×

Multifunction regulator synchronized to an alternator

  • US 5,079,496 A
  • Filed: 02/22/1989
  • Issued: 01/07/1992
  • Est. Priority Date: 02/23/1988
  • Status: Expired due to Term
First Claim
Patent Images

1. Plurifunction regulator device for regulating the excitation voltage of an alternator for charging a battery of an automobile vehicle, comprising a battery voltage input, an alternator phase voltage input, an alternator excitation regulation output, a terminal connected to an indicator lap wired in series with an ignition switch of the vehicle, a field coil power excitation control circuit, a battery voltage sensing circuit connected to said battery voltage input to supply a signal indicating that an alternator-battery connection is broken and an excitation regulation signal related to the peak value and the average value of the battery voltage, an alternator phase voltage amplitude sensing circuit connected to said alternator phase voltage input to supply a first sensing signal relative to a first threshold value corresponding to non-memorized shaping of the alternator phase voltage input at very low alternator rotation speeds authorizing the establishing of an excitation current with a frequency and a cyclic ratio imposed by an alternator phase voltage signal applied to the alternator phase voltage input to initiate cutting in of the alternator, a second sensing signal relative to an intermediate second threshold value authorizing application of a full-field condition to the alternator during the cutting in process initiated by said first sensing signal and a third sensing signal relative to a third threshold value near a battery charge regulation voltage for sensing faults relating to an amplitude of said phase voltage input, alternator field coil excitation control and memory means to receive said second sensing signal and to supply a signal authorizing said full-field condition during cutting in of the alternator and an alternator phase voltage regulation control signal during load shaping in a circuit supplied by the alternator, timing means for said field coil excitation control and memory means synchronized to an alternator rotation speed to receive said first sensing signal and a fixed-frequency reference clock signal and to supply a timing signal synchronized to the alternator rotation speed when the alternator is rotating and to supply a fixed-frequency timing signal when the alternator is stationary, and conditional field coil excitation voltage control logic means for controlling the excitation voltage.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×