5. Then it is known that upper and lower transparent electrodes 12A,12B of liquid crystal rear-vision mirror 5 receiving the operating voltage signals as shown in FIGS. 5(G),(H) respectively is operated by the voltage of FIG. 5(F). At this time, the peak to peak voltage(Vpp) gets the C-MOS allowable operating voltage from voltage boosting circuit 6 to input to the voltage inputting terminal(Vcc), (-Vcc) of each of allowable operating OP3, OP4, OP4 to the upper limit value and the lower limit value of C-MOS operating allowance voltage. Therefore it is known that liquid crystal rear-vision mirror 5 is operated in high speed as described above in FIG. 1 by receiving the peak to peak voltage signal.
FIG. 6 shows the block diagram of the other embodiment in accordance with the present invertion. This embodiment comprises light sensing and comparing means 10 for sensing the incident light and outputting the light sensing comparision signal, DC-AC inverter 20 for receiving the light sensing comparision signal from light sensing and comparing means 10 and inverting the DC voltage into an AC signal having the constant period by the operation of the constant oscillating period as well as outputting the AC signal, DC power supply 30 for supplying the constant DC voltage and liquid crystal rear-vision mirror 40 for receiving the signal from DC-AC inverter 20 and the DC voltage signal from DC power supply 30. Thus it is known that as the headlight of the auto at the back is received at light sensing and comparing means 10, and the light sensing and comparing means 10 senses the amount of the incident light, converts it into the electric signal, compares it with the predetermined reference signal and outputs a comparing value indicating the amount of the incident light, which is a fixed DC signal, to DC-AC inverter 20 when the incident light is larger than the reference signal. DC-AC inverter 20 receiving the comparing signal of the amount of the incident light from light sensing and comparing means 10 is oscillated by a constant period to convert the DC signal into the AC signal and outputs the AC signal to the liquid crystal rear-vision mirror. At this time liquid crystal rear-vision mirror 40 receiving the AC signal of the sinusoidal wave from DC-AC inverter 20 receives a voltage from DC power supply 30 and is operated by the AC signal.
FIG. 7 shows the detailed circuit of the embodiment of FIG. 6. The light sensing and comparing means 10 has the configuration equal to that of light sensing and comparing means 1 shown in FIG. 1. Also this embodiment comprises DC-AC inverting circuit 20, in which the DC voltage output from light sensing and comparing means 10 is applied to primary side 21 of transformer T as well as to resistor R17 and collector of switching transistor Q1 connected in parallel to each other for controlling the current induced at the secondary side. Then the voltage dropped by resistor R17 is applied to capacitor C10 for compensating for the response characteristic and the base of transistor Q1, and further is connected through resistor R18 and capacitor C12 to the secondary side 24 having the middle tap 26. Also the emitter of transistor Q1 is connected between capacitor C10 and the base of transistor Q2, and first side 22 of transformer is connected to the collector of transistor Q2 and capacitor C11 for compensating for the oscillation. DC power supply 30 for supplying the constant DC voltage is connected to liquid crystal rear-vision mirror 40 operated by the AC voltage from the output 25 of transformer T and the DC voltage of DC power supply 30.
FIG. 8 shows aspects of operation of each portion of FIG. 7. The waveform(A) is a waveform in the primary side of transformer caused by the "turn-off" of transistors Q1,Q2. The waveform B is a voltage waveform induced at the secondary side 24 of transformer T by the "turn on" and the "turn off" of transistors Q1, Q2. The waveform C is a waveform of reverse electromotive force in a point 23 by the switching operation of transistors Q1, Q2. The waveform D is the sinusoidal waveform output boosted by secondary side of transformer T.
Therefore the light sensing and comparing means 10 senses the amount of the incident light as described above with reference to FIG. 3. The source voltage(VDD) is applied to resistor R17 and the collector of transistor Q1 as well as to first side 21 of transformer T, so that the current passing through resistor R17 is inputted to the base of transistor Q1 to turn on transistor Q1 while charging capacitor C12 through resistor R18 by the time constant of RC. Therefore the "turn on" current of transistor Q1 forms a current 100 p including the primary side 21 of transformer T and transistor Q2 to which the DC voltage from the light sensing and comparing means 10 is applied. Accordingly as the capacitor C12 is charged and then discharged, the reverse electromotive force as shown in FIG. 8(C) is applied to the base of transistor Q2 and drops down the base voltage to "turn off" transistor Q2. At this time the collector voltage is made "high" like the waveform 82 shown in FIG. 8(A), whereby the voltage of the primary side is induced at the secondary side, in which the negative voltage like the waveform(83) shown in FIG. 8(B) is generated at point 24 and the voltage like the waveform(84) shown in FIG. 8(D) is generated at point 25. As the charging voltage of capacitor C12 is completely discharged, the current flowing into resistor R17 is applied through resistor R18 to capacitor C12. Capacitor C12 is again charged by the RC time constant element. Transistor Q2 is "turned on" to boost its base voltage by the current from the emitter of transistor Q1. Therefore the potential voltage of first side 22 is negative like the waveform(85) shown in FIG. 8(A), so that thus the positive voltage like the waveform(86) shown in FIG. 8(B) is induced at point 24 of the secondary side and the negative voltage like the waveform(87) shown in FIG. 8(D) is generated and outputted at point 25 of the secondary side, wherein capacitor C11 acts to eliminate the noise caused by the "turn off" of transistor Q2 and capacitor C10 acts to improve the "turn on and off" characteristics of transistors Q1, Q2. As light sensing and comparing means 10 senses the amount of the incident light and outputs the predetermined DC voltage to resistor R17, transistor Q1 and primary side 21 of transformer T, the boosted signal like the waveform of FIG. 8(D) is outputted at point 25 of the secondary side by turning on or off transistor Q2 at the interval of the RC time constant of resistor R18 and capacitor C12 and applied to upper transparent electrode 12A of liquid crystal rear-vision mirror 40. On the other hand, DC power supply 30 supplies the constant DC voltage to lower transparent electrode 12B of liquid crystal rear-vision mirror 40. Therefore liquid crystal rear-vision mirror 40 is alternately operated by the signal like the waveform of FIG. 8(D) from the secondary side of transformer T and the DC signal.
Accordingly this invention has the advantage for allowing the driver to safely drive by reducing the reflecting light directed to him. In other words, when the amount of the incident light is up to the predetermined value, this invention automatically outputs the operating voltage for liquid crystal rear-vision mirror to increased the response speed of the liquid crystal, thereby automatically operating the liquid crystal rear-vision mirror whenever the headlight of the auto at the back becomes strong.