Time-delay outdoor lighting control systems
First Claim
1. A control, comprising:
- a switch for use in an electric line;
operating means for operating said switch and responsive to ambient light in a first light range at a slower rate than to ambient light in a second light range dimmer then the first light range and ambient light in a third light range brighter than the first light range.
1 Assignment
0 Petitions

Accused Products

Abstract
An optical lighting control, such as that used to control street lamps, delays the response of the lamps to changes of illumination while the lamps are on at night but avoids the delay in response to daylight. Thus, headlamps, flashlights, and lightning flashes of brief duration do not cause the control to turn off the street lamps. However, the street lights turn off without this delay in response to daylight.
253 Citations
Driver assistance system for vehicle | ||
Patent #
US 7,873,187 B2
Filed 08/16/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Time-Delayed Power Switching Device and Methods of Use | ||
Patent #
US 20110012539A1
Filed 07/15/2009
|
Current Assignee
Gary Skwarlo
|
Original Assignee
Gary Skwarlo
|
VISION SYSTEM FOR VEHICLE | ||
Patent #
US 20110122249A1
Filed 01/31/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 7,949,152 B2
Filed 12/28/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
DRIVER ASSISTANCE SYSTEM FOR VEHICLE | ||
Patent #
US 20110093179A1
Filed 12/28/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
IMAGING AND DISPLAY SYSTEM FOR VEHICLE | ||
Patent #
US 20110193961A1
Filed 02/09/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular image sensing system | ||
Patent #
US 7,994,462 B2
Filed 12/17/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
IMAGING SYSTEM FOR VEHICLE | ||
Patent #
US 20110216198A1
Filed 05/13/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular imaging system in an automatic headlamp control system | ||
Patent #
US 8,017,898 B2
Filed 08/13/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic headlamp control system | ||
Patent #
US 7,972,045 B2
Filed 08/10/2007
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system | ||
Patent #
US 8,063,759 B2
Filed 06/05/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle Imaging System | ||
Patent #
US 20100020170A1
Filed 07/24/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
METHOD FOR PROCESSING DATA PERTAINING TO AN ACTIVITY OF PARTIAL ELECTRICAL DISCHARGES | ||
Patent #
US 20100114509A1
Filed 01/25/2008
|
Current Assignee
Techimp HQ S.r.L.
|
Original Assignee
Techimp Technologies S.r.l.
|
Imaging System for Vehicle | ||
Patent #
US 20100265048A1
Filed 09/11/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular image sensing system | ||
Patent #
US 7,655,894 B2
Filed 11/19/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
AUTOMATIC HEADLAMP CONTROL SYSTEM | ||
Patent #
US 20100214791A1
Filed 08/10/2007
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle | ||
Patent #
US 7,792,329 B2
Filed 10/27/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vision system for a vehicle including image processor | ||
Patent #
US 7,859,565 B2
Filed 08/19/2003
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
DRIVER ASSISTANCE SYSTEM FOR VEHICLE | ||
Patent #
US 20100312446A1
Filed 08/16/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic Headlamp Control System | ||
Patent #
US 20090045323A1
Filed 08/13/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 7,526,103 B2
Filed 04/14/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
IMAGING SYSTEM FOR VEHICLE | ||
Patent #
US 20090208058A1
Filed 04/24/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 7,616,781 B2
Filed 04/24/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,325,935 B2
Filed 01/08/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,325,934 B2
Filed 01/08/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
IMAGE SENSING SYSTEM FOR A VEHICLE | ||
Patent #
US 20080054161A1
Filed 11/07/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 7,344,261 B2
Filed 10/06/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle headlight control using imaging sensor | ||
Patent #
US 7,339,149 B1
Filed 11/16/1999
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,380,948 B2
Filed 01/04/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for controlling an accessory or headlight of a vehicle | ||
Patent #
US 7,388,182 B2
Filed 01/09/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle headlight control using imaging sensor with spectral filtering | ||
Patent #
US 7,402,786 B2
Filed 10/06/2006
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic exterior light control for a vehicle | ||
Patent #
US 7,423,248 B2
Filed 11/07/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vision system for a vehicle | ||
Patent #
US 7,425,076 B2
Filed 12/18/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,459,664 B2
Filed 01/24/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle headlight control using imaging sensor | ||
Patent #
US 20070023613A1
Filed 10/06/2006
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 20070109651A1
Filed 01/04/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 20070109406A1
Filed 01/03/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 20070109654A1
Filed 01/10/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 20070109653A1
Filed 01/08/2007
|
Current Assignee
Mark Larson, Kenneth Schofield
|
Original Assignee
Mark Larson, Kenneth Schofield
|
Image sensing system for a vehicle | ||
Patent #
US 20070176080A1
Filed 01/09/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,311,406 B2
Filed 01/10/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Thermal photocontrol switch circuit | ||
Patent #
US 5,629,569 A
Filed 05/15/1995
|
Current Assignee
Intermatic Incorporated
|
Original Assignee
Intermatic Incorporated
|
Vehicular vision system | ||
Patent #
US 20060028731A1
Filed 10/06/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Monitoring system | ||
Patent #
US 20050146792A1
Filed 03/08/2005
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle photosensing control system | ||
Patent #
US 6,953,253 B2
Filed 09/14/2004
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Industrial lighting control system and method | ||
Patent #
US 6,731,079 B2
Filed 05/23/2001
|
Current Assignee
Current Lighting Solutions LLC fka GE Lighting Solutions LLC
|
Original Assignee
General Electric Company
|
Vehicle image capture system | ||
Patent #
US 6,802,617 B2
Filed 02/24/2003
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle control system and method | ||
Patent #
US 6,523,964 B2
Filed 10/11/2001
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle control system and method | ||
Patent #
US 6,302,545 B1
Filed 01/08/1999
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Remote positionable photocell device for use with an exterior landscape lighting assembly | ||
Patent #
US 5,962,982 A
Filed 06/18/1998
|
Current Assignee
Michael L. Mancuso
|
Original Assignee
Michael L. Mancuso
|
Automatic rearview mirror system using a photosensor array | ||
Patent #
US 5,760,962 A
Filed 04/01/1996
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Automatic rearview mirror system using a photosensor array | ||
Patent #
US 5,550,677 A
Filed 02/26/1993
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Exterior high intensity discharge illumination system and method for use | ||
Patent #
US 5,450,302 A
Filed 08/25/1993
|
Current Assignee
US Army Corps of Engineers
|
Original Assignee
US Army Corps of Engineers
|
Single sensor adaptive drive circuit for rearview mirror system | ||
Patent #
US 5,193,029 A
Filed 11/19/1991
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Outdoor lighting controls | ||
Patent #
US 5,132,596 A
Filed 09/18/1991
|
Current Assignee
Pacific Scientific Company
|
Original Assignee
Pacific Scientific Company Incorporated
|
Imaging system for vehicle | ||
Patent #
US 8,090,153 B2
Filed 05/13/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic lighting system with adaptive function | ||
Patent #
US 8,070,332 B2
Filed 03/29/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle monitoring system | ||
Patent #
US 8,098,142 B2
Filed 03/08/2005
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Automatic lighting system | ||
Patent #
US 8,142,059 B2
Filed 11/09/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive forward lighting system for vehicle | ||
Patent #
US 8,162,518 B2
Filed 06/30/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 8,189,871 B2
Filed 01/31/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for a vehicle | ||
Patent #
US 8,217,830 B2
Filed 07/28/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular image sensing system | ||
Patent #
US 8,222,588 B2
Filed 08/05/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for vehicle | ||
Patent #
US 8,294,608 B1
Filed 07/03/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,314,689 B2
Filed 06/18/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,325,986 B2
Filed 12/22/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular image sensing system | ||
Patent #
US 8,324,552 B2
Filed 07/16/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Adaptive forward lighting system for vehicle | ||
Patent #
US 8,434,919 B2
Filed 04/20/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Combined RGB and IR imaging sensor | ||
Patent #
US 8,446,470 B2
Filed 10/03/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 8,451,107 B2
Filed 09/11/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular image sensing system | ||
Patent #
US 8,481,910 B2
Filed 11/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 8,483,439 B2
Filed 05/25/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,492,698 B2
Filed 01/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,593,521 B2
Filed 11/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
LIGHTING CONTROL SYSTEM | ||
Patent #
US 20130313977A1
Filed 05/09/2013
|
Current Assignee
Panasonic Intellectual Property Management Co. Ltd.
|
Original Assignee
Panasonic Corporation
|
Vehicular vision system | ||
Patent #
US 8,599,001 B2
Filed 11/19/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 8,614,640 B2
Filed 10/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 8,203,443 B2
Filed 11/09/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 8,203,440 B2
Filed 01/16/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system | ||
Patent #
US 8,629,768 B2
Filed 06/18/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Time-delayed power switching device and methods of use | ||
Patent #
US 8,633,661 B2
Filed 07/15/2009
|
Current Assignee
Gary Skwarlo
|
Original Assignee
Gary Skwarlo
|
Driver assistance system for vehicle | ||
Patent #
US 8,636,393 B2
Filed 05/06/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 8,637,801 B2
Filed 07/08/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 8,643,724 B2
Filed 03/13/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 8,665,079 B2
Filed 10/15/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle yaw rate correction | ||
Patent #
US 8,694,224 B2
Filed 02/28/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,814,401 B2
Filed 03/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 8,818,042 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with yaw rate determination | ||
Patent #
US 8,849,495 B2
Filed 04/07/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic vehicle exterior light control | ||
Patent #
US 8,842,176 B2
Filed 01/15/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Parking assist system | ||
Patent #
US 8,874,317 B2
Filed 07/27/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 8,886,401 B2
Filed 11/04/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Adaptable wireless vehicle vision system based on wireless communication error | ||
Patent #
US 8,890,955 B2
Filed 02/09/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Imaging system for vehicle | ||
Patent #
US 8,908,040 B2
Filed 05/17/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,917,169 B2
Filed 12/02/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 8,977,008 B2
Filed 07/08/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,993,951 B2
Filed 07/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,008,369 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,014,904 B2
Filed 09/23/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system with camera misalignment correction and capturing image data at different resolution levels dependent on distance to object in field of view | ||
Patent #
US 9,018,577 B2
Filed 02/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 9,041,806 B2
Filed 08/31/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Lighting control system | ||
Patent #
US 9,072,132 B2
Filed 05/09/2013
|
Current Assignee
Panasonic Intellectual Property Management Co. Ltd.
|
Original Assignee
Panasonic Intellectual Property Management Co. Ltd.
|
Rear vision system with trailer angle detection | ||
Patent #
US 9,085,261 B2
Filed 01/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Braking control system for vehicle | ||
Patent #
US 9,090,234 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,092,986 B2
Filed 01/31/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear view camera display system with lifecheck function | ||
Patent #
US 9,117,123 B2
Filed 07/05/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Alert system for vehicle | ||
Patent #
US 9,126,525 B2
Filed 02/25/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 9,131,120 B2
Filed 05/15/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,140,789 B2
Filed 12/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,171,217 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Lane keeping system and lane centering system | ||
Patent #
US 9,180,908 B2
Filed 11/17/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,191,574 B2
Filed 03/13/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,191,634 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,193,303 B2
Filed 04/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 9,245,448 B2
Filed 06/17/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,244,165 B1
Filed 09/21/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with collision mitigation | ||
Patent #
US 9,260,095 B2
Filed 06/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,264,672 B2
Filed 12/21/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular collision mitigation system | ||
Patent #
US 9,318,020 B2
Filed 07/27/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear collision avoidance system for vehicle | ||
Patent #
US 9,327,693 B2
Filed 04/09/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,335,411 B1
Filed 01/25/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle lane keep assist system | ||
Patent #
US 9,340,227 B2
Filed 08/12/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with yaw rate determination | ||
Patent #
US 9,346,468 B2
Filed 09/29/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,376,060 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,428,192 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 9,436,880 B2
Filed 01/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer angle detection system | ||
Patent #
US 9,446,713 B2
Filed 09/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 9,457,717 B2
Filed 10/27/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,469,250 B2
Filed 02/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing camera synchronization | ||
Patent #
US 9,481,301 B2
Filed 12/05/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Braking control system for vehicle | ||
Patent #
US 9,481,344 B2
Filed 07/27/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular camera with on-board microcontroller | ||
Patent #
US 9,495,876 B2
Filed 07/27/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system | ||
Patent #
US 9,508,014 B2
Filed 05/05/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle imaging system | ||
Patent #
US 9,509,957 B2
Filed 04/19/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,507,021 B2
Filed 05/09/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 9,545,921 B2
Filed 05/02/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Image processing method for detecting objects using relative motion | ||
Patent #
US 9,547,795 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with trailer angle detection | ||
Patent #
US 9,558,409 B2
Filed 12/11/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,555,803 B2
Filed 05/16/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,563,809 B2
Filed 04/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,598,014 B2
Filed 10/17/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,609,289 B2
Filed 08/29/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,643,605 B2
Filed 10/26/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,656,608 B2
Filed 06/13/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Process for determining state of a vehicle | ||
Patent #
US 9,715,769 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,731,653 B2
Filed 03/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,736,435 B2
Filed 03/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Lane keeping system and lane centering system | ||
Patent #
US 9,758,163 B2
Filed 11/09/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistant system using influence mapping for conflict avoidance path determination | ||
Patent #
US 9,761,142 B2
Filed 09/03/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system | ||
Patent #
US 9,769,381 B2
Filed 11/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with trailer angle detection | ||
Patent #
US 9,779,313 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 9,789,821 B2
Filed 05/22/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 9,796,332 B2
Filed 05/24/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 9,802,609 B2
Filed 01/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer angle detection system calibration | ||
Patent #
US 9,802,542 B2
Filed 09/19/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 9,824,285 B2
Filed 01/26/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with collision mitigation | ||
Patent #
US 9,824,587 B2
Filed 02/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driving assist system for vehicle | ||
Patent #
US 9,834,142 B2
Filed 05/19/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 9,834,216 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 9,868,463 B2
Filed 09/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using image data transmission and power supply via a coaxial cable | ||
Patent #
US 9,900,490 B2
Filed 02/22/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method of establishing a multi-camera image using pixel remapping | ||
Patent #
US 9,900,522 B2
Filed 12/01/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver active safety control system for vehicle | ||
Patent #
US 9,911,050 B2
Filed 09/04/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing camera synchronization | ||
Patent #
US 9,912,841 B2
Filed 10/31/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Process for determining state of a vehicle | ||
Patent #
US 9,916,699 B2
Filed 07/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,940,528 B2
Filed 11/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,948,904 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailering assist system with trailer angle detection | ||
Patent #
US 9,950,738 B2
Filed 07/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system comprising an imaging device with a single image sensor and image processor for determining a totally blocked state or partially blocked state of the single image sensor as well as an automatic correction for misalignment of the imaging device | ||
Patent #
US 9,972,100 B2
Filed 04/23/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with traffic driving control | ||
Patent #
US 9,988,047 B2
Filed 12/12/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,003,755 B2
Filed 12/08/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,015,452 B1
Filed 04/16/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Braking control system for vehicle | ||
Patent #
US 10,023,161 B2
Filed 10/31/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing corner detection | ||
Patent #
US 10,025,994 B2
Filed 12/02/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Spectral filtering for vehicular driver assistance systems | ||
Patent #
US 10,027,930 B2
Filed 03/28/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Image processing method for detecting objects using relative motion | ||
Patent #
US 10,043,082 B2
Filed 01/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Control system for vehicle | ||
Patent #
US 10,046,702 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 10,053,012 B2
Filed 10/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system | ||
Patent #
US 10,057,489 B2
Filed 09/18/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,676 B2
Filed 09/12/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle parking assist system with vision-based parking space detection | ||
Patent #
US 10,078,789 B2
Filed 07/14/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,086,747 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with trailering assist function | ||
Patent #
US 10,089,541 B2
Filed 10/02/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with front and rear camera integration | ||
Patent #
US 10,089,537 B2
Filed 05/15/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 10,099,610 B2
Filed 10/10/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular camera with on-board microcontroller | ||
Patent #
US 10,106,155 B2
Filed 11/11/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 10,107,905 B2
Filed 11/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,110,860 B1
Filed 07/02/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistant system using influence mapping for conflict avoidance path determination | ||
Patent #
US 10,115,310 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,118,618 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for vehicular control | ||
Patent #
US 10,127,738 B2
Filed 03/12/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera with multiple spectral filters | ||
Patent #
US 10,132,971 B2
Filed 03/01/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 10,144,352 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer backup assist system | ||
Patent #
US 10,160,382 B2
Filed 02/04/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing multiple cameras and ethernet links | ||
Patent #
US 10,171,709 B2
Filed 03/05/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,187,615 B1
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 10,207,705 B2
Filed 10/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System for locating a parking space based on a previously parked space | ||
Patent #
US 10,222,224 B2
Filed 04/15/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear vision system for vehicle with dual purpose signal lines | ||
Patent #
US 10,232,797 B2
Filed 04/29/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision using image data transmission and power supply via a coaxial cable | ||
Patent #
US 10,284,764 B2
Filed 02/19/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer driving assist system | ||
Patent #
US 10,300,855 B2
Filed 10/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular display system | ||
Patent #
US 10,300,856 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,306,190 B1
Filed 01/21/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system with rear backup video display | ||
Patent #
US 10,336,255 B2
Filed 11/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,351,135 B2
Filed 11/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular lane change system | ||
Patent #
US 10,406,980 B2
Filed 10/11/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Lane keeping system and lane centering system | ||
Patent #
US 10,427,679 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Processing method for distinguishing a three dimensional object from a two dimensional object using a vehicular system | ||
Patent #
US 10,452,931 B2
Filed 08/06/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,462,426 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system with rear backup video display | ||
Patent #
US 10,486,597 B1
Filed 07/01/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular trailer backup assist system | ||
Patent #
US 10,493,917 B2
Filed 12/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular collision mitigation system | ||
Patent #
US 10,497,262 B2
Filed 11/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,509,972 B2
Filed 04/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with front and rear camera integration | ||
Patent #
US 10,515,279 B2
Filed 08/30/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of synchronizing multiple vehicular cameras with an ECU | ||
Patent #
US 10,560,610 B2
Filed 12/28/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Coaxial cable with bidirectional data transmission | ||
Patent #
US 10,567,705 B2
Filed 06/06/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using image data transmission and power supply via a coaxial cable | ||
Patent #
US 10,567,633 B2
Filed 05/02/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 10,569,804 B2
Filed 01/15/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for displaying video images for a vehicular vision system | ||
Patent #
US 10,574,885 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with trailering assist function | ||
Patent #
US 10,586,119 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear backup vision system with video display | ||
Patent #
US 10,589,678 B1
Filed 11/25/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Video processor module for vehicle | ||
Patent #
US 10,611,306 B2
Filed 08/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,616,507 B2
Filed 06/18/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,623,704 B2
Filed 03/09/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 10,640,040 B2
Filed 09/10/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward sensing system for vehicle | ||
Patent #
US 10,670,713 B2
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular driving assist system using forward-viewing camera | ||
Patent #
US 10,683,008 B2
Filed 07/15/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with traffic driving control | ||
Patent #
US 10,688,993 B2
Filed 06/04/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with collision mitigation | ||
Patent #
US 10,692,380 B2
Filed 11/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular parking assist system that determines a parking space based in part on previously parked spaces | ||
Patent #
US 10,718,624 B2
Filed 03/04/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system with blockage determination and misalignment correction | ||
Patent #
US 10,726,578 B2
Filed 05/14/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistant system using influence mapping for conflict avoidance path determination | ||
Patent #
US 10,733,892 B2
Filed 10/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with traffic lane detection | ||
Patent #
US 10,735,695 B2
Filed 10/28/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,766,417 B2
Filed 10/23/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera | ||
Patent #
US 10,787,116 B2
Filed 09/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,793,067 B2
Filed 07/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer driving assist system | ||
Patent #
US 10,800,332 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular collision mitigation system | ||
Patent #
US 10,803,744 B2
Filed 12/02/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular adaptive headlighting system | ||
Patent #
US 10,807,515 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear backup vision system with video display | ||
Patent #
US 10,814,785 B2
Filed 03/16/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system using image data transmission and power supply via a coaxial cable | ||
Patent #
US 10,827,108 B2
Filed 02/17/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,839,233 B2
Filed 03/05/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailering assist system with trailer angle detection | ||
Patent #
US 10,858,042 B2
Filed 04/23/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining alignment of vehicular cameras | ||
Patent #
US 10,868,974 B2
Filed 02/19/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of synchronizing multiple vehicular cameras with an ECU | ||
Patent #
US 10,873,682 B2
Filed 02/10/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,875,455 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 10,875,527 B2
Filed 02/18/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with enhanced night vision | ||
Patent #
US 10,875,403 B2
Filed 10/26/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,875,526 B2
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward sensing system for vehicle | ||
Patent #
US 10,877,147 B2
Filed 06/01/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Light-sensitive switch structure and method with inverse off/on ratio | ||
Patent #
US 4,771,186 A
Filed 02/11/1986
|
Current Assignee
Egidio Basso
|
Original Assignee
Egidio Basso
|
Lamp control circuit using heater/thermistor time delay | ||
Patent #
US 4,207,501 A
Filed 02/23/1978
|
Current Assignee
Novo Products Inc.
|
Original Assignee
NOVO PRODUCTS INC.
|
Very close differential outdoor lighting control | ||
Patent #
US 3,351,762 A
Filed 07/06/1964
|
Current Assignee
Robert H. Pierce, Harold T. Adkins
|
Original Assignee
Robert H. Pierce, Harold T. Adkins
|
34 Claims
-
1. A control, comprising:
-
a switch for use in an electric line; operating means for operating said switch and responsive to ambient light in a first light range at a slower rate than to ambient light in a second light range dimmer then the first light range and ambient light in a third light range brighter than the first light range. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
-
-
13. A lighting system comprising:
-
a power source; a plurality of power lines; a lamp; and an outdoor lighting control, said outdoor lighting control including a switch in one of said lines; said outdoor lighting control further including operating means coupled to said switch for responding to ambient light in a first light range at a slower rate than to ambient light in a second light range dimmer than the first light range and ambient light in a third light range brighter than the first light range. - View Dependent Claims (14, 15, 16, 17, 18, 19, 20)
-
-
21. A control, comprising:
-
a switch for switching an electric line on and off; operating means coupled to said switch and sensitive to incident light striking said operating means for operating said switch at a slower rate in response to rising incident light than in response to declining incident light. - View Dependent Claims (22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34)
-
-
30. A lighting system, comprising:
-
a power source; a power line; a lamp in said power line; and an outdoor lighting control coupled to said power line; said outdoor lighting control including a switch in said power line; said outdoor lighting control further including operating means coupled to said switch and sensitive to incident light striking the operating means for operating said switch at a slower rate in response to rising incident light than in response to declining incident light. - View Dependent Claims (33)
-
1 Specification
This invention relates to photocontrols or outdoor lighting controls (OLCs) of the type which switch illuminating fixtures on and off in response to changes in ambient light, and in particular to improved outdoor lighting controls that avoid responses to short term or momentary light flashes. The invention relates to systems using such controls.
Outdoor lighting controls are generally mounted on lamp poles near the lamps they control. In one type of outdoor lighting control, the relay type, a photocell or photoresistor instantly actuates a relay. This causes the outdoor lighting control or photocontrol to respond instantly to changes in ambient light. The OLC turns a lamp on as soon as the light drops below a given level at dusk, and turns the lamp off when the light reaches a given brightness at dawn. However many outdoor lamps such as mercury vapor lamps, sodium vapor lamps, and or other high intensity discharge lamps require about five minutes to restrike once they have been shut off. Thus when an OLC shuts off mercury or sodium vapor lamps the latter remain off for about five minutes.
Accordingly, a lightning flash during the night can cause a relay type OLC to shut off a lighting system and force the lighting system to remain down during the five minute restrike time. This creates not only an inconvenience, but a security problem.
In another type of lighting control, a thermal OLC, a bimetallic strip responds slowly to current in a photocell and turns a system on and off only after a delay of about 30 seconds to 2 minutes. Such thermal outdoor lighting controls often require substantial time for installation and testing. For example, when installing an OLC a line operator performs a so-called "glove test". That is, the operator covers the photocell of the OLC to simulate darkness and then waits 30 sec-120 sec for all lamps regulated by the control to light or at least give off a glow indicating a restrike. He must then uncover the thermal OLC and wait again to make sure the lamps go off. As a final check, he may again cover the lamps to see if the lamps light or start to restrike. While such delays may appear not to be costly, a line operator is usually accompanied by expensive equipment and perhaps a ground worker. Even at only a few minutes per installation, several hours per day may be occupied waiting during the test, all at a substantial cost.
An object of this invention is to improve photocontrols or outdoor lighting controls.
Another object of this invention is to avoid the aforementioned deficiencies.
Yet another object of the invention is to permit easy testing during installation.
Yet another object of the invention is to prevent turnoff of lights in response to momentary flashes of light while at the same time avoiding other undesired delays.
According to a feature of the invention, these objects are attained, in whole or in part, by energizing the lamps with a switch coupled to an operating arrangement which responds to ambient light in a first light range at a slower rate than to light in a dimmer second light range and to light in a brighter third light range. According to another feature of the invention, the arrangement responds in about 15 seconds in the first light range between 2 and 10 foot candles, and in less than one second in the second range less than 1 foot candle and the third range representing daylight between 20 and 10,000 foot candles.
According to another feature of the invention, the arrangement includes a relay, a light measuring member, and a positive temperature coefficient (PTC) thermistor shunting the relay.
According to another feature of the invention, the thermistor exhibits a low resistance over a majority of its normal operating temperature region and a sharp rise in its resistance over several orders of magnitude when it reaches a predetermined temperature.
These and other features of the invention are pointed out in the claims. Other objects and advantages of the invention will become evident from the following detailed description when read in view of the accompanying drawings.
FIG. 1 is a schematic diagram of a utility system using outdoor lighting controls embodying features of the invention.
FIG. 2 is a circuit diagram of an outdoor lighting control of the type use in FIG. 1 and embodying features of the invention.
FIG. 3 is a graph illustrating the logarithmic variation of resistance with respect to temperature of a thermistor in FIG. 2.
In FIG. 1, Sodium Vapors Lamps SV1, SV2, SV3, SV4, . . . SVN illuminate an area in response to a utilities power source PS and under the control of an outdoor lighting control OLC1 mounted on a utility pole. This outdoor lighting control turns the lamps SV1 to SVN on and off in response to ambient light.
A second outdoor lighting control (OLC2) turns mercury lamps M1, M2, M3, M4, . . . MN on and off in response to ambient light. The source PS also powers the mercury lamps M1 to MN.
Similar outdoor lighting controls OLC3 . . . allow the power source PS to energize other lamps LM1 to LMN.
FIG. 2 illustrates controls OLC1, OLC2, and OLC3 all of which are mounted on utility poles, not shown. Here a photocell PC connects a relay coil RC in series across power lines L1 and L2. The coil RC opens a normally closed switch SW in response to currents exceeding a predetermined value through the coil. The photocell PC exhibits a resistance that is inversely proportional to the ambient light. Accordingly, when the ambient light is bright, the photocell PC exhibits a low impedance that allows large currents to flow therethrough. In darkness, the photocell PC exhibits a high impedance which limits the current through the relay coil RC. With low current the switch SW responds to the relay coil RC by remaining closed. When the relay coil RC passes high current as a result of intense illumination of the photocell PC it opens the switch SW.
A positive temperature coefficient (PTC) thermistor TH shunted across the coil RC draws a portion of the current away from the relay coil RC. When the resistance of the thermistor TH is or becomes low, the latter shunts most of the current through the photocell PC away from the relay coil RC and causes the latter to maintain the switch SW in, or release the switch SW to, its normally closed position. When the resistance of the thermistor TH rises substantially above the value of the impedance of the relay coil RC, the thermistor has little effect upon the relay coil and allows the relay coil to operate directly in response to the photocell PC. Hence, when the photocell PC is illuminated intensely while the thermistor TH is hot and exhibits a high impedance large amounts of currents flow through the coil RC and constrain the latter to open the switch SW. In darkness, the photocell PC imposes a high impedance in series with the relay coil RC and limits its current so that the switch SW remains closed.
FIG. 3 illustrates the resistance-temperature curve of a positive temperature coefficient thermistor TH. Here, the resistance along the ordinate increases logarithmically. The thermistor TH exhibits a drop in resistance as temperature rises over a majority of its normal operating temperature region, namely from A to the transition temperature T. That is, in the region A to T the thermistor exhibits a slightly negative temperature coefficient. At the transition temperature T, corresponding to the Curie temperature of the material of the thermistor, the latter produces a sharp rise in resistance which may be of several orders of magnitude. The change in characteristics arises because of changes in the properties of the material at the Curie temperature.
The relay coil RC is initially adjusted to open and close the switch SW on the basis of operation with the photocell PC as if the thermistor TH were out of the circuit altogether. In this initial adjustment, the coil RC allows the switch SW to close when the coil carries a current corresponding to less than a threshold light level of 1 foot candle impinging on the photocell PC. Because the switch SW closes a magnetic circuit with the relay coil RC, it causes some hysteresis. Thus, relay coil RC opens the switch in response to current corresponding to 2 foot candles or more impinging on the photocell PC. Both 1 and 2 foot candles may be regarded as threshold levels forming a threshold between light ranges.
The effect of the thermistor TH depends upon the speed at which the thermistor TH reaches its transition temperature and exhibits a high impedance. Hence the extent of the delay in lighting the lamp SV1 to LMN depends on the magnitude of the current which the photocell PC allows to pass through the thermistor TH. The current'"'"'s magnitude varies with the brightness of light impinging upon the photocell PC. If light such as full daylight, in a range between 20 to 10,000 foot candles, strikes the photocell PC, the initial current flow through the thermistor TH is high and the latter reaches its high resistance condition within a second. Headlamps, flashlights, and even lightning in a night sky, cause much smaller amounts of light, in a range between 2 and 10 foot candles, to strike the pole-mounted photocell PC which then generates much lower initial currents in the thermistor TH. In response to these stimuli, between 2 and 10 foot candles, the thermistor takes about 15 seconds to reach its high resistance condition. If the lower-brightness light is terminated before that time, the relay coil RC allows the switch SW to remain closed and the lamps SV1 to SVN, M1 to MN, and LM1 to LMN to continue their illumination. Light in a third light range of less than one foot candle does not allow the photocell PC to turn off the lamps at all.
The ambient light produced by the lamps SV1 to SVN, M1 to MN, and LM1 to LMN is insufficient to change the resistance of the photocell PC enough to draw actuating current through the thermistor TH and the relay coil RC to turn off the lights.
In operation, the power source PS applies voltage for use by the lamps SV1 to SVN, M1 to MN, and LM1 to LMN. The controls OLC1, OLC2, OLC3, etc., turn on the lamps in response to darkness and turn them off in response to daylight. During daylight, and in the quiescent conditions, the photocell PC in each control OLC1, OLC2, OLC3, etc. imposes a very low resistance in series with the relay coil RC of each control and allows substantial currents to flow through the relay coil RC and the thermistor TH. At the same time, the high currents which the photocell PC allows to pass through the thermistor TH heat the thermistor and raise its temperature and resistance so that within one second it shunts very little of the current away from the relay coil RC. The relay coil therefore opens the switch SW within one second and keeps it open. Hence, no current flows to the lamps SV1 to SVN, M1 to MN, and LM1 to LMN.
When darkness falls, the resistance of the photocell PC rises. At a predetermined resistance value, the current through the relay coil RC drops to a point at which it releases the switch SW and allows it to close. At the same time, the decrease in current through the thermistor TH causes the latter to shunt current away from the relay coil RC thereby holding the latter off. The OLC'"'"'s OLC1, OLC2, and OLC3 thereby energize the lamps SV1 to SVN, M1 to MN, and LM1 to LMN. At this time, the resistance of the thermistor TH is substantially low and most of the current which would otherwise pass through the relay coil RC passes through the thermistor TH.
In normal operation, when daylight resumes, light levels of between 20 to 10,000 foot candles impinge upon the photocell PC and the latter allows large currents to flow. Most of this current initially flows through the thermistor TH because of the latter'"'"'s low resistance. The high current through the thermistor TH rapidly heats the latter and after a delay of less than one second constrains the latter to pass its transition temperature at which time the thermistor TH suddenly produces a high resistance across the relay coil RC. The high current now passes through the relay coil which opens the switch SW in less than one second after the light level reach 20 foot candles. Hence, the OLC'"'"'s delay the extinction of the lamps SV1 to SVN, M1 to MN and LM1 to LMN, only minimally in this light range.
If now a dimmer source, such as an ordinary flashlight or automobile headlamps on a hill, causes light in a range between 2 to 10 foot candles to impinge upon the photocell PC, the resistance of the photocell PC suddenly drops and draws a moderate current, parts of which pass through the parallel connected thermistor TH and relay coil RC. The low impedance of the thermistor TH causes the latter to draw enough of current away from the relay coil RC to prevent it from actuating the switch SW. It takes about 15 seconds for the thermistor to heat and have its resistance rise under these conditions with the moderate current through the photocell. The relay coil RC therefore continues to allow the switch SW to remain closed. As long as the mid-range stimuli of 2 to 10 foot candles end before 15 seconds, the lamps remain on.
The invention prevents brief flashes of light during the night from turning off the lamps SV1 to SVN, M1 to MN, and LM1 to LMN. At the same time it permits full daylight to turn off the lights almost instantly. This offers a special advantage to utility companies whose personnel install and test the OLC'"'"'s, and to manufacturers who test the OLC'"'"'s.
In daylight, a utility company'"'"'s line operator can climb a pole and test a newly installed or older outdoor lighting control with a so-called "glove-test". The operator can check to see if the lights are off in daylight and then cover the OLC with a gloved hand to prevent light from impinging upon the photocell PC. This raises the resistance of the photocell PC, deactuates the relay coil RC instantly, and permits the switch SW to close. This lights incandescent lamps and indicates that the OLC is operative. While this only initiates the restrike in some lamps, and does not turn such lamps on, the operator can see that the OLC is working from the restrike glow in the lamps. When the operator removes the gloved hand, the bright daylight drastically lowers the resistance of the photocell PC which generates a sufficiently high current through the thermistor TH to rapidly raise its resistance so that the relay coil RC opens the switch within a second or two. The lamps SV1 to SVN, M1 to MN, and LM1 to LMN thus turn off almost without delay. The operator can perform the test several times without waiting excessive amounts of time. The delay is "washed out" in daylight.
The combination of thermistor TH, photocell PC, and relay coil RC allows the control OLC to distinguish between three light conditions, namely light below the operating threshold established by the relay coil and the photocell, light above the threshold, and very bright light such as full daylight. The ranges of operation may be adjusted as needed. For example, the thresholds between the range of darkness and the dim light may be shifted by using a relay or a photocell having different characteristics. Furthermore, the range in which the delay washes out may be adjusted by changing the characteristic of the thermistor. However the ranges discussed are typical for use in outdoor lighting controls.
The invention overcomes the bilateral delays of ordinary thermal controls and overcomes the lack of delays in relay controls. It furnishes a unilateral delay that is washed out in daylight.
While embodiments of the invention have been described in detail, it will be evident to those skilled in the art that the invention may be embodied otherwise.