Apparatus and method for utilizing polarization voltage to determine charge state of a battery
First Claim
1. An apparatus for measuring charge state of a battery comprising at least one cell which exhibits a polarization voltage when fully charged, said apparatus comprising:
- a transmitter connected to the battery and operative to apply a charging test signal to the cell when the cell is fully charged, said test signal characterized by at least one transition to a voltage value greater than the voltage of the cell to provide charging signal which is retained for a time sufficient to modify the polarization voltage when present across the cell; and
a receiver connected to the cell and operative to monitor the polarization voltage across the cell to provide an indication of the state of charge of the cell.
1 Assignment
0 Petitions

Accused Products

Abstract
An apparatus for measuring charge state of a battery having multiple cells includes a transmitter that is connected to the battery to apply a test signal across the battery. This test signal is preferably a continuous square wave signal having a frequency less than 3 Hz. The test signal alternates between a voltage adequate to charge the battery and a lower voltage, and the charging voltage is retained for a time sufficient to allow a polarization voltage to develop across individual cells. A receiver is connected to the cell to monitor the polarization voltage across a cell as it develops in response to the test signal. This polarization voltage can be monitored for example using a DC voltmeter, or by displaying the voltage versus time waveform. In either case an accurate indication of the state of the charge of the cell is provided.
224 Citations
Backup relay cut control system | ||
Patent #
US 7,912,618 B2
Filed 01/22/2008
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Automotive vehicle battery test system | ||
Patent #
US 7,924,015 B2
Filed 05/06/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester with promotion feature | ||
Patent #
US 7,940,053 B2
Filed 05/25/2010
|
Current Assignee
Interstate Battery Systems Of America Incorporated, Midtronics Incorporated
|
Original Assignee
Interstate Battery Systems Of America Incorporated, Midtronics Incorporated
|
Electronic battery test based upon battery requirements | ||
Patent #
US 7,940,052 B2
Filed 02/02/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 7,999,505 B2
Filed 10/05/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery maintenance tool with probe light | ||
Patent #
US 7,977,914 B2
Filed 10/31/2007
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Adjustment of control strategy based on temperature | ||
Patent #
US 7,986,055 B2
Filed 01/22/2008
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Stress management of battery recharge, and method of state of charge estimation | ||
Patent #
US 8,040,110 B2
Filed 05/14/2002
|
Current Assignee
Eaton Intelligent Power Limited
|
Original Assignee
Eaton Power Quality Corporation
|
Battery control system and method | ||
Patent #
US 8,030,881 B2
Filed 01/22/2008
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Battery tester with promotion feature to promote use of the battery tester by providing the user with codes having redeemable value | ||
Patent #
US 7,791,348 B2
Filed 02/27/2007
|
Current Assignee
Interstate Battery Systems Of America Incorporated, Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery float management | ||
Patent #
US 7,772,851 B2
Filed 07/02/2004
|
Current Assignee
Eaton Intelligent Power Limited
|
Original Assignee
Eaton Power Quality Corporation
|
Energy management system for automotive vehicle | ||
Patent #
US 7,688,074 B2
Filed 06/14/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Wireless battery tester with information encryption means | ||
Patent #
US 7,772,850 B2
Filed 07/11/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with vehicle type input | ||
Patent #
US 7,656,162 B2
Filed 07/22/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with databus | ||
Patent #
US 7,728,597 B2
Filed 11/03/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester that calculates its own reference values | ||
Patent #
US 7,710,119 B2
Filed 12/14/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 7,642,787 B2
Filed 10/24/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 7,705,602 B2
Filed 08/29/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester capable of identifying faulty battery post adapters | ||
Patent #
US 7,642,786 B2
Filed 05/31/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus for detecting charged state of secondary battery | ||
Patent #
US 7,679,328 B2
Filed 10/26/2006
|
Current Assignee
Nippon Soken Inc., DENSO Corporation
|
Original Assignee
Nippon Soken Inc., DENSO Corporation
|
Alternator tester | ||
Patent #
US 7,706,991 B2
Filed 06/11/2007
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester configured to predict a load test result based on open circuit voltage, temperature, cranking size rating, and a dynamic parameter | ||
Patent #
US 7,723,993 B2
Filed 09/02/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Wireless battery monitor | ||
Patent #
US 7,774,151 B2
Filed 12/21/2004
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Theft prevention device for automotive vehicle service centers | ||
Patent #
US 7,777,612 B2
Filed 08/03/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery run down indicator | ||
Patent #
US 7,808,375 B2
Filed 04/09/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for counteracting self discharge in a storage battery | ||
Patent #
US 7,479,763 B2
Filed 03/18/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery charger with booster pack | ||
Patent #
US 7,501,795 B2
Filed 06/03/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Centralized data storage of condition of a storage battery at its point of sale | ||
Patent #
US 7,498,767 B2
Filed 02/16/2006
|
Current Assignee
Interstate Battery Systems International Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test module | ||
Patent #
US 7,505,856 B2
Filed 06/02/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for predicting battery capacity and fitness for service from a battery dynamic parameter and a recovery voltage differential | ||
Patent #
US 7,545,146 B2
Filed 12/09/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
BACKUP RELAY CUT CONTROL SYSTEM | ||
Patent #
US 20090184579A1
Filed 01/22/2008
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
IDLE SPEED ADJUSTMENT SYSTEM | ||
Patent #
US 20090183712A1
Filed 01/22/2008
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
ADJUSTMENT OF CONTROL STRATEGY BASED ON TEMPERATURE | ||
Patent #
US 20090184578A1
Filed 01/22/2008
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
ACG OUTPUT VOLTAGE CONTROL | ||
Patent #
US 20090184692A1
Filed 02/18/2009
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Electronic battery tester | ||
Patent #
US 7,557,586 B1
Filed 05/19/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
BATTERY CONTROL SYSTEM AND METHOD | ||
Patent #
US 20090184686A1
Filed 01/22/2008
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Battery management apparatus | ||
Patent #
US 7,579,842 B2
Filed 09/24/2003
|
Current Assignee
Eaton Intelligent Power Limited
|
Original Assignee
Eaton Power Quality Corporation
|
Apparatus and method for simulating a battery tester with a fixed resistance load | ||
Patent #
US 7,595,643 B2
Filed 08/21/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Replaceable clamp for electronic battery tester | ||
Patent #
US 7,598,699 B2
Filed 02/20/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Scan tool for electronic battery tester | ||
Patent #
US 7,598,744 B2
Filed 06/07/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery maintenance device having databus connection | ||
Patent #
US 7,598,743 B2
Filed 02/22/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery monitoring system | ||
Patent #
US 7,619,417 B2
Filed 12/14/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Shunt connection to a PCB of an energy management system employed in an automotive vehicle | ||
Patent #
US 7,319,304 B2
Filed 07/23/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Query based electronic battery tester | ||
Patent #
US 7,363,175 B2
Filed 04/24/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery testers with secondary functionality | ||
Patent #
US 7,398,176 B2
Filed 02/13/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester having a user interface to configure a printer | ||
Patent #
US 7,408,358 B2
Filed 06/16/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Broad-band low-inductance cables for making Kelvin connections to electrochemical cells and batteries | ||
Patent #
US 7,425,833 B2
Filed 09/12/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Scan tool for electronic battery tester | ||
Patent #
US 7,446,536 B2
Filed 10/05/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Kelvin connector for a battery post | ||
Patent #
US 7,198,510 B2
Filed 11/14/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for predicting the remaining discharge time of a battery | ||
Patent #
US 7,208,914 B2
Filed 12/30/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus for detecting charged state of secondary battery | ||
Patent #
US 20070090805A1
Filed 10/26/2006
|
Current Assignee
Nippon Soken Inc., DENSO Corporation
|
Original Assignee
Nippon Soken Inc., DENSO Corporation
|
Battery float management | ||
Patent #
US 20070080668A1
Filed 07/02/2004
|
Current Assignee
Eaton Intelligent Power Limited
|
Original Assignee
Eaton Industries Limited
|
Alternator tester | ||
Patent #
US 7,246,015 B2
Filed 06/09/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Amplifier system with current-mode servo feedback | ||
Patent #
US 7,253,680 B2
Filed 12/07/2004
|
Current Assignee
Biourja Energy Systems Llc
|
Original Assignee
World Energy Labs Incorporated
|
Electronic battery tester with relative test output | ||
Patent #
US 7,295,936 B2
Filed 02/16/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Testing parallel strings of storage batteries | ||
Patent #
US 6,316,914 B1
Filed 09/14/2000
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Test counter for electronic battery tester | ||
Patent #
US 6,225,808 B1
Filed 02/25/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester upgrade using software key | ||
Patent #
US 7,012,433 B2
Filed 09/18/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 7,126,341 B2
Filed 07/19/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus for calibrating electronic battery tester | ||
Patent #
US 6,304,087 B1
Filed 09/05/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Cable for electronic battery tester | ||
Patent #
US 6,913,483 B2
Filed 06/23/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Theft prevention device for automotive vehicle service centers | ||
Patent #
US 7,119,686 B2
Filed 04/13/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,172,505 B1
Filed 03/09/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Query based electronic battery tester | ||
Patent #
US 7,034,541 B2
Filed 05/17/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,332,113 B1
Filed 05/03/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Programmable current exciter for measuring AC immittance of cells and batteries | ||
Patent #
US 6,466,026 B1
Filed 10/12/2001
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Method and apparatus for evaluating stored charge in an electrochemical cell or battery | ||
Patent #
US 6,495,990 B2
Filed 08/27/2001
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Method and apparatus for auditing a battery test | ||
Patent #
US 6,885,195 B2
Filed 03/14/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electrical connection for electronic battery tester | ||
Patent #
US 6,163,156 A
Filed 11/01/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for auditing a battery test | ||
Patent #
US 6,091,245 A
Filed 10/25/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester cable | ||
Patent #
US 6,933,727 B2
Filed 06/23/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive battery charging system tester | ||
Patent #
US 6,351,102 B1
Filed 04/16/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test module | ||
Patent #
US 7,058,525 B2
Filed 08/13/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for charging a battery | ||
Patent #
US 6,313,608 B1
Filed 05/22/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 6,850,037 B2
Filed 10/15/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with automotive scan tool communication | ||
Patent #
US 6,967,484 B2
Filed 06/12/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester/charger with integrated battery cell temperature measurement device | ||
Patent #
US 6,919,725 B2
Filed 10/03/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Integrated conductance and load test based electronic battery tester | ||
Patent #
US 6,456,045 B1
Filed 05/30/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester with encoded output | ||
Patent #
US 6,914,413 B2
Filed 09/05/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for protecting a battery from overdischarge | ||
Patent #
US 6,888,468 B2
Filed 01/22/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery clamp with integrated current sensor | ||
Patent #
US 6,544,078 B2
Filed 07/18/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,781,382 B2
Filed 12/05/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring complex admittance of cells and batteries | ||
Patent #
US 6,262,563 B1
Filed 02/11/2000
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Electronic battery tester with internal battery | ||
Patent #
US 6,249,124 B1
Filed 11/01/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester with databus | ||
Patent #
US 6,586,941 B2
Filed 03/23/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with data bus for removable module | ||
Patent #
US 6,998,847 B2
Filed 07/01/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for charging a battery | ||
Patent #
US 6,104,167 A
Filed 10/08/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for determining battery properties from complex impedance/admittance | ||
Patent #
US 6,222,369 B1
Filed 01/26/2000
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Vehicle electrical system tester with encoded output | ||
Patent #
US 6,445,158 B1
Filed 05/22/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester configured to receive a removable digital module | ||
Patent #
US 6,759,849 B2
Filed 10/25/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for electronically evaluating the internal temperature of an electrochemical cell or battery | ||
Patent #
US 6,294,897 B1
Filed 10/18/2000
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 7,154,276 B2
Filed 09/05/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Energy management system for automotive vehicle | ||
Patent #
US 6,909,287 B2
Filed 10/29/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery clamp with embedded environment sensor | ||
Patent #
US 6,469,511 B1
Filed 07/18/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,359,441 B1
Filed 04/28/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with network communication | ||
Patent #
US 6,871,151 B2
Filed 03/07/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,556,019 B2
Filed 03/19/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for evaluating stored charge in an electrochemical cell or battery | ||
Patent #
US 6,313,607 B1
Filed 09/01/1999
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Booster pack with storage capacitor | ||
Patent #
US 7,015,674 B2
Filed 03/28/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring complex impedance of cells and batteries | ||
Patent #
US 6,172,483 B1
Filed 12/03/1999
|
Current Assignee
Emerson Electric Company
|
Original Assignee
Emerson Electric Company
|
Programmable current exciter for measuring AC immittance of cells and batteries | ||
Patent #
US 6,621,272 B2
Filed 10/15/2002
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Apparatus and method for testing rechargeable energy storage batteries | ||
Patent #
US 6,441,585 B1
Filed 06/15/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,707,303 B2
Filed 11/26/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,806,716 B2
Filed 01/29/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Jamey Butteris, Kevin I. Bertness
|
Energy management system for automotive vehicle | ||
Patent #
US 6,331,762 B1
Filed 05/04/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,310,481 B2
Filed 03/26/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus using a circuit model to evaluate cell/battery parameters | ||
Patent #
US 6,737,831 B2
Filed 02/08/2002
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Battery test module | ||
Patent #
US 7,039,533 B2
Filed 12/05/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator diagnostic system | ||
Patent #
US 6,363,303 B1
Filed 11/01/1999
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring complex self-immitance of a general electrical element | ||
Patent #
US 6,294,896 B1
Filed 11/10/2000
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Apparatus and method for simulating a battery tester with a fixed resistance load | ||
Patent #
US 7,116,109 B2
Filed 11/11/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester with battery replacement output | ||
Patent #
US 6,906,522 B2
Filed 03/29/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 6,633,165 B2
Filed 09/20/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery charger with booster pack | ||
Patent #
US 6,788,025 B2
Filed 06/21/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,891,378 B2
Filed 03/25/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Broad-band low-inductance cables for making Kelvin connections to electrochemical cells and batteries | ||
Patent #
US 7,106,070 B2
Filed 07/22/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,566,883 B1
Filed 10/31/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test module | ||
Patent #
US 6,795,782 B2
Filed 12/05/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for testing cells and batteries embedded in series/parallel systems | ||
Patent #
US 6,906,523 B2
Filed 04/09/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with battery failure temperature determination | ||
Patent #
US 6,930,485 B2
Filed 03/14/2003
|
Current Assignee
Interstate Battery Systems International Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with network communication | ||
Patent #
US 7,003,411 B2
Filed 08/09/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for carrying out diagnostic tests on batteries and for rapidly charging batteries | ||
Patent #
US 6,424,158 B2
Filed 07/10/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with relative test output | ||
Patent #
US 7,003,410 B2
Filed 06/17/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester capable of predicting a discharge voltage/discharge current of a battery | ||
Patent #
US 7,081,755 B2
Filed 09/03/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for charging a battery | ||
Patent #
US 6,329,793 B1
Filed 05/22/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,392,414 B2
Filed 06/07/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Query based electronic battery tester | ||
Patent #
US 6,941,234 B2
Filed 09/30/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Suppressing interference in AC measurements of cells, batteries and other electrical elements | ||
Patent #
US 6,417,669 B1
Filed 06/11/2001
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Electronic battery tester | ||
Patent #
US 6,323,650 B1
Filed 04/07/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery charge control device | ||
Patent #
US 6,696,819 B2
Filed 01/08/2002
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for electronically evaluating the internal temperature of an electrochemical cell or battery | ||
Patent #
US 6,137,269 A
Filed 09/01/1999
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Alternator tester | ||
Patent #
US 6,466,025 B1
Filed 01/13/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method of analyzing the time-varying electrical response of a stimulated target substance | ||
Patent #
US 6,990,422 B2
Filed 09/19/2003
|
Current Assignee
Biourja Energy Systems Llc
|
Original Assignee
World Energy Labs Incorporated
|
State of charge indicator for battery | ||
Patent #
US 20060097699A1
Filed 10/28/2005
|
Current Assignee
Mathews Associates Incorporated
|
Original Assignee
Mathews Associates Incorporated
|
Modular battery management apparatus with cell sensing and energy redistribution capabilities | ||
Patent #
US 20060193095A1
Filed 09/24/2003
|
Current Assignee
Eaton Intelligent Power Limited
|
Original Assignee
Eaton Industries Limited
|
Analyzing the response of an electrochemical system to a time-varying electrical stimulation | ||
Patent #
US 20060190204A1
Filed 01/23/2006
|
Current Assignee
World Energy Labs Incorporated
|
Original Assignee
World Energy Labs Incorporated
|
Alternator tester | ||
Patent #
US 20050035752A1
Filed 06/09/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with probe light | ||
Patent #
US 20050077904A1
Filed 10/08/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester/charger with integrated battery cell temperature measurement device | ||
Patent #
US 20050073314A1
Filed 10/03/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for simulating a battery tester with a fixed resistance load | ||
Patent #
US 20050099185A1
Filed 11/11/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Amplifier system with current-mode servo feedback | ||
Patent #
US 20050116773A1
Filed 12/07/2004
|
Current Assignee
Biourja Energy Systems Llc
|
Original Assignee
World Energy Labs Incorporated
|
Modular battery tester for scan tool | ||
Patent #
US 20040036443A1
Filed 06/12/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester configured to predict a load test result | ||
Patent #
US 20040046566A1
Filed 09/02/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test outputs adjusted based upon battery temperature and the state of discharge of the battery | ||
Patent #
US 20040046564A1
Filed 09/03/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for preventing un-authorized starting of a vehicle | ||
Patent #
US 6,720,862 B2
Filed 01/11/2001
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Delphi Technologies Inc.
|
Method of analyzing the time-varying electrical response of a stimulated target substance | ||
Patent #
US 20040128088A1
Filed 09/19/2003
|
Current Assignee
Biourja Energy Systems Llc
|
Original Assignee
World Energy Labs Incorporated
|
Apparatus and method for protecting a battery from overdischarge | ||
Patent #
US 20040140904A1
Filed 01/22/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for predicting the remaining discharge time of a battery | ||
Patent #
US 20040157113A1
Filed 12/30/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 20040189308A1
Filed 03/25/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
STRESS MANAGEMENT OF BATTERY RECHARGE AND METHOD OF STATE CHARGE ESTIMATION | ||
Patent #
US 20040222769A1
Filed 06/21/2004
|
Current Assignee
Eaton Intelligent Power Limited
|
Original Assignee
Eaton Industries Limited
|
Electronic battery tester with relative test output | ||
Patent #
US 20030088375A1
Filed 10/02/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test module | ||
Patent #
US 20030124417A1
Filed 12/05/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with battery failure temperature determination | ||
Patent #
US 20030173971A1
Filed 03/14/2003
|
Current Assignee
Interstate Battery Systems International Incorporated
|
Original Assignee
Interstate Battery Systems Of America Incorporated
|
Battery tester with battery replacement output | ||
Patent #
US 20030184306A1
Filed 03/29/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring and analyzing electrical or electrochemical systems | ||
Patent #
US 20030206021A1
Filed 05/21/2003
|
Current Assignee
World Energy Labs Incorporated
|
Original Assignee
World Energy Labs Incorporated
|
Method and apparatus for sensing the status of a vehicle | ||
Patent #
US 6,362,599 B1
Filed 09/21/2000
|
Current Assignee
LX Tech LLC
|
Original Assignee
Delphi Technologies Inc.
|
State of health for automotive batteries | ||
Patent #
US 6,369,578 B1
Filed 06/05/2001
|
Current Assignee
Johnson Controls Technology Company
|
Original Assignee
Delphi Technologies Inc.
|
Energy device analysis and evaluation | ||
Patent #
US 6,411,098 B1
Filed 12/08/1998
|
Current Assignee
Biourja Energy Systems Llc
|
Original Assignee
World Energy Labs Incorporated
|
Battery test module | ||
Patent #
US 20020193955A1
Filed 08/13/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measurement of electrochemical cell and battery impedances | ||
Patent #
US 6,307,378 B1
Filed 12/22/2000
|
Current Assignee
Penn State Research Foundation
|
Original Assignee
Penn State Research Foundation
|
High sensitivity battery resistance monitor and method therefor | ||
Patent #
US 5,969,625 A
Filed 04/16/1997
|
Current Assignee
Frank J. Russo
|
Original Assignee
Frank J. Russo
|
Measurement circuit for a modular system of electrical cells connected in series, in particular for a system of the storage batterytype | ||
Patent #
US 5,638,002 A
Filed 04/20/1995
|
Current Assignee
SAFT SA
|
Original Assignee
SAFT SA
|
Method of testing characteristics of battery set | ||
Patent #
US 5,387,871 A
Filed 11/25/1992
|
Current Assignee
Wei-Jen Tsai
|
Original Assignee
Wei-Jen Tsai
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 8,164,343 B2
Filed 10/30/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive battery charging system tester | ||
Patent #
US 8,198,900 B2
Filed 03/02/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
ACG output voltage control | ||
Patent #
US 8,217,631 B2
Filed 02/18/2009
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Battery testers with secondary functionality | ||
Patent #
US 8,237,448 B2
Filed 07/07/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester for electric vehicle | ||
Patent #
US 8,306,690 B2
Filed 07/17/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
ACG output voltage control | ||
Patent #
US 8,334,679 B2
Filed 01/22/2008
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
System for automatically gathering battery information | ||
Patent #
US 8,344,685 B2
Filed 04/01/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
SECONDARY BATTERY, INSPECTION APPARATUS AND INSPECTION METHOD FOR SECONDARY BATTERY, AND BATTERY INSPECTION SYSTEM | ||
Patent #
US 20130069662A1
Filed 06/04/2010
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Integrated tag reader and environment sensor | ||
Patent #
US 8,436,619 B2
Filed 04/01/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Simplification of inventory management | ||
Patent #
US 8,442,877 B2
Filed 04/01/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 8,493,022 B2
Filed 04/22/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester or charger with databus connection | ||
Patent #
US 8,513,949 B2
Filed 09/04/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 8,674,654 B2
Filed 08/09/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 8,674,711 B2
Filed 12/19/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
System for automatically gathering battery information | ||
Patent #
US 8,704,483 B2
Filed 11/28/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Storage battery and battery tester | ||
Patent #
US 8,203,345 B2
Filed 12/04/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery pack maintenance for electric vehicles | ||
Patent #
US 8,738,309 B2
Filed 09/30/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 8,754,653 B2
Filed 07/07/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
BATTERY CONTROL SYSTEM, BATTERY CONTROLLER, BATTERY CONTROL METHOD, AND RECORDING MEDIUM | ||
Patent #
US 20140217989A1
Filed 07/17/2012
|
Current Assignee
NEC Corporation
|
Original Assignee
NEC Corporation
|
Electronic battery tester mounted in a vehicle | ||
Patent #
US 8,872,516 B2
Filed 02/28/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with battery age input | ||
Patent #
US 8,872,517 B2
Filed 03/15/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
CHARGING DEVICE AND CONTROL METHOD THEREOF | ||
Patent #
US 20140320085A1
Filed 04/24/2013
|
Current Assignee
Dynapack International Technology Corporation
|
Original Assignee
Dynapack International Technology Corporation
|
Electronic battery tester with network communication | ||
Patent #
US 8,958,998 B2
Filed 04/12/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
System for automatically gathering battery information | ||
Patent #
US 8,963,550 B2
Filed 10/11/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 9,018,958 B2
Filed 10/19/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery testers with secondary functionality | ||
Patent #
US 9,052,366 B2
Filed 08/06/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Secondary battery, inspection apparatus and inspection method for secondary battery, and battery inspection system | ||
Patent #
US 9,182,448 B2
Filed 06/04/2010
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Electronic battery tester for testing storage battery | ||
Patent #
US 9,201,120 B2
Filed 08/09/2011
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Electronic storage battery diagnostic system | ||
Patent #
US 9,229,062 B2
Filed 05/23/2011
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Charging system for reducing harmonic wave and fabricating cost | ||
Patent #
US 9,236,755 B2
Filed 09/11/2012
|
Current Assignee
Delta Electronics Incorporated
|
Original Assignee
Delta Electronics Incorporated
|
Current clamp with jaw closure detection | ||
Patent #
US 9,244,100 B2
Filed 03/11/2014
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 9,255,955 B2
Filed 05/02/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester for electric vehicle | ||
Patent #
US 9,274,157 B2
Filed 09/23/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery testing system and method | ||
Patent #
US 9,312,575 B2
Filed 05/13/2014
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Battery tester for electric vehicle | ||
Patent #
US 9,335,362 B2
Filed 11/05/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery maintenance device with thermal buffer | ||
Patent #
US 9,419,311 B2
Filed 06/18/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Monitor for front terminal batteries | ||
Patent #
US 9,425,487 B2
Filed 03/01/2011
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
System for automatically gathering battery information | ||
Patent #
US 9,496,720 B2
Filed 01/24/2012
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for detecting cell deterioration in an electrochemical cell or battery | ||
Patent #
US 9,588,185 B2
Filed 02/25/2010
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Suppressing HF cable oscillations during dynamic measurements of cells and batteries | ||
Patent #
US 9,851,411 B2
Filed 03/12/2013
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Battery clamp with endoskeleton design | ||
Patent #
US 9,923,289 B2
Filed 01/16/2015
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Kelvin connector adapter for storage battery | ||
Patent #
US 9,966,676 B2
Filed 09/27/2016
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Systems and related methods for determining self-discharge currents and internal shorts in energy storage cells | ||
Patent #
US 10,036,779 B2
Filed 11/30/2015
|
Current Assignee
Battelle Energy Alliance LLC
|
Original Assignee
Battelle Energy Alliance LLC
|
Hybrid and electric vehicle battery pack maintenance device | ||
Patent #
US 10,046,649 B2
Filed 03/14/2013
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Sensor Based Monitoring | ||
Patent #
US 20180322240A1
Filed 12/08/2017
|
Current Assignee
International Business Machines Corporation
|
Original Assignee
International Business Machines Corporation
|
Cable connector for electronic battery tester | ||
Patent #
US 10,222,397 B2
Filed 09/22/2015
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester | ||
Patent #
US 10,317,468 B2
Filed 01/26/2016
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery pack tester | ||
Patent #
US 10,429,449 B2
Filed 11/08/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive maintenance system | ||
Patent #
US 10,473,555 B2
Filed 07/14/2015
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery clamp | ||
Patent #
US 10,608,353 B2
Filed 06/27/2017
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Sensor based monitoring | ||
Patent #
US 10,642,952 B2
Filed 12/08/2017
|
Current Assignee
International Business Machines Corporation
|
Original Assignee
International Business Machines Corporation
|
Arc safe electrical testing system | ||
Patent #
US 10,663,488 B1
Filed 07/11/2018
|
Current Assignee
Adrian R. Adair
|
Original Assignee
Adrian R. Adair
|
Calibration and programming of in-vehicle battery sensors | ||
Patent #
US 10,843,574 B2
Filed 04/28/2016
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method for monitoring automotive battery status | ||
Patent #
US 4,937,528 A
Filed 10/14/1988
|
Current Assignee
Allied Signal Inc.
|
Original Assignee
Alliedsignal Inc.
|
Circuit arrangement for continually monitoring the quality of a multicell battery | ||
Patent #
US 4,833,459 A
Filed 01/27/1988
|
Current Assignee
Varta Batterie AG
|
Original Assignee
Accumulatorenfabrik Sonnenschein GmbH
|
Dynamic state-of-charge indicator for a battery and method thereof | ||
Patent #
US 4,876,513 A
Filed 12/05/1988
|
Current Assignee
Globe Union Canada Inc.
|
Original Assignee
Globe-Union Inc.
|
Apparatus and method for measuring battery condition | ||
Patent #
US 4,697,134 A
Filed 07/31/1986
|
Current Assignee
Commonwealth Edison Company
|
Original Assignee
Commonwealth Edison Company
|
Method and apparatus for testing a battery | ||
Patent #
US 4,433,294 A
Filed 06/05/1981
|
Current Assignee
KW POWERSOURCE INC.
|
Original Assignee
FIRING CIRCUITS INC.
|
Battery monitoring system | ||
Patent #
US 4,394,741 A
Filed 11/18/1980
|
Current Assignee
Lucas Industries Limited
|
Original Assignee
Lucas Industries Limited
|
Battery testing techniques | ||
Patent #
US 4,423,379 A
Filed 03/31/1981
|
Current Assignee
Snap-On Tools Company LLC
|
Original Assignee
Sun Electronics Corp
|
Battery monitoring system | ||
Patent #
US 4,217,645 A
Filed 04/25/1979
|
Current Assignee
Ernest A. Dahl, George H. Barry
|
Original Assignee
Ernest A. Dahl, George H. Barry
|
34 Claims
-
1. An apparatus for measuring charge state of a battery comprising at least one cell which exhibits a polarization voltage when fully charged, said apparatus comprising:
-
a transmitter connected to the battery and operative to apply a charging test signal to the cell when the cell is fully charged, said test signal characterized by at least one transition to a voltage value greater than the voltage of the cell to provide charging signal which is retained for a time sufficient to modify the polarization voltage when present across the cell; and a receiver connected to the cell and operative to monitor the polarization voltage across the cell to provide an indication of the state of charge of the cell. - View Dependent Claims (2, 3, 4, 6, 7, 8)
-
-
5. The apparatus of claim i wherein the battery is connected to a battery charger and a load, and wherein the battery is being charged by the battery charger.
-
9. An apparatus for determining charge state of a battery comprising a first positive terminal and a first negative terminal, said battery comprising a cell comprising a second positive terminal and a second negative terminal, said battery connected to and being charged by a battery charger, said apparatus comprising:
-
a. transmitter means connected to said first positive terminal and first negative terminal for applying thereto a square wave charging current signal at a selected frequency below about 3 Hz; b. receiver means connected to said second positive terminal and said second negative terminal for receiving a first voltage signal from said cell, said receiver means comprising; filter means for attenuating DC components of said first voltage signal and outputting a filtered second voltage signal; and measuring means connected to said filter means for measuring a characteristic of said second voltage signal, which varies with a polarization voltage of the cell to provide an indication of the charge state of said cell. - View Dependent Claims (10, 11, 12, 13, 14)
-
-
15. A method for determining charge state of a battery comprising at least one cell which exhibits a polarization voltage when fully charged, said method comprising the following steps:
-
a. applying a charging test signal across the cell when the cell is fully charged, said test signal characterized by at least one transition to a voltage value greater than the voltage of the cell to provide a charging signal which is retained for a time sufficient to modify the polarization voltage when present across the cell; and b. monitoring the polarization voltage across the cell to provide an indication of the state of charge of the cell. - View Dependent Claims (16, 17, 18, 19, 20, 21, 22, 23)
-
-
24. A method for determining charge state of a battery comprising a first positive terminal and a first negative terminal, said battery comprising a cell comprising a second positive terminal and a second negative terminal, said battery connected to and being charged by a battery charger, said method comprising the following steps:
-
a. applying a square wave charging current signal at a selected frequency less than about 3 Hz to said first positive terminal and said first negative terminal; b. obtaining a first voltage signal indicative of cell voltage between said second positive terminal and said second negative terminal; c. passing said first voltage signal through a filter, said filter selected to attenuate DC components of said first voltage signal and to output a filtered second voltage signal; and d. measuring a characteristic of said second voltage signal which varies with a polarization voltage of the cell to determine the charge state of said cell. - View Dependent Claims (25, 26, 27, 28, 29, 30, 31, 32, 33, 34)
-
1 Specification
This invention relates to devices and methods for determining whether or not a battery is fully charged.
Batteries have numerous applications. Some batteries are used in electrical generating stations, electrical switching stations and other such applications to provide backup power. Commercial and industrial facilities use batteries to power emergency systems in the event normal AC power is interrupted. Electric vehicles using batteries are presently being developed by automobile manufacturers. In all these and many other applications, it is often important to know whether or not a battery has reached a fully charged state. It also is important to detect shorted cells early.
One existing method for determining the charge state of a battery relies on the use of a hydrometer. However, such a reading may be inconvenient and may not indicate a full charge until weeks after the battery is in fact fully charged. Other methods measure battery open circuit voltage to determine whether a battery is fully charged. Such methods, such as the ones described in U.S. Pat. No. 4,937,528 to Palanisamy and U.S. Pat. No. 4,423,379 to Jacobs, et. al. specifically require dissipation of the polarization voltage before measuring open circuit voltage for full charge. However, open circuit voltage varies with load, and such methods may be inaccurate if a load is connected to the battery during the measurement. Existing methods such as disclosed by Palanisamy in U.S. Pat. No. 4,937,528 rely on low open circuit voltage and/or inflections in a dV/dI curve to detect a shorted cell. However, open circuit voltage is not always a reliable early indicator of a shorted cell.
Shorted cells also are difficult to detect early. It has been observed that shorted cells initially have high resistance shorts (on the order of 1 ohm). Because battery resistance is small (on the order of 0.1 to 10 milliohms) a change in battery resistance due to this "parallel" short is difficult to detect by existing means, for example, using the battery monitor described in U.S. Pat. No. 4,697,134 to Burkum and Gabriel. It is only when the battery is shorted with a low resistance short and can not be charged that a shorted cell becomes evident. However, in many applications it is important to detect a shorted cell prior to this point.
Contrary to some previous methods, observation of the polarization voltage can indicate that a battery or individual cells of a battery are fully charged. Likewise, absence of the polarization voltage in a cell where polarization voltage is present in other cells in the battery can indicate that the cell is less than fully charged and therefore shorted. The polarization voltage is a counter electromotive force caused by a change in the density of the electrolyte in the pores of the battery plates. During charging the polarization voltage increases and eventually stabilizes, at which time the battery is fully charged and gassing. This can occur several weeks before a hydrometer test would indicate that a battery is fully charged. It may be many hours before the polarization voltage stabilizes.
An apparatus that could quickly and easily detect the stabilized polarization voltage would be extremely beneficial. Under certain circumstances, such an apparatus also could indicate the presence of a shorted cell. It also would be valuable to perform this test without disconnecting the battery from its electrical load.
It is therefore an object of this invention to determine when an individual cell of a battery has reached full charge.
It is another object of this invention to determine whether an individual cell of a battery is shorted.
It is a further object of this invention to determine if a cell of a battery connected to a battery charger and an electrical load is fully charged.
It is another object of this invention to determine if a cell of a battery connected to a battery charger and an electrical load is shorted.
It is a further object of this invention to determine when the polarization voltage of a battery has stabilized.
According to this invention, an apparatus is provided for measuring charge state of a battery that comprises at least one cell. This apparatus comprises a transmitter connected to the battery and operative to apply a test signal to the cell. The test signal is characterized by at least one transition to a charging voltage which is retained for a time sufficient to allow a polarization voltage to develop across the cell. A receiver is connected to the cell and operates to monitor the polarization voltage across the cell to provide an indication of the state of charge of the cell.
According to the method of this invention the charge state of a battery comprising at least one cell is determined by (i) applying a test signal across the cell, wherein the test signal is characterized by at least one transition to a charging voltage which is retained for a time sufficient to allow a polarization voltage to develop across the cell, and (2) monitoring the polarization voltage across the cell to provide an indication of the state of charge of the cell.
As pointed out below, in the preferred embodiment the test signal is a continuous square wave having a frequency which is preferably less than 3.0 Hz and most preferably between 0.1 and 1.0 Hz. The test signal allows the development of the polarization voltage to be monitored simply and rapidly.
This invention is particularly useful for determining whether or not a cell is fully charged while the battery is connected both to an active electrical load and to a battery charger. A battery may be tested using the apparatus and method described below and still be available immediately for emergency service.
FIG. 1 is a schematic circuit diagram of the presently preferred embodiment of an apparatus for detecting the charge state of a battery cell.
FIGS. 2a, 2b and 2c are polarization voltage vs. time waveforms measured with the apparatus 10 across a 2.2 volt battery cell that was fully charged (FIG. 2a), partially charged and charging (FIG. 2b), and partially charged and discharging (FIG. 2c) while a 1 amp, 0.1 Hz test signal was applied to the cell.
FIGS. 3a, 3b, 3c are polarization voltage vs. time waveforms corresponding to FIGS. 2a, 2b, 2c, respectively, displayed with an expanded time scale.
FIGS. 4a, 4b, 4c are polarization voltage vs. time waveforms measured with the apparatus 10 across a 2.2 volt battery cell that was fully charged and partially charged and charging (FIG. 4b) and partially charged and sicharging (FIG. 4c) while a 1 amp, 1.0 Hz test signal was applied to the cell.
FIG. 5 is a schematic circuit diagram of a discharge resistor circuit for discharging the polarization voltage.
Referring to FIG. 1, the preferred embodiment of an apparatus 10 for determining the state of charge of a battery cell is used to test a battery 6, comprising a plurality of cells 8a . . . 8n while the battery 6 is connected to an active electrical load 4 and a battery charger 2. Typical operation and characteristics of the charger 2 and electrical load 4 are discussed in U.S. Pat. No. 4,697,134 to Burkum and Gabriel, col. 5, lines 38-55, which is incorporated herein by reference.
The preferred embodiment of the apparatus 10 comprises a transmitter 12 and a receiver 32. The transmitter 12 injects a periodic current of a selected frequency as a test signal. In the preferred embodiment, transmitter 12 includes a function generator 14 which is capable of generating a square wave in a frequency range of 0.001 Hz to 3.0 Hz. The function generator 14 drives a power supply 16 to cause the power supply to inject a square wave of current at the desired magnitude and at the desired frequency. The function generator 14 is connected to the power supply 16 using standard connections for the power supply to act as a current generator. The power supply 16 is powered by an AC supply source (not shown) and is adjustable to vary the injected current to the desired value. The output of the power supply 16 is connected to the positive and negative terminals 22, 24 of the battery 6 with leads 18, 20, respectively. A diode 26 and a fuse 28 are installed in the lead 18. The diode 26 prevents current from flowing from the battery 6 back towards the power supply 16, protecting the power supply. Current will only flow when the output voltage of the power supply 16 exceeds the output voltage of the battery 6. The fuse 28 protects the power supply 16 in the event the leads 19, 20 are reversed (connecting the lead 18 to the negative terminal 24 and the lead 20 to the positive terminal 22).
The receiver 32 is connected across the battery terminals 48, 50 of the cell 8t to be tested with probes 34, 36. The probes 34, 36 are preferably probes having spring-loaded contact points which twist as they are pushed against the battery terminals. Such probes result in a low resistance probe contact. The probes 34, 36 are connected to a filter 42 with leads 45, 46. The filter 42 attenuates or blocks the DC voltage output from the cell 8t and passes a filtered voltage signal having a frequency corresponding to that of the test signal injected by the transmitter 12. Thus, in the preferred embodiment, the filter 42 acts as a high pass filter, blocking the DC voltage yet passing a 0.1 Hz voltage signal. A measuring means 44 is connected to the filter 42 to measure the filtered voltage signal. The filtered voltage signal varies with polarization voltage of the cell 8t, and can be used as described below to determine whether or not the cell 8t is fully charged.
In the preferred embodiment, the measuring means 44 includes a high impedance DC voltmeter which measures peak-to-peak voltage of the filtered voltage signal. Based on prior experience and instrument calibration, the operator of the apparatus 10 can determine whether the cell 8t is fully charged or not by observing the peak-to-peak voltage as measured by the DC voltmeter. Because of the low frequency (0.1 Hz) used in the preferred embodiment, a DC voltmeter is particularly effective for this application. The long period of the filtered voltage signal allows the DC voltmeter to respond to each half cycle, reading the positive and negative peaks. The voltmeter should not respond to higher frequency components (above 5 Hz), thus eliminating the need for additional high frequency attenuation filters to be added to the filter 42.
Alternatively, a comparator circuit with a light emitting diode (not shown) may serve in place of a high impedance voltmeter. A reference voltage is selected depending upon the type of battery being tested. The LED is illuminated when the battery voltage exceeds the reference voltage, indicating a fully charged battery.
In an alternative embodiment, the measuring means 44 may include a visual display such as an oscilloscope, a spectrum analyzer, an X-Y plotter, a computer or an equivalent device. A spectrum analyzer is preferred. Use of a visual display measuring means allows a person using the apparatus 10 to view the voltage vs. time waveform of the cell 8t and to determine by observing the shape of the waveform whether or not the cell is fully charged. The peak-to-peak voltage also is observable on the visual display measuring means, although a different value will be indicated than when using a DC voltmeter. The shape of the waveform also may indicate if the cell 8t is shorted.
In general, the measuring means 44 should be sensitive to voltage changes of a few millivolts in order to monitor development of the polarization voltage associated with the test signal. Because the polarization voltage for batteries such as lead-acid batteries will typically be millivolt signals superimposed on multiple volt DC signals, it will often be helpful to block the DC signal as described above. A filter as described above may not be required in all embodiments, and it may be preferable for some applications to compensate for the DC signal with a suitable offset voltage, or to use a high resolution measuring means.
FIGS. 2a-4c will be used to explain the manner in which the apparatus 10 can be used to distinguish a fully charged cell from a partially discharged cell. In FIGS. 2a, 2b, 3a, 3b, 4a and 4b the cell under test is being charged. In FIGS. 2c, 3c and 4c the cell under test is discharging while connected to a 100 amp load. In all cases the illustrated waveforms are of the filtered voltage signal supplied by the filter 42 as displayed on a spectrum analyzer in the oscilloscope mode.
FIGS. 2a, 2b and 2c show that the voltage vs. time waveform for a fully charged cell (FIG. 2a) is substantially different from the corresponding waveform for a partially charged cell, whether charging (FIG. 2b) or discharging (FIG. 2c). Similarly, the peak-to-peak voltage excursion for the fully charged cell (FIG. 2a) is greater than that for a partially charged cell (FIGS. 2b and 2c).
FIGS. 3a, 3b and 3c correspond to FIGS. 2a, 2b, 2c, respectively, at an expanded time scale, and FIGS. 3a, 3b and 3c also show differences in waveform and voltage magnitude between the fully charged cell (FIG. 3a) and the partially charged cells (FIGS. 3b and 3c).
FIGS. 4a, 4b and 4c are similar to FIGS. 3a, 3b, 3c, respectively, except that a test signal having a higher frequency of 1 Hz was used for FIGS. 4a, 4b, 4c. As before, the waveforms and the voltage magnitudes are quite different for a fully charged cell (FIG. 4a) as compared with a partially charged cell (FIGS. 4b and 4c).
In the presently preferred embodiment, the function generator 14 is a Wavetech (San Diego, CA) Model 20 Function Generator. This function generator is set in the continuous mode to produce a continuous square wave have a 1 volt peak and a 0 volt minimum voltage, resulting in an average DC output of 0.5 Volt over a full period. The frequency is adjusted to 0.1 Hz in the preferred embodiment to allow time for the polarization voltage to develop, although it may be advantageous to set the frequency at 1.0 Hz if a visual display is used for the measuring means 44. A square wave also allows a large portion of the initial injected current to go through the battery 6, rather than through the load 4 or the charger 2. At a frequency of 0.1 Hz, the ratio of the peak-to-peak voltage for a fully charged cell to the peak-to-peak voltage for a charging or discharging cell is relatively large. This ratio can be seen in Tables 1 and 2 as discussed below. In general, it is anticipated that frequencies from 3.0 Hz to 0.001 Hz or less will be useful with this invention when applied to a lead-acid battery. If the frequency is above 3.0 Hz, it is difficult to detect the polarization voltage of such batteries. Lower frequencies (below the 0.1 Hz preferred frequency) give good results but require more expensive filtering to attenuate the DC signal while passing the low frequency component of the battery voltage.
The power supply 16 is preferably a Kepco (Flushing, NY) Model ATE 150-3.5 M. This power supply has an output range of 0-150 VDC and 0-3.5 amps DC. The output of the function generator 14 is connected to the terminals of the rear programming connector PC-12 to program the power supply to operate as a current generator. As shown in FIG. 1 the output current is adjusted to approximately 1 amp peak on the current square wave (0.5 amp DC over the entire period) using the power supply'"'"'s current control. The fuse 28 is preferably rated at 3-10 amps, 250 V. The diode 26 is preferably type SK3051, RCA8726, rated at 1000 Volts reverse voltage, 3 amps RMS.
The filter 42 is preferably a Stanford Research (Sunnyvale, Calif.) Model SR560 Low-Noise Preamplifier. In the preferred embodiment, this device is operated in the AC coupling mode. This mode automatically engages a 0.03 Hz cutoff high-pass filter which blocks the DC terminal voltage of the battery cell 8t. No other filters need be used. The gain mode is set to "Low Noise" and the gain of the filter is set to 1.0 in the preferred mode. If a battery with a charger of vastly different characteristics is used, a higher gain may be required to drive the measuring means 44. Use of the 600 ohm output is preferred.
In the preferred embodiment, a DC voltmeter is used as the measuring means 44. A Fluke (Everett, WA) Model 845AB High Impedance Voltmeter is preferred. For testing 2.2 Volt lead-acid batteries, a 10 mV full scale is preferred for this measuring means. In the alternate embodiment that utilizes a visual display, an Ono Sokki (Tokyo, Japan) Model CF-940 Spectrum Analyzer is preferred. A 2 mV full scale is preferred.
The apparatus 10 allows a quick and accurate determination of whether a cell in the battery 6 is fully charged, or less than fully charged. The preferred method for determining the charge state of the cell 8t in the battery 6 is to attach the leads 18, 20 from the transmitter 12 to the positive and negative terminals 22, 24, respectively, of the battery 6. This test is preferably performed while the battery 6 is receiving a charge from battery charger 2 and may be performed while the battery 6 is connected to the active electrical load 4. The battery 6 has preferably been charging for several days prior to testing. The transmitter 12 is adjusted to output a current square wave with a peak of 1 amp (0.5 amp average current over the entire period). As mentioned previously, a frequency of 0.1 Hz is preferred although 1.0 Hz may be convenient if a visual display measuring means 44 is used. The probes 34, 36 are connected to the positive and negative terminals 48, 50, respectively, of the cell 8t to be tested. The filter 42 is adjusted to block the DC output of the cell 8t and to pass to 0.1 Hz (or other frequency) test signal. No filtering of higher frequency components is necessary in the preferred embodiment.
Using the preferred embodiment of a DC voltmeter as the measuring means 44, the operator records the peak-to-peak voltage of the DC voltmeter by noting the high to low swing. In general, a higher reading (above an appropriate threshold for the cell under test) is indicative of a fully charged cell. With experience and after careful calibration, the operator will be able to determine if a cell is fully charged from the voltmeter reading. Table 1 lists peak-to-peak voltage measurements of several fully charged cells (Column 3) and partially charged cells (Column 4).
TABLE 1__________________________________________________________________________ PEAK-TO-PEAKTEST PEAK-TO-PEAK VOLTAGESIGNAL MEASURING VOLTAGE (FULLY (PARTIALLYFREQUENCY MEANS CHARGED CELL) CHARGED CELL) RATIO__________________________________________________________________________0.1 Hz DCVM 6.6 mv 0.4 mv 16.5 VD 2.6 mv 0.9 mv 2.80.1 Hz DCVM 5.3 mv 0.5 mv 10.6 VD 2.1 mv 0.8 mv 2.81.0 Hz DCVM 0.1 mv 0.025 mv 4.0 VD 1.5 mv 0.9 mv 1.7__________________________________________________________________________ DCVM DC Voltmeter VD Spectrum Analyzer Visual Display
TABLE 2__________________________________________________________________________ PEAK-TO-PEAKTEST PEAK-TO-PEAK VOLTAGESIGNAL MEASURING VOLTAGE (FULLY (PARTIALLYFREQUENCY MEANS CHARGED CELL) CHARGED CELL) RATIO__________________________________________________________________________0.1 Hz DCVM 5.0 mv 0.2 mv 22.7__________________________________________________________________________ Battery Load Connected
There is a large difference between the peak-to-peak voltage of a fully charged cell and that of a partially charged cell. For example, Table 1 shows test measurements using the apparatus 10 on an Exide FMP-11 battery of 415 amp-hour capacity. This battery was being charged but not connected to a load during these tests. When the transmitter 12 injected a 0.1 Hz, 1 amp current square wave test signal, a ratio of peak-to-peak voltages of up to 16.5 was measured using a DC voltmeter as the measuring means 44. Ratios in excess of 20 have been observed in the field as shown in Table 2. A lower ratio is measured for a 1.0 Hz square wave test signal. Hence, the lower frequency (0.1 Hz) is preferred for this application. This method is especially effective if a battery contains a large number of cells. If the battery has been charging for a long period of time, it would be expected that all cells, except those that are shorted, would be fully charged. Of course, use of the apparatus 10 is not limited to such a situation.
After the operator has tested the first cell in the battery and observed the filtered cell voltage, the operator repeats the test at a second cell and continues until all cells are tested. Cells having a measured peak-to-peak polarization voltage above the level calibrated for the type of battery and charger under test are considered fully charged. Substantially lower measurements of the peak-to-peak voltage indicate a less than fully charged (discharging or shorted) cell. If a question arises as to whether the battery is fully charged, a cell may be discharged by a discharge resistor circuit 80 as discussed below.
For the embodiment where a visual display is used as the measuring means 44, the operator observes or records the shape of the polarization voltage vs. time waveform. This waveform is compared to the distinctive shape of the polarization voltage for a fully charged cell as shown in FIGS. 2a, 3a, 4a to determine if the cell is fully charged. It is apparent from the waveshapes of FIGS. 2a, 3a, 4a as compared to FIGS. 2b, 2c, 3b, 3c, 4b, 4c that the polarization voltage waveshape at full charge is distinctive. The waveforms of FIGS. 4a, 4b, 4c were recorded with the transmitter 12 injecting a 1.0 Hz signal for display convenience, but FIGS. 3a, 3b, 3c show a portion of this distinctive waveform when the transmitter 12 is used to inject a 0.1 Hz test signal. Other visual displays could indicate the entire waveform for a 0.1 Hz test signal if required by the operator. Comparing FIGS. 4a and 4b, it is apparent that it is not until full charge that the voltage vs. time waveform achieves its distinctive characteristic. FIG. 4c shows the voltage vs. time waveform of a discharging cell. A shorted cell has a similar characteristic and it is apparent that a skilled operator can easily distinguish between a fully charged cell and a discharging or a shorted cell. Due to different response characteristics of the visual display and the DC voltmeter, a lower ratio of peak-to-peak voltages is recorded with the visual display, as shown in Table 1. The relative ratios between the visual display and the DC voltmeter will, of course, depend on the actual equipment used.
FIG. 5 shows a schematic diagram of a discharge resistor circuit 80 which includes probes 82, 84 that may be connected to the positive and negative terminals 48, 50 of the cell 8t being tested. The probes 82, 84 are connected to a discharge resistor 86 through leads 88, 90. The discharge resistor 86 is preferably a 20 milliohm, 200 watt resistor. Immediately upon connection of the discharge resistor circuit 80, any polarization voltage collapses, and the peak-to-peak voltage measured on a DC voltmeter falls immediately. Similarly, the voltage vs. time waveform shown in FIG. 2a, 3a collapses to the waveform shown in FIG. 2c, 3c, respectively. If the cell 8t is shorted, very little or no change is evident upon connection of the discharge resistor circuit 80.
For example, the operator may measure the peak-to-peak voltage of each cell and record this voltage. The operator then chooses a cell with a high reading and applies the discharge resistor circuit 80. The operator compares the prior readings to the reading of this one cell on discharge. For the preferred apparatus and method described above using a DC voltmeter, ratios of 10 and above indicate that the cell was initially fully charged, as listed in Table 1. Ratios of approximately 1 indicate a partially discharged (shorted or discharging) cell. Further, if the operator has an indication that a cell may be shorted due to below normal DC voltage (below 2.1 V for a 2.2 V cell), this apparatus and method can quickly confirm that the cell is shorted. Of course, use of this apparatus and method on other types of batteries may result in different ratios indicating a fully charged cell, but the concept will not change.
The examples described above were adapted for testing 2.2 V lead-acid cells. The actual division of current injected by the transmitter 12 will vary with the type of battery, the charger type and load characteristics, if any. For the batteries and cells tested, a sufficient amount of the test signal passed through the battery so that the filtered battery output voltage did not need to be amplified. This may not always be the case in other applications.
Thus, the embodiments described in the specification and drawings are intended to be illustrative rather than limiting. The following claims, including all equivalents, are intended to define the scope of this invention.