Method of controlling a windshield wiper system
First Claim
1. A method of controlling a vehicular windshield wiping system, the wiping system including a sensor mounted to the windshield for monitoring a portion of the windshield and generating a sensor signal, the method comprising the steps of:
- detecting the presence of at least one falling edge in the sensor signal, the at least one falling edge indicating the presence of moisture on the monitored portion of the windshield;
identifying the shape of the at least one falling edge, the wiping system detecting at least one rain pattern based on the shape and number of falling edges in the sensor signal during a predetermined period of time; and
controlling the windshield wiping system based on the identified rain pattern.
1 Assignment
0 Petitions

Accused Products

Abstract
A method for controlling a vehicular windshield wiping system, the wiping system being controlled in response to recognition of a particular rain pattern, and being capable of distinguishing between the presence of moisture and dirt on the windshield. The wiping system is also controlled according to a plurality of operating thresholds established to ensure smooth operation of the wiping system during varying conditions, and is controlled according an amplification autoranging strategy to ensure the wiping system functions properly independent of certain conditions, such as the type of windshield on the vehicle. The wiping system includes at least one wiper blade, and a sensor mounted to the windshield for monitoring a portion of the windshield. The sensor generates a signal having a value which varies as both moisture and dirt collect on the monitored portion.
364 Citations
Driver assistance system for vehicle | ||
Patent #
US 7,873,187 B2
Filed 08/16/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
VISION SYSTEM FOR VEHICLE | ||
Patent #
US 20110122249A1
Filed 01/31/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 7,949,152 B2
Filed 12/28/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
DRIVER ASSISTANCE SYSTEM FOR VEHICLE | ||
Patent #
US 20110093179A1
Filed 12/28/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
IMAGING AND DISPLAY SYSTEM FOR VEHICLE | ||
Patent #
US 20110193961A1
Filed 02/09/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular image sensing system | ||
Patent #
US 7,994,462 B2
Filed 12/17/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
IMAGING SYSTEM FOR VEHICLE | ||
Patent #
US 20110216198A1
Filed 05/13/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular imaging system in an automatic headlamp control system | ||
Patent #
US 8,017,898 B2
Filed 08/13/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic headlamp control system | ||
Patent #
US 7,972,045 B2
Filed 08/10/2007
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system | ||
Patent #
US 8,063,759 B2
Filed 06/05/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle Imaging System | ||
Patent #
US 20100020170A1
Filed 07/24/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
METHOD FOR PROCESSING DATA PERTAINING TO AN ACTIVITY OF PARTIAL ELECTRICAL DISCHARGES | ||
Patent #
US 20100114509A1
Filed 01/25/2008
|
Current Assignee
Techimp HQ S.r.L.
|
Original Assignee
Techimp Technologies S.r.l.
|
Imaging System for Vehicle | ||
Patent #
US 20100265048A1
Filed 09/11/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular image sensing system | ||
Patent #
US 7,655,894 B2
Filed 11/19/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Method and system for operating windshield wipers | ||
Patent #
US 7,764,034 B2
Filed 10/30/2007
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
GM Global Technology Operations Incorporated
|
AUTOMATIC HEADLAMP CONTROL SYSTEM | ||
Patent #
US 20100214791A1
Filed 08/10/2007
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Moisture sensor for optically detecting moisture | ||
Patent #
US 7,718,943 B2
Filed 09/29/2005
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Imaging system for vehicle | ||
Patent #
US 7,792,329 B2
Filed 10/27/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
IMAGING SYSTEM FOR VEHICLE | ||
Patent #
US 20100045797A1
Filed 10/27/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Raindrop quantity sensing apparatus and wiper control system having the same | ||
Patent #
US 7,733,049 B2
Filed 07/19/2007
|
Current Assignee
DENSO Corporation
|
Original Assignee
DENSO Corporation
|
Apparatus and method for controlling vehicular wiper | ||
Patent #
US 7,772,794 B2
Filed 11/08/2005
|
Current Assignee
Niles Company Limited
|
Original Assignee
Niles Company Limited
|
Vision system for a vehicle including image processor | ||
Patent #
US 7,859,565 B2
Filed 08/19/2003
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
DRIVER ASSISTANCE SYSTEM FOR VEHICLE | ||
Patent #
US 20100312446A1
Filed 08/16/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic Headlamp Control System | ||
Patent #
US 20090045323A1
Filed 08/13/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for controlling vehicle equipment by determining spatial composition of an image of a vehicle window | ||
Patent #
US 7,485,844 B2
Filed 03/29/2007
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
METHOD AND SYSTEM FOR OPERATING WINDSHIELD WIPERS | ||
Patent #
US 20090108788A1
Filed 10/30/2007
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
GM Global Technology Operations Incorporated
|
Imaging system for vehicle | ||
Patent #
US 7,526,103 B2
Filed 04/14/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Apparatus and Method for Controlling Vehicular Wiper | ||
Patent #
US 20090134830A1
Filed 11/08/2005
|
Current Assignee
Niles Company Limited
|
Original Assignee
Niles Company Limited
|
IMAGING SYSTEM FOR VEHICLE | ||
Patent #
US 20090208058A1
Filed 04/24/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 7,616,781 B2
Filed 04/24/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,325,935 B2
Filed 01/08/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,325,934 B2
Filed 01/08/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Raindrop quantity sensing apparatus and wiper control system having the same | ||
Patent #
US 20080030159A1
Filed 07/19/2007
|
Current Assignee
DENSO Corporation
|
Original Assignee
DENSO Corporation
|
IMAGE SENSING SYSTEM FOR A VEHICLE | ||
Patent #
US 20080054161A1
Filed 11/07/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 7,344,261 B2
Filed 10/06/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle headlamp control utilizing a light sensor having at least two light transducers | ||
Patent #
US 7,361,875 B2
Filed 05/27/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,380,948 B2
Filed 01/04/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for controlling an accessory or headlight of a vehicle | ||
Patent #
US 7,388,182 B2
Filed 01/09/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle headlight control using imaging sensor with spectral filtering | ||
Patent #
US 7,402,786 B2
Filed 10/06/2006
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic exterior light control for a vehicle | ||
Patent #
US 7,423,248 B2
Filed 11/07/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vision system for a vehicle | ||
Patent #
US 7,425,076 B2
Filed 12/18/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,459,664 B2
Filed 01/24/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Wiper control method and wiper control device | ||
Patent #
US 7,466,097 B2
Filed 05/13/2004
|
Current Assignee
Niles Company Limited
|
Original Assignee
Niles Company Limited
|
Vehicle headlight control using imaging sensor | ||
Patent #
US 20070023613A1
Filed 10/06/2006
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Moisture sensor and windshield fog detector | ||
Patent #
US 7,199,346 B2
Filed 09/20/2005
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 20070109651A1
Filed 01/04/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 20070109406A1
Filed 01/03/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 20070109654A1
Filed 01/10/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 20070109653A1
Filed 01/08/2007
|
Current Assignee
Mark Larson, Kenneth Schofield
|
Original Assignee
Mark Larson, Kenneth Schofield
|
Wiper control method and wiper control device | ||
Patent #
US 20070132417A1
Filed 05/13/2004
|
Current Assignee
Niles Company Limited
|
Original Assignee
Niles Company Limited
|
Wiper controller for controlling windshield wiper | ||
Patent #
US 7,248,010 B2
Filed 01/19/2006
|
Current Assignee
DENSO Corporation
|
Original Assignee
DENSO Corporation
|
MOISTURE SENSOR AND WINDSHIELD FOG DETECTOR | ||
Patent #
US 20070194208A1
Filed 03/29/2007
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 20070176080A1
Filed 01/09/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,311,406 B2
Filed 01/10/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle equipment control with semiconductor light sensors | ||
Patent #
US 6,379,013 B1
Filed 01/25/2000
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Moisture detecting system using semiconductor light sensor with integral charge collection | ||
Patent #
US 6,469,291 B2
Filed 09/18/2001
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Moisture detecting system using semiconductor light sensor with integral charge collection | ||
Patent #
US 6,313,457 B1
Filed 04/13/1999
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicle equipment control with semiconductor light sensors | ||
Patent #
US 6,742,904 B2
Filed 02/28/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular vision system | ||
Patent #
US 20060028731A1
Filed 10/06/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Method for controlling a wiper motor | ||
Patent #
US 7,019,477 B2
Filed 12/20/2001
|
Current Assignee
Valeo Systmes DEssuyage
|
Original Assignee
Valeo Systemes DEssuyage
|
Moisture sensor and windshield fog detector | ||
Patent #
US 7,019,275 B2
Filed 01/19/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Wiper control system for a vehicle and a method thereof | ||
Patent #
US 7,009,355 B2
Filed 12/29/2003
|
Current Assignee
Hyundai Motor Company
|
Original Assignee
Hyundai Motor Company
|
Moisture sensor | ||
Patent #
US 20060076478A1
Filed 09/29/2005
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Wiper controller for controlling windshield wiper | ||
Patent #
US 20060202654A1
Filed 01/19/2006
|
Current Assignee
DENSO Corporation
|
Original Assignee
DENSO Corporation
|
Vehicle equipment control with semiconductor light sensors | ||
Patent #
US 20050002103A1
Filed 05/27/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Eric R. Fossum, Robert H. Nixon, Frederick T. Bauer, Joseph S. Stam, Robert C. Knapp, Timothy E. Steenwyk, Poe G. Bruce, David L. Plangger, David J. Schmidt, Jon H. Bechtel, Robert R. Turnbull
|
Windshield fog detector | ||
Patent #
US 6,853,897 B2
Filed 01/19/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Wiper control system for a vehicle and a method thereof | ||
Patent #
US 20050046372A1
Filed 12/29/2003
|
Current Assignee
Hyundai Motor Company
|
Original Assignee
Jea Sung Heo
|
Moisture sensor utilizing stereo imaging with an image sensor | ||
Patent #
US 6,861,636 B2
Filed 05/30/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Moisture sensor and windshield fog detector | ||
Patent #
US 20050098712A1
Filed 11/29/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
John K. Roberts, Joseph S. Stam, Jon H. Bechtel
|
Rain detection apparatus and method | ||
Patent #
US 20050206511A1
Filed 01/14/2005
|
Current Assignee
TRW Limited
|
Original Assignee
TRW Limited
|
Moisture sensor and windshield fog detector | ||
Patent #
US 6,946,639 B2
Filed 11/29/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Moisture sensor and windshield fog detector | ||
Patent #
US 20040000631A1
Filed 11/06/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
John K. Roberts, Joseph S. Stam, Jon H. Bechtel
|
Moisture sensor and windshield fog detector | ||
Patent #
US 6,681,163 B2
Filed 10/04/2001
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Moisture sensor and windshield fog detector | ||
Patent #
US 20040046103A1
Filed 03/04/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
John K. Roberts, Joseph S. Stam, Jon H. Bechtel
|
Method for controlling a wiper motor | ||
Patent #
US 20040075409A1
Filed 06/20/2003
|
Current Assignee
Valeo Systmes DEssuyage
|
Original Assignee
Valeo Systemes DEssuyage
|
Moisture sensor and windshield fog detector | ||
Patent #
US 20040144911A1
Filed 01/19/2004
|
Current Assignee
Charles David Iv Kibler, Joseph S. Stam, Harold C. Ockerse
|
Original Assignee
Charles David Iv Kibler, Joseph S. Stam, Harold C. Ockerse
|
Windshield fog detector | ||
Patent #
US 20040153225A1
Filed 01/19/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Charles David Iv Kibler, Joseph S. Stam, Harold C. Ockerse
|
Control system including an imaging sensor | ||
Patent #
US 20040200948A1
Filed 04/13/2004
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Method for forming insulating film and for manufacturing integrated circuit | ||
Patent #
US 6,524,968 B2
Filed 10/05/2001
|
Current Assignee
Oki Semiconductor Company Limited
|
Original Assignee
OKI Electric Industry Company Limited
|
Moisture sensor utilizing stereo imaging with an image sensor | ||
Patent #
US 6,617,564 B2
Filed 10/04/2001
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Moisture sensor utilizing stereo imaging with an image sensor | ||
Patent #
US 20030201380A1
Filed 05/30/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
John K. Roberts, Harold C. Ockerse
|
Vehicle equipment control with semiconductor light sensors | ||
Patent #
US 20020093741A1
Filed 02/28/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
Eric R. Fossum, Robert H. Nixon, Frederick T. Bauer, Joseph S. Stam, Robert C. Knapp, Timothy E. Steenwyk, Poe G. Bruce, David L. Plangger, David J. Schmidt, Jon H. Bechtel, Robert R. Turnbull
|
Moisture sensor and windshield fog detector | ||
Patent #
US 6,495,815 B1
Filed 06/12/2001
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Water drop detector on transparent substrate and initiating method and output stabilizing method therefor | ||
Patent #
US 6,239,444 B1
Filed 05/05/2000
|
Current Assignee
Niles Company Limited
|
Original Assignee
Nippon Sheet Glass Company Limited
|
Moisture sensor and windshield fog detector | ||
Patent #
US 6,262,410 B1
Filed 06/13/2000
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Windscreen sensing and wiper control system | ||
Patent #
US 6,020,704 A
Filed 12/02/1997
|
Current Assignee
Valeo Electrical Systems Incorporated
|
Original Assignee
Valeo Electrical Systems Incorporated
|
Moisture sensor and windshield fog detector using an image sensor | ||
Patent #
US 5,923,027 A
Filed 09/16/1997
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Embedded self-test for rain sensors | ||
Patent #
US 5,990,647 A
Filed 10/29/1998
|
Current Assignee
Kelsey-Hayes Co.
|
Original Assignee
Kelsey-Hayes Co.
|
Windshield wiper rain sensor system | ||
Patent #
US 5,780,719 A
Filed 01/22/1997
|
Current Assignee
Scott A. Vandam
|
Original Assignee
Scott A. Vandam
|
Process and system for controlling a windshield wiper, particularly for a motor vehicle | ||
Patent #
US 5,684,464 A
Filed 05/12/1995
|
Current Assignee
VDO Adolf Schindling AG
|
Original Assignee
VDO Adolf Schindling AG
|
Imaging system for vehicle | ||
Patent #
US 8,090,153 B2
Filed 05/13/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic lighting system with adaptive function | ||
Patent #
US 8,070,332 B2
Filed 03/29/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic lighting system | ||
Patent #
US 8,142,059 B2
Filed 11/09/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive forward lighting system for vehicle | ||
Patent #
US 8,162,518 B2
Filed 06/30/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Rain detection apparatus and method | ||
Patent #
US 8,180,099 B2
Filed 01/14/2005
|
Current Assignee
TRW Limited
|
Original Assignee
TRW Limited
|
Vision system for vehicle | ||
Patent #
US 8,189,871 B2
Filed 01/31/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for a vehicle | ||
Patent #
US 8,217,830 B2
Filed 07/28/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular image sensing system | ||
Patent #
US 8,222,588 B2
Filed 08/05/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for vehicle | ||
Patent #
US 8,294,608 B1
Filed 07/03/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,314,689 B2
Filed 06/18/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,325,986 B2
Filed 12/22/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular image sensing system | ||
Patent #
US 8,324,552 B2
Filed 07/16/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
MOISTURE SENSOR AND/OR DEFOGGER WITH BAYESIAN IMPROVEMENTS, AND RELATED METHODS | ||
Patent #
US 20130024169A1
Filed 07/06/2012
|
Current Assignee
Guardian Glass LLC
|
Original Assignee
Guardian Industries Corporation
|
Vehicular rearview mirror system | ||
Patent #
US 8,362,885 B2
Filed 10/19/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic headlamp control | ||
Patent #
US 8,376,595 B2
Filed 05/17/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive forward lighting system for vehicle | ||
Patent #
US 8,434,919 B2
Filed 04/20/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Combined RGB and IR imaging sensor | ||
Patent #
US 8,446,470 B2
Filed 10/03/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 8,451,107 B2
Filed 09/11/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular image sensing system | ||
Patent #
US 8,481,910 B2
Filed 11/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 8,483,439 B2
Filed 05/25/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,492,698 B2
Filed 01/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,593,521 B2
Filed 11/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,599,001 B2
Filed 11/19/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 8,614,640 B2
Filed 10/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview assembly with multiple ambient light sensors | ||
Patent #
US 8,620,523 B2
Filed 06/12/2012
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicle vision system | ||
Patent #
US 8,203,443 B2
Filed 11/09/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 8,203,440 B2
Filed 01/16/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system | ||
Patent #
US 8,629,768 B2
Filed 06/18/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 8,636,393 B2
Filed 05/06/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 8,637,801 B2
Filed 07/08/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 8,643,724 B2
Filed 03/13/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 8,665,079 B2
Filed 10/15/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Accessory system for a vehicle | ||
Patent #
US 8,686,840 B2
Filed 01/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle yaw rate correction | ||
Patent #
US 8,694,224 B2
Filed 02/28/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rain detection apparatus and method | ||
Patent #
US 8,781,155 B2
Filed 02/22/2012
|
Current Assignee
TRW Limited
|
Original Assignee
TRW Limited
|
Vehicular vision system | ||
Patent #
US 8,814,401 B2
Filed 03/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 8,818,042 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with yaw rate determination | ||
Patent #
US 8,849,495 B2
Filed 04/07/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic vehicle exterior light control | ||
Patent #
US 8,842,176 B2
Filed 01/15/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rain detection apparatus and method | ||
Patent #
US 8,861,780 B2
Filed 02/22/2012
|
Current Assignee
TRW Limited
|
Original Assignee
TRW Limited
|
Parking assist system | ||
Patent #
US 8,874,317 B2
Filed 07/27/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rain detection apparatus and method | ||
Patent #
US 8,879,781 B2
Filed 02/22/2012
|
Current Assignee
TRW Limited
|
Original Assignee
TRW Limited
|
Driver assistance system for a vehicle | ||
Patent #
US 8,886,401 B2
Filed 11/04/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Adaptable wireless vehicle vision system based on wireless communication error | ||
Patent #
US 8,890,955 B2
Filed 02/09/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Rain detection apparatus and method | ||
Patent #
US 8,903,121 B2
Filed 02/22/2012
|
Current Assignee
TRW Limited
|
Original Assignee
TRW Limited
|
Imaging system for vehicle | ||
Patent #
US 8,908,040 B2
Filed 05/17/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,917,169 B2
Filed 12/02/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 8,977,008 B2
Filed 07/08/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,993,951 B2
Filed 07/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,008,369 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,014,904 B2
Filed 09/23/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system with camera misalignment correction and capturing image data at different resolution levels dependent on distance to object in field of view | ||
Patent #
US 9,018,577 B2
Filed 02/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 9,041,806 B2
Filed 08/31/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear vision system with trailer angle detection | ||
Patent #
US 9,085,261 B2
Filed 01/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Braking control system for vehicle | ||
Patent #
US 9,090,234 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,092,986 B2
Filed 01/31/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear view camera display system with lifecheck function | ||
Patent #
US 9,117,123 B2
Filed 07/05/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Alert system for vehicle | ||
Patent #
US 9,126,525 B2
Filed 02/25/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 9,131,120 B2
Filed 05/15/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,140,789 B2
Filed 12/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system with algorithm switching | ||
Patent #
US 9,146,898 B2
Filed 10/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,171,217 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Lane keeping system and lane centering system | ||
Patent #
US 9,180,908 B2
Filed 11/17/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,187,028 B2
Filed 02/14/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,191,574 B2
Filed 03/13/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,191,634 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,193,303 B2
Filed 04/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Step filter for estimating distance in a time-of-flight ranging system | ||
Patent #
US 9,194,943 B2
Filed 04/11/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Light sensor | ||
Patent #
US 9,207,116 B2
Filed 02/12/2013
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 9,205,776 B2
Filed 05/20/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Optical assembly for a light sensor, light sensor assembly using the optical assembly, and vehicle rearview assembly using the light sensor assembly | ||
Patent #
US 9,224,889 B2
Filed 08/03/2012
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 9,245,448 B2
Filed 06/17/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,244,165 B1
Filed 09/21/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with collision mitigation | ||
Patent #
US 9,260,095 B2
Filed 06/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,264,672 B2
Filed 12/21/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular collision mitigation system | ||
Patent #
US 9,318,020 B2
Filed 07/27/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear collision avoidance system for vehicle | ||
Patent #
US 9,327,693 B2
Filed 04/09/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,335,411 B1
Filed 01/25/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle lane keep assist system | ||
Patent #
US 9,340,227 B2
Filed 08/12/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with yaw rate determination | ||
Patent #
US 9,346,468 B2
Filed 09/29/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically calibrating vehicular cameras | ||
Patent #
US 9,357,208 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Moisture sensor and/or defogger with Bayesian improvements, and related methods | ||
Patent #
US 9,371,032 B2
Filed 07/06/2012
|
Current Assignee
Guardian Glass LLC
|
Original Assignee
Guardian Industries Corporation
|
Driver assist system for vehicle | ||
Patent #
US 9,376,060 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,428,192 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 9,436,880 B2
Filed 01/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer angle detection system | ||
Patent #
US 9,446,713 B2
Filed 09/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
MOISTURE SENSOR AND/OR DEFOGGER WITH BAYESIAN IMPROVEMENTS, AND RELATED METHODS | ||
Patent #
US 20160275409A1
Filed 06/02/2016
|
Current Assignee
Guardian Glass LLC
|
Original Assignee
Guardian Industries Corporation
|
Parking assist system | ||
Patent #
US 9,457,717 B2
Filed 10/27/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,469,250 B2
Filed 02/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing camera synchronization | ||
Patent #
US 9,481,301 B2
Filed 12/05/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Braking control system for vehicle | ||
Patent #
US 9,481,344 B2
Filed 07/27/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera alignment system | ||
Patent #
US 9,491,450 B2
Filed 07/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for vehicular surround vision system | ||
Patent #
US 9,491,451 B2
Filed 11/14/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular camera with on-board microcontroller | ||
Patent #
US 9,495,876 B2
Filed 07/27/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system | ||
Patent #
US 9,508,014 B2
Filed 05/05/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle imaging system | ||
Patent #
US 9,509,957 B2
Filed 04/19/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,507,021 B2
Filed 05/09/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 9,545,921 B2
Filed 05/02/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Image processing method for detecting objects using relative motion | ||
Patent #
US 9,547,795 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with trailer angle detection | ||
Patent #
US 9,558,409 B2
Filed 12/11/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,555,803 B2
Filed 05/16/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,563,809 B2
Filed 04/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with targetless camera calibration | ||
Patent #
US 9,563,951 B2
Filed 05/20/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,598,014 B2
Filed 10/17/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,609,289 B2
Filed 08/29/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Personalized driver assistance system for vehicle | ||
Patent #
US 9,623,878 B2
Filed 04/01/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,643,605 B2
Filed 10/26/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,656,608 B2
Filed 06/13/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera image quality improvement in poor visibility conditions by contrast amplification | ||
Patent #
US 9,681,062 B2
Filed 09/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for multi-camera vision system | ||
Patent #
US 9,688,200 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 9,701,246 B2
Filed 12/07/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Process for determining state of a vehicle | ||
Patent #
US 9,715,769 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera image stitching calibration system | ||
Patent #
US 9,723,272 B2
Filed 10/04/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,731,653 B2
Filed 03/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,736,435 B2
Filed 03/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with enhanced display functions | ||
Patent #
US 9,743,002 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with reduced image color data processing by use of dithering | ||
Patent #
US 9,751,465 B2
Filed 04/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Lane keeping system and lane centering system | ||
Patent #
US 9,758,163 B2
Filed 11/09/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistant system using influence mapping for conflict avoidance path determination | ||
Patent #
US 9,761,142 B2
Filed 09/03/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 9,762,880 B2
Filed 12/07/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system | ||
Patent #
US 9,769,381 B2
Filed 11/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for enhancing vehicle camera image quality | ||
Patent #
US 9,774,790 B1
Filed 06/12/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with trailer angle detection | ||
Patent #
US 9,779,313 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Accessory system for a vehicle | ||
Patent #
US 9,783,125 B2
Filed 03/31/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 9,789,821 B2
Filed 05/22/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 9,796,332 B2
Filed 05/24/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 9,802,609 B2
Filed 01/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer angle detection system calibration | ||
Patent #
US 9,802,542 B2
Filed 09/19/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 9,824,285 B2
Filed 01/26/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with collision mitigation | ||
Patent #
US 9,824,587 B2
Filed 02/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driving assist system for vehicle | ||
Patent #
US 9,834,142 B2
Filed 05/19/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 9,834,216 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically calibrating vehicular cameras | ||
Patent #
US 9,834,153 B2
Filed 04/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 9,868,463 B2
Filed 09/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Light sensor having partially opaque optic | ||
Patent #
US 9,870,753 B2
Filed 07/28/2014
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicle vision system using image data transmission and power supply via a coaxial cable | ||
Patent #
US 9,900,490 B2
Filed 02/22/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method of establishing a multi-camera image using pixel remapping | ||
Patent #
US 9,900,522 B2
Filed 12/01/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver active safety control system for vehicle | ||
Patent #
US 9,911,050 B2
Filed 09/04/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing camera synchronization | ||
Patent #
US 9,912,841 B2
Filed 10/31/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Process for determining state of a vehicle | ||
Patent #
US 9,916,699 B2
Filed 07/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with calibration algorithm | ||
Patent #
US 9,916,660 B2
Filed 01/15/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system with image processing and wireless communication | ||
Patent #
US 9,919,705 B2
Filed 09/28/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,940,528 B2
Filed 11/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,948,904 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for controlling a vehicle in accordance with parameters preferred by an identified driver | ||
Patent #
US 9,950,707 B2
Filed 04/17/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailering assist system with trailer angle detection | ||
Patent #
US 9,950,738 B2
Filed 07/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Light sensor | ||
Patent #
US 9,961,746 B2
Filed 10/28/2015
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vehicular imaging system comprising an imaging device with a single image sensor and image processor for determining a totally blocked state or partially blocked state of the single image sensor as well as an automatic correction for misalignment of the imaging device | ||
Patent #
US 9,972,100 B2
Filed 04/23/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with targetless camera calibration | ||
Patent #
US 9,979,957 B2
Filed 01/26/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with traffic driving control | ||
Patent #
US 9,988,047 B2
Filed 12/12/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,003,755 B2
Filed 12/08/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,005,394 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,015,452 B1
Filed 04/16/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Braking control system for vehicle | ||
Patent #
US 10,023,161 B2
Filed 10/31/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing corner detection | ||
Patent #
US 10,025,994 B2
Filed 12/02/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Spectral filtering for vehicular driver assistance systems | ||
Patent #
US 10,027,930 B2
Filed 03/28/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Image processing method for detecting objects using relative motion | ||
Patent #
US 10,043,082 B2
Filed 01/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Control system for vehicle | ||
Patent #
US 10,046,702 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 10,053,012 B2
Filed 10/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system | ||
Patent #
US 10,057,489 B2
Filed 09/18/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,676 B2
Filed 09/12/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,687 B2
Filed 11/27/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle parking assist system with vision-based parking space detection | ||
Patent #
US 10,078,789 B2
Filed 07/14/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,086,747 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer parking assist system for vehicle | ||
Patent #
US 10,086,870 B2
Filed 08/16/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with trailering assist function | ||
Patent #
US 10,089,541 B2
Filed 10/02/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with front and rear camera integration | ||
Patent #
US 10,089,537 B2
Filed 05/15/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,099,614 B2
Filed 11/27/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 10,099,610 B2
Filed 10/10/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with enhanced display functions | ||
Patent #
US 10,104,298 B2
Filed 08/21/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular camera with on-board microcontroller | ||
Patent #
US 10,106,155 B2
Filed 11/11/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 10,107,905 B2
Filed 11/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,110,860 B1
Filed 07/02/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistant system using influence mapping for conflict avoidance path determination | ||
Patent #
US 10,115,310 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,118,618 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for vehicular control | ||
Patent #
US 10,127,738 B2
Filed 03/12/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 10,129,518 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera with multiple spectral filters | ||
Patent #
US 10,132,971 B2
Filed 03/01/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 10,144,352 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer backup assist system | ||
Patent #
US 10,160,382 B2
Filed 02/04/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing multiple cameras and ethernet links | ||
Patent #
US 10,171,709 B2
Filed 03/05/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera dynamic top view vision system | ||
Patent #
US 10,179,543 B2
Filed 02/27/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Device for monitoring a vehicle environment | ||
Patent #
US 10,182,229 B2
Filed 11/29/2013
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Vehicular control system | ||
Patent #
US 10,187,615 B1
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for dynamically calibrating vehicular cameras | ||
Patent #
US 10,202,077 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 10,207,705 B2
Filed 10/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System for locating a parking space based on a previously parked space | ||
Patent #
US 10,222,224 B2
Filed 04/15/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Moisture sensor and/or defogger with bayesian improvements, and related methods | ||
Patent #
US 10,229,364 B2
Filed 06/02/2016
|
Current Assignee
Guardian Glass LLC
|
Original Assignee
Guardian Glass LLC
|
Rear vision system for vehicle with dual purpose signal lines | ||
Patent #
US 10,232,797 B2
Filed 04/29/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with calibration algorithm | ||
Patent #
US 10,235,775 B2
Filed 03/07/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for enhancing vehicle camera image quality | ||
Patent #
US 10,257,432 B2
Filed 09/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for vehicular surround vision system | ||
Patent #
US 10,264,249 B2
Filed 11/07/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 10,266,115 B2
Filed 07/10/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera image stitching calibration system | ||
Patent #
US 10,284,818 B2
Filed 07/31/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision using image data transmission and power supply via a coaxial cable | ||
Patent #
US 10,284,764 B2
Filed 02/19/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for estimating distance between a mobile unit and a vehicle using a TOF system | ||
Patent #
US 10,288,724 B2
Filed 11/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer driving assist system | ||
Patent #
US 10,300,855 B2
Filed 10/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular display system | ||
Patent #
US 10,300,856 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,306,190 B1
Filed 01/21/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system with enhanced display functions | ||
Patent #
US 10,321,064 B2
Filed 10/11/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with reduction of temporal noise in images | ||
Patent #
US 10,326,969 B2
Filed 08/11/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system with rear backup video display | ||
Patent #
US 10,336,255 B2
Filed 11/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,351,135 B2
Filed 11/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular lane change system | ||
Patent #
US 10,406,980 B2
Filed 10/11/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Lane keeping system and lane centering system | ||
Patent #
US 10,427,679 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with reduced image color data processing by use of dithering | ||
Patent #
US 10,434,944 B2
Filed 08/30/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Processing method for distinguishing a three dimensional object from a two dimensional object using a vehicular system | ||
Patent #
US 10,452,931 B2
Filed 08/06/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,462,426 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system with rear backup video display | ||
Patent #
US 10,486,597 B1
Filed 07/01/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera dynamic top view vision system | ||
Patent #
US 10,486,596 B2
Filed 01/14/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular trailer backup assist system | ||
Patent #
US 10,493,917 B2
Filed 12/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular collision mitigation system | ||
Patent #
US 10,497,262 B2
Filed 11/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,509,972 B2
Filed 04/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with front and rear camera integration | ||
Patent #
US 10,515,279 B2
Filed 08/30/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle data recording system | ||
Patent #
US 10,523,904 B2
Filed 04/10/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 10,542,244 B2
Filed 11/12/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of synchronizing multiple vehicular cameras with an ECU | ||
Patent #
US 10,560,610 B2
Filed 12/28/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Coaxial cable with bidirectional data transmission | ||
Patent #
US 10,567,705 B2
Filed 06/06/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using image data transmission and power supply via a coaxial cable | ||
Patent #
US 10,567,633 B2
Filed 05/02/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Targetless vehicular camera calibration method | ||
Patent #
US 10,567,748 B2
Filed 05/21/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 10,569,804 B2
Filed 01/15/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for displaying video images for a vehicular vision system | ||
Patent #
US 10,574,885 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with trailering assist function | ||
Patent #
US 10,586,119 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear backup vision system with video display | ||
Patent #
US 10,589,678 B1
Filed 11/25/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with accelerated object confirmation | ||
Patent #
US 10,609,335 B2
Filed 03/22/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Video processor module for vehicle | ||
Patent #
US 10,611,306 B2
Filed 08/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,616,507 B2
Filed 06/18/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,623,704 B2
Filed 03/09/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Method for dynamically calibrating vehicular cameras | ||
Patent #
US 10,640,041 B2
Filed 02/04/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,640,040 B2
Filed 09/10/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically ascertaining alignment of vehicular cameras | ||
Patent #
US 10,654,423 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward sensing system for vehicle | ||
Patent #
US 10,670,713 B2
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular driving assist system using forward-viewing camera | ||
Patent #
US 10,683,008 B2
Filed 07/15/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with traffic driving control | ||
Patent #
US 10,688,993 B2
Filed 06/04/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with collision mitigation | ||
Patent #
US 10,692,380 B2
Filed 11/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular parking assist system that determines a parking space based in part on previously parked spaces | ||
Patent #
US 10,718,624 B2
Filed 03/04/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system with blockage determination and misalignment correction | ||
Patent #
US 10,726,578 B2
Filed 05/14/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistant system using influence mapping for conflict avoidance path determination | ||
Patent #
US 10,733,892 B2
Filed 10/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with traffic lane detection | ||
Patent #
US 10,735,695 B2
Filed 10/28/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with temperature input | ||
Patent #
US 10,744,940 B2
Filed 06/25/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,766,417 B2
Filed 10/23/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for stitching images captured by multiple vehicular cameras | ||
Patent #
US 10,780,827 B2
Filed 11/25/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining misalignment of a vehicular camera | ||
Patent #
US 10,780,826 B2
Filed 04/22/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera | ||
Patent #
US 10,787,116 B2
Filed 09/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,793,067 B2
Filed 07/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer driving assist system | ||
Patent #
US 10,800,332 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular collision mitigation system | ||
Patent #
US 10,803,744 B2
Filed 12/02/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular adaptive headlighting system | ||
Patent #
US 10,807,515 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear backup vision system with video display | ||
Patent #
US 10,814,785 B2
Filed 03/16/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with incident recording function | ||
Patent #
US 10,819,943 B2
Filed 05/05/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system using image data transmission and power supply via a coaxial cable | ||
Patent #
US 10,827,108 B2
Filed 02/17/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,839,233 B2
Filed 03/05/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailering assist system with trailer angle detection | ||
Patent #
US 10,858,042 B2
Filed 04/23/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining alignment of vehicular cameras | ||
Patent #
US 10,868,974 B2
Filed 02/19/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular trailering system | ||
Patent #
US 10,870,449 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of synchronizing multiple vehicular cameras with an ECU | ||
Patent #
US 10,873,682 B2
Filed 02/10/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,875,455 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 10,875,527 B2
Filed 02/18/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with enhanced night vision | ||
Patent #
US 10,875,403 B2
Filed 10/26/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,875,526 B2
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward sensing system for vehicle | ||
Patent #
US 10,877,147 B2
Filed 06/01/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multiplexed vehicle window wiper control | ||
Patent #
US 5,200,676 A
Filed 04/09/1992
|
Current Assignee
ITT Automotive Electrical Systems Inc.
|
Original Assignee
General Motors Corporation
|
Windshield wiper control based on rate of change of sensor signal | ||
Patent #
US 5,140,234 A
Filed 11/30/1990
|
Current Assignee
VDO ADOLF SCHINDLING
|
Original Assignee
VDO Adolf Schindling AG
|
Device including wetness sensor for controlling a windshield wiper | ||
Patent #
US 5,157,312 A
Filed 10/22/1990
|
Current Assignee
VDO Adolf Schindling AG
|
Original Assignee
VDO Adolf Schindling AG
|
Windshield wiper system with rain detector | ||
Patent #
US 5,015,931 A
Filed 06/11/1990
|
Current Assignee
Valeo Systemes D Essuyage
|
Original Assignee
Valeo Systemes DEssuyage
|
Continuously adaptive moisture sensor system for wiper control | ||
Patent #
US 4,916,374 A
Filed 02/28/1989
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Electro-optical windshield moisture sensing | ||
Patent #
US 4,798,956 A
Filed 07/15/1987
|
Current Assignee
Peter A Hochstein
|
Original Assignee
Peter A Hochstein
|
Windshield moisture sensing control circuit | ||
Patent #
US 4,859,867 A
Filed 04/19/1988
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Apparatus for optically detecting an extraneous matter on a translucent shield | ||
Patent #
US 4,867,561 A
Filed 08/18/1987
|
Current Assignee
Nippondenso Co. Ltd.
|
Original Assignee
Nippondenso Co. Ltd.
|
Sensor for detecting an amount of rain | ||
Patent #
US 4,639,831 A
Filed 02/04/1986
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Method for controlling automobile device when sensor output is abnormal | ||
Patent #
US 4,588,935 A
Filed 12/26/1984
|
Current Assignee
Nippondenso Co. Ltd.
|
Original Assignee
Nippondenso Co. Ltd.
|
Windshield wiper control apparatus | ||
Patent #
US 4,595,866 A
Filed 10/26/1984
|
Current Assignee
Nippondenso Co. Ltd.
|
Original Assignee
Nippondenso Co. Ltd.
|
System for controlling a vehicle window and the like | ||
Patent #
US 4,481,450 A
Filed 03/29/1983
|
Current Assignee
Nippondenso Co. Ltd.
|
Original Assignee
Nippondenso Co. Ltd.
|
Windshield soil detector | ||
Patent #
US 3,947,131 A
Filed 11/04/1974
|
Current Assignee
Gerhard Karl
|
Original Assignee
Gerhard Karl
|
37 Claims
-
1. A method of controlling a vehicular windshield wiping system, the wiping system including a sensor mounted to the windshield for monitoring a portion of the windshield and generating a sensor signal, the method comprising the steps of:
-
detecting the presence of at least one falling edge in the sensor signal, the at least one falling edge indicating the presence of moisture on the monitored portion of the windshield; identifying the shape of the at least one falling edge, the wiping system detecting at least one rain pattern based on the shape and number of falling edges in the sensor signal during a predetermined period of time; and controlling the windshield wiping system based on the identified rain pattern. - View Dependent Claims (2, 3, 4, 5)
-
-
6. A method of controlling a vehicular windshield wiping system including at least one wiper blade, and a sensor mounted to the windshield for monitoring a portion of the windshield, the sensor generating a signal having a value which varies as moisture or dirt or both collect on the monitored portion, the wiping system being activated when the sensor value crosses a predetermined switch-on threshold and deactivated when the sensor value is above a predetermined switch off threshold, the method comprising the steps of:
-
determining a first sensor value when the monitored portion is substantially free of moisture, the first sensor value being less than a maximum possible sensor value due to the presence of dirt on the monitored portion, thereby allowing the windshield wiping system to distinguish between the presence of moisture and dirt on the monitored portion based on the first sensor value; modifying the predetermined switch-on and switch-off thresholds based on the first sensor value; and controlling the windshield wiping system based on the modified thresholds, thereby insuring the wiping system is activated due only to the presence of moisture on the monitored portion. - View Dependent Claims (7, 8)
-
-
9. A method of controlling a vehicular windshield wiping system including at least one wiper blade, and a sensor mounted to the windshield for monitoring a portion of the windshield, the sensor generating a signal having a value which varies as moisture or dirt or both collect on the monitored portion, the wiping system being activated when the sensor value crosses a predetermined switch-on threshold, and deactivated when the sensor value is above a predetermined switch-off threshold, the method comprising the steps of:
-
activating the wiping system for at least one wipe cycle when the sensor value drops below the predetermined switch-on threshold, the at least one wiper blade leaving a resting position and wiping the windshield, passing over the monitored portion of the windshield at least once; determining a first sensor value after the at least one wiper blade passes over the monitored portion of the windshield for the last time during the wipe cycle, the monitored portion being substantially free of moisture, the first sensor value being less than a maximum possible sensor value due to the presence of dirt on the monitored portion so as to allow the windshield wiping system to distinguish between the presence of moisture and dirt on the monitored portion; modifying the predetermined switch-on and switch-off thresholds based on the first sensor value; and controlling the windshield wiping system based on the modified thresholds, thereby insuring the wiping system is activated due only to the presence of moisture on the monitored portion.
-
-
10. A method of controlling a vehicular windshield wiping system, the wiping system including at least one windshield wiper and a sensor mounted to the windshield for monitoring a portion of the windshield wiped by the wiper during each wipe cycle, the sensor generating a sensor signal having a value which varies as a coating collects on the monitored portion of the windshield, the method comprising the steps of:
-
defining a connection threshold based on the sensor signal, for starting operation of the windshield wiping system; defining a first disconnection threshold based on the sensor signal, for ceasing operation of the windshield wiping system in a first mode of operation; and defining a second disconnection threshold based on the sensor signal, for ceasing operation of the windshield wiping system in a second mode of operation. - View Dependent Claims (11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22)
-
-
12. The method of claim wherein the disconnection threshold for the intermittent wiping mode has a value which exceeds the value of the connection threshold.
-
23. A method of controlling a vehicular windshield wiping system including a motor, at least one windshield wiper and an optoelectronic sensor mounted to the windshield for monitoring a portion of the windshield wiped by the wiper during each wipe cycle, the sensor including infrared beam transmitters for emitting beams and infrared beam receivers for receiving the emitted beams, the emitted beams being modified based on the coating on the windshield, the sensor generating a signal having a value which varies as a coating collects on the monitored portion of the windshield, the method comprising the steps of:
-
establishing a data window having a first plurality of values based on the sensor signal; establishing a measurement range within the data window, the measurement range having a second plurality of values defined by an upper threshold and a lower threshold; and modifying the amplification of the beams emitted by the beam transmitters if the sensor signal has a value which is outside of the measurement range. - View Dependent Claims (24, 25, 26, 27)
-
-
28. A method of controlling a vehicular windshield wiping system including a motor, at least one windshield wiper and an optoelectronic sensor mounted to the windshield for monitoring a portion of the windshield wiped by the wiper during each wipe cycle, the sensor including infrared beam transmitters for emitting beams and infrared beam receivers for receiving the emitted beams, the emitted beams being modified based on the coating on the windshield, the sensor generating a sensor signal having a value which varies as a coating collects on the monitored portion of the windshield, the method comprising the steps of:
-
establishing a data window based on the sensor signal, the data window having a first plurality of values defined by an upper boundary and a lower boundary; and modifying the amplification of the beams emitted by the beam transmitters if the sensor signal has a value which is outside of the data window. - View Dependent Claims (29, 30, 31, 32)
-
-
33. A method of controlling a vehicular windshield wiping system including a motor, at least one windshield wiper and an optoelectronic sensor mounted to the windshield for monitoring a portion of the windshield wiped by the wiper during each wipe cycle, the sensor including infrared beam transmitters for emitting beams and infrared beam receivers for receiving the emitted beams, the emitted beams being modified based on the coating on the windshield, the sensor generating a sensor signal having a value which varies as a coating collects on the monitored portion of the windshield, the method comprising the steps of:
-
establishing a data window based on the sensor signal, the data window having a first plurality of values defined by an upper boundary and a lower boundary; establishing a measurement range within the data window, the measurement range having a second plurality of values defined by an upper threshold and a lower threshold; modifying the amplification of the beams emitted by the beam transmitters if the sensor signal has a value which is outside of the measurement range when the motor is deactivated; and modifying the amplification of the beams emitted by the beam transmitters if the sensor signal has a value which is outside of the data window when the motor is activated. - View Dependent Claims (34, 35, 36, 37)
-
1 Specification
This application is a continuation-in-part of copending U.S. Pat. application Ser. No. 07/989,052, filed Dec. 10, 1992, titled "Apparatus And Method For Controlling A Windshield Wiping System" filed herewith, the specification of which is hereby expressly incorporated by reference in its entirety.
The present invention relates to windshield wiper systems and, more particularly, to a method for automatic control of a windshield wiper system.
Automatically controlled windshield wiping systems typically detect the presence of a liquid or a solid coating on the windshield of an automobile. Depending on the type and quantity of coating present on the windshield, the wiper system is activated to clean the windshield, operating in either an intermittent mode, wherein a varying time delay is inserted between consecutive wipes, or a continuous mode, wherein there is no time delay between consecutive wipes.
For example, U.S. Pat. No. 3,947,131, issued to Karl, discloses a windshield soil detector. A glass pane soil indicator is secured to the unexposed surface of the windshield. A light source and a first optical system direct a beam of light through the unexposed surface to the exposed surface at the angle of total reflection. A second optical system is arranged to allow the beam to pass from the windshield to a photometer. A single transmitting device is arranged to produce a signal indicative of the light returned through the windshield to the photometer. Light sent from the light source is conducted through prismatic devices as it enters or leaves the windshield, so as to allow the light to strike the soiled glass surface at the angle of total reflection. In this way, outside light which strikes the windshield from the outside is always broken at an angle into the interior of the glass, such that no bothersome outside light can reach the photometer. Therefore, no compensation must be made for outside light and the detector can be used during daylight and under changing outside light conditions.
U.S. Pat. No. 4,481,450, issued to Watanabe et al., discloses a windshield-mounted system for controlling a vehicle window and the like. The control system includes first means for emitting a beam of radiation into a section of the windshield from the inner surface thereof at such an angle of incidence that the beam reflects off of the outer surface of the windshield. The system also includes second means for detecting and converting the reflected beam into a first signal, and third means for comparing the first signal with a reference value to generate a second signal. The system also includes means, such as a reversible motor, responsive to the second signal for closing the window of the vehicle.
U.S. Pat. No. 4,798,956, issued to Hochstein, discloses a sensing assembly and method for indicating when moisture or other particles have accumulated on a window. An emitter means is included for disposition on the inside of the window for emitting radiant energy to the window on an ingress axis at an incident angle relative to the inside surface. A detector is included for disposition on the inside of the window for detecting radiant energy from the window on an egress axis at a reflection angle relative to the inside surface and equal to the incident angle. Support means support the emitter and detector for spacing the point of intersection of the ingress axis with the inner surface of the window from a point of intersection of the egress axis with the inner surface of the window at a predetermined distance. The sensing assembly also includes limiting means for limiting the field of view of radiant energy from the window entering the detector by allowing to pass only radiant energy substantially parallel with the egress axis within the field of view.
It is an object of the present invention to provide an improved method of controlling a windshield wiping system.
It is a further object of the present invention to provide a method for accurately controlling a windshield wiping system during a rain pattern consisting of widely scattered drops.
It is yet still a further object of the present invention to provide a method for controlling a windshield wiping system, capable of distinguishing between the presence of moisture and dirt on the windshield, so as to wipe when moisture is present.
It is a further object of the present invention to provide a method for controlling a windshield wiping system wherein a plurality of operating thresholds are established, ensuring smooth operation of the wiping system during varying conditions.
It is a further object of the present invention to provide a method of controlling a windshield wiping system according an amplification autoranging strategy to ensure the wiping system functions properly independent of certain conditions, such as the type of windshield.
In carrying out the above objects and other objects and features of the present invention, a method is provided for controlling a vehicular windshield wiping system. The wiping system includes a sensor mounted to the windshield for monitoring a portion of the windshield and generating a signal. The method comprises the step of detecting the presence of at least one falling edge in the sensor signal, the at least one falling edge indicating the presence of moisture on the portion of the windshield. The method also comprises the steps of identifying the shape of the at least one falling edge, the wiping system identifying at least one rain pattern based on the shape and number of falling edges during a predetermined period of time, and controlling the windshield wiping system based on the identified rain pattern.
In further carrying out the above objects, and other objects and features of the present invention, a method is provided for controlling a vehicular windshield wiping system. The wiping system includes at least one wiper blade, and a sensor mounted to the windshield for monitoring a portion of the windshield, the sensor generating a signal having a value which varies as both moisture and dirt collect on the monitored portion, the wiper system being activated when the sensor value crosses a switch-on threshold. The method comprises the steps of determining a first sensor value when the monitored portion is substantially free of moisture, the first sensor value being less than the maximum possible sensor value due to the presence of dirt on the monitored portion, thereby allowing the wiper system to distinguish between the presence of moisture and dirt on the monitored portion. The method also comprises the step of modifying the sensitivity of the device based on the first sensor value, insuring the wiper system is activated due only to the presence of moisture on the monitored portion.
Preferably, the method also comprises the step of activating the wiper system for at least one wipe cycle when the sensor value drops below the switch-on threshold, the at least one wiper blade leaving a resting position and wiping the windshield, passing over the monitored portion of the windshield at least once. Also preferably, the first sensor value is determined after the at least one wiper blade passes over the monitored portion of the windshield for the last time during the wipe cycle, the monitored portion being substantially dry after the blade passes.
In still further carrying out the above objects, and other objects and features of the present invention, a method is provided for controlling a vehicular windshield wiping system including at least one windshield wiper and a sensor mounted to the windshield for monitoring a portion of the windshield wiped by the wiper during each wipe cycle. The sensor generates a signal having a value which varies as a coating collects on the monitored portion of the windshield. The method comprises defining a connection threshold, based on the sensor signal, for starting operation of the windshield wiping system and defining a first disconnection threshold, based on the sensor signal, for ceasing operation of the windshield wiping system in a first mode of operation. The method also comprises defining a second disconnection threshold, based on the sensor signal, for ceasing operation of the windshield wiping system in a second mode of operation.
In still further carrying out the above objects, and other objects and features of the present invention, a method is provided for controlling a vehicular windshield wiping system including a motor, at least one windshield wiper and an optoelectronic sensor mounted to the windshield for monitoring a portion of the windshield wiped by the wiper during each wipe cycle. The sensor includes infrared beam transmitters for emitting beams and infrared beam receivers for receiving the emitted beams, the emitted beams being modified based on the coating on the windshield, the sensor generating a signal having a value which varies as a coating collects on the monitored portion of the windshield. The method comprises establishing a data window having a first plurality of values based on the sensor signal and establishing a measurement range within the data window, the measurement range having a second plurality of values defined by an upper threshold and a lower threshold. The method also comprises modifying the amplification of the beams emitted by the beam transmitters if the sensor signal has a value which is outside of the measurement range.
The advantages accruing to the present invention are numerous. For example, the windshield wiping system is properly controlled during different rain patterns such as widely scattered drops, drizzle, continuous rain, snow, fog and the like.
The above objects and other objects, features, and advantages of the present invention will be readily appreciated by one of ordinary skill in the art from the following detailed description of the best mode for carrying out the invention when taken in connection with the accompanying drawings.
FIG. 1 is a block diagram of the electronic control unit of the windshield wiping system for carrying out the method of the present invention;
FIG. 2 is a flow chart illustrating the steps of the method of controlling a windshield wiping system of the present invention;
FIG. 3 is a flow chart detailing the autoranging step shown in FIG. 2;
FIG. 4 is a graphical representation of the relationship between data range selection and amplification, illustrating the shifting 256-bit data range window;
FIG. 5 is a flow chart detailing the single drop recognition step of the present invention shown in FIG. 2;
FIGS. 6a and 6b are a graphical illustration of a typical sensor signal indicating a single drop rain pattern, for use with the present invention;
FIG. 7 is a flow chart detailing the sensitivity control step shown in FIG. 2;
FIG. 8 is a flow chart detailing the start wiper step shown in FIG. 2;
FIG. 9 is a flow chart detailing the determined hundred percent value (HPV) step of the present invention shown in FIG. 2;
FIGS. 10a-10b are a graphical representation of the sensor signal trace during determination of the HPV, and the associated wiper activation signal, respectively; and
FIG. 11 is a flow chart detailing the stop wiper step shown in FIG. 2.
Referring now to FIG. 1, there is illustrated a block diagram of an apparatus, shown generally by reference numeral 10, for controlling a windshield wiping system. As illustrated, the apparatus preferably includes a microcontroller 12, a frequency generator 14 which cooperates with a switch 16, a current-to-voltage (I/V) converter 18, a phase-selective rectifier 20 and a filter 22. The apparatus 10 also preferably includes an optoelectronic assembly, shown generally by reference numeral 24, including a plurality of infrared beam transmitters 26, a beam guide element 28 including lenses and a plurality of infrared beam receivers 30 for evaluating conditions existing on the windshield 34. Most preferably, the beam transmitters 26, the beam guide 28, the beam receivers 30 and the electronic componentry are formed as an optoelectronic sensor mounted on the inside surface of a vehicular windshield, not specifically illustrated. It should be appreciated that although the windshield wiping system is shown to be controlled by a microprocessor, the system could also be controlled by an analog and/or digital switching system, or the like. The surface area of the sensor defines an area of the windshield, referred to herein as the sensor active area, monitored by the sensor. One wiper blade passes over the sensor active area twice during each wipe cycle--once leaving the resting position and once returning to the resting position.
Each infrared beam transmitter 26 on the one side (the input side) of the beam guide element 28 has an associated infrared beam receiver 30 on the opposite side (the output side) of the beam guide element. In the preferred embodiment, the infrared beam transmitters 26 are infrared light emitting diodes (LEDs), such as part number SFH485P, commercially available from Siemens Components, Inc., of Cupertino, Calif., United States of America. The beam receivers are preferably infrared photodiodes having a non-linear characteristic, such as part number SFH205, also commercially available from Siemens Components, Inc.
As shown in FIG. 1, the apparatus 10 also includes a pair of operational amplifiers 36 and 38 for processing signals from the beam receivers 30 and the filter 22. The microcontroller 12 processes the signal received from the operational amplifier 38 and accordingly controls operation of the vehicular windshield wiping system including a motor, not specifically illustrated, via control output SA, and a control input WA (Wiper Active) as described in greater detail below.
The sensor device 10 is powered via electrical connections to a power supply, such as a vehicle battery, through the Vcc and GND inputs. The transmitting current of the infrared beam transmitters 26 is set via the control outputs SSEI to SSEN of the microcontroller 12. In the preferred embodiment, the infrared beam transmitters 26 of the optoelectronic assembly 24 are energized with a pulse-width modulated voltage at a frequency of at least 2 kHz. This modulation gives rise to a signal originating from the transmitters 26 in the form of an alternating signal which, for evaluation of the conditions existing on the windshield 34, is supplied to the infrared beam receivers 30 via the beam guide 28. The light emitted by the infrared beam transmitters 26 is converted by the infrared beam receivers 30 and associated resistors into an electrical quantity representing a useful signal. Since the beam receivers 30 have a non-linear characteristic, the useful signal is non-linear when differing ambient light conditions prevail.
The useful signal thus produced is additionally dependent upon the ambient temperature, since the efficiency of the beam transmitters 26 and the beam receivers 30 is temperature-dependent. As a result, the useful signal is corrupted. To compensate for this temperature effect, the current sources for the beam transmitter are provided with temperature compensation. Alternatively, the microcontroller 12 can be provided with temperature information from at least one sensor not specifically illustrated. This sensor can be a thermistor, or an integrated circuit which functions like a thermistor. The transmitting current of the beam transmitters 26 can then be adjusted by the microcontroller 12 based on the temperature information, such that the output quantity is independent of the ambient temperature.
With continuing reference to FIG. 1, the light emerging from the beam guide 28 includes an interference signal in addition to the transmitted signal. The interference signal arises from the infrared light fractions of other parasitic light sources, such as the ambient light. Typically, these infrared light fractions are superimposed on the signal generated by the infrared beam receivers 30 and associated resistors and provided to the I/V converter 18.
Preferably, the voltage signal from the I/V converter 18 is processed by the phase selective rectifier 20, which cooperates with the frequency generator 14 to suppress glitch signals having a frequency which differs from that of the generator 14. Prior to processing by the I/V converter 18, the voltage signal is capacitively decoupled utilizing capacitors C1-Cn. Together, the capacitors and the rectifier 20 function to remove the superimposed interference signal from the received signal. The filter 22 preferably has a low-pass characteristic, which functions to smooth fluctuations in the voltage signal from the I/V converter 18 caused by rapid changes in ambient light. The output signal of the filter 22 is ultimately a measure of the coating, or degree of wetting, of the windshield. Some influences of the ambient light remain, however, having a disturbing effect upon the received signal.
With continued reference to FIG. 1, in addition to controlling the transmitting current of the infrared beam transmitters 26, the microcontroller 12 controls the conversion factor of the I/V converter 18 via the control output SK. By controlling the transmitting current and the conversion factor, the apparatus automatically adapts to widely differing measuring conditions, accurately controlling the windshield wiper system regardless of the type of windshield. This adaptation is desired because the damping factor of the optoelectronic assembly 24 is dependent upon the type of windshield utilized, such as clear glass, heat insulating glass without band-stop filter, or heat insulating glass with band-stop filter. As a result of adaptation, the apparatus is automatically switched into its optimum operating range.
In the preferred embodiment, the transmitting current control of the infrared beam transmitters 26 may be separately set to have a range of about 15 dB, i.e. 16 stages of about 1 dB for each of the beam transmitters. Also preferably, the conversion factor control of the I/V converter 18 may be set to have a range of about 50 dB, i.e. 6 stages each of about 10 dB. As a result, the apparatus 10 has available a continuous setting range of about 65 dB, in about 1 dB stages, for automatic adaptation. The setting values acquired are preferably stored in a non-volatile memory of the microcontroller 12 and are therefore available as starting values for each subsequent activation of the apparatus 10 without there being any need for renewed adaptation. As a result of overlapping of the setting ranges, component tolerances may also be compensated. To effect a sensitivity balance between the infrared beam transmitters 26 and the associated infrared beam receivers 30, the overlap region is further utilized in conjunction with the separate setting facilities of the beam transmitters 26, since only the total signal is converted by the I/V converter 14. This balance ensures that the sensitivity of each transmitter/receiver pair of the optoelectronic assembly 24 are substantially identical.
In particular, the ability to control the beam transmitting current and the conversion factor of the I/V converter 18 allows the apparatus to compensate for effects such as different windshield types, manufacturing tolerances and aging effects of the infrared beam transmitters 26 and the infrared beam receivers 30, tolerances in the trigger and evaluation electronics not specifically illustrated which cooperate with the apparatus 10, tolerances of the beam guide 28, and aging effects of the windshield (e.g. scratches from being hit by stones), to name a few.
One problem not adequately solved by the prior art relates to unwanted influences of the ambient light and continuous rapid changes in ambient light conditions, such as that which occur when driving along a tree-lined road (i.e. interplay of light and dark). The rapid changes can trigger the apparatus 10 into activating the windshield wiper system inadvertently. To eliminate these unwanted ambient light influences, the present invention incorporates load resistors RL1, RL2, . . . , RLn, as shown in FIG. 1. The voltage drop at the load resistors RL1, RL2, . . . , RLn is preferably used as a correcting quantity for operation and control of the windshield wiping system. This correction is also preferably used, for example, to prevent the output voltage from sliding below an interference level of the apparatus, as a result of ambient light influences. In the preferred embodiment, the interference level represents a threshold beyond which in all probability signal changes are to be evaluated as a coating present on the windshield.
As best shown in FIG. 1, the operational amplifier 36 is in electrical communication with the load resistors RL1, RL2, . . . , RLn and processes the voltage drop at the load resistors into the correcting quantity, so as to linearize the useful signal. The output of the operational amplifier 36 is provided to the operational amplifier 38.
In addition to receiving the processed correcting quantity output from the operational amplifier 36, the operational amplifier 38 also receives, as an input quantity, the signal output from the filter 22. In the preferred embodiment, the operational amplifier 38 eliminates the variations in the useful signal caused by the ambient light by injecting the correcting quantity, thereby resulting in the formation of a linearized output voltage supplied to the microcontroller 12. This linearized output voltage is the sensor signal utilized by the microcontroller to control the windshield wiping system. Influences upon the useful signal which originate from the ambient light are, therefore, effectively eliminated.
Referring now to FIG. 2, there is shown a high level flow chart illustrating the control flow executed by the apparatus 10 in controlling the windshield wiping system. Wiping of the windshield is generally a function of a moisture ratio value (MRV), which is calculated from the current sensor value and the last determined hundred percent value (HPV), as described in greater detail below. With reference to FIG. 1, the sensor value is that signal provided to the microcontroller 12 from the operational amplifier 38. The HPV reflects the maximum sensor value for a "dry" windshield and may be different than the highest possible value measured with a clean windshield, since it is measured regardless of the amount of dirt, salt, and the like present on the exterior surface of the windshield. These elements tend to decrease the sensor value, but are distinguishable from moisture by use of the HPV.
Generally, the moisture ratio value is compared to two dynamic parameters, referred to herein as a connection, or switch on, threshold (TON) and a disconnection, or switch off, threshold (TOFF), to determine whether the windshield wipers should be activated or deactivated. In the preferred embodiment, these thresholds are expressed as a percentage of the HPV and can be modified or overridden based on specific conditions, as explained below. When the moisture ratio falls below the switch on threshold, the wipers are activated. When the moisture ratio is above the switch off threshold after a complete wipe cycle, the wipers are deactivated. The windshield wipers can be activated and deactivated under certain additional conditions: if the sensor value is out of range, and if a special type of rain pattern is detected, as described in greater detail below. Additionally, the apparatus may initiate a wipe cycle during intermittent mode of operation when the time delay between wipes has exceeded a predetermined set time. This acts as a reminder to the vehicle operator that the windshield wiping system is being operated in the intermittent mode.
As shown in FIG. 2, operation begins with initialization at step 50. During initialization, appropriate memory locations and flags are cleared, variables are set to predetermined values, output ports are reset to normal state, the gain for the I/V converter 18 shown in FIG. 1 is preset, and the like. At step 52, autoranging of amplification is performed by the microcontroller.
With reference now to FIGS. 3 and 4, there is shown a flow chart illustrating the steps for autoranging of amplification as utilized by the present invention, and a graphical illustration of the data range selection utilized during autoranging of the amplification, respectively. In the preferred embodiment, either the emitted light or the received light can be amplified. Most preferably, the transmitting current of the LEDs is adjusted first during autoranging to a maximum value of 15 dB. If further amplification is required, the received light can then be amplified in about 10 dB increments. The transmitted light is adjusted first due to signal-to-noise ratio considerations, since amplification of the received light results in amplification of noise. The amplification circuitry is part of the I/V converter 18 shown in FIG. 1, and includes a two-stage inverting amplifier.
Referring now to FIG. 4, there is illustrated the relationship between data range and amplification. Considerable dynamic range is required by the apparatus to compensate for the effects of different windshield types, dirt, salt, different rain intensities, and the like. The sensor value provided to the microcontroller is monitored and the gain is accordingly adjusted so as to keep the data range at a readable level. As shown, lower amplification values are associated with windshields with high transmission and higher amplification values are associated with windshields with low transmission. Regardless of the moisture/dirt condition on the surface of the windshield, the data range is represented by a 1-byte window (256 values) that shifts depending on the amplification value. The preferred amplification level is about 33 dB, wherein the associated window includes the maximum possible value (MPV) threshold, the upper dirt threshold (UDT) and the lower dirt threshold (LDT). The MPV represents the signal value associated with a clean and dry windshield. The UDT and LDT are functions of the amplification level and of the MPV for a clean windshield. The UDT is about 50-60 values below the MPV and the LDT is about 100-120 values below the MPV. In the preferred embodiment, during autoranging the gain is adjusted to an amplification level which includes all three thresholds. The normal amplification level is about 33 db, with the MPV having a window value of about 230, the UDT having a window value of about 180 and the LDT having a window value of about 130. Although the window values of the MPV, UDT and LDT vary based on amplification, they still represent the same moisture/dirt condition on the windshield. For example, the MPV is about 150 for an amplification of 32 dB, and 230 for an amplification of 33 dB, but the MPV still represents the sensor value for the driest and cleanest windshield.
At step 70, the microcontroller determines whether or not the windshield wiper system is activated. The microcontroller makes this determination based on the signal WA from the wiper motor. Preferably, the wiper motor includes an internal switch which is actuated shortly after the motor is energized and the wiper blades leave the resting position. When the switch is actuated, the wiper-active signal is provided to the microcontroller. While the wiper motor is deactivated, at step 72 the microcontroller determines whether the sensor value is below the lower threshold of measurement range (LTMR ≈ 30 values) of the data window. If the sensor value is below the LTMR, the amplification is adjusted at step 74 by a predetermined increment, such as 1 dB. If the sensor value is above the LTMR, the microprocessor determines at step 76 whether the signal value has exceeded the upper threshold of measurement range (UTMR ≈ 240 values) of the data window. If the sensor value has exceeded the UTMR, then at step 78 the amplification is adjusted by a predetermined decrement, such as 1 dB. After either a unit increment or a unit decrement at step 74 or 78, respectively, at step 80 the sensor signal out-of-range flag is set, forcing the windshield wipers to wipe the windshield, so as to clear the moisture. Every time a wiper blade passes over the sensor active area for the last time during the wipe, a new HPV is determined, as described in greater detail below.
With continuing reference to FIG. 3, if the wiper motor is activated (i.e. a wipe cycle is occurring) at step 70, control flow jumps to step 82, wherein the microcontroller determines whether or not the wipers are in the low, or resting, position. If the wipers are not in the low position, the signal value is observed at step 83 to determine if it is out of measurement range and how long it has been so. After that the autoranging procedure is exited, with control flow returning to block 54 of FIG. 2. If, however, the wiper motor has been activated and the wipers are again in the low position, the microcontroller checks the information from the last wiping cycle (step 83) and determines whether the sensor value was within the data window. More specifically, at step 84 the microcontroller determines whether the signal value was below the lower boundary (i.e. LB=1, sensor value=0) of the data window. If so, at step 86 the amplification is increased by an amount proportional to the total time during the wipe cycle that the sensor value was out of the data window. If not, at step 88 the microcontroller determines whether the sensor value had exceeded the upper boundary (i.e. UB=254, sensor value=255) of the data window and, if so, decreases the amplification at step 90 by an amount proportional to the total time during the wipe cycle that the sensor value was out of the data window.
As shown in FIG. 2, after autoranging of the amplification is complete, at step 54 the microcontroller performs a rain pattern recognition procedure. The magnitude of the sensor active area as compared to the total windshield area becomes significant when the rain is falling slowly and in a pattern of widely scattered drops. In this case, inference wipes of the wiper blades are made independent of the switch-on threshold, so as to assure consistent wiping intervals, as described in greater detail below.
Referring now to FIG. 5, there is shown a flow chart illustrating the steps of the method for recognition of a single rain drop pattern of the present invention. FIGS. 6a-6b are graphical illustrations of the sensor value during single rain drop recognition and the wiper active signal representing activation of the wiping system, respectively. In the preferred embodiment, the wiping system is controlled according to the single rain drop recognition procedure only during operation of the wiping system in intermittent mode. The sensor value varies, i.e. increases or decreases resulting in an "edge", as the moisture level on the sensor active area varies. Depending on the type of moisture, the shape of the sensor value edge is either "hard" or "soft". During the time delay between consecutive wipes, the microcontroller counts both types of edges. Generally, if the number of soft edges counted during a delay period does not overwhelmingly exceed the number of hard edges counted during the same period, a single drop rain pattern is recognized.
As shown in FIG. 5, at step 100 the microcontroller determines whether the wipers are currently in a wipe cycle wiping the windshield, or whether the wipers are in the resting position during an intermittent delay period. If the wiper is in a wiping cycle the microcontroller checks at step 101 if the wiper blade has passed the sensor active area for the second time. If the wiping system is in an intermittent delay period, or if the wiper is on the way to the rest position, the microcontroller analyzes the sensor value at step 102 to determine the presence of a falling edge in the sensor value. If a falling edge is present, a rain drop has fallen on the sensor active area, and at step 104 the microcontroller determines the shape of the edge. With the preferred embodiment, a hard edge represents about a 4 digit decrease in the sensor value, and a soft edge represents about a 2-3 digit decrease in the sensor value, typical of drizzle-like rain patterns. A hard edge due to a rain drop is shown at point "A" on FIG. 6a.
Depending on the shape of the edge, the microcontroller counts the number of hard edges (EDGEHD) or soft edges (EDGESFT) at steps 106 or 108, respectively. Thus, since the sensor value includes a single hard edge at point "A" of FIG. 6a, EDGEHD =1 and EDGESFT =0. At step 110, the microcontroller compares the present intermittent delay period (DELt) with the previous delay period (DELt-1) as follows:
DEL.sub.t >k * DEL.sub.t-1 (1)
wherein K is a constant, such as 1. During the first pass through the routine, the test fails since DELt and DELt-1 still have their initialized values of "0", and control flow returns to FIG. 2.
Since the falling edge at point "A" in FIG. 6a lowered the sensor value to a value below the switch on threshold for the intermittent mode of operation TIMOFF, the wiper motor is energized after expiration of the delay period, such as time t=1 of FIG. 6b. The threshold for the intermittent mode is calculated from the HPV. As the wiper blades leave the resting position and wipe the windshield, water is pushed over the sensor active area, resulting in a first sharp decrease in the sensor signal, shown generally at point "B" on FIG. 6a. As the wiper blades return toward the resting position, water is once again pushed over the sensor active area, resulting in a second sharp decrease in the sensor signal, shown generally at point "C" on FIG. 6a. Once the wipers pass the active area on the return wipe, the sensor active area is substantially dry, resulting in a sharp increase in the sensor signal to a point above the switch on threshold. At point t=2 on FIG. 6b, the wiper motor is deenergized for a duration equivalent to the delay period.
With reference once again to FIG. 5, when the single drop procedure is executed again, control flow will skip to step 114, since the condition at step 100 will be satisfied since the motor will have been activated during intermittent operation and the wiper has not reached the sensor for the second time. At step 114, the microcontroller determines the duration of the previous delay period between the consecutive wipes of the windshield. At step 116, the microcontroller tests the following inequality, the results of which actually indicate the existence of a single rain drop pattern:
n * EDGE.sub.HD >EDGE.sub.SFT (2)
wherein e.g. n=4. If this condition is not satisfied, the next wipe cycle will be initialized when moisture is detected. At step 120, the microcontroller initializes the edge counters.
If the condition at step 116 is satisfied, at step 118 the microcontroller calculates a new delay period between consecutive wipes based on the old delay period. However, if detected moisture makes an earlier wipe appropriate, this is executed. As can be seen from FIGS. 6a and 6b, it should be noted that between times t=2 and t=3, the sensor value remained above TON, indicating no rain drops fell on the sensor active area. In step 110, as shown in FIG. 5, the current delay time is checked. If the delay time which is calculated in step 118 is finished, the microcontroller sets the rain pattern flag (step 112) which initializes the wipe cycle. At time t=3 on FIG. 6b, the motor is once again energized by the microcontroller and the windshield is wiped. As the wiper blades leave the resting position and wipe the windshield, water is pushed over the sensor active area, resulting in a sharp decrease in the sensor signal, shown generally at point "D" on FIG. 6a. As the wiper blades return toward the resting position, water is once again pushed over the sensor active area, resulting in another sharp decrease in the sensor signal, shown generally at point "E" on FIG. 6a. After the sensor signal returns to a point above TIMOFF at point t=4 on FIG. 6b the wiper motor is deenergized in the resting position.
Referring once again to FIG. 2, at step 56 the microprocessor executes a sensitivity control procedure. In the preferred embodiment, when dirt, salt, and the like, are present on the windshield, the switch-on threshold and switch-off threshold are reduced so as to delay activation of the windshield wiping system and allow moisture to collect on the windshield. With the extra moisture on the windshield, the wiper blades will have a more effective cleansing action and dirt streaks across the windshield will be reduced. Generally, dirt is detected by comparing the HPV to the upper dirt threshold and the lower dirt threshold. If the HPV falls below either of these thresholds, the sensitivity is reduced correspondingly.
With reference now to FIG. 7, there is shown a flow chart illustrating the steps for dirt streak dependent sensitivity control for use with the present invention. Initiation of the sensitivity control procedure is deferred until the wiping system is deactivated after completion of a wipe cycle, as determined at step 130. At step 132, the microcontroller detects the presence of dirt on the windshield by comparing the present HPV to the upper dirt threshold. This comparison takes place after the wiper has passed the sensor for the second time. If the HPV is above the UDT, at step 134 the microcontroller sets the sensitivity level to a predetermined default level and control flow returns to step 58 of FIG. 2. If the condition at step 132 is satisfied and the HPV is below the upper dirt threshold, the microcontroller determines whether or not the sensitivity of the sensor is at its lower boundary, since it is not desirable to further decrease the sensitivity further below the lower boundary. If not, the microcontroller decreases the default sensitivity level of the system by about K1% of the HPV, wherein K1%=2%, for example. If the sensitivity of the system is at the lower boundary, at step 140 the microcontroller determines whether the present HPV is below the lower dirt threshold (LDT). If the HPV is above the LDT, the sensitivity procedure is exited. If the HPV is below the LDT, at step 142 the microcontroller determines whether or not the system sensitivity is at the lower boundary. Depending on the result, the sensitivity may be decreased by about k2% of the HPV at step 144, wherein k2%=5%, for example.
As shown in FIG. 2, after performing the sensitivity control procedure at step 56, the microcontroller executes the start wiper procedure at step 58. Generally, when the moisture ratio measurement value falls below the switch-on threshold, the windshield wipers are activated. With additional reference to FIG. 8, there is shown a flow chart detailing the steps for determining whether or not to activate the windshield wipers from the low, or resting, position. At step 150, the microcontroller makes a moisture ratio measurement value. As previously discussed, the moisture ratio measurement value is calculated from the current sensor value and the last determined HPV. At step 152, a comparison is performed by the microcontroller to determine whether the moisture ratio is below the predetermined noise level (e.g. 98%) prior to updating the value of the switch on threshold at step 156 according to the following equation: ##EQU1## wherein N represents a predetermined noise level and TDEF represents a default switch on threshold. Equation (3) represents an integration over time proportional to the quantity of moisture present.
As shown in FIG. 8, if the moisture ratio is not below the predetermined noise level, the switch on threshold does not need to be adjusted from the default value. As a result, at step 154, the variable Ts, which represents the time at which the MRV dropped below the noise level, is set to the value of t, which represents the current time, such that the integral term of equation (3) above is equal to zero and the switch on threshold remains at the default level, TON =TDEF. If, however, the moisture ratio is below the noise level, indicating the presence of moisture, the switch-on threshold is adjusted.
With continuing reference to FIG. 8, at step 158 the microcontroller determines whether the moisture ratio is below the adjusted switch-on threshold determined at step 156. Assuming the moisture remains on the sensor active area, the switch on threshold will eventually exceed the MRV. When it does, control flow jumps to step 164, and the windshield wipers are activated for one complete cycle. If the moisture ratio is not below the adjusted switch-on threshold, at step 160 the microcontroller determines whether a wipe cycle should be initiated based on a single drop rain pattern, previously discussed with reference to FIGS. 5 and 6. If the observed rain pattern indicates a wipe cycle is necessary at step 160, control flow jumps to step 164 and the wipers are activated. If not, the sensor signal is analyzed at step 162 to see if it is out of measurement range (i.e. 0 or 255). If the sensor signal is out of measurement range, the wipers are activated for one complete cycle at step 164, which in turn triggers determination of a new HPV and accordingly new thresholds. If the sensor signal level is acceptable, control flow returns to step 60 of FIG. 2.
Referring once again to FIG. 2, if the windshield wipers are activated as determined at step 60, at step 62 the microcontroller determines the new HPV. As previously discussed, the HPV reflects the maximum sensor value for a dry, or clean, windshield. In the preferred embodiment, the HPV is measured after the wiper blades pass over the sensor active area for the last time during a wipe cycle. It is at this time that the area of the windshield monitored by the sensor is the driest, or the cleanest, for the existing rain/dirt condition. Thus, a dry and clean windshield may have a maximum sensor value of 200, whereas a dry and dirty windshield may have a maximum sensor value of only 150. If the HPV is not periodically adjusted, the switch on and switch off thresholds, which are derived from the HPV, would prevent proper operation. For example, assume the switch on threshold is set at a value of 95% of the HPV. For an HPV of 200, the switch on threshold is 190. However, the maximum sensor value for a dry and dirty windshield may be only 150. Since the sensor value would be always below the switch on threshold, continuous wiping would result. Periodic determination of HPV allows the microcontroller to accurately ascertain at which sensor values the wiper motor should be energized.
Referring now to FIG. 9, there is shown a flow chart detailing the steps for determination of the HPV of the present invention. FIGS. 10a and 10b are graphical illustrations of the typical sensor signal during determination of the HPV and the wiper activation signal, respectively. As shown in FIG. 9, at step 170, the microcontroller measures the dwell active time, which represents the duration of one complete wipe cycle, i.e. two passes of a wiper blade over the sensor active area. This time can vary due to the amount of water or dirt on the windshield, the battery voltage, vehicle speed and also due to aging of the wiper blades, the wiper motor and the like. The sensor signal trace of FIG. 10a is shown for a majority of a complete wipe cycle. Point "F" represents the point in time just after a wiper blade has pushed water over the active area and passed over the sensor active area. At this point, the sensor active area is dry, resulting in a sharp increase in the sensor signal to about point "G".
At step 172, the microcontroller determines the time at which the wiper blades should have crossed the sensor active area for the last time during a wipe cycle, i.e. on the return wipe toward the resting position. This time is shown at about time t=TC on FIG. 10a. This determination is possible since the microcontroller knows when the motor was energized and knows the duration of the last complete wipe cycle (run time of the wiper active signal). When TC is determined, the microprocessor expands that time to a time window having a lower band at about time t=TC -30 mS and an upper band at about time t=TC +30 mS. At step 174, the microcontroller analyzes the sensor signal for the presence of a sharp decrease during that time window. This sharp decrease, such as that shown at point "H" on FIG. 10a, indicates water being pushed over the sensor active area by the wiper blades on their return to the resting position.
With continuing reference to FIGS. 10a-10b, if a sharp decrease was detected, at step 176 the microprocessor searches for a new HPV. To determine the new HPV, the microcontroller monitors the sensor value after detection of the sharp decrease for a new maximum value. As best shown in FIG. 10a, the sensor value increases sharply after the wiper blades pass over the sensor active area and attains a maximum value at about time t=TMAX. The sensor value thereafter decreases due to, for example, the presence of more rain on the sensor active area.
As shown in FIG. 10a, the sensor value will continue to decrease as the amount of moisture or dirt on the windshield increases. The wiper motor is deenergized based on the sensor value and the appropriate threshold. Thus, when the windshield wiping system is operating in continuous mode (i.e. two consecutive wipe cycles in a row), the wiper system will continue to function in the continuous mode as long as the sensor signal drops below TCMOFF, which has a value of about 97% of HPV, for example. If the sensor value remains above TCMOFF, the wiper motor will be deenergized. This wiping strategy helps to insure minimize erratic wiper behavior, since the windshield condition has to be rather dry for the sensor value to exceed the higher threshold. Similarly, when the windshield wiping system is operating in intermittent mode, the wiper system will continue to function in the intermittent mode as long as the sensor signal drops below TIMOFF, which has a value of about 95% of HPV, for example. If the sensor value remains above TIMOFF, the wiper motor will be deenergized since the system is not operating in continuous mode, such as at time t=tOFF on FIG. 10b. The wiper motor will not be energized again until the sensor value drops below the TON threshold due to moisture on the active area, such as at time t=tON. If no falling edge was detected at step 174, and the time window during which the wipers should have crossed the active area expires, at step 178 control flow returns to step 176 and a new HPV is determined, as previously discussed.
As shown in FIG. 2, once the new HPV is determined at step 62, the microprocessor executes a stop wiper procedure to determine whether or not to deactivate the windshield wiping system. Generally, when the moisture ratio is above the switch-off threshold after a complete wipe cycle, the wipers are deactivated.
Referring now to FIG. 11, there is shown a flow chart detailing the steps for determining whether to stop the wiper in the low position. When the windshield wiping system is in the low position as determined at step 190, the microcontroller determines at step 192 whether the windshield wiping system has been activated for more than two cycles in the continuous mode. If the condition is satisfied, at step 194 the microcontroller compares the moisture ratio measurement value (MRV) to the continuous mode switch-off threshold (TCMOFF). If the MRV is below TCMOFF, the stop wiper procedure is exited and control flow returns to the main loop shown in FIG. 2 wherein steps 52-62 are repeated as described in greater detail above. Independently of the switch on threshold, the switch off threshold increases when the wiper is operating in continuous mode e.g. TIMOFF =96% * HPV and TCMOFF =97% * HPV. For moisture ratio values above the switch off threshold, control flow jumps to step 198, described in greater detail below.
With continuing reference to FIG. 10, if the condition tested at step 192 was not satisfied, at step 196 the microcontroller determines whether the moisture ratio value is below the intermittent mode switch-off threshold (TIMOFF). At steps 198, 200 and 202, the microprocessor analyzes the sensor signal for out-of-range values, determines whether the current rain pattern requires continued activation of the wiper system and determines whether the wiper should be cycled according to the basic intermittent mode, respectively. If any of these conditions are satisfied, the stop wiper procedure is exited and control flow returns to the main loop of FIG. 2, wherein steps 52-62 are repeated as described above. If these conditions are not satisfied, the microcontroller deactivates the wiper system at step 204 and control flow is returned to the main loop as shown in FIG. 2.
It is to be understood, of course, that while the forms of the invention described above constitute the preferred embodiments of the invention, the preceding description is not intended to illustrate all possible forms thereof. It is also to be understood that the words used are words of description, rather than limitation, and that various changes may be made without departing from the spirit and scope of the invention, which should be construed according to the following claims.